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Abstract

We develop and analyze efficient ” coordinate-wise” methods for finding the leading eigenvec-
tor, where each step involves only a vector-vector product. We establish global convergence
with overall runtime guarantees that are at least as good as Lanczos’s method and dominate
it for slowly decaying spectrum. Our methods are based on combining a shift-and-invert
approach with coordinate-wise algorithms for linear regression.

1. Introduction

Extracting the top eigenvalues/eigenvectors of a large symmetric matrix is a fundamental
step in various problems including many machine learning applications. One prominent ex-
ample of this problem is principal component analysis (PCA), in which we extract the top
eigenvectors of the data covariance matrix, and there has been continuous effort in develop-
ing efficient stochastic/randomized algorithms for large-scale PCA (e.g., Garber et al., 2016;
Shamir, 2015; Allen-Zhu and Li, 2016). The more general eigenvalue problems for large ma-
trices without the covariance structure is relatively less studied. The method of choice
for this problem has been the power method, or the faster but often relatively less known
Lanczos algorithm (Golub and van Loan, 1996), which are based on iteratively computing
matrix-vector multiplications with the input matrix until the component of the vector that
lies in the tailing eigenspace vanishes. However, for very large-scale and dense matrices,
even computing a single matrix-vector product is expensive.

An alternative is to consider much cheaper vector-vector products, i.e., instead of up-
dating all the entries in the vector on each iteration by a full matrix-vector product, we
consider the possibility of only updating one coordinate, by only computing the inner prod-
uct of single row of the matrix with the vector. Such operations do not even require storing
the entire matrix in memory. Intuitively, this may result in an overall significant speedup,
in certain likely scenarios, since certain coordinates in the matrix-vector product are more
valuable than others for making local progress towards converging to the leading eigenvector.
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Indeed, this is the precise rational behind coordinate-descent methods that were extensively
studied and are widely applied to convex optimization problems, see Wright (2015) for a com-
prehensive survey. Thus, given the structure of the eigenvalue problem which is extremely
suitable for coordinate-wise updates, and the celebrated success of coordinate-descent meth-
ods for convex optimization, a natural question is whether such updates can be applied for
eigenvector computation with provable global convergence guarantees, despite the inherent
non-convexity of the problem.

Recently, Lei et al. (2016) have proposed two such methods, Coordinate-wise Power
Method (CPM) and Symmetric Greedy Coordinate Descent (SGCD). Both methods update
on each iteration only k entries in the vector, for some fixed k. CPM updates on each
iteration the k coordinates that would change the most under one step of power method,
while SGCD applies a greedy heuristic for choosing the coordinates to be updated. The
authors show that CPM enjoys a global convergence rate, with rate similar to the classical
power iterations algorithm provided that k&, the number of coordinates to be updated on each
iteration, is sufficiently large (or equivalently, the "noise” outside the k selected coordinate
is sufficiently small). In principle, this might force k to be as large as the dimension d,
and indeed in their experiments they set k& to grow linearly with d, which is overall not
significantly faster than standard power iterations, and does not truly capture the concept
of coordinate updates proved useful to convex problems. The second algorithm proposed
in Lei et al. (2016), SGCD, is shown to converge locally with a linear rate already for k = 1
(i.e., only a single coordinate is updated on each iteration), however this results assume
that the method is initialized with a vector that is already sufficiently close (in a non-trivial
way) to the leading eigenvector. The dependence of CPM and SGCD on the inverse relative
eigengap! of the input matrix is similar to that of the power iterations algorithm, i.e. linear
dependence, which in principal is suboptimal, since square-root dependence can be obtained
by methods such as the Lanczos algorithm.

We present globally-convergent coordinate-wise algorithms for the leading eigenvector
problem which resolves the abovementioned concerns and significantly improve over previ-
ous algorithms. Our algorithms update only a single entry at each step and enjoy linear
convergence. Furthermore, for a particular variant, the convergence rate depends only on
the square-root of the inverse relative eigengap, yielding a total runtime that dominates that
of the standard power method and competes with that of the Lanczos’s method. In Section 2,
we discuss the basis of our algorithm, the shift-and-invert power method (Garber and Hazan,
2015; Garber et al., 2016), which transforms the eigenvalue problem into a series of convex
least squares problems. In Section 3, we show the least squares problems can be solved
using efficient coordinate descent methods that are well-studied for convex problems. This
allow us to make use of principled coordinate selection rules for each update, all of which
have established convergence guarantees.

We provide a summary of the time complexities of different globally-convergent methods
in Table 1. In particular, it is observable that in cases where either the spectrum of the
input matrix or the magnitude of its diagonal entries is slowly decaying, our methods can
yield provable and significant improvements over previous methods. For example, for a

spiked covariance model whose eigenvalues are p; > p1 — A = ps = p3 = ..., our algorithm
1. Defined as % for a positive semidefinite A, where p;(A) is the i-th largest eigenvalue of A.
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Table 1: Time complexity (total number of coordinate updates) for finding an estimate w
satisfying (WTP1)2 > 1 — e with at least constant probability, where p; is the
leading eigenvector of a positive semidefinite matrix A € R%? with eigenvalues
p1, P2, - .. in descending order. Since all methods are randomized, we assume all
are initialized with a random unit vector.

Method Time complexity
Power method (@) ( -d? - log —)
pP1—p2 |wg pile
Lanczos o ( -d? - log —r—r
Pl P2 |wg pl\e
PL=F 35 Pi | g2 1
Ours (SI-GSL) o (IW d* -log EEnP
P2 Vei—Ai o 1
Ours (SI-ACDM) | O (% d® -log Wbl

(SI-GSL) can have a runtime independent of the eigengap A, while the runtime of Lanczos’s

method depends on \/Z We also verify this intuition empirically via numerical experiments.

Notations We use boldface uppercase letters (e.g., A) to denote matrices, and boldface
lowercase letters (e.g., x) to denote vectors. For a positive definite matrix M, the vector

norm ||-||yg is defined as [|[w|y; = VW TMw = HM%WH for any w. We use A[ij] to denote

the element in row ¢ and column j of the matrix A, and use x[i] to denote the i-th element
of the vector x unless stated otherwise. Additionally, A[i :] and A[: j] denote the i-th row
and j-th column of A respectively.

Problem formulation We consider the task of extracting the top eigenvector of a sym-
metric positive definite matrix A € R?. Let the complete set of eigenvalues of A be
p1 = py > - > pg > 0, with corresponding eigenvectors pi,...,pPq which form an or-
thonormal basis of R%. Without loss of generality, we assume p; < 1 (which can always
be obtained by rescaling the matrix). Furthermore, we assume the existence of a positive
eigenvalue gap A := p; — p2 > 0 so that the top eigenvector is unique up to scaling.

2. Shift-and-invert power method

In this section, we introduce the shift-and-invert approach to the eigenvalue problem and
review its analysis, which will be the basis for our algorithms. The most popular itera-
tive algorithm for the leading eigenvalue problem is the power method, which iteratively
performs the following matrix-vector multiplications and normalization steps

V~Vt — AWt_l, Wi < ——,

for t=1,....
al

It can be shown that the iterates become increasingly aligned with the eigenvector cor-
responding to the largest eigenvalue in magnitude, and the number of iterations needed

to achieve e-suboptimality in alignment is O (p L log I T > (Golub and van Loan, 1996)2.

2. We can always guarantee that |wq p1| = Q(1/v/d) by taking wo to be a random vector on unit sphere.
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We see that the computational complexity depends linearly on %, and thus power method
converges slowly if the gap is small.

Shift-and-invert (Golub and van Loan, 1996; Garber and Hazan, 2015; Garber et al., 2016)
can be viewed as a pre-conditioning approach which improves the dependence of the time
complexity on the eigenvalue gap. The main idea behind this approach is that, instead of
running power method on A directly, we can equivalently run power method on the matrix
(AL — A)~! where A > p; is a shifting parameter. Observe that (AI — A)~! has exactly the
same set of eigenvectors as A, and its eigenvalues are

1
A=pi

B1>P2>---2>Bq>0, where f3; =

If we have access to a A that is slightly larger than p;, and in particular if A —p; = O(1) - A,
then the inverse relative eigengap of (\I — A)~! is 616—152 = O(1), which means that the
power method, applied to this shift and inverted matrix, will converge to the top eigenvector
in only a poly-logarithmic number of iterations, in particular, without linear dependence
on 1/A.

In shift-and-invert power method, the matrix-vector multiplications have the form w; <+
(AI — A)~!'w;_1, which is equivalent to solving the convex least squares problem

1
W, < arg min EWT()\I —A)w —w, | w. (1)

Solving such least squares problems exactly could be costly if d is large. Fortunately, power
method with approximate matrix-vector multiplications still converges, provided that the
errors in each step is controlled; analysis of inexact power method together with applications
to PCA and CCA can be found in Hardt and Price (2014); Garber et al. (2016); Ge et al.
(2016); Wang et al. (2016).

We give the inexact shift-and-invert preconditioning power method in Algorithm 1,
which consists of two phases. In Phase I, starting from an lower estimate of A and an
upper bound of p1, namely Ay =1+ A (recall that by assumption, p; < 1), the repeat-
until loop locates an estimate of the eigenvalue \(4) such that 0 < A5y —p1 = ©(1)- A, and
it does so by estimating the top eigenvalue 3; of (\I — A)~! (through a small number of
power iterations in the for loop), and shrinking the gap between A(,) and p;. In Phase II,
the algorithm fixes the shift-and-invert parameter A, and runs many power iterations in
the last for loop to achieve an accurate estimate of pj.

We now provide convergence analysis of Algorithm 1 following that of Garber and Hazan
(2015) closely, but improving their rate (removing an extra log % factor) with the warm-start
strategy for least squares problems by Garber et al. (2016), and making the initial versus
final error ratio explicit in the exposition. We discuss the least-squares solver in Algorithm 1
in the next section.

Measure of progress Since {pi,...,pq} form an orthonormal basis of R?, we can
write each normalized iterate as a linear combination of the eigenvectors as

d

W = thipi, where &; = w, p;, fori=1,....d,
i=1
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Algorithm 1 The shift-and-invert meta-algorithm for extracting top eigenvector of A.

Input: Data matrix A, an iterative least squares optimizer (LSO) a lower estimate A for
A := p1 — po such that Ae [clA oAl and 0 =1+ 1= CQA
Initialize wq € R9, wW( < HWOII
// Phase I: locate al=p+0(1)-A
5+ 0, )\(0) — 1+ A
repeat
s+—s+1
// Power method on (A\»I— A)~! in crude regime
fort=(s—1)my+1,...,sm; do
Apply LSO to the problem miny, fi(w) := %WT(A(S_”I — A)w — w/ | w from

initialization — (;;:;)wt,l’ and output w; satisfying fy(Wy) < miny fi(w) + €.

Normalization: wy < Hg—zl\
end for
// Estimate the top eigenvalue of (/\( )I —A)!
Apply LSO to the problem miny, [5(u) := ()\(S)I A)u—w/,, u from initialization
(;VIS”K)W , and output u, satisfying l s(us) < miny I5(u) + €s.
e i 1 As
Update: A «+ 5 - ey As) & A—1) —
until A(S) < A
Ap) £ A
// Power method on (A\I— A)~! in accurate regime
fort=smq1+1,...,sm1 +mo do

Apply LSO to the problem miny, fi(w) = %WT()\(f)I — A)w — w, ;w with initial-

ization — (;’;t_’;)wt -, and output an approximate solution w; satisfying fi(wy) <
t—1 -

miny fi(w) + €.
Normalization: wy < ﬁ
end for
Output: wg,, +m, is the approximate eigenvector.

and 2?21 ¢2 = 1. Our goal is to have high alignment between the estimate w; and py, i.e.,
€n =w/p1 >1—¢€for e € (0,1). Equivalently, we would like to have p; — w, Aw; < pie
(see Lemma 5 in Appendix A).

2.1 Iteration complexity of inexact power method

Consider the inexact shift-and-invert power iterations: w; ~ argmin,, filw) = 3wl (AL -
HW T where f;(Wy) < miny, fy(w) + ¢, for t = 1,.... We can divide
the convergence behavior of this method into two regimes: in the crude regime, our goal is
to estimate the top eigenvalue (as in Phase I of Algorithm 1) regardless of the existence of

an eigengap; whereas in the accurate regime, our goal is to estimate the top eigenvector (as
in Phase II of Algorithm 1).

A)w —w/] W, w;
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Following Garber and Hazan (2015); Garber et al. (2016), we provide convergence guar-
antees for inexact shift-and-invert power iterations in Lemma 7 (Appendix B), quantifying
the sufficient accuracy €; in solving each least squares problem for the overall method to
converge. The iteration complexity for the crude regime is independent of eigengap, while
in the accurate regime the rate in which the error decreases does depend on the eigengap

of A\ —A)~L
2.2 Bounding initial error for each least squares

For each least squares problem f;(w) in inexact shift-and-invert power method, one can
show that the optimal initialization based on the previous iterate is (Garber et al., 2016)

init _ Wi-1

! wl (M- A)wy

We can bound the suboptimality of this initialization, defined as € = f,(win) —
miny, f;(w). See full analysis in Appendix C.

Lemma 1. Initialize each least squares problem miny fi (W) in inexact shift-and-invert
init _ W1 oy L1 imit

power method from wi™" = W AW Then the initial suboptimality €™ in fy(w)

can be bounded by the necessary final suboptimality €; as follows.

2 2
6451 <(2(§é{%2§1__11) - €4 where T1 1is the total number of

1. In the crude regime, €™t < 252
d

iterations used (see precise definition in Lemma 7).
1632
(B1—P2)
for shift-and-invert power iterations (see precise definition in Lemma 7).

2. In the accurate regime, ef;mt < max(Go, 1)- 5 -€; where Gy is the initial condition

2.3 Iteration complexity of Algorithm 1

Based on the iteration complexity of inexact power method and the warm-start strategy,
we derive the total number of iterations (least squares problems) needed by Algorithm 1.

Lemma 2 (Iteration complexity of the repeat-until loop in Algorithm 1). Suppose that
A € [c1 A, coA] where co < 1. Set my = {8 log (ﬁﬂ where &1 = wWq p1, initialize each

&
least squares problem as in Lemma 1, and maintain the ratio between initial and final error
init m zinit .
to be etT = % % = % throughout the repeat-until loop. Then for all s > 1

it holds that %()\(3_1) —p1) < Ay < As—1) — p1- Upon exiting this loop, the \(y) satisfies

3A
pl+—§/\(f)§01+7, (2)

| >

and the number of iterations by repeat-until is O <10g i)

Lemma 3 (Iteration complexity of the final for loop in Algorithm 1). Suppose that A e

2 S L (Ay=pi)(wg pi)?
A, o] where 0 < ¢ < ¢y < 1. Setmy = |11 S0 | wh G;:\/” 0
[c1A, coA] where c <cp < et mo {2 089 ( . )1 where G \/(/\(f)—pl)~(w§p1)2

initialize each least squares problem as in Lemma 1, and maintain the ratio between initial
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init
&t

and final error to be

= 100 max(Gy, 1) throughout the final for loop. Then the output
of Algorithm 1 satisfies W;rm1+m2p1 >1—e.

€t

In the next section, we will be using linearly convergent solvers for the least squares

init
&t

problems, whose runtime depends on log Lemma 2 implies that we need to solve

€t
init
& =

smyp = O (log %) least squares problems in Phase I, each with log +— = O (log %) And

€t

Lemma 3 implies that we need to solve mo = O (log %) least squares problems in Phase II,
init

each with log % =0 (1).

3. Coordinate descent for least squares

Different from PCA, for general eigenvalue problems, the matrix A may not have the
structure of data covariance, and fast stochastic gradient methods for finite-sums (such as
SVRG Johnson and Zhang, 2013 used in Garber et al. 2016) does not apply. However, we
can instead apply efficient coordinate descent (CD) methods in our setting. In this section,
we review the CD methods and study their complexity for solving the least squares problems
in Algorithm 1.

There is a rich literature on CD methods and they have attracted resurgent interests
recently due to their simplicity and efficiency for big data problems; we refer the readers
to Wright (2015) for a comprehensive survey. In each CD update, we pick one coordinate
and take a step along the direction of negative coordinate-wise gradient. To state the
convergence properties of CD methods, we need the definitions of a few key quantities.
Recall that we would like to solve the least squares problems of the form miny f(x) =
2xT(AI — A)x — y Tx, with the optimal solution x* = (A\I — A)~ly.

Smoothness The gradient V f(x) = (\I—A)x—y is coordinate-wise Lipschitz continuous:
foralli=1,...,d, x € R% and a € R, we have

IVif(x+ae;) — Vf(x)| < L;|a| for L; := X\ — Alii]

where e; is the i-th standard basis. Note that for least squares problems, the coordinate-
wise gradient Lipschitz constanst are the diagonal entries of its Hessian. Denote by Lyax :=
maxi<;j<q L; and L = é Zle L; the largest and average Lipschitz constant over all coordi-
nates respectively. These two Lipschitz constants are to be distinguished from the “global”
smoothness L, which satisfies

IVIx) =Vl < L-Ix=vl, vxy.
Since f(x) is quadratic, L = oyax (AI — A). Observe that (Wright, 2015)
1 < -Z//Lmax < d7 (3)

with upper bound achieved by a Hessian matrix 117.

Strong-convexity As mentioned before, the matrices (A\I — A) in our least squares prob-
lems are always positive definite, with smallest eigenvalue p:= A —p; = O (A). As a result,
f(x) is p-strongly convex with respect to the ¢ norm. Another strong convexity parameters
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Table 2: Notation quick reference for CD methods.

Notation Description Relevant properties for least squares
L; smoothness parameter for i-th coordinate L; .= X\ — Alii]
L average smoothness of all coordinates L=X)- é Zle Alit) =\ — é Z?:l Pd
Linax largest smoothness of all coordinates Lax = maxi<i<q L;
L global smoothness L=X\— pds L < Lpax < L < dLyax
W strong-convexity parameter in fs-norm w=A—p1
K strong-convexity parameter in |||, -norm pr > pu/(dL)

we will need is pz, defined with respect to the norm |z|[, = Zle VvV L;|z[t]]. Tt is shown
by Nutini et al. (2015) that ur, > p/(dL). We collect relevant parameters for CD methods
in Table 2.

3.1 Coordinate selection

The choice of coordinate to update is a central research topic for CD methods. We now dis-
cuss several coordinate selection rules, along with convergence rates, that are most relevant
in our setting.

Gauss-Southwell-Lipschitz (GSL, Nutini et al., 2015): A greedy rule for selecting
the coordinate where the coordinate with largest gradient magnitude (relative to the square
root of Lipschitz constant) is chosen. The greedy rule tends to work well for high dimensional
sparse problems (Dhillon et al., 2011).

Cyclic (Beck and Tetruashvili, 2013): Given an ordering of the coordinates, cyclic
coordinate descent processes each coordinate exactly once according to the ordering in each
pass. In the extension “essentially cyclic” rule, each coordinate is guaranteed to be chosen
at least once in every 7 > d updates. This rule is particularly useful when the data can not
fit into memory, as we can iteratively load a fraction of A and update the corresponding
coordinates, and still enjoy convergence guarantee.

Accelerated randomized coordinate descent methods (ACDM): In each step,
a coordinate is selected randomly, according to certain (possibly non-uniform) distribu-
tion based on the coordinate-wise Lipschitz constant. In accelerated versions of randomized
CD (Nesterov, 2012; Lee and Sidford, 2013; Lu and Xiao, 2015; Allen-Zhu et al., 2016), one
can maintain auxiliary sequences of iterates to better approximate the objective function
and obtain faster convergence rate, at the cost of (slightly) more involved algorithm. We im-
plement the variant NU-ACDM by Allen-Zhu et al. (2016), which samples each coordinate
i with probability proportional to v/L; and has the fastest convergence rate to date.

We provide the pseudocode of coordinate descent of the above rules in Algorithm 2.3
Note that the stepsize for the chosen coordinate j is L%» the inverse Lipschitz constant;
for least squares problems where f(x) is quadratic in each dimension, this stepsize exactly
minimizes the function over x[j] given the rest coordinates. In some sense, the GSL rule is
the “optimal myopic coordinate update” (Nutini et al., 2015).

3. The pseudo code for accelerated randomized CD is more involved and we refer the readers
to Allen-Zhu et al. (2016).
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Algorithm 2 Coordinate descent for minimizing f(x) = ix"(I— A)x —y'x.
Input: Data A € R¥? b € R initialization xg.
Compute gradient g < Ax — Ax —y
fort=1,2,...,7 do
Select a coordinate using one of the rules

GSL: j « arg max ﬂ
1<i<d A — Alid]

Cyclic: j+ mod (t,d)+1
Random: Jj < random index € [1,d]

Compute update: 0+ — /\_gggjﬂ
Update coordinate: x; < x;_1+6-€;

Update gradient:

g g—0-Alj], gljl < glil+Ad

end for
Output: x, is the approximate solution.

Connection to the greedy selection rule of Lei et al. (2016) Given the current
estimate x, the coordinate-wise power method of Lei et al. (2016) selects the following
coordinate to be updated: argmax; |c[i]| where ¢ = XQXX — X, i.e., the coordinate that
would be updated the most if a full power iteration were performed. Their selection rule is
equivalent to choosing the largest element of ((x" Ax)I — A)x, where x " Ax is the current
(lower) estimate of the eigenvalue p;. On the other hand, the greedy Gauss-Southwell rule
for our method chooses the largest element of the gradient (A — A)x —y, where y is an

earlier estimate of the eigenvector and A is an upper estimate of p;.

3.2 Convergence properties
Lemma 4 (Iteration complexity of CD methods from the literature). The numbers of coordi-
nate updates for Algorithm 2 to achieve f(Xx;)— f« < € where f, = minyg f(x), using different

coordinate selection rules, are O (% -log M) for GSL, O (dL“’aX(1+ZL2/LmaX) log fx ) f*)
for Cyclic, and O (ZL\}_\/_ log f(xo > for NU-ACDM.

Lemma 4 implies that the coordinate descent methods converges linearly for our strongly
convex objective: the suboptimality decreases at different geometric rates for each method.

Most remarkable is the time complexity of ACDM which has dependence on ﬁ: as we

mentioned earlier, the strong convexity parameter p for our least squares problems (in the
accurate regime) are of the order A, thus instantiating the shift-and-invert power method

with ACDM leads to a total time complexity of which depends on ﬁ. In comparison,

the total time complexity of standard power method depends on Z) Thus we expect our
algorithm to be much faster when the eigengap is small.
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It is also illuminating to compare ACDM with full gradient descent methods. The iter-

ation complexity to achieve the same accuracy is O <%> for accelerated gradient descent

(AGD, Nesterov, 2004). However, each full gradient calculation cost O(d?) (not taking into

account the sparsity) and thus the total time complexity for AGD is O dQ\\fiE . In con-
d :
trast, each update of ACDM costs O(d), giving a total time complexity of O (%)

AL VI o PV < VL
In view of (3), we have \/1_ NG < N and thus ACDM is typically more

efficient than AGD (and in the extreme case of all but one L; being 0, the rate of ACDM
is d times better). It is also observed empirically that ACDM outperforms AGD and the
celebrated conjugate gradient method for solving least squares problems (Lee and Sidford,
2013; Allen-Zhu et al., 2016).

Although the convergence rates of GSL and cyclic rules are inferior than that of ACDM,
we often observe competitive empirical performance from them. They are easier to imple-
ment and can be the method of choice in certain scenariors (e.g., cyclic coordinate descent
may be employed when the data can not fit in memory). Finally, we remark that our gen-
eral scheme and conclusion carries over to the case of block and parallel coordinate descent
methods (Bradley et al., 2011; Richtarik and Takac, 2014), where more than one coordinate
are updated in each step.

3.3 Putting it all together

Our proposed approach consists of instantiating Algorithm 1 with the different least squares
optimizers (LSO) presented in Algorithm 2. Our analysis of the total time complexity thus
combines the iteration complexity of shift-and-invert and the time complexity of the CD
methods. First, by Lemma 2 the time complexity of Phase I is not dominant because it is in-
dependent of the final error €. Second, by Lemma 3 we need to solve log ‘El subproblem, each
with constant ratio between initial and final suboptimality. Third, according to Lemma 4
and noting A = p; + O(1) - A, the number of coordinate updates for solving each subprob-
lem is O (i) =0 <%Z?—1Pd)> for GSL, and O (%) =0 <# VA’”_A“>
for ACDM. Since each coordinate update costs O(d) time, we obtain the time complexity
of our algorithms given in Table 1.

3.4 Extensions
Our algorithms can be easily extended to several other settings. Although our analysis
have assumed that A is positive semidefinite, given an estimate of the maximum eigenvalue,
the shift-and-invert algorithm can always convert the problem into a series of convex least
squares problems, regardless of whether A is positive semidefinite, and so CD methods can
be applied with convergence guarantee. To extract the tailing eigenvector of A, one can
equivalently extract the top eigenvector of —A. Futhermore, extracting the top singular
vectors of a non-symmetric matrix A is equivalent to extracting the top eigenvectors of
0 AT
2]
To extend our algorithms to extracting multiple top eigenvectors, we can use the “peel-
ing” procedure: we iteratively extract one eigenvector at a time, removing the already ex-

10
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Figure 1: Comparison of the alignment suboptimality (1 — (w, p1)? vs. number of coor-
dinate passes) of various algorithms for computing the leading eigenvector on
synthetic datasets with slowly decaying spectrum (left panel) and spiked spec-
trum (right panel).

tracted component from the data matrix before extracting the new direction. For example,
to extract pa, we can equivalently extract the top eigenvector of A’ = (I-p;p] JA(I-p1p; ).
And note that we do not need to explicitly compute and store A’ which may be less sparse
than A; all we need in CD methods are columns of A’ which can be evaluated by O(d)
vector operations, e.g., A’[: j] = (I—p1p{ ) - (A[:, 4] — p1lj] - (Ap1)) by storing Ap; € R4
We refer the readers to Allen-Zhu and Li (2016) for a careful analysis of the accuracy in
solving each direction and the runtime.

4. Experiments

We now demonstrate the efficiency of our algorithms, denoted as SI (shift-and-invert) +
least squares solvers. We also include AGD as a solver since SI+AGD gives the same time
complexity as Lanczos.

Synthetic datasets We first generate synthetic datasets to validate the fast convergence
of our algorithms. Our test matrix has the form A = USUT, where U is a random
rotation matrix and we tried two types of spectrum: i) the slowly decaying spectrum where
S = diag(1,1 — A, 1 —2A,...); and ii) the spiked spectrum where S = diag(1,1 — A,1 —
A,...,1—A). The parameter A (which is also the eigengap of A) controls the decay of the
spectrum of A. We use 4 passes of coordinate updates (each pass has d coordinate updates)
for SI-Cyclic, SI-GSL and SI-ACDM, and 4 accelerated gradient updates for SI-AGD, to
approximately solve the least squares problems (1), and set A =0.0001 in Algorithm 1.
We test several settings of dimension d and §, and the results are summarized in Figure 1.
Observe that in most cases, CPM/SGCD indeed converge faster than the standard power
method, justifying the intuition that some coodinates are more important than others.
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Figure 2: Comparison of the runtime efficiency (p; — w, Aw; vs. run time in seconds) of
various algorithms for computing the leading eigenvector on real-world network
datasets.

Furthermore, our algorithm significantly improve over CPM/SGCD for accurate estimate
of the top eigenvector, especially when A is small, validating the superior convergence rates
of our methods. In the extreme case of the spiked covariance in Figure 1 (right panel)
where other approaches converges extremely slowly when A is small, while our methods
still converges fast, and has milder dependence on A.

Real-world datasets A major source of large-scale sparse eigenvalue problem in ma-
chine learning comes from graph-related applications (Shi and Malik, 2000; Ng et al., 2002;
Fowlkes et al., 2004). We now examine the efficiency of the proposed algorithms on sev-
eral large-scale networks datasets with up to a few million nodes?. Let W be the (bi-
nary) adjacency matrix of each network, our goal is to compute the top eigenvectors
for the corresponding normalized graph Laplacian matrix (von Luxburg, 2007) defined as
A=DY 2(D - W)D_l/ 2 where D is a diagonal matrix containing the degrees of each
node on the diagonal. This task can be extended to computing a low-rank approximation
of the normalized graph Laplacian (Gittens and Mahoney, 2013). °

The results are summarized in Figure 2.5 We observe that the proposed methods usu-
ally improves over CPM and SGCD, with up to 5x speedup in runtime over CPM/SGD
depending on the dataset.

4. http://snap.stanford.edu/data/index.html

5. We did experiment with the original task of Lei et al. (2016). For their task, our algorithms do not
significantly improve over CPM/SGCD because the gap of the unnormalized adjacency matrix W is
quite large.

6. For real data, we do not have the ground truth leading eigenvector and it is hard to accurately estimate
it when A — 0. So we measure the suboptimality in the objective which is more stable.
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Appendix A. Auxiliary Lemmas

Lemma 5. Consider a positive semidefinite matriz A € R with eigenvalues p; > - - -
pa > 0 and corresponding eigenvectors pi,...,Pd- For a unit vector v satisfying VTpl
1 — € where € € (0,1), we have

ALY,

vIAv > pi(1 — 2€).

Proof. By direct calculation, we obtain

d
oy (Lawe |y
i=1
d
2
= Z Pi (VTPi>
=1

> p1(vipr)?
> pi(1—e)?
> p1(1 — 2e).
O
Lemma 6. For two nonzero vectors a,b € R?, we have
‘ a b H < olla— bl
lall (/b [all
Proof. By direct calculation, we obtain
Irer =l = s~ el = |~
lall b~ [l al lall bl
la—b] [llaf — bl
= =2y ML
all [all bl
la b _ Jla— bl
all all
Ja—b]
[all
where we have used the triangle inequality in the second inequality. O

Appendix B. Analysis of inexact power method in different regimes

Lemma 7 (Iteration complexity of inexact power method). Consider the following inexact
shift-and-invert power iterations: fort=1,...,

1
W, A~ argmin fi(w) = EWT(AI —A)w —w, | w,

where fi(W;) < miny, fi (W) + €.
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e (Crude regime) Define Ty = E log <5§i2)—‘ Assume that for all t = 1,...,T1, the
01
error in minimizing fiy(w) satisfies
. < 0 < (261/8a) — 1 )2
12861 \(261/B0)T —1)
Then we have W}—l()\ —A)twpy, > (1—¢€)pr.

v Z?:z fgi/ﬁi

o (Accurate regime) Define Gg := . Assume that for all t > 1, the error in
( g ) ﬁ 0 \/M f =

minimizing fi(w) satisfies

d
€ < min <Z 5(%«/_1)@/52’7 5(21‘/—1)1/61 32

=2

) (B B

2
Let v = i’éf:ggi >1and Ty = E log, (%)—‘ Then we have wp1 > 1 — ¢ for all
t>Ty.

Proof. In the following, we use the shorthand My = (AI — A)~!. Observe that
p;rM)\pz:/Bw for Z‘:17"'7d7
PiTMAPj =0, for i #j.

Let the exact solution to the least squares problem miny, f;(w) be w; = Myw;_;. If
we obtain an approximate solution w; such that fi(w;) — fi(W}) = €, it follows from the
quadratic objective that

[ ~ k) T - * 1. ~ x (|2
€t=§(Wt—Wt) M)\l(wt_wt):§”Wt_wt”M;1' (4)
Furthermore, we have for the exact solution that
d d
Wi =Mywi1 =My Ego1yipi = D Bi-1)iPi- (5)
i=1 i=1

Crude regime For the crude regime, we denote by n the number of eigenvalues of M

that are greater than or equal to (1 — i) 5.
We will relate the iterates of inexact power method to those of the exact power method
Vi

{/t<—M)\Vt_1, Vi < tzl,

—t
Vil
from the same initialization vy = wy.

On the one hand, we can show that exact power iterations converges quickly for eigen-

o . M
value estimation. Since vy = ﬁ and M vy = Z?:l Bi&oipi, we have
A Vo

2

Vi Pi)T =g = 2

% £2 o)

i=nt+1 > i1 B 1€0

1 €N 2t e—st/2
AT
o1 4 01

d d 2t ¢2 2t d 2
Z ( T Zi:n-ﬁ-l /Bi §0i < ntl z’:n+1§0i
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This indicates that after T} = E log <%>—‘ iterations, we have Z?:n +1(VtT pi)? < £ for all
t > T1. And as a result, for all t > T, it holds that

V;FM)\Vt
d d
=v/ <Z Bz'pipiT> ve=Y_ Bi(v/pi)’
i=1 i=1
n d
By vip)? = (1-5) 1 (1 0 m)z)

=1
(-5 az(-a

On the other hand, we can lower bound W;r M, w; using vtT My vy

v

v

WtTMAWt = (v +w; — Vt)TMA(Vt + Wy — Vi)
> V;FM)\Vt +2(wy — Vt)TM)\Vt

> V;I—M)\Vt — 20 ”Wt - Vt”

> (1-35) 81— 281 [wi =i

Therefore, we will have w, Myw; > (1 — €) 8y as desired if we can guarantee ||[wr, — vy || <
€

Z.
We now upper bound the difference S; := ||W; — v¢|| by induction. Due to the assump-
tion of same initialization, we have Sy = 0. For t > 2, we can decompose the error into two

terms:

Wi — V|| < ||We — Mawe—q || + [[Mawi—1 — V|
< ||We — Mywyq || + [[Mawi—1 — Myvi_q]|.

The first term concerns the error from inexact minimization of f;(w) and can be bounded
using (4):

. H\i/'t — WfHM;1 S \/ 251@. (6)

1
[Wi — Myw || < HM/%

The second term concerns the error from inexact target:

[Mxw;—1 — Myveq || < [ML - [[wie1 — v

W1 Vi1 Wi 1 — Vi
_ g || Fee _ % ’ < op, Wt-1 = Vil (7)
Wil [[veall Vi1l
where the last inequality is due to Lemma 6.
Noting that [[Vi1]| = [Mvi_a| > Bgllvi-al| = B4, and combining (6) and (7), we

obtain

2
St < \/2B1€ + %St—l-
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Fixing ¢; = ¢ for all t and unfolding the above inequality over ¢ yield
T t T
/2B 251) (281/Ba)" — 1
St < \/261€ - — | =261 ——F——.
ns VI ;<5d D B a1
By Lemma 6 again, we have
) Vi Wy — v 25
fwi = vl = | o - = < oIl < 2
[well - [[vell [[vell Ba
< V8hie (261/B2)™ =1
= B (281/B4) — 1
Setting the RHS to be 7 gives
B < (261/84) — 1 )2
€ = 7 .
12831 \ (281/Ba)" — 1

Accurate regime In the accurate regime, the potential function we use to evaluate the
progress of each iteration is

H,PJ_Wt”M;l E?:Q 5%/51

D Py VAT

where P, and P|| denote projections onto the subspaces that are orthogonal and parallel to

p1 respectively. Note that
d V&
62- < tan@t = ﬁ < G W¢
ti 2
i= Vi

where 6; is the angle between w; and p;.
Our goal in this regime is to have |sin 6;| < \/€, as this implies

WtTpl:cosﬁt:\/l—sin29t21—sin29t21—e

as desired. We ensure |sin 0;| < /e by requiring that G(w;) < \/e.
In view of (4) and (5), we can bound the numerator and denominator of G(w;) respec-
tively with regard to G(w;—1):

w

|sin0t| =

w
Tl g
1
< i (IP LW g + 1P (0 = 57 g1 )
< Ty UPE8Ellag 1P (8= W)
1 d
< — Zﬁif(t—l)ipi + [|We — Wi [y
ol || - 8
A
1 d
_ 2 A/
A > Biklny + V2%

=2
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and
Wi
il
> II\;H <H73||\7V?HM;1 — ||y G — VNV?)HM;1>
> II\;H (Hﬁﬁ(t—lnleM;l - H"~Vt—‘7V§IIM;1)
B HﬁlftH ( 1€l — \/2_€t>

Consequently, we have

G(w) < VE Bkl + V2
t) =

/816(215_1)1 Y 26t

< 52\/ Z?ZQ 5(21&—1)1'/52' + \/2_€1f

B f(zt_l)l/51 —V2¢

o+ =L
Zi:2 5(,571)7;/61'
! \/é‘(zt,l)l/ﬁl
As long as
. d 2 /&2 51 - 52
AV 26t S min Z S(t—l)i/ﬂh g(t—l)l/ﬂl . 4 )
i=2
or equivalently
d 2
. pr— B
€ < min <Z g?t_l)i/ﬁh 6(2t_1)1/ﬁ1> : (13722)7
i=2
we are guaranteed that
B1 + 302
Gwy) < —— - G(wy—1).
( t>_3ﬁ1+ﬁ2 (wi-1)

And when this holds for all ¢ > 1, the sequence {G(W¢)}i=o,.. decreases (at least) at a
constant geometric rate of glﬁ:’ﬁ z < 1. Therefore, the number of iterations needed to

achieve [sinfr,| < /e is Ty = {logﬁ/ <—G(\7€0)ﬂ = E log, <G78ﬂ for v = —%?fggz

O
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Appendix C. Bounding initial error for least squares

For each least squares problem f;(w) in inexact shift-and-invert power method, we can
use wy_1 from the previous iteration as initialization, and the intuition behind is that as
the power power method converges, the least squares problems become increasingly similar.
However, an even better warm-start is to use as initialization ayw;_1 for some «; and
minimize the initial suboptimality over a; (Garber et al., 2016; Ge et al., 2016). Let the
exact solution to the least squares problem miny, f;(w) be w; = (A\I — A)~!'w;_1, which

gives the optimal objective function value f; = —%th_ LA — A)~tw,;_;. Observe that
ﬁimt = filarwi1) — ff
ap T
=5 W (AL —A)wy_g —ap - wy_ Wi — ff.
This is a quadratic function of ay, with minimum achieved at oy = ———————— With

wttl()\I—A)wtfl
this choice of ay, we obtain
it
" < fi(Biwie1) — ff

2
1
= 5—21 . W;r_l()\I — A)Wt_l - ,81 + §W;I—_1()\I — A)_lwt_l

g d d L
= 71 Z 5(215—1)@'/52‘ — b Z 5(2t_1)i T3 Z 5i5(2t—1)z‘
i=1 i=1 i=1

IN
DN =
M=

> (B = B)" - &yl B

7

2
1

=)

d
> &1l B (8)

1=2

|
o]

As we show in the next lemma, this initialization will allow the ratio between initial and
final error to be a constant in the accurate regime, independent of the final suboptimality
in alignment.

In the crude regime, we simply use the rough bound

1

Eimt < f(0) — fF = §W2—_1(>\I - A)_lwt—l
d
1 B
=3 D Bkl 1y < ?1 ©)
i=1

Substituting (8) and (9) into Lemma 7 yields Lemma 1.

Appendix D. Proof of Lemma 2

Proof. Observe that the eigenvalues of My, = (\I—A)~! are functions of A as A changes over
iterations. Below we use o; (M) to denote the i-th eigenvalue of M) instead of f1, ...,y
to make this dependence explicit.
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Define the condition number of M) as

o1(My) A—p1 A — pd

[{)\ = = = s
oq4(My) 1

Suppose we have the upper and lower bound of all o1 (M )‘(5)) used in the repeat-until
loop:

g >01(My,), ag=01(My,), fors=1,...,

whose specific values will be provided shortly.
Throughout the loop, we require for all iteration s that

2%e, < %. (10)

Let the power iterations for different s start from the same initialization wg with &y =
WOT p1, and apply Lemma 7 (crude regime) with € = i. By our choice of m; and setting the

ratio
2
E%nzt 5 (2/€A(S))m1 -1
= 1024 _ 11
: Fo o (1)

according to Lemma 1 (crude regime), we obtain

oMy, ). (12)

‘977’1,1:"\4:)\(‘5 1)Wsm1 2 4

In view of the definition of the vector ug, and following the same argument in (6), we
have
e

Then for every iteration s of repeat-until, it holds that

~ My, W || < \/201(1\/1%71)) Zs.

T
Wsmlu

T T
Wsml MA(sfl)Wsml + Wsm1 <u3 - M)\(S,l)wsm1>

[ smlMA(s 1y Wsmy — \/201 M)\( 1)) €s,
w mlM)\(s,l)Wsml + \/201 MA(sfl)) : gSJ
e { wl My Won, — /206,

Wsm1 Moy Wsmy + 25&9]

g
< [ Wy M,y Wy 8’ Wiy M,y Wy + d ’

where we have used the Cauchy-Schwarz inequality in the second step and (10) in the last
step.
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In view of (10) and (12), it follows that

w;rmlus a/8
o -
S _WsmlMA(S 1)W5m1 — Z, WsmlMA(S,l)Wsml}
s -
S Zal(M)\(S 1)) - 17 W;rmlM)\(S 1)W5m1:|
(1
€ |501(Mx, ), 01(My, 1))}
By the definition of Ay in Algorithm 1 and the fact that o (MA(sfl)) = m, we
have
1 1
A
2 wi,us—ag/8
1
€3 (As=1) = P1) s A1) — Pl} : (13)
And as a result,
A 1
M) = Aoy — 5 Z A1) — 5 (M) — 1)
~ As-ntm
= 5 7
and thus by induction (note Ay > p1) we have A > p1 throughout the repeat-until

loop.
From (13) we also obtain

Ag
As) = P1L= A1) = PL—
1
< As—1) —P1— 1 (As—1) = p1)
3
=7 Qe =)

To sum up, A(,) approaches p; from above and the gap between A and p; reduces
at the geometric rate of %. Thus after at most T3 ~: {log3/4 (ﬁﬂ =0 <log (%))

iterations, we reach a A(g) such that A7) —p1 < A. And in view of (13), the repeat-
until loop exits in the next iteration. Hence, the overall number of iterations is at most

T+1=0(%).

We now analyze A(y) and derive the interval it lies in. Note that Ay < A and A 1> A
by the exiting condition. In view of (13), we have

A A

Ay = 1= Aoy - 5 <28y ==
_ 38y _3A
2 T2
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On the other hand, we have

As
Ay = PL=Ag-y — T
1
2 N1y = o= 5 (Mg — 1)
1

5 Ay =n).
If f =1, then by our choice of () we have that A

one more time, we have that

(14)
1 > A. Otherwise, by unfolding (14)
Apq _ A
My =m=z7 A —m) 2 ===
Thus in both case, we have that Ay
we have

p1 > 4 holds.
Since the A(,) values are monotonically non-increasing and lower-bounded by p1 + 7,
(My,) = o1(My,)) = ———— <+ =7
max o1 by =01 by = S = =10,
s ® O T X —m A

and

min o1(My )
S

1 1
g M == g —
1 + A — A

>1+(1—02)A

1-—
> 1+ C2A::0-7

Cc2 -
where the first inequality holds since by definition of A it follows that p; = po + A > A
Then according to (10), we can set

5 o?
€s —

<1 + 1‘—02A>2

1 A
128 128 L “18.L 512
A A
Because the initialization for minimizing Is(u
"1<MA< ) <z_2

) gives an initial suboptimality of ém <
znzt
, we achieve €g-suboptimality by requiring —=—
It remains to fulﬁll the requirement (1
numbers are bounded throughout:

_ 1024
1) for repeat-until.

Note that the condition
As) — Pd
B = =

As
s M g
Ay = P11~ M) —p1 A(s) = P1
<1+Pl'01(MA())§1+ZSZ. (15)
We can then bound the ratio in (11) for all least squares subproblems
- - 2
enit 1024 -25 [ (10/A)™ o 32 10%ma+1
< — = .
€& A2 9/A - A?m
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Appendix E. Proof of Lemma 3
Proof. Observe that for A = p; + ¢(p1 — p2), we have

1
o1(M,) =

o1(My) —o2(My) 2 — - 12
_ pitclp—p2) —p2
P1 — P2

=c+1

and

3 1
30’1(1\/[)\) +0’2(M)\) _ 2—m;m + N—ps 4e¢ + 3

01(My) + 301 (M) N A—lpl —|—)\_Lp2 o de+ 17

In view of (2), we have sy — p1 < %A < ?’%A < %A, ie,c< % for A(sy. As a result,

we can apply Lemma 7 (accurate regime) with v = %, and we are guaranteed to achieve the
init

desired alignment with the specified ms. The choice of efe—t follows from an application of

83 < 25
(Br1—pB2)? — 47 0

Lemma 1 (accurate regime) with

Appendix F. More details of experiments on networks
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Figure 3: More results on comparison of the runtime efficiency (p; —w,) Aw; vs. run time in
seconds) of various algorithms for computing the leading eigenvector on real-world

network datasets.

The statistics of tested real world datasets are summarized in Table 3.

For power method, CPM and SGCD, we adopt the C++ implementation of Lei et al.
(2016) and implement our algorithms alongside theirs, and run all experiments on a Linux
machine with Intel i7 CPU of frequency 3.20GHz. We use 4 passes of coordinate updates
for solving least squares problems and set A = 0.05 in Algorithm 1.
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Table 3: List of network datasets used in the experiments.

‘ Name ‘ #Nodes ‘ #Edges ‘
amazon(0601 403,394 | 3,387,388
com-Youtube 1,134,890 | 2,987,624
email-Enron 36,692 183,831
email-EuAll 265,214 420,045
p2p-Gnutella3l 62,586 147,892
roadNet-CA 1,965,206 | 2,766,607
roadNet-PA 1,379,917 | 1,921,660
soc-Epinionsl 75,879 508,837
web-BerkStan 685,230 | 7,600,595
web-Google 875,713 | 5,105,039
web-NotreDame | 325,729 | 1,497,134
wiki-Talk 2,394,385 | 5,021,410
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