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Abstract

This work is devoted to the finite sample prediction risk analysis of a class of linear pre-
dictors of a response Y ∈ R from a high-dimensional random vector X ∈ Rp when (X,Y )
follows a latent factor regression model generated by a unobservable latent vector Z of di-
mension less than p. Our primary contribution is in establishing finite sample risk bounds
for prediction with the ubiquitous Principal Component Regression (PCR) method, under
the factor regression model, with the number of principal components adaptively selected
from the data—a form of theoretical guarantee that is surprisingly lacking from the PCR
literature. To accomplish this, we prove a master theorem that establishes a risk bound for
a large class of predictors, including the PCR predictor as a special case. This approach
has the benefit of providing a unified framework for the analysis of a wide range of linear
prediction methods, under the factor regression setting. In particular, we use our main the-
orem to recover known risk bounds for the minimum-norm interpolating predictor, which
has received renewed attention in the past two years, and a prediction method tailored to
a subclass of factor regression models with identifiable parameters. This model-tailored
method can be interpreted as prediction via clusters with latent centers.

To address the problem of selecting among a set of candidate predictors, we analyze
a simple model selection procedure based on data-splitting, providing an oracle inequality
under the factor model to prove that the performance of the selected predictor is close
to the optimal candidate. We conclude with a detailed simulation study to support and
complement our theoretical results.

Keywords: High-dimensional regression, latent factor model, principal component re-
gression, interpolating predictor, model selection

1. Introduction

This work is devoted to the derivation and analysis of finite sample prediction risk bounds
for a class of linear predictors of a random response Y ∈ R from a high-dimensional, and
possibly highly correlated random vector X ∈ Rp, when the vector (X,Y ) follows a latent
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factor regression model, generated by a latent vector of dimension lower than p. We assume
that there exist a random, unobservable, latent vector Z ∈ RK , a deterministic matrix
A ∈ Rp×K , and a coefficient vector β ∈ RK such that

Y = Z>β + ε,

X = AZ +W,
(1)

with some unknown K < p. The random noise ε ∈ R and W ∈ Rp have mean zero and
second moments σ2 := E[ε2] and ΣW := E[WW>], respectively. The random variable ε
and random vectors W and Z are mutually independent. Throughout the paper, both
ΣZ := E[ZZ>] and A have rank equal to K.

Independently of this model formulation, but based on the belief that Y depends chiefly
on a lower-dimensional approximation of X, prediction of Y via principal components (PCR)
is perhaps the most utilized scheme, with a history dating back many decades (Kendall,
1957; Hotelling, 1957). Given the data X = (X1, . . . , Xn)> and Y = (Y1, . . . , Yn) consisting
of n independent copies of (X,Y ) ∈ Rp × R, PCR-k predicts Y∗ ∈ R after observing a new
data point X∗ ∈ Rp by

Ŷ ∗Uk
= X>∗ Uk

[
U>k X>XUk

]+
U>k X>Y

= X>∗ Uk [XUk]
+ Y , (2)

where Uk is the p × k matrix of the top eigenvectors of the sample covariance matrix
X>X/n, relative to the largest k eigenvalues, where k is ideally determined in a data-
dependent fashion and M+ denotes the Moore-Penrose inverse of a matrix M .

Model (1) provides a natural context for the theoretical analysis of PCR-k prediction.
It is perhaps surprising that its theoretical study so far is limited to asymptotic analyses
of the out-of-sample prediction risk for PCR-K as p, n → ∞ (Stock and Watson, 2002;
Bai and Ng, 2006), and finite sample / asymptotic risk bounds on the in-sample prediction
accuracy of PCR-K (Bai, 2003; Bair et al., 2006; Fan et al., 2013; Kelly and Pruitt, 2015;
Fan et al., 2017) in identifiable factor models with known and fixed K.

To the best of our knowledge, finite sample prediction risk bounds for Ŷ ∗Uk
, corresponding

to data-dependent choices of k, are lacking in the literature, and their study under factor
models of unknown K, possibly varying with n, provides motivation for this work.

To obtain risk bounds for PCR, we prove a master theorem, Theorem 3, that establishes
a finite sample prediction risk bound for linear predictors of the general form

Ŷ ∗
B̂

= X>∗ B̂
(
B̂>X>XB̂

)+
B̂>X>Y , (3)

where B̂ ∈ Rp×q is an appropriate matrix that may be deterministic or depend on the data
X, with dimension q allowed to be random.

This approach has the benefit of not only covering the special case of PCR, corresponding
to choice B̂ = Uk, but of offering a unifying analysis of other prediction schemes of the
form (3). One important example corresponds to B̂ = Ip, which leads to another model
agnostic predictor, the generalized least squares estimator (also known as the minimum
norm interpolating predictor), which has enjoyed revamped popularity in the last two years
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(Montanari et al., 2019; Bunea et al., 2020; Muthukumar et al., 2019, 2020; Hastie et al.,
2019; Feldman, 2019; Belkin et al., 2019a,b, 2018a,b,c; Bartlett et al., 2019; Liang and
Rakhlin, 2018). Using the full data matrix X for prediction—instead of just the first k
principal components as in PCR—leads to additional bias compared to PCR prediction.
However, in the high-dimensional regime p � n, this bias can become small and choosing
B̂ = Ip can become a viable alternative to PCR that requires no tuning parameters.

In addition to these two model-agnostic prediction methods, Theorem 3 can be used
to analyze predictors directly tailored to model (1), which are shown formally to be of
type (3) in Section 4.2. We give a particular expression of B̂, as well as the corresponding
prediction analysis, under further modelling restrictions that render parameters K, A and
β identifiable. The model specifications given in Section 4.2 allow us to view A as a cluster
membership matrix, making it possible to address a third, understudied, class of examples
pertaining to prediction from low-dimensional feature representation, that of prediction of
Y via latent cluster centers, for features that exhibit an overlapping clustering structure
corresponding to A.

1.1 Our Contributions and Organization of the Paper

Our main theoretical goal is to offer sufficient conditions on B̂ under which the prediction
risk R(B̂), defined as

R(B̂) := E[(Y∗ − Ŷ ∗B̂)2], (4)

provably approaches an optimal risk benchmark, as n and p grow, with particular attention
given to the case p > n. The expectation in (4) is taken with respect to the new data point
(X∗, Y∗). Our main applications will be to the finite sample risk bounds of the three classes
of predictors discussed in the previous section.

1. General finite sample risk bounds for linear predictors, under factor
regression models. To meet our main theoretical goal, in Section 2, we state the risk
benchmark in Lemma 2 and prove a master theorem, and our main theoretical result,
Theorem 3. It provides a finite sample bound on R(B̂), for generic B̂, when (X,Y ) follow
a factor regression model (1) that is fully introduced in Section 2.1.

The risk bound (14) of Theorem 3 depends on random quantities r̂ = rank(XP
B̂

),

η̂ = n−1σ2
r̂ (XP

B̂
), and ψ̂ = n−1σ2

1(XP⊥
B̂

), where we use σk(M) to denote the kth largest

singular value for any matrix M . To interpret these, note that Ŷ ∗
B̂

= Ŷ ∗P
B̂

(see Lemma

15 in Appendix B for the proof), where P
B̂

is the projection onto the range of B̂. We

then see that r̂ is the rank of the projected data matrix XP
B̂

used for constructing Ŷ ∗
B̂

, η̂

captures the size of the signal that is retained in X after projection onto the range of B̂,
and ψ̂ captures the bias introduced by using only the component of X in the range of B̂
for prediction.

The utility of Theorem 3, as a general result, is in reducing the difficult task of bounding
R(B̂) to the relatively easier one of controlling r̂, η̂, and ψ̂ corresponding to any matrix B̂
of interest.
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2. Finite sample risk bounds for PCR-ŝ, with data-adaptive ŝ principal
components. We use Theorem 3 to analyze the prediction risk of PCR-ŝ under the factor
regression model, for two choices of the number of principal components ŝ. We first consider
the theoretical elbow method, which selects ŝ corresponding to the smallest eigenvalue of
X>X/n above the noise level of order δW := c(‖ΣW ‖op + tr(ΣW )/n), for an absolute
constant c > 0. Corollary 6 provides the rate

R(Uŝ)− σ2 . (K + log n)
σ2

n
+ δWβ

>(A>A)−1β. (5)

The first term on the right hand side is the standard variance term of linear regression in K
dimensions. The second term is a bias term that arises from the fact that we predict using
X instead of Z; we show that such a term is unavoidable in Lemma 2 of Section 2.2 below.

We termed this procedure theoretical as δW depends on unknown quantities of the data
distribution. We address this by introducing a novel method in Section 3.1, which we show
in Corollary 9 achieves the same rate as PCR with the theoretical elbow method, under
mild additional assumptions, and is fully data-adaptive, only requiring the choice of one
scale-free tuning parameter.

3. Minimum-norm interpolating predictors. In Section 4.1 we use the master
theorem to recover risk bounds for the Generalized Least Squares predictor (GLS), inde-
pendently derived in Bunea et al. (2020). This predictor is also known as the minimum-norm
interpolating predictor when p > n.

4. Prediction under identifiable factor regression models: Essential regres-
sion. In Section 4.2 we consider a particular identifiable factor regression model, the Es-
sential Regression model introduced in Bing et al. (2019). The identifiability assumptions
employ a type of errors-in-variables parametrization of A, described in Section 4.2, that
allows the components of Z to be respectively matched with distinct groups of components
of X. The latter property, combined with a further sparsity assumption on A, can be
used to define overlapping clusters of X with latent centers Zk, 1 ≤ k ≤ K (Bing et al.,
2020). Thus, of independent interest, prediction in Essential Regression is prediction via
latent cluster centers. We show formally in Section 4.2 that this model specification leads
to predictors of type (3), with B̂ = Â, for an appropriate estimator Â of A. We provide
a finite sample prediction bound in Theorem 12, as an application of Theorem 3. We use
the derived bound as an example that illustrates the possible benefits of sparsity in the
predictor’s coefficient matrix, as our matrix Â is allowed to be sparse.

5. Data-splitting under factor regression models. To allow for model selection
among the diverse set of prediction methods in this setting, we offer a simple model selec-
tion approach in Section 5 based on data splitting. We provide an oracle inequality showing
that the selected predictor performs nearly as well as the predictor with the lowest risk.

A preview of the results in Sections 3—4 is given in Table 1 below, which focuses
on the high-dimensional regime where p > Cn for a large enough constant C > 0, and
is stated under the simplifying assumptions λK(A>A) & p/K and re(ΣW ) � p, where
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re(ΣW ) := tr(ΣW )/‖ΣW ‖op is the reduced effective rank of ΣW , the covariance matrix
of W from model (1). The bound for Essential Regression contains the quantity ‖AJ‖0,
which is the sparsity level of the sub-matrix AJ of A corresponding to non-pure variables in
the Essential Regression model, namely the variables associated with more than one latent
factor Zk (see Section 4.2 for a formal definition). The full set of conditions under which
these bounds hold, as well as their general form is given, respectively, in each of the sections
in which these methods are analyzed. For now we mention that we do not make specific
distributional assumption on the data, but we do derive the rates given in the table below
under the assumption that ε ∈ R, Z ∈ RK , and W ∈ Rp are sub-Gaussian.

The term σ2K/n is common to all three risk bounds, and shows that all methods have
the potential to adapt to the unknown, latent, K-dimensional model structure, provided
that the remaining terms are small. Relative to PCR and ER, the GLS method has an
additional variance term σ2n/p, that arises from the fact that GLS uses the full data
matrix X, as opposed to a lower-dimensional projection of it; this demonstrates that GLS
has competitive performance only when p� n. The relative performance of the PCR and
ER methods depends on the sparsity of the matrix AJ : when ‖AJ‖0 = o(p), for example,
the ER method can outperform PCR.

We further discuss the relative merits of these predictors, in terms of their respective
risk bounds and assumptions under which they hold, in Section 4.3.

Prediction Method B̂ Excess risk bound

PCR UK
K
n σ

2 + K
p ‖ΣW ‖op‖β‖2 + K

n ‖ΣW ‖op‖β‖2

GLS Ip
K
n σ

2 + n
pσ

2 + K
n ‖ΣW ‖op‖β‖2

ER Â K
n σ

2 + K
p ‖ΣW ‖op‖β‖2 + ‖AJ‖0

p × K
n ‖ΣW ‖op‖β‖2

Table 1: Summary of bounds on R(B̂) − σ2, where R(B̂) is defined in (4), for Principal
Component Regression (PCR), Generalized Least Squares (GLS), and Essential
Regression (ER), stated under simplifying assumptions described in Section 4.3.
The second column gives the choice of B̂ corresponding to each method. All three
bounds follow from the main Theorem 3.

We conclude the paper with Section 6, in which we present a detailed simulation study
of the PCR-type predictors, the minimum-norm interpolating predictor, and predictors un-
der Essential Regression, as well as the proposed model selection method. All proofs are
deferred to the Appendix.

Notation: We use the following notation throughout the paper. For any vector v, we
use ‖v‖q denote its `q norm for 0 ≤ q ≤ ∞. We write ‖v‖ = ‖v‖2. For an arbitrary
real-valued matrix M ∈ Rr×q, we use M+ to denote the Moore-Penrose inverse of M ,
and σ1(M) ≥ σ2(M) ≥ · · · ≥ σmin(r,q)(M) to denote the singular values of M in non-
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increasing order. We define the operator norm ‖M‖op = σ1(M), the Frobenius norm
‖M‖2F =

∑
i,jM

2
ij , the elementwise sup-norm ‖M‖∞ = maxi,j |Mij | and the cardinality

of non-zero entries ‖M‖0 =
∑

i,j 1Mij 6=0. For a symmetric positive semi-definite matrix

Q ∈ Rp×p, we use λ1(Q) ≥ λ2(Q) ≥ · · · ≥ λp(Q) to denote the eigenvalues of Q in non-
increasing order, and κ(Q) = λ1(Q)/λp(Q) to denote its condition number.

For any two sequences an and bn, we write an . bn if there exists some constant C such
that an ≤ Cbn. The notation an � bn stands for an . bn and bn . an.

We use Id to denote the d × d identity matrix. For m ≥ 1, we let [m] = {1, 2, . . . ,m}.
Lastly, we use c, c′, C, C ′ to denote positive and finite absolute constants that unless other-
wise indicated can change from line to line.

2. Bounding the Risk R(B̂)

In this section we derive and discuss bounds on the risk R(B̂) defined in (4), corresponding
to the predictor Ŷ ∗

B̂
. Our results are valid for any B̂ ∈ Rp×q that can be either random

depending on X or fixed, where q ≤ p but is allowed to be random.

2.1 Preliminaries

As the risk R(B̂) is defined relative to the first two moments of (X,Y ), which are further
linked to quantities (A, β,ΣZ ,ΣW , σ

2) under model (1), our risk bounds are written in terms
of the components of θ := (K,β,A,ΣZ ,ΣW , σ

2). We thus start by formally defining model
(1) with respect to θ.

Definition 1 ((Sub-Gaussian) Factor Regression Model) We say the pair (X,Y ) fol-
lows the model FRM(θ) with θ = (K,β,A,ΣZ ,ΣW , σ

2), and write (X,Y ) ∼ Pθ or (X,Y ) ∼
FRM(θ), when

(1) Equation (1) holds with matrix A ∈ Rp×K , vector β ∈ RK , and random quantities
(Z,W, ε) ∈ (RK ,Rp,R) that are mutually independent;

(2) W and ε are mean zero with Eθ[WW>] = ΣW and Eθ[ε2] = σ2, and Z is also mean
zero without loss of generality, with Eθ[ZZ>] = ΣZ .

(3) Both A and ΣZ have rank equal to K.

We further say (X,Y ) ∼ sG-FRM(θ) if the following holds in addition to (1)—(3)

(4) There exist finite, absolute positive constants γε, γw and γz such that

(a) ε is σγε sub-Gaussian;1

(b) Z = Σ
1/2
Z Z̃ where Z̃ is γz sub-Gaussian with Eθ[Z̃Z̃>] = IK ;2

(c) W = Σ
1/2
W W̃ where W̃ is γw sub-Gaussian with Eθ[W̃W̃>] = Ip.

1. A mean zero random variable x is called γ sub-Gaussian if E[exp(tx)] ≤ exp(t2γ2/2) for all t ∈ R.
2. A mean zero random vector x is called γ sub-Gaussian if 〈x, v〉 is γ sub-Gaussian for any unit vector v.
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Since there exist multiple parameters θ for which (X,Y ) has the same joint distribution, the
model is not identifiable without further restrictions on the parameter space. As this work
is devoted to the prediction of Y , and not to the estimation of θ, this is not problematic. We
thus allow for this lack of identifiability and our subsequent analysis of R(B̂) := Eθ[(Y∗ −
Ŷ ∗
B̂

)2] is valid for any θ such that (X,Y ) ∼ sG-FRM(θ). In particular, the analysis is

applicable to any identifiable sG-FRM(θ), whenever further structure on θ is added to
Definition 1. We note that R(B̂) depends on θ, but we suppress this dependence in the
notation for simplicity.

2.2 Benchmark of R(B̂)

To provide a benchmark for R(B̂), we let

α∗ := arg min
α

E
[
(Y∗ −X>∗ α)2

]
= [Cov(X)]+Cov(X,Y ) (6)

denote the coefficient of the best linear predictor (BLP) of Y∗ from X∗, where [Cov(X)]+ is
the Moore-Penrose pseudoinverse of Cov(X). For any θ = (K,A, β,ΣZ ,ΣW , σ

2) such that
(X∗, Y∗) ∼ FRM(θ) with corresponding latent vector Z∗, we have the following chain of
simple equalities from our independence assumptions

R(B̂) = Eθ
[
(Y∗ −X>∗ α∗)2

]
+ Eθ

[
(X>∗ α

∗ − Ŷ ∗
B̂

)2
]

= σ2 + Eθ
[
(Z>∗ β −X>∗ α∗)2

]
+ Eθ

[
(X>∗ α

∗ − Ŷ ∗
B̂

)2
]

(7)

= σ2 + Eθ
[
(Z>∗ β − Ŷ ∗B̂)2

]
.

We interpret the term σ2 = Eθ[ε2] as an oracle risk value because it is the minimal risk of
predicting Y∗ from Z∗, had Z∗ been observable. We thus focus on bounding the difference
R(B̂) − σ2 and refer to it as excess risk, with the tacit understanding that the excess is
relative to oracle prediction.

We further note that the term Eθ[(Z>∗ β−X>∗ α∗)2] in (7) is the minimal risk incurred by
predicting Z>∗ β by X>∗ α

∗, with an observable X∗. Display (7) shows that it is a population
level cost that is incurred in any risk analysis of a predictor of type (3) performed under
FRM(θ). Lemma 2 below quantifies its size, and makes use of the signal-to-noise ratio given
by

ξ := λK(AΣZA
>)/‖ΣW ‖op. (8)

Its proof can be found in Appendix B.1.

Lemma 2 For any θ = (K,A, β,ΣZ ,ΣW , σ
2) with invertible ΣW such that (X,Y ) ∼

FRM(θ),

ξ

1 + ξ
β>(A>Σ−1

W A)−1β ≤ Eθ
[
(Z>∗ β −X>∗ α∗)2

]
≤ β>(A>Σ−1

W A)−1β. (9)

The inequalities above become asymptotically tight when the signal retained in K dimen-
sions by X dominates the ambient noise, that is, when ξ →∞ as p→∞. In general, as soon
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as ξ > c, for some c > 0 and ΣW is well conditioned such that κ(ΣW ) = λ1(ΣW )/λp(ΣW ) <

C, we further obtain, using (7), for any B̂, that

R(B̂)− σ2 ≥ Eθ
[
(Z>∗ β −X>∗ α∗)2

]
& ‖ΣW ‖opβ

>(A>A)−1β. (10)

Therefore a risk analysis of linear predictors under factor regression models, which consists in
upper bounding R(B̂)−σ2, will necessarily include terms larger than ‖ΣW ‖opβ

>(A>A)−1β
in the risk bounds, irrespective of the construction of the linear predictor. If, in addition,
AΣZA

> is well-conditioned with λ1(AΣZA
>)/λK(AΣZA

>) ≤ C, then

β>(A>Σ−1
W A)−1β � ‖ΣW ‖opβ

>Σ
1/2
Z

(
Σ

1/2
Z A>AΣ

1/2
Z

)−1
Σ

1/2
Z β � β>ΣZβ

ξ

and Lemma 2 in turn implies

β>ΣZβ

1 + ξ
. Eθ

[
(Z>∗ β −X>∗ α∗)2

]
.
β>ΣZβ

ξ
.

This demonstrates that the signal-to-noise ratio ξ must necessarily dominate β>ΣZβ for
the excess risk R(B̂)− σ2 to vanish as p→∞.

2.3 Upper Bound of the Risk R(B̂)

To motivate our main result, we first introduce some key quantities that appear in the risk
bound derivation for any generic B̂ leading to the predictors of type (3).

The prediction risk bound depends on W in Definition 1, specifically on the noise level
of n−1‖W>W ‖op. To quantify this noise level, we use the following deviation bound from
Lemma 22 in Appendix C. For any θ such that (X,Y ) ∼ sG-FRM(θ), one has

Pθ
{

1

n
‖W>W ‖op ≤ δW

}
≥ 1− e−n (11)

where δW is defined as

δW := δW (θ) = c

[
‖ΣW (θ)‖op +

tr(ΣW (θ))

n

]
, (12)

with c = c(γw) being some positive constant. The quantity δW will play a role in the risk
bound and it could take any non-negative value in general. When λ1(ΣW ) ≤ C for some
constant C > 0, one has δW . 1 + p/n. When λp(ΣW ) ≥ c for some constant c > 0, we
have δW & 1 + p/n. In particular, if c ≤ λp(ΣW ) ≤ λ1(ΣW ) ≤ C, we have δW � 1 + p/n.
This holds for instance when ΣW is diagonal with entries bounded away from 0 and ∞,
independent of n.

We write the projection onto the column space of B̂ as

P
B̂

= B̂[B̂>B̂]+B̂> = B̂B̂+,

8
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its complement as P⊥
B̂

= Ip − PB̂ and r̂ = rank(XP
B̂

). Since B̂[XB̂]+ = P
B̂

[XP
B̂

]+, as

proved in Lemma 15 in Appendix B, we find that Ŷ ∗
B̂

= X>∗ B̂[XB̂]+Y = Ŷ ∗P
B̂

making clear

that the component of the data matrix orthogonal to the range of B̂, XP⊥
B̂

, is not used
for prediction. It is natural therefore that the size of this component, as measured by its
largest singular value, σ2

1(XP⊥
B̂

), will affect the risk bound, and needs to be contrasted with
the size of the retained signal, XP

B̂
, as measured by its smallest non-zero singular value

σ2
r̂ (XP

B̂
). These two quantities appear in the risk bound below.

We now state our main theorem; its proof is deferred to Appendix B.1.2. Recall that
R(B̂) is the risk defined in (4). Write a ∧ b = min{a, b}.

Theorem 3 Let B̂ = B̂(X) ∈ Rp×q for some q ≥ 1, and set

r̂ := rank
(
XP

B̂

)
, η̂ :=

1

n
σ2
r̂

(
XP

B̂

)
, ψ̂ :=

1

n
σ2

1

(
XP⊥

B̂

)
. (13)

For any θ = (K,A, β,ΣZ ,ΣW , σ
2) with K ≤ Cn/ log n for some positive constant C = C(γz)

such that (X,Y ) ∼ sG-FRM(θ), there exists some absolute constant c > 0 such that

Pθ
{
R(B̂)− σ2 .

[
‖ΣW ‖op

η̂
r̂ +

(
1 +

δW
η̂

)
(K ∧ r̂ + log n)

]
σ2

n
(14)

+

[(
1 +
‖ΣW ‖op

η̂

)
δW +

(
1 +

δW
η̂

)
ψ̂

]
β>(A>A)−1β

}
≥ 1− c/n.

Here the symbol . means the inequality holds up to a multiplicative constant possibly de-
pending on the sub-Gaussian constants γε, γz and γw.

Since we aim to provide a unified analysis of the risk for a general B̂, the bound (14)
itself depends on the random quantities r̂, η̂ and ψ̂. To make it informative, one needs
to further control these random quantities for specific choices of B̂. The main usage of
Theorem 3 is thus to reduce the task of bounding R(B̂) to the relatively easier one of
controlling r̂, η̂ and ψ̂. We will demonstrate this for several choices of B̂ in the following
sections.

Theorem 3 holds for any estimator B̂ ∈ Rp×q that is constructed from X with any q ≥ 1.
We now explain the various terms in the bound (14). Recall that Ŷ ∗

B̂
= X>∗ B̂(XB̂)+Y and

Y = Zβ + ε. To aid intuition, by adding and subtracting terms, we have

Ŷ ∗
B̂
− Z>∗ β = X>∗ B̂(XB̂)+ε +X>∗ α

∗ − Z>∗ β +X>∗

[
B̂(XB̂)+Zβ − α∗

]
= X>∗ B̂(XB̂)+ε +

(
X>∗ α

∗ − Z>∗ β
)

+X>∗ B̂(XB̂)+(Zβ −Xα∗)

+X>∗

[
B̂(XB̂)+X − Ip

]
α∗. (15)

We discuss the four terms above one by one.

• The first term leads to the following variance term in (14):[
‖ΣW ‖op

η̂
r̂ +

(
1 +

δW
η̂

)
(K ∧ r̂ + log n)

]
σ2

n
.
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We see that the random variable η̂ quantifies the retained signal in B̂(XB̂)+ by
noting that ‖B̂(XB̂)+‖2op = ‖P

B̂
(XP

B̂
)+‖2op ≤ (nη̂)−1. The two factors ‖ΣW ‖op/η̂

and (1 + δW /η̂) come from bounding the second moments of W∗ and AZ∗ from X∗ =
AZ∗+W∗, respectively, relative to the retained signal η̂. The dimension r̂ reflects the
complexity of XP

B̂
and the integer K is the intrinsic dimension of the latent factor,

thus only appearing in the term containing (1 + δW /η̂).

• The second and third terms in (15) lead to the following term in (14), which can be
interpreted as arising from the fact that Z∗ and Z are not observed:(

1 +
‖ΣW ‖op

η̂

)
δW

‖ΣW ‖op
· ‖ΣW ‖opβ

>(A>A)−1β.

With slight abuse of terminology, we refer to this as a bias term. The factor

‖ΣW ‖opβ
>(A>A)−1β

is irreducible, as argued in (10), the term ‖ΣW ‖op/η̂ has been explained in the
first term, and the inflation factor δW /‖ΣW ‖op is due to the inflated noise level of
n−1‖W>W ‖op compared to ‖ΣW ‖op.

• The fourth term in (15) quantifies the error of estimating the best linear predictor α∗

under the factor regression model. In this model, we note that α∗ = Σ+AΣZβ with
Σ := Cov(X). Also noting that B̂(XB̂)+X is a projection matrix, the fourth term in
(15) represents the error of estimating the range space of Σ+A, which is exactly zero
if the range of B̂(XB̂)+X contains the range of Σ+A. In general, the bound in (14)
corresponding to this term is

δWβ
>(A>A)−1β +

(
1 +

δW
η̂

)
ψ̂ · β>(A>A)−1β,

where the first part is the error of estimating the range space of P
B̂

Σ+A while the

second part is that of estimating the range space of P⊥
B̂

Σ+A, controlled by ψ̂.

Remark 4 In light of the above discussion, we make two important remarks. First, to
maintain a fast rate of the risk bound in (14), we should retain enough signal in XP

B̂
relative to the noise δW such that η̂ & δW with high probability. Second, if this is the case,
the bound (14) simplifies to

R(B̂)− σ2 .

[
‖ΣW ‖op

η̂
r̂ + (K ∧ r̂ + log n)

]
σ2

n
+
(
δW + ψ̂

)
β>(A>A)−1β.

As r̂ = rank(XP
B̂

) increases, meaning that the predictor can be interpreted as more complex,
the variance term increases, while the term δWβ

>(A>A)−1β is not affected.
If ψ̂ decreases as r̂ increases (as seen with the PCR predictor studied in the next sec-

tion), the term ψ̂β>(A>A)−1β, corresponding to the error of estimating the range space of
P⊥
B̂

Σ+A, gets smaller.
Therefore, the tradeoff of using a more complex predictor lies between the increasing

variance and the decreasing error of estimating the range space of P⊥
B̂

Σ+A, provided that
enough signal is retained in XP

B̂
. A more transparent tradeoff can be seen for the PCR

predictor analyzed in the next section. More generally, for each of our examples, we will
see the mechanism by which r̂, η̂, and ψ̂ are controlled.

10
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3. Analysis of Principal Component Regression Under the Factor
Regression Model

In this section we use the general result, Theorem 3, to derive risk bounds for the popular
Principal Component Regression (PCR) method. For any integer 1 ≤ k ≤ rank(X), the
PCR-predictor PCR-k corresponds to taking B̂ = Uk, the p× k matrix with columns equal
to the first k right singular vectors of X corresponding to the non-increasing singular values
σ1(X) ≥ σ2(X) ≥ · · · . We start by giving risk bounds for PCR-k for any k in the corollary
below. For simplicity, we write

λ̂k =
1

n
σ2
k(X)

with the convention that λ̂0 = ∞ and λ̂k = 0 for all k > rank(X). All the proofs of this
section can be found in Appendix B.2.

Corollary 5 For any θ = (K,A, β,ΣZ ,ΣW , σ
2) with K ≤ Cn/ log n and some positive con-

stant C = C(γz) such that (X,Y ) follows sG-FRM(θ), there exists some absolute constant
c > 0 such that, for any k (possibly random),

Pθ
{
R(Uk)− σ2 . B̂(k)

}
≥ 1− cn−1 (16)

where B̂(k) = B̂1(k) + B̂2(k) and

B̂1(k) :=

[
‖ΣW ‖op

λ̂k
k +

(
1 +

δW

λ̂k

)
(K ∧ k + log n)

]
σ2

n
(17)

B̂2(k) :=

(
‖ΣW ‖op

λ̂k
δW + δW + λ̂k+1

)
β>(A>A)−1β. (18)

Corollary 5 follows immediately from the identities σ2
k(XPUk

) = σ2
k(X) and σ2

1(XP⊥Uk
) =

σ2
k+1(X), and an application of Theorem 3 with

r̂ = k, η̂ = λ̂k, ψ̂ = λ̂k+1 almost surely.

The bound B̂(k) in (16) depends on λ̂k and λ̂k+1, which may be further controlled by
λk(AΣZA

>)− δW and λk+1(AΣZA
>) + δW , respectively, in order to make the bound more

informative (see, for example, the proof of Remark 7 in Appendix B.2). Nevertheless, (16)
illustrates the effect of k and hints at the choice k = ŝ with

ŝ = max
{
k ≥ 0 : λ̂k ≥ C0δW

}
. (19)

Here δW is defined in (12) and C0 is some positive constant. The quantity ŝ corresponds to
what is known as the elbow method, and is a ubiquitous approach for selecting the number
of top principal components of the data matrix X. The quality of ŝ as an estimator of the
effective rank of Σ = Cov(X) has been analyzed in Bunea and Xiao (2015), but its role in
PCR has received little attention. By definition, λ̂ŝ+1 < C0δW ≤ λ̂ŝ, which implies

B̂(ŝ) . (ŝ+ log n)
σ2

n
+ δWβ

>(A>A)−1β, almost surely.

11
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Furthermore, Weyl’s inequality implies λ̂K+1 ≤ σ2
1(W )/n and, in conjunction with (11), and

by choosing C0 > 1, we obtain ŝ ≤ K with high probability. We summarize this discussion
in the following result pertaining to prediction via the first ŝ principal components selected
via the elbow method.

Corollary 6 For any θ = (K,A, β,ΣZ ,ΣW , σ
2) with K ≤ Cn/ log n such that (X,Y )

follows sG-FRM(θ), we have for ŝ defined in (19) for any C0 > 1,

Pθ
{
R(Uŝ)− σ2 . (K + log n)

σ2

n
+ δWβ

>(A>A)−1β

}
≥ 1−O(n−1). (20)

Remark 7

1. We refer to the method analyzed in Corollary 6 as the theoretical elbow method, as
it involves the theoretically optimal threshold level δW . The next section analyzes the
performance of a data-adaptive elbow method.

2. For any θ, we show in Appendix B.2 that, if λK(AΣZA
>) ≥ CδW for some sufficiently

large constant C > 0, then λ̂K ≥ C0δW holds for some C0 > 1 with high probability.
The event {λ̂K ≥ C0δW } implies {ŝ ≥ K} which, in conjunction with the high proba-
bility event {ŝ ≤ K}, guarantees ŝ = K with high probability. Corollary 6 thus covers
the risk of PCR-K, that is, the risk of the PCR predictor corresponding to the true K
of this θ.

3.1 Selection of the Number of Retained Principal Components via Penalized
Least Squares

A practical issue of PCR-ŝ is that the selection of ŝ according to (19) relies on a theoretical
order δW in (12), which depends on the unknown quantities ‖ΣW ‖op and tr(ΣW ). To over-
come this difficulty, we provide an alternative, data dependent procedure, which shares the
risk bound derived for PCR-ŝ.

Our procedure of selecting the number of retained principal components is adopted from
Bing and Wegkamp (2019), originally proposed for selecting the rank of the coefficient of a
multivariate response regression model Y = XB+W . The factor model X = ZA>+W is
a particular case with X = In×p and B = ZA>, and, following Bing and Wegkamp (2019),
we define

s̃ := arg min
0≤k≤K̄

v̂2
k, with v̂2

k :=
‖X −X(k)‖2F
np− µnk

, and K̄ :=

⌊
κ

1 + κ

np

µn

⌋
∧ n ∧ p, (21)

for a given sequence µn > 0. Here κ > 1 is some absolute constant introduced to avoid
division by zero. We write X(k) as the best rank k approximation of X. More specifically, let

the SVD of X as X =
∑

j σjujv
>
j with non-increasing σj and we have X(k) =

∑k
j=1 σjujv

>
j .

The denominator of the ratio defining v̂2
k can be viewed as a penalty on the numerator,

with tuning sequence µn. From Bing and Wegkamp (2019, Equation 2.7), the minimizer s̃
conveniently has a closed form

s̃ =
∑
k

1{λ̂k ≥ µnv̂2
k},

12
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counting the number of singular values of X above a variable threshold. This is in contrast
to the elbow method in (19), which counts the number of singular values of X above the
fixed threshold µ = C0δW , as

ŝ =
∑
k

1{λ̂k ≥ µ}.

We note that when ΣW = 0, ‖X −X(k)‖F = ‖ZA> − (ZA>)(k)‖F = 0 for any k ≥ K.
Hence there are multiple minima (zeroes in this case) in v̂2

k, and if we adopt the convention
to choose the first index k with ‖X −X(k)‖F = 0, we find s̃ = K, almost surely. The risk
of PCR-K has already been discussed in Remark 7 above.

The theoretical guarantees proved in Bing and Wegkamp (2019) are based on the as-
sumption that W has i.i.d. entries with zero mean and bounded fourth moments. Proposi-
tion 8 extends this to models in which the rows of W are allowed to have dependent entries,
when they follow a sub-Gaussian distribution. We show that the choice µn = c0(n+ p), for
some absolute numerical constant c0, leads to desirable results. The induced size of K̄, for
this µn, is of order n∧ p. We found the choice c0 = 0.25 worked well for all our simulations,
as presented in Section 6.

Let re(ΣW ) = tr(ΣW )/‖ΣW ‖op denote the effective rank of ΣW . The following proposi-
tion shows that s̃ finds, adaptively, the theoretical elbow.

Proposition 8 Let s̃ be defined in (21) with µn = c0(n + p) for some absolute constant
c0 > 0. For any θ = (K,A, β,ΣZ ,ΣW , σ

2) such that (X,Y ) follows sG-FRM(θ), log p ≤ cn,
K ≤ K̄ and

re(ΣW ) ≥ c′(n ∧ p) (22)

for some positive constants c = c(γw) and c′ = c′(γw), we have

Pθ
{
s̃ ≤ K, λ̂s̃ & δW , λ̂s̃+1 . δW

}
≥ 1−O(1/n). (23)

Condition K ≤ K̄ holds, for instance, if K ≤ c′′(n∧p) with c′′ ≤ κ/(2c0(1+κ)). We explain
the connection between restriction (22) and the proposed choice of µn. Using elementary
algebra, Bing and Wegkamp (2019, Theorem 6 and Proposition 7) proves the deterministic
result {

2σ2
1(W )

‖W ‖2F /(np)
≤ µn

}
⊆ {s̃ ≤ K} , (24)

which shows that if µn is appropriately large, then the selected s̃ is less than or equal to
dimension K of the factor regression model generating the data. On the other hand, by
concentration inequalities of ‖W ‖2F /n and σ2

1(W )/n around tr(ΣW ) and δW , respectively
(see the proof of Proposition 8 in Appendix B.2), the bound

2σ2
1(W )

‖W ‖2F /(np)
. np

δW
tr(ΣW )

= p+
np

re(ΣW )
(25)
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holds with probability larger than 1 − O(1/n). Thus, in view of (24) and (25), the event
{s̃ ≤ K} holds with high probability as soon as µn > p+np/re(ΣW ). Under (22), we arrive
at the choice µn = c0(n+ p) and, in turn, K̄ = O(n ∧ p).

We note that (22) holds, for instance, in the commonly considered setting

0 < c′ ≤ λp(ΣW ) ≤ λ1(ΣW ) ≤ C ′ <∞, (26)

while being more general. One can alternatively consider other error structures, for in-
stance, with re(ΣW ) = O(1), in which case the above reasoning leads to the choice µn & np.
However, this would limit the range of K, up to K̄ = O(1) in (21), while our interest is in
factor regression models with dimensions allowed to grow with n.

Proposition 8 in conjunction with Corollary 5 immediately leads to the following risk
bound of PCR-s̃. It coincides with the bound for PCR-ŝ in display (20) of Corollary 6.

Corollary 9 Let s̃ be defined in (21) with µn = c0(n+p) for some absolute constant c0 > 0.
For any θ = (K,A, β,ΣZ ,ΣW , σ

2) with K ≤ Cn/ log n such that (X,Y ) follows sG-FRM(θ),
log p ≤ cn, K ≤ K̄ and (22) holds, for some positive constants c = c(γw) and c′ = c′(γw),
we have

Pθ
{
R(Us̃)− σ2 . (K + log n)

σ2

n
+ δWβ

>(A>A)−1β

}
≥ 1−O(n−1). (27)

3.2 Existing Results on PCR

Due to the popularity and simplicity of PCR, its prediction properties under the factor
regression model have been studied for nearly two decades. Most existing theoretical results,
discussed below, are asymptotic in n and p and, to the best of our knowledge, have been
established for a model of known dimension K, or when K is identifiable under additional
restrictions on the parameter space, and can be consistently estimated.

The fact that PCR prediction, under the factor regression model with known or identi-
fiable K, has asymptotically vanishing excess risk only when both p and n grow to ∞ is a
well known result. This can already be seen from our derivation (10) above, which shows
that a necessary condition for prediction with vanishing excess risk, under factor regression
models with well conditioned ΣW , is ‖ΣW ‖opβ

>(A>A)−1β → 0, which can be met when
p→∞, as explained below.

This phenomenon was first quantified in Stock and Watson (2002), where it is shown
that

Ŷ ∗UK
− Z>∗ β = op(1) as n, p→∞.

This result is the most closely related to ours, and we discuss it in detail below. We also
mention that several later works, for instance Bai (2003) and Fan et al. (2013), provided
explicit convergence rates and inferential theory for the in-sample prediction error Ŷ −Zβ,
whereas in this work we study out-of-sample performance. For completeness, we comment
on these related, but not directly comparable, results in Appendix E.

In addition to being asymptotic in nature, the results in Stock and Watson (2002), and
also those regarding the in-sample prediction accuracy, are established under the following

14
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set of conditions: K = O(1), ‖β‖2 = O(1), ‖ΣW ‖op = O(1), as p→∞, and

1

p
A>A→ IK , as p→∞, ΣZ is a diagonal matrix with distinct diagonal entries. (28)

These conditions serve as identifiability conditions for θ = (K,β,A,ΣZ ,ΣW , σ
2) (Stock and

Watson, 2002). Condition (28) further implies that, for some constants 0 < c ≤ C <∞,

p . λK(AA>) ≤ λ1(AA>) . p, c ≤ λK(ΣZ) ≤ λ1(ΣZ) ≤ C. (29)

In contrast, our Corollaries 5, 6 and 9 are non-asymptotic statements, which hold for
any finite K, n and p, where K is allowed to depend on n, with K log n . n. Consequently,
‖β‖22 and λ1(ΣZ) are also allowed to grow with n. Furthermore, our conditions on the
signal λK(AΣZA

>) are much weaker than (29) to derive the risk bound of PCR-K . To
see this, and for a transparent comparison, suppose ‖ΣW ‖op . 1 and λK(ΣZ) ≥ c. Then
from Remark 7 we only require a condition much weaker than λK(AA>) & p of (Stock and
Watson, 2002) given in (29) above, namely

λK(AA>) & 1 +
p

n
.

Finally, the results in Stock and Watson (2002) are established for the unique θ under
additional restrictions of the parameter space discussed above, whereas our results are
established for any θ with K log n . n such that (X,Y ) satisfying sG-FRM(θ), without
requiring θ to be identifiable. In particular, our results hold for any identifiable θ that
further satisfies (28).

We conclude our comparison by giving the bound implied by our Corollary 6, should the
more stringent conditions (29) be met. Since (29) implies that ŝ = K with high probability
from Remark 7, Corollary 6 immediately yields, with probability 1 −O(n−1),

R(UK)− σ2 .
log n

n
σ2 +

‖ΣW ‖op

p
+
‖ΣW ‖op

n
,

and thus, as in Stock and Watson (2002),

R(UK)− σ2 = op(1)

when p, n→∞ and ‖ΣW ‖op = O(1).

4. Analysis of Alternative Prediction Methods

In this section we illustrate the usage of the main Theorem 3 to derive risk bounds under
a factor regression model for two other prediction methods: Generalized Least Squares
(Bunea et al., 2020), as an example of another model agnostic predictor construction, and
model-tailored prediction, in an instance of an identifiable factor regression model provided
by the Essential Regression framework introduced in Bing et al. (2019). All proofs for this
section are contained in Appendix B.3.
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4.1 Prediction Risks of Minimum Norm Interpolating Predictors Under
Factor Regression Models

In the recent paper Bunea et al. (2020), risk bounds were established under the factor
regression model for the Generalized Least Squares (GLS) predictor, which corresponds to
taking B̂ = Ip:

Ŷ ∗Ip = X>∗ X
+Y . (30)

We recover as these results in Corollary 10 and Corollary 11 below, as further illustration
of the application of our main theorem. Since PIp = Ip and P⊥Ip = 0, the application

of Theorem 3 with ψ̂ = 0 amounts to obtaining a lower bound on the smallest non-zero
singular value of X to bound η̂.

We consider the low (p < n)- and high (p > n)-dimensional settings separately. In
the former case, GLS reduces to the ordinary least squares (OLS) method. The following
corollary states the prediction risk of the OLS under the factor regression model. The proof
uses a standard random matrix theory result (see Vershynin, 2012, Theorem 5.39) to show
σ2
p(X) & λp(ΣW )n, which implies η̂ & λp(ΣW ). Recall that κ(ΣW ) := λ1(ΣW )/λp(ΣW ).

Corollary 10 (GLS: low-dimensional setting) Suppose p log n ≤ c0n for an absolute
constant c0 ∈ (0, 1). For any θ = (K,A, β,ΣZ ,ΣW , σ

2) with K ≤ Cn/ log n and λp(ΣW ) > c
such that (X,Y ) ∼ sG-FRM(θ), one has

Pθ
{
R(Ip)− σ2 .

(
p+ log n

n
σ2 + ‖ΣW ‖op β

>(A>A)−1β

)
κ(ΣW )

}
≥ 1−O(n−1).

When p is much larger than n, the GLS becomes the minimum `2 norm interpolator
(Bunea et al., 2020), one method studied in the recent wave of literature on the generaliza-
tion of overparameterized models with zero or near-zero training error (Montanari et al.,
2019; Bunea et al., 2020; Muthukumar et al., 2019, 2020; Hastie et al., 2019; Feldman, 2019;
Belkin et al., 2019a,b, 2018a,b,c; Bartlett et al., 2019; Liang and Rakhlin, 2018). Theorem
3 can also be applied to recover a slightly modified form of the prediction risk bound from
Bunea et al. (2020) in this case, which we state in the following corollary. Recall that
re(ΣW ) = tr(ΣW )/‖ΣW ‖op is the effective rank of ΣW .

Corollary 11 (GLS: high-dimensional setting. Interpolating predictors.) For any

θ = (K,A, β,ΣZ ,ΣW , σ
2) with K ≤ Cn/ log n such that (X,Y ) ∼ sG-FRM(θ), suppose W̃

defined in Definition 1 has independent entries and re(ΣW ) > C ′n for some sufficiently
large constant C‘ > 0. Then there exists c > 0 such that

Pθ
{
R(Ip)− σ2 .

K + log n

n
σ2 +

n

re(ΣW )
σ2 +

re(ΣW )

n
‖ΣW ‖op β

>(A>A)−1β

}
≥ 1− c/n.

By Proposition 6 of Bunea et al. (2020), we have σ2
n(X) & tr(ΣW ) with high prob-

ability when re(ΣW ) & n. Corollary 11 thus follows from Theorem 3 with ψ̂ = 0 and
η̂ & tr(ΣW )/n in the high-dimensional setting. A simplified version of the risk bound in
Corollary 11, together with a comparison with PCR-k prediction, is presented in Section 4.3.
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4.2 Prediction Under Essential Regression

Both Principal Component Regression and Generalized Least Squares are model-agnostic
methods, in that they do not use explicit estimates of the model parameters θ = (K,A, β,ΣZ ,
ΣW , σ

2) to perform prediction. In contrast, further assumptions can be placed on the fac-
tor model to make θ identifiable, in which case a direct estimate of A can be meaningfully
constructed and used for prediction. The Essential Regression (ER) framework introduced
in Bing et al. (2019) provides an approach to do this.

Essential Regression is a particular factor regression model under which the latent factor
Z becomes interpretable under additional model assumptions. Specifically, under model (1),
one further assumes the following model specifications.

Assumption 1

(A0) ‖Aj q‖1 ≤ 1 for all j ∈ [p].

(A1) For every k ∈ [K], there exists at least two j 6= ` ∈ [p], such that |Aj q | = |A` q | = ek.

(A2) There exists a constant ν > 0 such that

min
1≤a<b≤K

( [ΣZ ]aa ∧ [ΣZ ]bb − |[ΣZ ]ab| ) > ν.

(A3) The covariance ΣW of W is diagonal with bounded diagonal entries.

The indices i ∈ [p] satisfying Ai q = ek are called pure variables and collected in the set I.
We use J = [p] \ I to denote all the variables that are non-pure.

Within the Essential Regression framework, the matrix A becomes identifiable up to a
signed permutation (Bing et al., 2020). In fact, θ = (K,A, β,ΣZ ,ΣW , σ

2) can be further
shown to be identifiable (Bing et al., 2019).

We explain how to construct predictors of Y tailored to a factor model, and elaborate
on the predictor tailored to Essential Regression. Under any factor model (1), the best
predictor of Y from Z is Z>β. However, since Z is not observable, this expression does
not lend itself to sample level prediction. A practically usable expression for a predictor
under the factor regression model can be obtained by the following reasoning. Using the
Moore-Penrose inverse A+ := (A>A)−1A> of the matrix A, we observe that model (1)
implies

X̄ := A+X = Z +A+W.

The best linear predictor (BLP) of Z from X̄ is given by

Z̃ = Cov(Z, X̄)[Cov(X̄)]−1X̄ = ΣZ

(
ΣZ +A+ΣWA

+>
)−1

A+X. (31)

The simple observation that

arg min
α

E[(Y − Z>α)2] = β = arg min
α

E[(Y − Z̃>α)2]

justifies predicting Y by Ỹ = Z̃>β. Inserting the identity β = Σ−1
Z A+Cov(X,Y ) simplifies

Ỹ to

ỸA = X>A+>
(

ΣZ +A+ΣWA
+>
)−1

ΣZβ

= X>A
[
Cov(A>X)

]−1
Cov(A>X,Y ),
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motivating prediction based on a new data point X∗ by

Y ∗
Â

= X>∗ Â
(
Â>X>XÂ

)+
Â>X>Y ,

which has the general form (3) with B̂ = Â, with Â being an estimator of A tailored to
the ER model, developed in Bing et al. (2020). We summarize the construction of Â in
Appendix D for completeness.

To analyze the prediction risk of Y ∗
Â

we will also need the following assumption on the
covariance matrix ΣZ , which plays the same role as the Gram matrix in classical linear
regression with random design.

Assumption 2 Assume c ≤ λK(ΣZ) ≤ λ1(ΣZ) ≤ C for some constants c and C bounded
away from 0 and ∞.

The prediction risk of Ŷ ∗
Â

can be obtained via an application of Theorem 3, with the

choice B̂ = Â. Since A is identifiable under the Essential Regression framework, the esti-
mator Â can be compared directly with A and, as shown in Bing et al. (2020),

‖Â−A‖2op ≤ ‖AJ‖0 log(n ∨ p)/n (32)

with high probability. The rows of the p × |J | submatrix AJ of A correspond to all the
index set J of non-pure variables. The estimation bound (32) can be leveraged to obtain a
small improvement in the risk bound by slightly adjusting the proof of Theorem 3. Using
this approach, we obtain the following result by establishing, with high probability, that

r̂ = K,

η̂ & λK(AΣZA
>),

ψ̂ . ‖AJ‖0
log(p ∨ n)

n
+ ‖ΣW ‖op := ψn(AJ).

Theorem 12 (Prediction in Essential Regression) Suppose (X,Y ) ∼ sG-FRM(θ) with
θ = (K,A, β,ΣZ ,ΣW , σ

2) satisfying Assumptions 1 & 2, K ≤ Cn/ log n and

λK(AΣZA
>) ≥ c · ψn(AJ)

for some sufficiently small constant c > 0. Then, with probability at least 1−O(n−1),

R(Â)− σ2 .
K + log n

n
σ2 + ψn(AJ)β>(A>A)−1β. (33)

Remark 13

1. We note that the bound (33) depends on ‖AJ‖0, which in turn depends on the number
of non-pure variables, and the sparsity of the rows of A corresponding to these non-
pure variables. The rate indicates that prediction based on Â will perform best when
the number of pure variables is large, and any non-pure variable Xi, the ith component
of X, only depends on a small number of latent variables. We give, in the following
section, a simplified form of this bound, and compare this prediction scheme with the
other methods discussed in this work.
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2. The identifiable factor model X = AZ+W , with A satisfying Assumption 1, has been
used in Bing et al. (2020) to construct overlapping clusters of the components on X.
The latent factors can be viewed as random cluster centers, while a sparse matrix A
gives the cluster membership. From this perspective, and in light of the discussion
leading up to the predictor construction, one can view R(Â) as the risk of predicting
Y from predicted cluster centers, on the basis of data that exhibits a latent cluster
structure with overlap.

4.3 Comparison of Simplified Prediction Risks

In this section we offer a comparison of the prediction risk of the predictors analyzed above.
For a transparent comparison, we compare them under an identifiable factor regression
model. To this end, we consider the Essential Regression framework as a data generating
mechanism under which we compare PCR-k, with known k = K, the GLS predictor (B̂ =
Ip), and the Essential Regression predictor (B̂ = Â), based on Corollary 6, Remark 7,
Corollary 11 and Theorem 12, respectively. The notation an / bn stands for an = O(bn) up
to a multiplicative logarithmic factor in n or p.

For ease of comparison, we consider the simplified setting in which λK(A>A) & p/K,3

‖β‖2 ≤ Rβ and re(ΣW ) � p, and focus on the high-dimensional regime where p > Cn for a
large enough constant C > 0. We have

R(UK)− σ2 /
K

n
σ2 +

K

p
‖ΣW ‖opR

2
β +

K

n
‖ΣW ‖opR

2
β

R(Â)− σ2 /
K

n
σ2 +

K

p
‖ΣW ‖opR

2
β +

K‖AJ‖0
np

‖ΣW ‖opR
2
β

R(Ip)− σ2 /
K

n
σ2 +

n

p
σ2 +

K

n
‖ΣW ‖opR

2
β

(34)

Since the Essential Regression predictor is an instance of model based prediction, we com-
ment on when the two model agnostic predictors are competitive, under this particular
model specification.

We begin with a comparison between R(UK) and R(Â), and note that the difference in
their respective errors bounds depends on the sparsity of AJ . The risk bound on R(UK) is
valid for any θ such that (X,Y ) ∼ sG-FRM(θ), and is in particular valid for θ satisfying the
additional Essential Regression constraints. Our results show that while PCR-K prediction
is certainly a valid choice under this particular model set-up, it could be outperformed by
the model tailored predictor. If each row of AJ is sparse such that ‖AJ‖0 � |J |, then
R(Â) has a faster rate. This advantage becomes considerable if |J | = o(p), that is, in the
presence of a growing number of pure variables. However, if AJ is not sparse such that
‖AJ‖0 � |J |K, and |J | � p, then R(Â) has a slower rate than R(UK). Nevertheless, from
a practical perspective, conditions on the sparsity of A (‖AJ‖0 � |J |) simply mean that not
all p variables in the vector X contribute to explaining a particular Zk, for each k, which

3. This is met for instance when all X’s are pure variables and the numbers of pure variables for all groups
are balanced in the sense that |Ik| � |I|/K. Another instance such that λK(A>A) & p/K holds with high
probability is that |Ik| � |I|/K and the rows of AJ are i.i.d. realizations of a sub-Gaussian random vector
whose second moment has operator norm bounded by 1/K. The factor 1/K takes (A0) in Assumption
1 into account.
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is the main premise of Essential Regression. Furthermore, in this risk bound comparison,

R(Â) corresponds to Â ∈ Rp×K̂ , for an appropriate, fully data dependent, estimator K̂
of the identifiable dimension K. In order to employ a fully data driven PCR prediction,
corresponding to an estimated K, we would also need the delicate step of estimating it
described in Section 3 above. The risk bound above will then hold under conditions discussed
in Remark 7.

Finally, the much simpler GLS interpolating predictor has a bound that compares favor-
ably to the other agnostic predictor, PCR-K , only when n/p is small enough, for instance,
p > n2/K. This extra term σ2n/p in the bound for R(Ip) compared to the bound for
PCR-K, is due to the additional variance induced by the usage the full data matrix X, as
opposed to the first K principal components, which may already capture the majority of
the signal.

5. Predictor Selection via Data Splitting

Whenever a factor regression model can be assumed to generate a given data set, but it
is unclear what further model specifications are in place, one can, in principle, construct
several predictors, some model agnostic and some tailored to prior beliefs. In this section
we address the problem of choosing among a set of candidate predictors for a given data set
that is assumed to be generated by a factor regression model. Suppose we have M linear
predictors with respective coefficients α̂1, . . . , α̂M that we want to choose from. For ease
of presentation, in this section assume n is divisible by 2. Let D1 be a subset of [n] with
|D1| = n/2, and let D2 = [n] \D1. Define

m̂ := arg min
m∈[M ]

∑
i∈D2

(Yi −X>i α̂m)2, (35)

where for each m ∈ [M ], α̂m is trained on the data set {(Xi, Yi) : i ∈ D1} and is thus
independent of {(Xi, Yi) : i ∈ D2}. We then use α̂ := α̂m̂ as our predictor, for which
we establish the following oracle inequality, which is an adaptation of Theorem 2.1 from
Wegkamp (2003) to factor regression models and unbounded linear predictors. Moreover,
we provide a high-probability statement, as opposed to a bound on the expected risk as in
Wegkamp (2003). The proof is deferred to Appendix B.4.

Theorem 14 Let α̂ := α̂m̂, where m̂ is defined in (35). Then for any θ = (K,A, β,ΣZ ,
ΣW , σ

2) such that (X,Y ) ∼ sG-FRM(θ), there exist absolute constants c, c′ > 0 and a
constant c0 = c0(γw, γz, γε) > 0 such that when n > c log(M) and for any a > 0,

Pθ
{
R(α̂)− σ2 ≤ (1 + a)2 min

m∈[M ]
{R(α̂m)− σ2}

+ C(a)

(
σ2 ∨ max

m∈[M ]
{R(α̂m)− σ2}

)
log(nM)

n

}
≥ 1− c′n−1,

(36)

where C(a) = c0(1 + a)3/a.
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In the bound above, the worst excess risk maxm{R(α̂m) − σ2} appears in the remain-
der term, which may appear unusual. Most model-selection oracle inequalities either are
formulated as a bound on the empirical risk, or assume that the predictors are uniformly
bounded, or both, and as a result do not contain a term of this form. The bound we
give is for the prediction risk on new data, and for unbounded loss and predictors, since
supα(X>α − y)2 = ∞. For the bound to be useful, it thus must be the case that none of
the M predictors has risk that grows too fast. In particular, if the risks of all M predictors
are bounded above in high probability, then the second term in (36) will be O(log n/n) and
thus typically subdominant.

As an illustration, we can use this data-splitting procedure with M = 3 and the three
prediction methods discussed in Section 4.3. If the three excess risks in (34) are all O(1),
which is met under the conditions discussed in detail in Section 4.3, then the bound (36)
becomes

R(α̂)− σ2 . (1 + a)2 min

(
R(UK)− σ2, R(Â)− σ2, R(Ip)− σ2

)
+ C(a)σ2 log n

n
.

We further confirm the ability of the data-splitting approach to adapt to the best-case risk
via simulations in Section 6 below.

On a practical note, we remark that the splitting procedure can be repeated several
times with random splits to obtain estimates α̂(1), . . . , α̂(N) that can be used to construct
the average N−1

∑N
i=1 α̂

(i). This aggregate coefficient vector satisfies the same risk bound
(36) by convexity of the loss, while this approach in practice could alleviate some of the
bias induced by the choice of split for the data.

6. Simulations

In this section, we complement and support our theoretical findings with simulations, fo-
cusing on the prediction performance of candidate predictors under both the generic factor
regression model and the Essential Regression framework.

Candidate predictors: We consider the following list of predictors:

• PCR-s̃ with s̃ obtained from (21) with µn = 0.25(n+ p);

• PCR-K: the principal component regression (PCR) predictor using the true K;

• PCR-ratio: PCR with k selected via the criterion proposed in Lam and Yao (2012);
Ahn and Horenstein (2013); 4

• GLS: the Generalized Least Squares predictor defined in (30);

• ER-A: the Essential Regression predictor with B̂ = Â in (3);

• Lasso: implemented in glmnet with the tuning parameter chosen via cross-validation;

• Ridge: implemented in glmnet with the tuning parameter chosen via cross-validation;

4. We have also implemented the selection criterion suggested by Bai and Ng (2002), but it had inferior
performance, and is for this reason not included in our comparison here.
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• MS: the selected predictor from (35) in Section 5.

Both Lasso and Ridge are included for comparison. The Lasso is developed for predicting
Y from X when we expect that the best predictor of Y is well approximated by a sparse
linear combination of the components of X. Under our model specifications, the best linear
predictor of Y from X is given by

X>α∗ = X>[Cov(X)]−1Cov(X,Y ) = X>Σ−1
W A

[
Σ−1
Z +A>Σ−1

W A
]−1

β,

where the last step follows from the factor model (1) and an application of the Wood-
bury matrix identity. Although α∗ is not sparse in general, we observe that ‖α∗‖22 ≤
β>[Σ−1

Z + A>Σ−1
W A]−1β. Hence its `2-norm may be small if ‖ΣW ‖opβ

>(A>A)−1β is small.
Our simulation design allows for these possibilities.

Data generating mechanism: We first describe how we generate ΣZ , ΣW , and β. To generate
ΣZ , we set diag(ΣZ) to a K-length sequence from 2.5 to 3 with equal increments. The off-
diagonal elements of ΣZ are then chosen as [ΣZ ]ij = (−1)(i+j)([ΣZ ]ii ∧ [ΣZ ]jj)(0.3)|i−j| for
all i 6= j ∈ [K]. Finally, ΣW is chosen as a diagonal matrix with diagonal elements sampled
from Unif(1, 3), and β is generated with entries sampled from Unif(0, 3).

Generating A depends on the modeling assumption. Under the factor regression model,
we sample each entry of A independently from N(0, 1/

√
K). Under the Essential Regression

setting, recall that A can be partitioned into AI and AJ which satisfy Assumption 1. To
generate AI , we set |Ik| = m for each k ∈ [K] and choose AI = IK ⊗ 1m, where ⊗ denotes
the kronecker product. Each row Aj q of AJ is generated by first randomly selecting its
support with cardinality sj drawn from {2, 3 . . . , bK/2c} and then by sampling its non-zero
entries from Unif(0, 1/sj) with random signs. In the end, we rescale AJ such that the `1
norm of each row is no greater than 1.

Finally, we generate the n × K matrix Z and the n × p noise matrix W whose rows
are i.i.d. from NK(0,ΣZ) and Np(0,ΣW ), respectively. We then set X = ZA> + W and
Y = Zβ + ε where the n components of ε are i.i.d. N(0, 1).

For each setting, we generating 100 repetitions of (X,Y ) and record their corresponding
results. The performance metric is based on the new data prediction risk. To calculate it,
we independently generate a new data set (Xnew,Ynew) containing n i.i.d. samples drawn
according to our data generating mechanism. The prediction risk of the predictor Ŷnew is
calculated as ‖Ŷnew −Znewβ‖2/n.

6.1 Prediction Under the Factor Regression Model

We compare the performance of PCR-s̃, PCR-K, PCR-ratio, GLS, Lasso, Ridge and MS
by varying p, K and the signal-to-noise ratio (SNR) ξ defined in (8), one at a time. The
MS predictor is based on (35) over all the aforementioned methods.

We first set n = 300, K = 5 and vary p from {100, 300, 700, 1500, 3000, 5000}, then
choose n = 300, p = 500 and vary K from {3, 5, 10, 15, 20}. The prediction risks of different
predictors for these two settings are shown in Figure 1. Since both PCR-s̃ and PCR-ratio
consistently select the true K, we only present the result for PCR-K .
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Figure 1: Prediction risks of different predictors under the factor regression model as p and
K vary separately

Results: Overall, it is clear that the MS predictor selects the best predictor in almost all
settings, corroborating Theorem 14. Meanwhile, PCR-K has the best performance in all
settings as it is tailored to the factor regression model.

From the first panel, all methods perform better as p increases (with exceptions given
to GLS and Ridge when p ≈ n = 300). This contradicts the classical understanding that
having more features increases the degrees of freedom of the model, hence inducing larger
variance. By contrast, in our setting, increasing the number of features provides information
that can be used to predict A. This can be seen from the minimal excess risk in Lemma
2 by noting that λK(A>A) increases as p increases. This phenomenon has been observed
in the classical factor (regression) model, see, for instance, Stock and Watson (2002); Bai
(2003); Bai and Ng (2008, 2006); Fan et al. (2013) and the references therein.

Perhaps more interestingly, when p is much larger than n, GLS and Ridge have per-
formance similar to PCR-K. This demonstrates our conclusions in Section 4.3 that GLS
and PCR-K are comparable when p � n. We also note from our simulation that Ridge
tends to select near-zero regularization parameter when p � n, whence Ridge essentially
reduces to GLS (Hastie et al., 2019). In contrast to GLS and Ridge, the performance of
Lasso stops improving after p > 2500. When p is moderately large (say p < 1000), GLS
and Ridge have larger errors than PCR-K and Lasso. In particular, if p is close to n, the
error of GLS diverges, a phenomenon observed in Hastie et al. (2019), for example, under
the linear model.

From the second panel, the prediction error for all methods deteriorates as K increases.
This indicates that prediction becomes more difficult for large K, supporting our results in
Sections 3 and 4. We also note that the performance of Ridge deteriorates faster than the
other methods when K grows.
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Figure 2: Prediction risks of different predictors under the factor regression model as SNR
varies

To further demonstrate how different predictors behave as the signal-to-noise ratio
(SNR) changes, we multiply A by a scalar α chosen within {0.1, 0.13, 0.16, · · · , 0.37, 0.40}.
We set n = 300, p = 500 and K = 5. For each α, we calculate the SNR and plot the
prediction risks of each predictor in Figure 2.

Results: As expected, all methods perform worse as the SNR decreases. MS has consistently
selected the (near) best predictor. When the SNR is small (less than 2), Ridge has the best
performance. As soon as the SNR exceeds 2, PCR-K and PCR-s̃ start to outperform the
other methods. In terms of selecting K, when the SNR is larger than 2, PCR-s̃ starts
estimating K consistently whereas PCR-ratio fails until the SNR is greater than 4. Both
PCR-s̃ and PCR-ratio tend to under-estimate K in the presence of a small SNR. However,
PCR-s̃ selects s̃ closer to K than PCR-ratio, leading to better performance. Moreover, the
loss due to using s̃ < K by PCR-s̃ is not significant, in line with Corollary 9 and Remark 7.

6.2 Prediction Under the Essential Regression Model

We compare all the predictors when data is generated from an Essential Regression model.
To vary p and K individually, we first set n = 300, K = 5, m = 5 and choose p from
{100, 300, 500, 700, 900}, then fix n = 300, p = 500, m = 5 and vary K in {3, 5, 10, 15, 20}.
The prediction risks of different predictors are shown in Figure 3. PCR-s̃ and PCR-ratio are
not included as they have almost the same performance as PCR-K . As it was demonstrated
under the factor regression setting that GLS is outperformed by the other predictors when
p is not large enough, we also excluded its performance from the plot.

Summary: We observe the same phenomenon as before, that is: (1) all predictors benefit
from large p; (2) as K increases, the performance of all predictors deteriorate. Furthermore,
the model-based ER predictor has similar performance as the model-free PCR predictor
when K is small. The advantage of ER over PCR enlarges as K grows. This is aligned with
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our theoretical findings in Section 4.3 that ER benefits from the sparsity of AJ , because
our data generating mechanism ensures that the larger K is, the sparser AJ becomes.
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Figure 3: Prediction risks of different predictors under the Essential Regression model as p
and K vary separately
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Appendix A. Organization of Appendices

We provide section-by-section proofs for the main results in Appendices B.1—B.4. Auxiliary
lemmas are collected in Appendix C. Appendix D contains the procedure of estimating A
under the Essential Regression framework while comparison with more existing literature
on factor models is stated in Appendix E.

Appendix B. Main proofs

We start by giving an elementary lemma that proves Y ∗
B̂

= Y ∗P
B̂

for any B̂ ∈ Rp×q. Re-

call that, for any matrix M , M+ denotes its Moore-Penrose inverse and PM denotes the
projection onto the column space of M .

Lemma 15 Let B̂ ∈ Rp×q be any matrix. Then

B̂(XB̂)+ = P
B̂

(XP
B̂

)+.

Proof Write the SVD of B̂ as B̂ = UDV > where U ∈ Rp×r0 and V ∈ Rq×r0 are orthonormal
matrices with r0 = rank(B̂). We then have

B̂(XB̂)+ = B̂
(
B̂>X>XB̂

)+
B̂>X>

= UDV >
(
V DU>X>XUDV >

)+
V DU>X>

(i)
= U(U>X>XU)+U>X>

(ii)
= UU>(UU>X>XUU>)+UU>X>.

The result then follows by noting that P
B̂

= UU>. Step (i) uses the fact that

(
V DU>X>XUDV >

)+
= V D−1

(
U>X>XU

)+
D−1V >

which can be verified by the definition of Moore-Penrose inverse. Indeed, let M = U>X>XU ,
N = V DMDV > and Ñ = V D−1M+D−1V >. We need to verify

NÑN = N, ÑNÑ = Ñ .

Straightforwardly,

NÑN = V DMM+MDV > = V DMDV > = N

and similar arguments hold for ÑNÑ = Ñ . Step (ii) uses step (i) with D = Ir0 and V = U
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B.1 Proofs for Section 2

B.1.1 Proof of Lemma 2

Let ΣX = Cov(X), ΣXY = Cov(X,Y ). Since ΣW is invertible, λp(ΣX) = λp(AΣZA
> +

ΣW ) ≥ λp(ΣW ) > 0 so ΣX is invertible. Thus, letting α∗ = Σ−1
X ΣXY ,

R∗ − σ2 = E[(X>α∗ − Z>β)2]. (37)

Using this expression, and the factor model structure X = AZ + W , Y = Z>β + ε, the
proof of Lemma 4 in Bunea et al. (2020) uses the Woodbury matrix identity to simplify
(37), arriving at

R∗ − σ2 = β>(Σ−1
Z +A>Σ−1

W A)−1β.

Letting H = Σ
1/2
Z A>Σ−1

W AΣ
1/2
Z , we then have

R∗ − σ2 = β>Σ
1/2
Z (IK +H)−1Σ

1/2
Z β

= β>Σ
1/2
Z H−1/2(IK +H−1)−1H−1/2Σ

1/2
Z β.

To obtain the upper bound on R∗ we use

R∗−σ2 = β>Σ
1/2
Z H−1/2(IK+H−1)−1H−1/2Σ

1/2
Z β ≤

β>Σ
1/2
Z H−1Σ

1/2
Z β

1 + λK(H−1)
≤ β>(A>Σ−1

W A)−1β,

where we used Σ
1/2
Z H−1Σ

1/2
Z = (A>Σ−1

X A)−1 in the last step.

To find the lower bound we first observe that

R∗−σ2 = β>Σ
1/2
Z H−1/2(IK+H−1)−1H−1/2Σ

1/2
Z β ≥

β>Σ
1/2
Z H−1Σ

1/2
Z β

1 + ‖H−1‖op
=
β>(A>Σ−1

X A)−1β

1 + λ−1
K (H)

.

Furthermore,

λK(H) = λK(Σ
1/2
Z A>Σ−1

W AΣ
1/2
Z ) ≥ λK(AΣZA

>)/‖ΣW ‖op = ξ,

so using this in the previous display,

R∗ − σ2 ≥
β>(A>Σ−1

X A)−1β

1 + ξ−1
=

ξ

1 + ξ
· β>(A>Σ−1

X A)−1β,

as claimed. �

B.1.2 Proof of Theorem 3

Define α̂
B̂

= B̂
(
B̂>X>XB̂

)+
B̂>X>Y and recall that Ŷ ∗

B̂
= X>∗ α̂B̂ from (3). Pick any

θ with K ≤ (Cn/ log n) ∧ p such that (X,Y ) follows FRM(θ) where C = C(γz) is some
positive constant. By X∗ = AZ∗+W∗ and Y∗ = Z>∗ β+ ε∗, and the independence of Z∗, ε∗,
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and W∗, one has

R(B̂)− σ2 = E(Z∗,W∗)

[(
Ŷ ∗
B̂
− Z>∗ β

)2
]

= EZ∗
[(
Z>∗ A

>α̂
B̂
− Z>∗ β

)2
]

+ EW∗
[(
W>∗ α̂B̂

)2
]

(38)

=
∥∥∥Σ

1/2
Z

(
A>α̂

B̂
− β

)∥∥∥2
+
∥∥∥Σ

1/2
W α̂

B̂

∥∥∥2

≤
∥∥∥Σ

1/2
Z

(
A>α̂

B̂
− β

)∥∥∥2
+ ‖ΣW ‖op

∥∥α̂
B̂

∥∥2
. (39)

We define an event E∗ in (40) below, on which we bound the risk. Invoking Lemmas 17, 18
and using β>A+ΣWA

+>β ≤ β>(A>A)−1β‖ΣW ‖op, we find that the stated bound holds on
the event E∗. Then, by Lemma 16, P(E∗) ≥ 1− cn−1, which completes the proof. �

We state and prove three lemmas which are used in the proof of Theorem 3. Recall that

r̂ = rank(XP
B̂

), ψ̂ =
1

n
σ2

1

(
XP⊥

B̂

)
, η̂ =

1

n
σ2
r̂

(
XP

B̂

)
.

Lemma 16 For any θ with K ≤ (Cn/ log n) ∧ p and some positive constant C = C(γz)
such that (X,Y ) follows FRM(θ), we have P(E∗) ≥ 1 − cn−1 for some absolute constant
c > 0, where we define the event

E∗ := EZ ∩ EW ∩ E ′W ∩ EM ∩ EM ′ ∩ EZβ . (40)

Here, for some constants c(γz) and c′(γw) depending on γz and γw, respectively,

EZ :=

{
λK

(
Ω1/2 1

n
Z>ZΩ1/2

)
≥ c(γz)

}
,

EZβ :=

{
1

n

∥∥∥P⊥
XB̂

Zβ
∥∥∥2
≤ 8γ2

wβ
>A+ΣWA

+>β + 2ψ̂β>(A>A)−1β

}
,

EW :=

{
1

n

∥∥∥W>W
∥∥∥

op
≤ δW

}
,

E ′W :=

{
1

n

∥∥∥WA+>β
∥∥∥2
≤ 4γ2

wβ
>A+ΣWA

+>β

}
,

EM :=
{
ε>Mε ≤ 2γ2

εσ
2
[
2‖M‖op log n+ tr(M)

]}
,

EM ′ :=
{
ε>M ′ε ≤ 2γ2

εσ
2
[
2‖M ′‖op log n+ tr(M ′)

]}
,

with Ω := Σ−1
Z , δW defined in (12), and

M := (XB̂)+>B̂>B̂(XB̂)+,

M ′ := (XB̂)+>B̂>AΣZA
>B̂(XB̂)+.
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Proof
By an application of Theorem 5.39 of Vershynin (2012) and K log n ≤ C(γz)n, we find

P{EcZ} . n−c
′K . From Lemma 22 with G = WΣ

−1/2
W , H = ΣW , and γ = γw, we find

P{EcW } ≤ e−n.

We note that WA+>β has independent γw
√
β>A+ΣWA+>β sub-Gaussian entries, so

WA+>β is a γw
√
β>A+ΣWA+>β sub-Gaussian random vector. Applying Lemma 21 with

ξ = WA+>β, H = In, γ2
ξ = γ2

wβ
>A+ΣWA

+>β and choosing t = log n yield

P{(E ′W )c} = P
{

1

n

∥∥∥WA+>β
∥∥∥2
> 4γ2

wβ
>A+ΣWA

+>β

}
≤ n−1. (41)

We prove E ′W ∩EZβ = EW ′ in Lemma 19. By the independence of ε and both X and B̂, the
matrix M is independent of ε. Thus, by an application of Lemma 21 with ξ = ε, H = M ,
γξ = σγε and t = log n gives P{EcM |M} ≤ n−1. Taking the expectation over M then gives
P{EcM} ≤ n−1. The same argument with H = M ′ gives P{EcM ′} ≤ n−1.

Combining results, we find

P{E∗c} ≤ P {EcZ}+ P {EcW }+ P
{

(E ′W )c
}

+ P{EcM}+ P{EcM ′} . n−1.

Lemma 17 Under conditions of Theorem 3, on the event E∗ defined in (40),

‖α̂
B̂
‖2 .θ

(r̂ + log n)σ2

nη̂
+ β>(A>A)−1β + η̂−1

(
ψ̂β>(A>A)−1β + β>A+ΣWA

+>β
)
. (42)

Proof Starting with the identity

α̂
B̂

= B̂(XB̂)+Y = B̂(XB̂)+(Zβ + ε), (43)

with (XB̂)+ := (B̂X>XB̂)+B̂>X>, we have

‖α̂
B̂
‖2 ≤ 2

∥∥∥B̂(XB̂)+ε
∥∥∥2

+ 2
∥∥∥B̂(XB̂)+Zβ

∥∥∥2
.

To bound the first term, notice that∥∥∥B̂(XB̂)+ε
∥∥∥2

= ε>(XB̂)+>B̂>B̂(XB̂)+ε

= ε>Mε

≤ 2γ2
εσ

2
[
2‖M‖op log n+ tr(M)

]
,

where the last step holds on E∗ (in particular, on EM ⊂ E∗). Observe that, on E∗,

tr(M) = tr
(

(XB̂)+>B̂>B̂(XB̂)+
)

≤ rank(XB̂) · ‖M‖op

= r̂‖M‖op.
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Write the SVD of B̂ as B̂ = UDV > where U ∈ Rp×r0 and V ∈ Rq×r0 are orthogonal
matrices with r0 = rank(B̂). Recalling that (XB̂)+ = (B̂>X>XB̂)+B̂X>, the following
holds, on the event E∗,

‖M‖op =
∥∥∥(XB̂)+>B̂>B̂(XB̂)+

∥∥∥
op

(i)
=
∥∥∥B̂(XB̂)+(XB̂)+>B̂>

∥∥∥
op

=
∥∥∥B̂(B̂>X>XB̂)+B̂X>XB̂(B̂>X>XB̂)+B̂>

∥∥∥
op

=

∥∥∥∥B̂ (B̂>X>XB̂
)+

B̂>
∥∥∥∥

op

=

∥∥∥∥U (U>X>XU
)+

U>
∥∥∥∥

op

(ii)

≤ σ−2
r̂ (XU)

(iii)
= (nη̂)−1 (44)

where we used ‖FF>‖op = ‖F>F‖op for any matrix F in (i), rank(XU) = rank(XP
B̂

) = r̂
in (ii) and

σ2
r̂ (XU) = λr̂(XUU>X) = λr̂(XP 2

B̂
X) = σr̂(XP

B̂
)

in (iii). This concludes, on the event E∗,

∥∥∥B̂(XB̂)+ε
∥∥∥2
≤ 2γ2

εσ
2

nη̂
(r̂ + 2 log n). (45)

On the other hand, by A>A+> = IK and X = ZA> + W , observe that

B̂(XB̂)+Z = B̂(XB̂)+ZA>A+>

= B̂(XB̂)+(X −W )A+>

= B̂(XB̂)+XP
B̂
A+> + B̂(XB̂)+XP⊥

B̂
A+> − B̂(XB̂)+WA+>. (46)

By P
B̂

= B̂B̂+ and the inequality (a + b+ c)2 ≤ 3a2 + 3b2 + 3c2,

∥∥∥B̂(XB̂)+Zβ
∥∥∥2
≤ 3

∥∥∥B̂(XB̂)+XB̂B̂+A+>β
∥∥∥2

+ 3
∥∥∥B̂(XB̂)+XP⊥

B̂
A+>β

∥∥∥2
(47)

+ 3
∥∥∥B̂(XB̂)+WA+>β

∥∥∥2

≤ 3
∥∥∥B̂(XB̂)+XB̂B̂+

∥∥∥2

op

∥∥∥A+>β
∥∥∥2

+ 3
∥∥∥B̂(XB̂)+

∥∥∥2

op

∥∥∥XP⊥
B̂

∥∥∥2

op

∥∥∥A+>β
∥∥∥2

+ 3
∥∥∥B̂(XB̂)+

∥∥∥2

op

∥∥∥WA+>β
∥∥∥2
.
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Recalling B̂ = UDV >, on the event E∗, the following observation∥∥∥B̂(XB̂)+XB̂B̂+
∥∥∥

op
=

∥∥∥∥U (U>X>XU
)+

U>X>XUU>
∥∥∥∥

op

≤
∥∥∥∥(U>X>XU

)+
U>X>XU

∥∥∥∥
op

≤ 1,

together with (44), concludes∥∥∥B̂(XB̂)+Zβ
∥∥∥2
≤ 3β>(A>A)−1β + 3η̂−1

(
ψ̂β>(A>A)−1β + 4γ2

wβ
>A+ΣWA

+>β
)
. (48)

Collecting (45)—(48) concludes the proof.

Lemma 18 Under conditions of Theorem 3, on the event E∗ defined in (40),∥∥∥Σ
1/2
Z

(
A>α̂

B̂
− β

)∥∥∥2
.θ

(
1 +

δW
η̂

)(
K ∧ r̂ + log n

n
σ2 + β>A+ΣWA

+>β

)
+

[(
1 +

δW
η̂

)
ψ̂ + δW

]
β>(A>A)−1β.

Proof Use identity (43) and the inequality (x+ y)2 ≤ 2x2 + 2y2 to find∥∥∥Σ
1/2
Z

(
A>α̂

B̂
− β

)∥∥∥2

≤ 2
∥∥∥Σ

1/2
Z [A>B̂(XB̂)+Z − IK ]β

∥∥∥2
+ 2

∥∥∥Σ
1/2
Z A>B̂(XB̂)+ε

∥∥∥2
. (49)

For the first term, since Z ∈ Rn×K has rank(Z) = K on the event E∗, we have

A>B̂(XB̂)+ −Z+ = Z+ZA>B̂(XB̂)+ −Z+ (by Z+Z = IK on E∗)

= Z+(X −W )B̂(XB̂)+ −Z+

= −Z+P⊥
XB̂
−Z+W B̂(XB̂)+, (50)

which yields ∥∥∥Σ
1/2
Z [A>B̂(XB̂)+Z − IK ]β

∥∥∥2

≤ 2
∥∥∥Σ

1/2
Z Z+P⊥

XB̂
Zβ
∥∥∥2

+ 2
∥∥∥Σ

1/2
Z Z+W B̂(XB̂)+Zβ

∥∥∥2

.
1

n

∥∥∥P⊥
XB̂

Zβ
∥∥∥2

+
1

n

∥∥∥W B̂(XB̂)+Zβ
∥∥∥2

(51)

.
1

n

∥∥∥P⊥
XB̂

Zβ
∥∥∥2

+ δW ·
∥∥∥B̂(XB̂)+Zβ

∥∥∥2
.
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We used ‖Σ1/2
Z Z+‖op = σ−1

K (ZΩ−1/2) . 1/
√
n on E∗ in the third line. The event EZβ and

(48) conclude∥∥∥Σ
1/2
Z [A>B̂(XB̂)+Z − IK ]β

∥∥∥2
(52)

.

(
1 +

δW
η̂

)(
β>A+ΣWA

+>β + ψ̂β>(A>A)−1β
)

+ δWβ
>(A>A)−1β.

For the second term in (49), we use that on E∗ (in particular, EM ′ ⊂ E∗),∥∥∥Σ
1/2
Z A>B̂(XB̂)+ε

∥∥∥2
≤ 2γ2

εσ
2
[
2‖M ′‖op log n+ tr(M ′)

]
Since rank(ΣZ) = K and rank(XP̂

B̂
) = r̂, we have

tr(M ′) ≤ (K ∧ r̂ )‖M ′‖op.

Moreover,

‖M ′‖op =
∥∥∥Σ

1/2
Z A>B̂(XB̂)+

∥∥∥2

op
≤ 2

∥∥∥Σ
1/2
Z Z+P

XB̂

∥∥∥2

op
+ 2

∥∥∥Σ
1/2
Z Z+W B̂(XB̂)+

∥∥∥2

op

.
1

n
+ δW ·

∥∥∥B̂(XB̂)+
∥∥∥2

op

by using (50) in the first line and E∗ in the second line. Invoking (44) concludes that, on
E∗, ∥∥∥Σ

1/2
Z A>B̂(XB̂)+ε

∥∥∥2
.

(K ∧ r̂ + log n)σ2

n

(
1 +

δW
η̂

)
. (53)

Plugging (52) and (53) into (49) completes the proof.

Lemma 19 Under conditions of Theorem 3, on the event E ′W from (40),

1

n

∥∥∥P⊥
XB̂

Zβ
∥∥∥2
≤ 8γ2

wβ
>A+ΣWA

+>β + 2ψ̂β>(A>A)−1β. (54)

Proof By X = ZA> + W , one has

P⊥
XB̂

Zβ = P⊥
XB̂

(
XA+> −WA+>

)
β

= −P⊥
XB̂

WA+>β + P⊥
XB̂

XA+>β

= −P⊥
XB̂

WA+>β + P⊥
XB̂

X
(
A+> − B̂G

)
β

for any matrix G ∈ Rq×K . Choose

G = B̂+A+> = min
G′

∥∥∥A+> − B̂G′
∥∥∥
F
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to obtain

P⊥
XB̂

Zβ = P⊥
XB̂

WA+>β + P⊥
XB̂

XP⊥
B̂
A+>β.

Then by the basic inequality (a+ b)2 ≤ 2a2 + 2b2,∥∥∥P⊥
XB̂

Zβ
∥∥∥2
≤ 2

∥∥∥P⊥
XB̂

WA+>β
∥∥∥2

+ 2
∥∥∥P⊥

XB̂
XP⊥

B̂
A+>β

∥∥∥2
(55)

≤ 2
∥∥∥P⊥

XB̂

∥∥∥2

op

∥∥∥WA+>β
∥∥∥2

+ 2
∥∥∥XP⊥

B̂

∥∥∥2

op

∥∥∥A+>β
∥∥∥2

≤ 2
∥∥∥WA+>β

∥∥∥2
+ 2nψ̂β>(A>A)−1β

where we invoked the definition of ψ̂ in the last line. Invoke E ′W from (40) to finish the
proof.

B.2 Proofs for Section 3

B.2.1 Proof of Corollary 5

The corollary is an application of Theorem 3 with B̂ = Uk. Given any realization of (X ,Y )
and (possibly random) k ∈ {0, 1, . . . , rank(X)}, we may write the SVD of X as

X = V DU> =
∑

1≤j≤k
DjjV qjU>qj +

∑
j>k

DjjV qjU>qj
:= VkDkU

>
k + V(−k)D(−k)U

>
(−k).

The diagonal matrix D contains the non-increasing singular values and Uk contains the
corresponding k right-singular vectors. Consequently,

rank(XUk) = rank(VkDk) = k,

σ2
1

(
XP⊥Uk

)
=
∥∥∥XU(−k )U

>
(−k)

∥∥∥2

op
=
∥∥∥V(−k )D(−k)U

>
(−k )

∥∥∥2

op
= σ2

k+1 (X) = nλ̂k+1,

σ2
1 (XPUk

) = σ2
1

(
VkDkU

>
k

)
= σ2

k(X) = nλ̂k.

Invoke Theorem 3 with B̂ = Uk, r̂ = k, ψ̂ = λ̂k+1 and η̂ = λ̂k to conclude the proof.�

B.2.2 Proof of Corollary 6 & Remark 7

We first prove Corollary 6. From Corollary 5, it suffices to show Pθ{ŝ ≤ K} ≥ 1 − c/n,
which is guaranteed by proving

Pθ
{

1

n
σ2
K+1(X) < C0δW

}
≥ 1− c/n.

By Weyl’s inequality,

σK+1(X) ≤ σK+1(ZA>) + σ1(W ) = σ1(W ).
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The result then follows by (11) and C0 > 1. �
To prove Remark 7, we will show

P
{
λ̂K & λk(AΣZA

>)− δW
}
≥ 1− n−c.

Note that Weyl’s inequality yields

σk(X) ≥ σk(ZA>)− σ1(W ) ≥ σK(ZΣ
−1/2
Z )σk(Σ

1/2
Z A>)− σ1(W ).

We obtain the desired result by invoking EZ from Lemma 16 and (11). �

B.2.3 Proof of Proposition 8

We work on the event

E ′′W :=
{
σ2

1(W ) ≤ nδW
}
∩
{
c1 tr(ΣW ) ≤ 1

n
‖W ‖2F ≤ C1 tr(ΣW )

}
with δW defined in (12) and some constants C1 ≥ c1 > 0, depending on γw. We have on
the event E ′′W ,

2σ2
1(W )

np

‖W ‖2F
≤ 2nδW

np

‖W ‖2F

≤ 2δW
c1

np

tr(ΣW )
by E ′′W

=
2c

c1

(
np

re(ΣW )
+ p

)
by (12)

≤ 2c

c1

(n ∨ p
c′

+ p
)

by re(ΣW ) ≥ c′(n ∧ p)

≤ c0(n+ p) = µn

by choosing any c0 ≥ 2c(1 + 1/c′)/c1. From Theorem 6 and Proposition 7 of Bing and
Wegkamp (2019) with P = In, E = W and m = p, we deduce

s̃ ≤ K

on the event E ′′W .

To prove the lower bound σ2
s̃(X) & nδW , we notice that, on the event E ′′W ,

σ2
s̃(X) ≥ µn

‖X −X(s̃)‖2F
np− µns̃

≥ µn
‖X −X(K)‖2F

np
. (56)

The first inequality uses (2.7) in Bing and Wegkamp (2019), while the second inequality
uses K ≤ K̄. Further invoking (3.8) in Proposition 7 of Bing and Wegkamp (2019) yields

‖X −X(K)‖2F
np− µnK

≥
‖W ‖2F
np

.
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Next, on the event E ′′W , choosing c0 ≥ 2c(1 + 1/c′)/c1 in µn = c0(n+ p), we find

µn
‖W ‖2F
np

≥ µnc1
tr(ΣW )

p

≥ 2c

(
1 +

1

c′

)
n+ p

p
tr(ΣW )

≥ 2c

(
tr(ΣW ) +

1

c′
n+ p

p
re(ΣW )‖ΣW ‖op

)
≥ 2c

(
tr(ΣW ) + (n ∧ p)n+ p

p
‖ΣW ‖op

)
by re(ΣW ) ≥ c′(n ∧ p)

≥ 2c (tr(ΣW ) + n‖ΣW ‖op)

= 2nδW .

Hence, combining all three previous displays, we derive

σ2
s̃(X) ≥ µn

‖X −X(K)‖2F
np

≥ µn
‖W ‖2F
np

np− µnK
np

≥ nδW
np− µnK

np

≥ 1

1 + κ
nδW by K ≤ K̄ and (21).

Next, we prove σ2
s̃+1(X) . δW . By (2.7) in Bing and Wegkamp (2019) once again, we have

σ2
s̃+1(X) ≤ µn

‖X −X(s̃+1)‖2F
np− µn(s̃+ 1)

.

From (2.3) in Proposition 1 of Bing and Wegkamp (2019), this inequality is equivalent to

σ2
s̃+1(X) ≤ µn

‖X −X(s̃)‖2F
np− µns̃

.

Since s̃ ≤ K on E ′′W , we have

σ2
s̃+1(X) ≤ µn

‖X −X(K)‖2F
np− µnK

≤ µn
np

np− µnK
‖W ‖2F
np

by (3.8) of Proposition 7 in Bing and Wegkamp (2019)

≤ (1 + κ)µn
‖W ‖2F
np

by (21)

≤ (1 + κ)c0C1(n+ p)
tr(ΣW )

p
by E ′′W and µn = c0(n+ p)

≤ (1 + κ)c0C1

c
nδW by tr(ΣW ) ≤ p‖ΣW ‖op.
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It remains to prove 1− P(E ′′W ) . 1/n. First note that

1

n
‖W ‖2F =

p∑
j=1

1

n
W>qjW qj .

By invoking Lemma 24 for fixed j ∈ [p] and some absolute constant c, the inequality∣∣∣∣ 1nW>qjW qj − [ΣW ]jj

∣∣∣∣ ≤ cγ2
w[ΣW ]jj

√
log p

n

holds with probability at least 1−2(p∨n)−2. Apply the union bound over 1 ≤ j ≤ p, invoke
log p ≤ Cn for sufficiently large C, and conclude

P
{
c(γw) tr(ΣW ) ≤ 1

n
‖W ‖2F ≤ C(γw) tr(ΣW )

}
≥ 1− 2(p ∨ n)−1.

Finally, Lemma 22 shows that P{σ2
1(W ) ≤ nδW } ≥ 1 − e−n, taking c in δW large enough.

�

B.3 Proofs for Section 4

B.3.1 Proof of Corollary 10

By Theorem 5.39 of Vershynin (2012), σ2
p(XΣ

−1/2
X ) & n with probability at least 1− cn−1,

where we use that XΣ
−1/2
X has independent sub-Gaussian rows with sub-Gaussian constant

bounded by an absolute constant, which is implied by the sub-Gaussianity of Z and W ,
and that p log n . n. Thus, with the same probability,

σ2
p(X) ≥ λp(ΣX)σ2

p(XΣ
−1/2
X ) ≥ λp(ΣW )σ2

p(XΣ
−1/2
X ) & λp(ΣW )n.

Corollary 10 then follows from Theorem 3 with ψ̂ = 0, η̂ & λp(ΣW ), and r̂ ≤ p. �

B.3.2 Proof of Corollary 11

Under conditions of Corollary 11, Bunea et al. (2020) proves that

P
{
σ2
n(X) & tr(ΣW )

}
≥ 1− cn−1.

We thus have r = n, ψ̂ = 0, and η̂ & tr(ΣW )/n. Further noting that

δW = ‖ΣW ‖op

(
1 +

re(ΣW )

n

)
� tr(ΣW )

n
,

such that δW /η̂ � 1, we conclude

R∗(Ip)− σ2 .
K + log n

n
σ2 +

n

re(ΣW )
σ2 +

tr(ΣW )

n
β>(A>A)−1β

.
K + log n

n
σ2 +

n

re(ΣW )
σ2 +

re(ΣW )

n
‖ΣW ‖op β

>(A>A)−1β.

�
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B.3.3 Proof of Theorem 12

Instead of directly applying Theorem 3, we slightly modify the proofs of Theorem 3 to
obtain a sharp result for R(Â).

From the proof of Theorem 3, display (38) gives

R(Â)− σ2 ≤
∥∥∥Σ

1/2
Z

(
A>α̂

Â
− β

)∥∥∥2
+ ‖ΣW ‖op

∥∥α̂
Â

∥∥2
.

We then point out the modifications of the proof of Lemmas 17 and 18. Recall Â ∈ Rp×K̂ .
We work on the event E∗ defined in the proof of Theorem 3 intersected with the event that
K̂ = K and

‖Â−A‖2op ≤ ‖Â−A‖2F . ‖AJ‖0
log(p ∨ n)

n
.

The last two events holds with probability at least 1 − c(p ∨ n)−1 for some constant c > 0
(Bing et al., 2020). In display (47) of Lemma 17 for bounding ‖α̂

Â
‖2, we use∥∥∥B̂(XB̂)+Zβ

∥∥∥2
≤ 3

∥∥∥B̂(XB̂)+XB̂B̂+A+>β
∥∥∥2

+ 3
∥∥∥B̂(XB̂)+XP⊥

B̂
A+>β

∥∥∥2

+ 3
∥∥∥B̂(XB̂)+WA+>β

∥∥∥2

≤ 3
∥∥∥B̂(XB̂)+XB̂B̂+

∥∥∥2

op

∥∥∥A+>β
∥∥∥2

+ 3
∥∥∥B̂(XB̂)+

∥∥∥2

op

∥∥∥XP⊥
B̂
A+>β

∥∥∥2

+ 3
∥∥∥B̂(XB̂)+

∥∥∥2

op

∥∥∥WA+>β
∥∥∥2
.

We change the way to bound the second term on the right hand side. Specifically, set B̂ = Â
and use (a+ b)2 ≤ 2a2 + 2b2 twice to obtain∥∥∥XP⊥

Â
A+>β

∥∥∥2
≤ 2

∥∥∥ZAP⊥
Â
A+>β

∥∥∥2
+ 2

∥∥∥WP⊥
Â
A+>β

∥∥∥2

≤ 2
∥∥∥ZΩ1/2

∥∥∥2

op

∥∥∥Σ
1/2
Z (A− Â)>P⊥

Â
A+>β

∥∥∥2
(by Â>P̂⊥

Â
= 0)

+ 4
∥∥∥WA+>β

∥∥∥2
+ 4

∥∥∥WP
Â
A+>β

∥∥∥2
(by P⊥

Â
= Ip − PÂ).

By EZ , E ′W and Lemma 20, after a bit algebra, we conclude

1

n

∥∥∥XP⊥
Â
A+>β

∥∥∥2
.

(
‖AJ‖0

log(p ∨ n)

n
+ δW,J

)
βT (A>A)−1β + β>A+ΣWA

+>β

.

(
‖AJ‖0

log(p ∨ n)

n
+ ‖ΣW ‖op

)
βT (A>A)−1β + β>A+ΣWA

+>β. (57)

with probability at least 1−cn−1. In the last step, we used the fact that ‖ΣW ‖op is bounded
and ‖AJ‖`0/`2 ≤ ‖AJ‖0. Together with the proofs of Lemma 17, one can deduce that

‖α̂
Â
‖2 . (K + log n)σ2

nη̂
+ β>(A>A)−1β + η̂−1

(
ψ̂β>(A>A)−1β + β>A+ΣWA

+>β
)
.
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where

ψ̂ . ‖ΣW ‖op + ‖AJ‖0
log(p ∨ n)

n
.

To bound ‖Σ1/2
Z (A>α̂

Â
− β)‖2, we modify two places in the proof of Lemma 18. Display

(51) is bounded by∥∥∥Σ
1/2
Z [A>Â(XÂ)+Z − IK ]β

∥∥∥2
.

1

n

∥∥∥P⊥
XÂ

Zβ
∥∥∥2

+
1

n

∥∥∥W Â(XÂ)+Zβ
∥∥∥2

.
1

n

∥∥∥P⊥
XÂ

Zβ
∥∥∥2

+
1

n

∥∥WP
Â

∥∥2

op

∥∥∥Â(XÂ)+Zβ
∥∥∥2

where we will invoke Lemma 20. For the first term of the right hand side, by (55), we have∥∥∥P⊥
XB̂

Zβ
∥∥∥2
≤ 2

∥∥∥P⊥
XB̂

WA+>β
∥∥∥2

+ 2
∥∥∥P⊥

XB̂
XP⊥

B̂
A+>β

∥∥∥2

≤ 2
∥∥∥WA+>β

∥∥∥2
+ 2

∥∥∥XP⊥
B̂
A+>β

∥∥∥2

which can be further bounded by using (57) and invoking the event E ′W . Collecting all these
ingredients, we conclude∥∥∥Σ

1/2
Z

(
A>α̂

Â
− β

)∥∥∥2
.

(
1 +

δW,J
η̂

)(
K + log n

n
σ2 + β>A+ΣWA

+>β

)
+

[(
1 +

δW,J
η̂

)
ψ̂ + δW,J

]
β>(A>A)−1β.

It then remains to lower bound η̂ by bounding σK(XP
Â

) from below. By Weyl’s inequality,

rank(Â) = K, we have

σK

(
XP

Â
A(A>A)−1/2

)
≥ σK

(
XA(A>A)−1/2

)
−
∥∥∥XP⊥

Â
A(A>A)−1/2

∥∥∥
op

≥ σK
(
XAN−1/2N1/2(A>A)−1/2

)
−
∥∥∥XP⊥

Â
A(A>A)−1/2

∥∥∥
op

≥ σK
(
XAN−1/2

)
σK

(
N1/2(A>A)−1/2

)
−
∥∥∥XP⊥

Â
A(A>A)−1/2

∥∥∥
op
.

by writing N = A>ΣA. To lower bound σK
(
XAN−1/2

)
, using Weyl’s inequality again and

invoking Lemma 23 yield

λK

(
N−1/2A>

1

n
X>XAN−1/2

)
& λK

(
N−1/2A>ΣAN−1/2

)
−
∥∥∥∥N−1/2A>

(
1

n
X>X − Σ

)
AN−1/2

∥∥∥∥
op

& 1−
√
K log n

n
− K log n

n
& 1
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with probability at least 1 − cn−C . On the other hand, by X = ZA> + W ,∥∥∥XP⊥
Â
A(A>A)−1/2

∥∥∥
op
≤
∥∥∥ZA>P⊥

Â
A(A>A)−1/2

∥∥∥
op

+
∥∥∥WP⊥

Â
A(A>A)−1/2

∥∥∥
op

≤
∥∥∥Z(A− Â)>

∥∥∥
op

+
∥∥∥WA(A>A)−1/2

∥∥∥
op

+
∥∥∥WP

Â
A(A>A)−1/2

∥∥∥
op

≤
∥∥∥ZΩ1/2

∥∥∥
op
σ1(ΣZ)

∥∥∥(A− Â)>
∥∥∥

op
+
∥∥∥WA(A>A)−1/2

∥∥∥
op

+
∥∥WP

Â

∥∥
op
.

By EZ and Lemmas 20 and 22, we have

1

n

∥∥∥XP⊥
Â
A(A>A)−1/2

∥∥∥
op
. δW,J +

‖AJ‖0 log(p ∨ n)

n
. ‖ΣW ‖op +

‖AJ‖0 log(p ∨ n)

n

with probability at least 1 − cn−1. Provided that

λK(AΣZA
>) ≥ C

(
‖ΣW ‖op +

‖AJ‖0 log(p ∨ n)

n

)
for sufficiently small constant C > 0, we then conclude that

σ2
K

(
XP

Â
A(A>A)−1/2

)
& nλK(AΣZA

>)

from noting σ2
K

(
N1/2(A>A)−1/2

)
= λK(AΣZA

>). This concludes η̂ & λK(AΣZA
>). The

result then follows by collecting terms. �

The following lemma provides upper bounds for the operator norm of WP
Â

. Recall
that ‖AJ‖`0/`2 =

∑
j∈J 1{‖Aj q‖2 6=0}.

Lemma 20 Under conditions of Theorem 12, with probability at least 1− c(p ∨ n)−1, one
has

1

n

∥∥WP
Â

∥∥2

op
. ‖ΣW ‖op

(
1 +
‖AJ‖`0/`2

n

)
:= δW,J .

Proof We work on the event K̂ = K and ÂI = AI which holds with probability at least
1− c(p ∨ n)−c

′
(Bing et al., 2020). Then∥∥WP

Â

∥∥
op

=
∥∥∥W ÂÂ+

∥∥∥
op
≤
∥∥∥W qIAIÂ+

∥∥∥
op

+
∥∥∥W qJ ÂJ Â+

∥∥∥
op

≤
∥∥∥W qIAI(A>I AI)−1/2

∥∥∥
op

∥∥∥(A>I AI)
1/2Â+

∥∥∥
op

+ ‖W qJ‖op

∥∥∥ÂJ Â+
∥∥∥

op
.

Since ∥∥∥(A>I AI)
1/2Â+

∥∥∥2

op
=
∥∥∥(A>I AI)

1/2(Â>Â)−1(A>I AI)
1/2
∥∥∥

op
≤ 1

by noting Â>Â = A>I AI + Â>J ÂJ , and similar arguments yield∥∥∥ÂJ Â+
∥∥∥2

op
=
∥∥∥ÂJ(Â>Â)−1Â>J

∥∥∥
op

=
∥∥∥(Â>Â)−1/2Â>J ÂJ(Â>Â)−1/2

∥∥∥
op
≤ 1,
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invoking Lemma 22 to bound ‖W qIAI(A>I AI)−1/2‖op and ‖W qJ‖op gives

1

n

∥∥∥W qIAI(A>I AI)−1/2
∥∥∥2

op
. ‖ΨII‖op +

tr(ΨII)

n
,

1

n
‖W qJ‖2op . ‖[ΣW ]JJ‖op +

tr([ΣW ]JJ)

n
≤ δW,J ,

with probability at least 1 − 2e−n, where

ΨII = (A>I AI)
−1/2A>I [ΣW ]IIAI(A

>
I AI)

−1/2.

The result then follows by using ‖ΨII‖op ≤ ‖[ΣW ]II‖op, tr(ΨII) ≤ K‖ΨII‖op ≤ K‖[ΣW ]II‖op

and K log n . n.

B.4 Proof of Theorem 14 in Section 5

For any α ∈ Rp, let

R̂(α) =
2

n

∑
i∈D1

[Yi −X>i α]2

so that for all m ∈ [M ], by the definition of m̂, Ŝ(α̂) ≤ Ŝ(α̂m). Also let

Ŝ(α) =
2

n

∑
i∈D1

[Z>i β −X>i α]2.

Finally, for any fixed or random α define

S(α) = E(Z∗,X∗)(Z
>
∗ β −X>∗ α)2, R(α) = S(α) + σ2,

where the expectation is over (Z∗, X∗) that are independent of α.

We have

S(α̂) = R(α̂)− σ2

= (1 + a)[R̂(α̂)− 2

n

n∑
i∈D1

ε2
i ] + [R(α̂)− (1 + a)R̂(α̂)− (σ2 − (1 + a)

2

n

∑
i∈D1

ε2
i )].
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Using R̂(α̂) ≤ R̂(α̂m) in the first term of the above, we have for any m ∈ [M ],

S(α̂) ≤ (1 + a)[R̂(α̂m)− 2

n

n∑
i∈D1

ε2
i ]

+ max
m

[R(α̂m)− (1 + a)R̂(α̂m)− (σ2 − (1 + a)
2

n

∑
i∈D1

ε2
i )]

= (1 + a)[R̂(α̂m)− 2

n

n∑
i∈D1

ε2
i ]

+ max
m

[S(α̂m)− (1 + a)Ŝ(α̂m) + 2(1 + a)
2

n

∑
i∈D1

εi(X
>
i α̂m − Z>i β)]

≤ (1 + a)[R̂(α̂m)− 2

n

n∑
i∈D1

ε2
i ] + max

m
[S(α̂m)− (1 +

a

2
)Ŝ(α̂m)]

+ max
m

[2(1 + a)
2

n

∑
i∈D1

εi(X
>
i α̂m − Z>i β)− a

2
Ŝ(α̂m)]. (58)

The first term in the above can be further re-written as

R̂(α̂m)− 2

n

n∑
i∈D1

ε2
i = (1 + a)S(α̂m) + [R̂(αm)− (1 + a)S(α̂m)− 2

n

∑
i∈D1

ε2
i ]

= (1 + a)S(α̂m) + [Ŝ(α̂m)− (1 + a)S(α̂m) +
4

n

∑
i∈D1

εi(Z
>
i β −X>i α̂m)]

≤ (1 + a)S(α̂m) + max
m

[(1 +
a

2
)Ŝ(α̂m)− (1 + a)S(α̂m)]

+ max
m

[
4

n

∑
i∈D1

εi(Z
>
i β −X>i α̂m)− a

2
Ŝ(α̂m)].

Using this result in (58), we find that for any m ∈ [M ],

S(α̂) ≤ (1 + a)2S(α̂m)

+ (1 + a) max
m

[(1 +
a

2
)Ŝ(α̂m)− (1 + a)S(α̂m)]

+ (1 + a) max
m

[
4

n

∑
i∈D1

εi(Z
>
i β −X>i α̂m)− a

2
Ŝ(α̂m)]

+ max
m

[S(α̂m)− (1 +
a

2
)Ŝ(α̂m)]

+ max
m

[2(1 + a)
2

n

∑
i∈D1

εi(X
>
i α̂m − Z>i β)− a

2
Ŝ(α̂m)]

=: (1 + a)2S(α̂m) + (1 + a)T1 + (1 + a)T2 + T3 + T4. (59)

Below we prove that

Pθ
(

(1 + a)T1 + T3 ≤ c1
(2 + a)3

a
· maxm S(α̂m) log(nM)

n

)
≥ 1− c′1n−1, (60)
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and

Pθ
{

(1 + a)T2 + T4 ≤ c2
(1 + a)3

a
σ2 log(nM)

n

}
≥ 1− c′2n−1, (61)

where c1 and c2 depend only on γz, γw, γε from Definition 1, and c1, c2 > 0 are absolute
constants. The final result follows from taking a minimum over m in (59) and combining
(60) and (61) with a union bound.

Bounding T1 and T3: Since α̂1, . . . , α̂2 are independent of {Xi : i ∈ D1}, we will prove (60)
for the case when α̂1, . . . , α̂2 are non-random without loss of generality.

We first consider T3. For all t, b > 0, the following holds:

S − Ŝ ≤
√
t
√
S ⇒ S ≤ (1 + b)Ŝ + t

1 + b

b
, (62)

where we write S = S(α̂m) and Ŝ = Ŝ(α̂m). To prove this, suppose the left hand side holds
true and consider the cases

√
S ≤ 1+b

b

√
t, which implies S ≤ Ŝ + t1+b

b , and
√
S > 1+b

b

√
t,

which implies S ≤ Ŝ + b
1+bS and thus S ≤ (1 + b)Ŝ. Thus,

Pθ
(
T3 > t

1 + a/2

a/2

)
≤M max

m
Pθ
(
S(α̂m)− (1 +

a

2
)Ŝ(α̂m) > t

1 + a/2

a/2

)
≤M max

m
Pθ

(
S(α̂m)− Ŝ(α̂m)√

S(α̂m)
>
√
t

)
(by (62))

≤M max
m

Pθ

∣∣∣∣ 2n ∑
i∈D1

[E[gi(m)]− gi(m)]

∣∣∣∣ > √t
 , (63)

where we let gi(m) := (Z>i β − X>i α̂m)2/
√
S(α̂m) in the last step. Recalling that for any

random variable U , ‖U2‖ψ1 = ‖U‖2ψ2
, and using the assumption that α̂m is a fixed vector,

we find

‖(Z>i β −X>i α̂m)2‖ψ1

= ‖Z>i β −X>i α̂m‖2ψ2

≤ ‖Z>i β − Z>i A>α̂m‖2ψ2
+ ‖W>i α̂m‖2ψ2

(since Xi = AZi +Wi)

= ‖(Σ−1/2
Z Zi)

>(Σ
1/2
Z [β −A>α̂m])‖2ψ2

+ ‖(Σ−1/2
W W )>(Σ

1/2
W α̂m)‖2ψ2

= ‖Σ1/2
Z (β −A>α̂m)‖2‖(Σ−1/2

Z Zi)
>u)‖2ψ2

(with ‖u‖ = ‖v‖ = 1)

+ ‖Σ1/2
W α̂m‖2‖(Σ−1/2

W W )>v‖2ψ2

≤ c1‖Σ1/2
Z (β −A>α̂m)‖2 + c1‖Σ1/2

W α̂m‖2 (by Definition (1))

= c1S(α̂m),

where c1 = c1(γz, γw). Thus,

‖Egi(m)− gi(m)‖ψ1 . ‖gi(m)‖ψ1 ≤ c1

√
S(α̂m),
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so by Bernstein’s inequality (Vershynin, 2012),

Pθ

∣∣∣∣ 2n ∑
i∈D1

[E[gi(m)]− gi(m)]

∣∣∣∣ > √t
 ≤ 2 exp

(
−n

(
t

c1S(α̂m)
∧

√
t

c1S(α̂m)

))
. (64)

Choosing t = c1 maxm S(α̂m) log(nM)/n, and combining with (63), for log(M) < cn,

Pθ
(
T3 >

1 + a/2

a/2
· c1

maxm S(α̂m) log(nM)

n

)
≤ 2/n. (65)

We next consider T1. For t, b > 0, we have

Ŝ − S ≤
√
t
√
S ⇒ Ŝ ≤

(
1 +

b

1 + b

)
S + t

1 + b

b
.

To prove this, suppose the left hand side holds and consider the cases
√
S ≤ 1+b

b

√
t, which

implies Ŝ ≤ S + 1+b
b t, and

√
S > 1+b

b

√
t, which implies Ŝ ≤ [1 + b/(1 + b)]S. Multiplying

the right hand inequality by (1 + b), and choosing b = a/2, we find(
1 +

a

2

)
Ŝ − (1 + a)S > t

(1 + a/2)2

a/2
⇒ Ŝ − S >

√
t
√
S (66)

Recalling

T1 = max
m

[(1 +
a

2
)Ŝ(α̂m)− (1 + a)S(α̂m)],

an application of (66) gives

Pθ
(
T1 > t

(1 + a/2)2

a/2

)
≤M max

m
Pθ(Ŝ(α̂m)− S(α̂m) >

√
t
√
S)

≤M max
m

Pθ

∣∣∣∣ 2n ∑
i∈D1

[E[gi(m)]− gi(m)]

∣∣∣∣ > √t


Choosing t = c1 maxm S(α̂m) log(nM)/n and applying (64) with log(M) < cn, we conclude

Pθ
(
T1 >

(1 + a/2)2

a/2
· c1

maxm S(α̂m) log(nM)

n

)
≤ 2/n. (67)

Combining (65) and (67) with a union bound and some algebra proves (60).

Bounding T2 and T4: For each i ∈ D1, define hi(m) = (Z>i β −X>i α̂m)/[Ŝ(α̂m)]1/2. Using
the inequality 2|xy| ≤ x2/c+ cy2 for c > 0, we have that

4

n

∑
i∈D1

εi(Z
>
i β −X>i α̂m)− a

2
Ŝ(α̂m) = 2[Ŝ(α̂m)]1/2

2

n

∑
i∈D1

εihi(m)− a

2
Ŝ(α̂m)

≤ 2[Ŝ(α̂m)]1/2
∣∣∣∣ 2n ∑

i∈D1

εihi(m)

∣∣∣∣− a

2
Ŝ(α̂m)

≤ 2

a

∣∣∣∣ 2n ∑
i∈D1

εihi(m)

∣∣∣∣2

43



Bing, Bunea, Strimas-Mackey, and Wegkamp

Similarly,

2(1 + a)
2

n

∑
i∈D1

εi(X
>
i α̂m − Z>i β)− a

2
Ŝ(α̂m) ≤ 2(1 + a)2

a

∣∣∣∣ 2n ∑
i∈D1

εihi(m)

∣∣∣∣2.
Thus,

T2 + T4 . max
m

(1 + a)2

a

∣∣∣∣ 2n ∑
i∈D1

εihi(m)

∣∣∣∣2,
so

Pθ
(
T2 + T4 ≥ t

(1 + a)2

a

)
≤M max

m
Pθ

∣∣∣∣ 2n ∑
i∈D2

εihi(m)

∣∣∣∣ ≥ √t


Since {εi}i∈D1 is independent of (Zi, Xi)i∈D2 , E[εihi(m)] = 0 for all i ∈ D2. Furthermore,
‖εi‖ψ2 . σ and |hi(m)| is bounded by 1, so ‖εihi(m)‖ψ2 ≤ σ/c2, where c2 = c2(γε). Thus
by Hoeffding’s inequality (Vershynin, 2012),

Pθ

∣∣∣∣ 2n ∑
i∈D2

εihi(m)

∣∣∣∣ ≥ √t
 ≤ 2 exp(−c2tn/σ

2).

Choosing t = σ2 log(nM)/(c2n) completes the proof of (61). �

Appendix C. Auxiliary Lemmas

The following lemma is used in our analysis. The tail inequality is for a quadratic form of
sub-Gaussian random vectors. It is a slightly simplified version of Lemma 30 in Hsu et al.
(2014).

Lemma 21 Let ξ ∈ Rd be a γξ sub-Gaussian random vector. For all symmetric positive
semi-definite matrices H, and all t ≥ 0,

P

{
ξ>Hξ > γ2

ξ

(√
tr(H) +

√
2‖H‖opt

)2
}
≤ e−t.

Proof From Lemma 8 in Hsu et al. (2014), one has

P
{
ξ>Hξ > γ2

ξ

(
tr(H) + 2

√
tr(H2)t+ 2‖H‖opt

)}
≤ e−t,

for all t ≥ 0. The result then follows from tr(H2) ≤ ‖H‖optr(H).

The following lemma provides an upper bound on the operator norm of GHG> where
G ∈ Rn×d is a random matrix and its rows are independent sub-Gaussian random vectors. It
differs from Bunea et al. (2020, Theorem 10) in the sense that independence across columns
of G is not required.
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Lemma 22 Let G be n by d matrix whose rows are independent γ sub-Gaussian random
vectors with identity covariance matrix. Then for all symmetric positive semi-definite ma-
trices H,

P

 1

n
‖GHG>‖op ≤ γ2

(√
tr(H)

n
+
√

6‖H‖op

)2
 ≥ 1− e−n

Proof By definition and the property of the 1/2-net N ,

‖GHG>‖op = sup
u∈Sn−1

u>GHG>u ≤ 2 sup
u∈N

u>GHG>u.

For fixed u ∈ N , since G>u is a γ sub-Gaussian random vector, an application of Lemma
21 with ξ = G>u, γξ = γ and H = H yields

P

{
u>GHG>u > γ2

(√
tr(H) +

√
2‖H‖opt

)2
}
≤ e−t.

Since |N | ≤ 5n, see Vershynin (2012, Lemma 5.2), choosing t = 3n and taking a union
bound over u ∈ N completes the proof.

Another useful concentration inequality of the operator norm of the random matrices
with i.i.d. sub-Gaussian rows is stated in the following lemma. This is an immediate result
of Vershynin (2012, Remark 5.40).

Lemma 23 Let G be n by d matrix whose rows are i.i.d. γ sub-Gaussian random vectors
with covariance matrix ΣY . Then for every t ≥ 0, with probability at least 1− 2e−ct

2
,∥∥∥∥ 1

n
G>G− ΣY

∥∥∥∥
op

≤ max
{
δ, δ2

}
‖ΣY ‖op ,

with δ = C
√
d/n+ t/

√
n where c = c(γ) and C = C(γ) are positive constants depending on

γ.

The deviation inequalities of the inner product of two random vectors with independent
sub-Gaussian elements are well-known; we state the one in Bing et al. (2019) for complete-
ness.

Lemma 24 (Bing et al., 2019, Lemma 10) Let {Xt}nt=1 and {Yt}nt=1 be any two sequences,
each with zero mean independent γx sub-Gaussian and γy sub-Gaussian elements. Then,
for some absolute constant c > 0, we have

P

{
1

n

∣∣∣∣∣
n∑
t=1

(XtYt − E[XtYt])

∣∣∣∣∣ ≤ γxγyt
}
≥ 1− 2 exp

{
−cmin

(
t2, t

)
n
}
.

In particular, when log p ≤ n, one has

P

{
1

n

∣∣∣∣∣
n∑
t=1

(XtYt − E[XtYt])

∣∣∣∣∣ ≤ C
√

log(p ∨ n)

n

}
≥ 1− 2(p ∨ n)−c

where c ≥ 2 and C = C(γx, γy, c) are some positive constants.
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Appendix D. The LOVE Algorithm

For the reader’s convenience, we give the specifics of estimating Â in the Essential Regression
model, as developed in Bing et al. (2020). The first step is estimation of the number of
latent factors, K, and the partition of pure variables, I, which is achieved by Algorithm 1
below.

Algorithm 1 Estimate the partition of the pure variables I by Î

1: procedure PureVar(Σ̂, δ)
2: Î ← ∅.
3: for all i ∈ [p] do
4: Î(i) ←

{
l ∈ [p] \ {i} : maxj∈[p]\{i} |Σ̂ij | ≤ |Σ̂il|+ 2δ

}
5: Pure(i)← True.
6: for all j ∈ Î(i) do
7: if

∣∣|Σ̂ij | −maxk∈[p]\{j} |Σ̂jk|
∣∣ > 2δ then

8: Pure(i)← False,
9: break

10: if Pure(i) then
11: Î(i) ← Î(i) ∪ {i}
12: Î ← Merge(Î(i), Î)
13: return Î and K̂ as the number of sets in Î

14: function Merge(Î(i), Î)
15: for all G ∈ Î do . Î is a collection of sets
16: if G ∩ Î(i) 6= ∅ then
17: G← G ∩ Î(i) . Replace G ∈ Î by G ∩ Î(i)

18: return Î
19: Î(i) ∈ Î . add Î(i) in Î
20: return Î

Given estimates K̂ and Î as outputs of Algorithm 1, we compute, for each a ∈ [K̂] and
b ∈ [K̂] \ {a},

[
Σ̂Z

]
aa

=
1

|Îa|(|Îa| − 1)

∑
i,j∈Îa,i6=j

|Σ̂ij |,
[
Σ̂Z

]
ab

=
1

|Îa||Îb|

∑
i∈Îa,j∈Îb̂

AiaÂibΣ̂ij , (68)

to form the estimator Σ̂Z of ΣZ .

The submatrix Â
Î

is then constructed as follows. For each k ∈ [K̂] and the estimated

pure variable set Îk,

Pick an element i ∈ Îk at random, and set Âi· = ek; (69)

For the remaining j ∈ Îk \ {i}, set Âj· = sign(Σ̂ij) · ek. (70)
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Letting Ĵ = [p] \ Î, to construct the remaining submatrix Â
Ĵ
, we use the Dantzig-type

estimator ÂD proposed in Bing et al. (2020) given by

Âj· = arg min
βj

{
‖βj‖1 :

∥∥∥Σ̂Zβ
j − (Â>

Î
Â
Î
)−1Â>

Î
Σ̂
Îj

∥∥∥
∞
≤ µ

}
(71)

for any j ∈ Ĵ , with tuning parameter µ = O(
√

log(p ∨ n)/n). The estimator Â enjoys the

optimal convergence rate of maxj∈[p] ‖Âj· − Aj·‖q for any 1 ≤ q ≤ ∞ (Bing et al., 2020,
Theorem 5).

Appendix E. More Existing Literature on Factor Models

We discuss in this section some related work on factor models which might be used to
establish results of the excess risk of PCR.

By treating X and Y jointly from model 1 as an augmented factor model

X̃ :=

[
Y
X

]
=

[
β>

A

]
Z +

[
ε
W

]
,

the fit Ŷ is constructed by regressing Y onto X̃ŨK where ŨK is the matrix of the first K
right singular vectors of X̃ = (X̃>1 q, . . . , X̃>n q)>. Bai (2003) shows that

V
−1/2
t

(
Ŷt −Z>t qβ)→ N(0, 1), for any 1 ≤ t ≤ n (72)

for a variance term Vt. The uniform convergence rate of Ŷt−Z>t qβ over 1 ≤ t ≤ n is further
derived in Fan et al. (2013). These element-wise results for in-sample prediction could,
in principle, be extended to out-of-sample prediction, via additional arguments, but is not
treated in the aforementioned works.

We now comment on the main differences between our Corollary 6 and the aforemen-
tioned results. The existing results are all established under conditions including K = O(1),
‖β‖22 = O(1), p → ∞, and (29), The uniform consistency in Fan et al. (2013) additionally
requires n = o(p2). As a result, all previous results are asymptotic statements as n, p→∞.

By contrast, our Corollaries 5, 6 and 9 are non-asymptotic statements which hold for
any finite K, n and p. Moreover, they only requires the sub-Gaussian tail assumptions
in Definition 1 and K log n . n. As detailed in Section 3.2, our conditions on the signal
λK(AΣZA

>) are much weaker than (29) to derive the risk of PCR-K .
Under condition (29), as assumed in the aforementioned literature, the prediction risk

in our Corollary 6 reduces to

R(UK)− σ2 = Op

(
σ2

n
+
‖ΣW ‖op

p
+
‖ΣW ‖op

n

)
.

This rate coincides with that of Vt, introduced in (72). Under conditions in Fan et al.
(2013), their results (see, for instance, Corollary 3.1) imply

max
1≤t≤n

∣∣∣Ŷt −Z>t qβ∣∣∣2 = Op

(
(log n)2/r2 log p

n
+
n1/2

p

)
for some constant r2 > 0, which is slower than our rate.
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