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Abstract
We resolve the min-max complexity of distributed stochastic convex optimization (up to a log fac-
tor) in the intermittent communication setting, where M machines work in parallel over the course
ofR rounds of communication to optimize the objective, and during each round of communication,
each machine may sequentially computeK stochastic gradient estimates. We present a novel lower
bound with a matching upper bound that establishes an optimal algorithm.
Keywords: Distributed Stochastic Convex Optimization, Oracle Complexity of Optimization

1. Introduction

The min-max oracle complexity of stochastic convex optimization in a sequential (non-parallel) set-
ting is very well-understood, and we have provably optimal algorithms that achieve the min-max
complexity (Lan, 2012; Ghadimi and Lan, 2013). However, we do not yet have an understanding
of the min-max complexity of stochastic optimization in a distributed setting, where oracle queries
and computation are performed by different workers, with limited communication between them.
Perhaps the simplest, most basic, and most important distributed setting is that of intermittent com-
munication.

In the (homogeneous) intermittent communication setting, M parallel workers are used to opti-
mize a single objective over the course of R rounds. During each round, each machine sequentially
and locally computes K independent unbiased stochastic gradients of the global objective, and then
all the machines communicate with each other. This captures the natural setting where multiple par-
allel “workers” or “machines” are available, and computation on each worker is much faster than
communication between workers. It includes applications ranging from optimization using multiple
cores or GPUs, to using a cluster of servers, to Federated Learning1 where workers are edge devices.

The intermittent communication setting has been widely studied for over a decade, with many
optimization algorithms proposed and analyzed (Zinkevich et al., 2010; Cotter et al., 2011; Dekel

1. In a realistic Federated Learning setting, stochastic gradient estimates on the same machine might be correlated, or we
might prefer thinking of a heterogeneous setting where each device has a different local objective. Nevertheless, much
of the methodological and theoretical development in Federated Learning has been focused on the homogeneous
intermittent communication setting we study here (see Kairouz et al., 2019, and citations therein).
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et al., 2012; Zhang et al., 2013a,c; Shamir and Srebro, 2014), and obtaining new methods and
improved analysis is still a very active area of research (Wang et al., 2017; Stich, 2018; Wang and
Joshi, 2018; Khaled et al., 2019; Haddadpour et al., 2019; Woodworth et al., 2020b). However,
despite these efforts, we do not yet know which methods are optimal, what the min-max complexity
is, and what methodological or analytical improvements might allow us to make further progress.

Considerable effort has been made to formalize the setting and establish lower bounds for dis-
tributed optimization (Zhang et al., 2013b; Arjevani and Shamir, 2015; Braverman et al., 2016) and
here, we follow the graph-oracle formalization of Woodworth et al. (2018). However, a key issue
in the existing literature is that known lower bounds for the intermittent communication setting de-
pend only on the product KR (i.e. the total number of gradients computed on each machine over
the course of optimization), and not on the number of rounds, R, and the number of gradients per
round, K, separately.

Thus, existing results cannot rule out the possibility that the optimal rate for fixed T = KR can
be achieved using only a single round of communication (R = 1), since they do not distinguish be-
tween methods that communicate very frequently (R = T , K = 1) and methods that communicate
just once (R = 1, K = T ). The possibility that the optimal rate is achievable with R = 1 was
suggested by Zhang et al. (2013c), and indeed Woodworth et al. (2020b) proved that an algorithm
that communicates just once is optimal in the special case of quadratic objectives. While it seems
unlikely that a single round of communication suffices in the general case, none of our existing
lower bounds are able to answer this extremely basic question.

In this paper, we resolve (up to a logarithmic factor) the minimax complexity of smooth, convex
stochastic optimization in the (homogeneous) intermittent communication setting. Our main result
in Section 3 is a lower bound on the optimal rate of convergence and a matching upper bound.
Interestingly, we show that the combination of two extremely simple and naı̈ve methods based on
an accelerated stochastic gradient descent (SGD) variant called AC-SA (Lan, 2012) is optimal up
to a logarithmic factor. Specifically, we show that the better of the following methods is optimal:
“Minibatch Accelerated SGD” which executes R steps of AC-SA using minibatch gradients of size
MK, and “Single-Machine Accelerated SGD” which executes KR steps of AC-SA on just one of
the machines, completely ignoring the other M − 1.

These methods might seem to be horribly inefficient: Minibatch Accelerated SGD only per-
forms one update per round of communication, and Single-Machine Accelerated SGD only uses
one of the available workers! This perceived inefficiency has prompted many attempts at develop-
ing improved methods which take multiple steps on each machine locally in parallel including, in
particular, numerous analyses of Local SGD (Zinkevich et al., 2010; Dekel et al., 2012; Stich, 2018;
Haddadpour et al., 2019; Khaled et al., 2019; Woodworth et al., 2020b). Nevertheless, we estab-
lish that one or the other is optimal in every regime, so more sophisticated methods cannot yield
improved guarantees for arbitrary smooth objectives. Our results therefore highlight an apparent
dichotomy between exploiting the available parallelism but not the local computation (Minibatch
Accelerated SGD) and exploiting the local computation but not the parallelism (Single-Machine
Accelerated SGD).

Our lower bound applies quite broadly, including to the settings considered by much of the
existing work on stochastic first-order optimization in the intermittent communication setting. But,
like many lower bounds, we should not interpret this to mean we cannot make progress. Rather, it
indicates that we need to expand our model or modify our assumptions in order to develop better
methods. In Section 5 we explore several additional assumptions that allow for circumventing our
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lower bound. These include when the third derivative of the objective is bounded (as in recent work
by Yuan and Ma (2020)), when the objective has a certain statistical learning-like structure, or when
the algorithm has access to a more powerful oracle.

2. Setting and Notation

We aim to understand the fundamental limits of stochastic first-order algorithms in the intermittent
communication setting. Accordingly, we consider a standard smooth, convex problem

min
x
F (x) (1)

where F is convex, ‖x∗‖ ≤ B, and F is H-smooth, so for all x, y

F (x) + 〈∇F (x), y − x〉 ≤ F (y) ≤ F (x) + 〈∇F (x), y − x〉+
H

2
‖y − x‖2 (2)

We consider algorithms that gain information about the objective via a stochastic gradient oracle g
with bounded variance2, which satisfies for all x

Ezg(x; z) = ∇F (x) and Ez‖g(x; z)−∇F (x)‖2 ≤ σ2 (3)

This is a well-studied class of optimization objectives: smooth, bounded, convex objectives with a
bounded-variance stochastic gradient oracle.

To understand optimal methods for this class of problems requires specifying a class of opti-
mization algorithms. We consider intermittent communication algorithms, which attempt to opti-
mize F using M parallel workers, each of which is allowed K queries to g in each of R rounds
of communication. Such intermittent communication algorithms can be formalized using the graph
oracle framework of Woodworth et al. (2018) which focuses on the dependence structure between
different stochastic gradient computations.

Finally, we are considering a “homogeneous” setting, where each of the machines have access to
stochastic gradients from the same distribution, in contrast to the more challenging “heterogeneous”
setting, where they come from different distributions, which could arise in a machine learning con-
text when each machine uses data from a different source. The heterogeneous setting is interesting,
important, and widely studied, but we focus here on the more basic question of min-max rates for
homogeneous distributed optimization. We point out that our lower bounds also apply to hetero-
geneous objectives since homogeneous optimization is a special case of heterogeneous optimiza-
tion, and there are also some lower bounds specific to the heterogeneous setting (e.g. Arjevani and
Shamir, 2015) but they do not apply to our setting.

3. The Lower Bound

We now present our main result, which is a lower bound on what suboptimality can be guaranteed
by any distributed zero-respecting intermittent communication algorithm in the worst case:

2. This assumption can be strong, and does not hold for natural problems like least squares regression (Nguyen et al.,
2019), nevertheless, this strengthens rather than weakens our lower bound.
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Theorem 1 For any H,B, σ,K,R > 0 and M ≥ 2, and any intermittent communication algo-
rithm, there exists a convex, H-smooth objective which has a minimizer with norm at most B in any
dimension

d ≥ 2KR+

(
109

(
1 +KR+

(
HB

σ

)3/2

M(KR)5/4

)
+

6144H2B2MKR

σ2

)
log(64MK2R2)

and a stochastic gradient oracle, g, with Ez‖g(x; z)−∇F (x)‖2 ≤ σ2 such that the algorithm’s
output will have error at least

EF (x̂)− F ∗ ≥ c ·
(
HB2

K2R2
+ min

{
σB√
MKR

, HB2

}
+ min

{
HB2

R2(1 + log2M)
,
σB√
KR

})
for a numerical constant c.

Proof Sketch The first two terms of this lower bound follow directly from previous work (Wood-
worth et al., 2018); the HB2

K2R2 term corresponds to optimizing a function with a deterministic gradient
oracle, and the σB√

MKR
term is a very well-known statistical limit (see, e.g., Nemirovsky and Yudin,

1983). The distinguishing feature of our lower bound is the second min term, which depends dif-
ferently on K than on R. For quadratics, the min-max complexity actually does depend only on
the product KR, and is given by just the first two terms (Woodworth et al., 2020b). Consequently,
proving our lower bound necessitates going beyond quadratics (in contrast, all the lower bounds for
sequential smooth convex optimization that we are aware of can be obtained using quadratics). We
therefore prove the Theorem using the following non-quadratic hard instance

F (x) = ψ′(−ζ)x1 + ψ(xN ) +
N−1∑
i=1

ψ(xi+1 − xi) (4)

where ψ : R→ R is defined as

ψ(x) :=

√
Hx

2β
arctan

(√
Hβx

2

)
− 1

2β2
log

(
1 +

Hβ2x2

4

)
(5)

The function ψ(x)

and where β, ζ, and N are hyperparameters that are chosen depending
on H,B, σ,M,K,R so that F satisfies the necessary conditions. This
construction closely resembles the classic lower bound for deterministic
first-order optimization of Nesterov (2004), which corresponds to ψ(x) =
x2. To describe our stochastic gradient oracle, we will use progα(x) :=
max{j : |xj | > α}, which denotes the highest index of a coordinate of x
that is significantly non-zero. We also define F− to be equal to the objective with the progα(x)th

term removed:

F−(x) = ψ′(−ζ)x1 + ψ(xN ) +

progα(x)−1∑
i=1

ψ(xi+1 − xi) +

N−1∑
i=progα(x)+1

ψ(xi+1 − xi) (6)

The stochastic gradient oracle for F that we use then resembles

g(x) =

{
∇F−(x) with probability 1− p
∇F (x) + 1−p

p (∇F (x)−∇F−(x)) with probability p
(7)
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This stochastic gradient oracle is similar to the one used by Arjevani et al. (2019) to prove lower
bounds for non-convex optimization, and its key property is that P[progα(g(x)) ≤ progα(x)] =
1 − p. Therefore, each oracle access only reveals information about the next coordinate of the
gradient the algorithm with probability p, and therefore the algorithm is essentially only able to
make progress with probability p. The rest of the proof revolves around bounding the total progress
of the algorithm and showing that if progα(x) ≤ N

2 , then x has high suboptimality.
Since each machine makes KR sequential queries and only makes progress with probabil-

ity p, the total progress scales like KR · p. By taking p smaller, we decrease the amount of
progress made by the algorithm, and therefore increase the lower bound. Indeed, when p ≈ 1/K,
the algorithm only increases its progress by about logM per round, which gives rise to the key
(HB2)/(R2 log2M) term in the lower bound. However, we are constrained in how small we can
take p since our stochastic gradient oracle has variance

sup
x

E‖g(x)−∇F (x)‖2 ≈ 1

p
sup
x
ψ′(x)2 (8)

This is where our choice of ψ comes in. Specifically, we chose the function ψ to be convex and
smooth so that F is, but we also made it Lipschitz:

ψ′(x) =

√
H

2β
arctan

(√
Hβx

2

)
∈

[
−π
√
H

4β
,
π
√
H

4β

]
(9)

Notably, this Lipschitz bound on ψ, which implies a bound on ‖∇F (x)‖∞, is the key non-quadratic
property that allows for our lower bound. Since ψ′ is bounded, we are able to able to choose
p ≈ Hσ−2β−2 without violating the variance constraint on the stochastic gradient oracle. Carefully
balancing β completes the argument.

Another important aspect of our lower bound is that it applies to arbitrary randomized algo-
rithms, rather than more restricted families of algorithms like “zero-respecting” methods (see Ap-
pendix D). We therefore prove our theorem using techniques similar to Woodworth and Srebro
(2016), Carmon et al. (2017), Arjevani et al. (2019), and others, who introduce a random rotation
matrix, U ; construct a hard instance like F (U>x); and argue that any algorithm behaves almost
as if it were zero-respecting. For further discussion of this proof technique, we refer readers to
(Woodworth and Srebro, 2016; Carmon et al., 2017). All of the details of the proof can be found in
Appendices A-C.

Theorem 1 also implies a lower bound for strongly convex objectives:

Corollary 2 There is a numerical constant, c, such that no intermittent communication algorithm
can guarantee for anyH-smooth, λ-strongly convex objective F and stochastic gradient oracle with
variance less than σ2 that its output will have suboptimality

EF (x̂)− F ∗ ≤ c ·
(
F (0)− F ∗

K2R2
exp

(
−
√
λ

H
KR

)
+

σ2

λMKR

+ min

{
F (0)− F ∗

R2 log2M
exp

(
−
√
λ

H
R logM

)
,

σ2

λKR

})
This lower bound is more limited than Theorem 1, since we prove it using a reduction from

convex to strongly convex optimization, rather than directly. We also do not expect the exponential
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terms to be tight. Nevertheless, the Corollary gives some indication of the optimal rate in the
strongly convex setting and, as with Theorem 1, it distinguishes between R and K unlike previous
results. A simple proof can be found in Appendix C.

4. A Matching Upper Bound and an Optimal Algorithm

The lower bound in Theorem 1 is matched (up to log factors) by the combination of two simple dis-
tributed zero-respecting algorithms, which are distributed variants of an accelerated SGD algorithm
called AC-SA due to Lan (2012). In the sequential setting, AC-SA algorithm maintains two iterates
yt and xt which it updates according to

yt+1 = yt − γtgt
(
β−1
t yt + (1− β−1

t )xt
)

xt+1 = β−1
t yt+1 + (1− β−1

t )xt
(10)

where γt and βt are carefully chosen stepsize parameters. In the smooth, convex setting, this algo-
rithm converges at a rate (see Corollary 1, Lan, 2012)

E[F (xT )− F ∗] ≤ c ·
(
HB2

T 2
+
σB√
T

)
(11)

To describe the optimal algorithm for the intermittent communication setting, we will first define
two distributed variants of AC-SA.

The first algorithm, which we will refer to as Minibatch Accelerated SGD, implements R it-
erations of AC-SA using minibatch gradients of size MK (c.f. Cotter et al., 2011). Specifically,
the method maintains two iterates yr and xr which are shared across all the machines. During
each round of communication, each machine computes K independent stochastic estimates of
∇F

(
β−1
r yr + (1− β−1

r )xr
)
; the machines then communicate their minibatches, averaging them

together into a larger minibatch of size MK, and then they update yr and xr according to (10).
Because the minibatching reduces the variance of the stochastic gradients by a factor of MK, (11)
implies this method converges at a rate

E[F (xR)− F ∗] ≤ c ·
(
HB2

R2
+

σB√
MKR

)
(12)

The second algorithm, which we will call Single-Machine Accelerated SGD, “parallelizes”
AC-SA in a different way. In contrast to Minibatch Accelerated SGD, Single-Machine Accelerated
SGD simply ignores M − 1 of the available machines and runs T = KR steps of AC-SA on the
remaining one, therefore converging like

E[F (xKR)− F ∗] ≤ c ·
(
HB2

K2R2
+

σB√
KR

)
(13)

From here, we point out that lower bound in Theorem 1 is equal (up to log factors) to the
minimum of (12) and (13). Furthermore, one can determine which of these algorithms achieves the
minimum based on the problem parameters:

Theorem 3 For any H,B, σ,K,R,M > 0, the algorithm which returns the output of Minibatch
Accelerated SGD when K ≤ σ2R3

H2B2 and returns the output of Single-Machine Accelerated SGD
when K > σ2R3

H2B2 is optimal up to a factor of O(log2M).
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This optimal algorithm is computationally efficient and requires no significant overhead. Each
machine needs to store only a constant number of vectors, it performs only a constant number of
vector additions for each stochastic gradient oracle access, and it communicates just one vector
per round. Therefore, the total storage complexity is O(d) per machine, the sequential runtime
complexity is O(KR · d), and the total communication complexity is O(MR · d). In fact, the
communication complexity is 0 when Single-Machine Accelerated SGD is used. Therefore, we do
not expect a substantially better algorithm from the standpoint of computational efficiency either.

In light of Theorem 3 and the second min term in Theorem 1, we see that algorithms in
this setting are offered the following dilemma: they may either attain the optimal statistical rate
σB/
√
MKR but suffer an optimization rate HB2/(R2 log2M) that does not benefit from K at

all, or they may attain the optimal optimization rate of HB2/(K2R2) but suffer a statistical rate
σB/
√
KR as if only single machine were available. In this sense, there is a very real dichotomy

between exploiting parallelism and leveraging local computation.
The main shortcoming of the optimal algorithm is the need to know the problem parameters H ,

B, and σ to implement it. However, knowledge of these parameters is anyway needed in order to
choose the stepsizes for AC-SA, and we are not aware of accelerated variants of SGD that can be
implemented without knowing them, even in the sequential setting. This algorithm is also somewhat
unnatural because of the hard switch between Minibatch and Single-Machine Accelerated SGD. It
would be nice, if only aesthetically, to have an algorithm that more naturally transitions from the
Minibatch to the Single-Machine rate. Accelerated Local SGD (Yuan and Ma, 2020) or something
similar is a contender for such an algorithm, although it is unclear whether or not this method
can match the optimal rate in all regimes. Local SGD methods can also be augmented by using
two stepsizes—a smaller, conservative stepsize for the local updates between communications, and
a larger, aggressive stepsize when the local updates are aggregated—this two-stepsize approach
allows for interpolation between Minibatch-like and Single-Machine-like behavior, and could be
used to design a more “natural” optimal algorithm (see Section 6, Woodworth et al., 2020a).

Finally, the upper and lower bounds match up to a factor of log2M . While this is generally
a minor gap, it does raise the question of what the optimal error would be in a massively paral-
lel regime where exponentially many machines are available. In this case, it is conceivable that a
brute-force approach might be available that could converge at the rate 1/(R logM)2 in a certain
regime, as is suggested by the lower bound, improving over the 1/R2 rate achieved by Minibatch
Accelerated SGD. Nevertheless, it is not obvious how this could be achieved without any depen-
dence on the dimension and related work by Duchi et al. (2018) suggests that such a rate would not
be possible without depending on the dimension. We therefore conjecture that the log2M factor
can be removed from the lower bound.

5. Better than Optimal: Breaking the Lower Bound

Perhaps the most important use of a lower bound is in understanding how to break it. Instead of
viewing the lower bound as telling us to give up any hope of improving over the naı̈ve optimal
method in Section 4, we should view it as informing us about possible means of making progress.

One way to break our lower bound is by introducing additional assumptions that are not satis-
fied by the hard instance. These assumptions could then be used to establish when and how some
alternate method improves over the “optimal” method in Section 4. Several methods, which operate
within the intermittent communication framework of Section 2, have been shown to be better than
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the “optimal algorithm” in practice for specific instances. However, attempts to demonstrate the
benefit of these methods theoretically have so far failed, and we now understand why. In order to
understand such benefits, we must introduce additional assumptions, and ask not “is this alternate
method better” but rather “under what assumption is this alternate method better?” Below we sug-
gest possible additional assumptions, including ones that have appeared in recent analysis and also
other plausible assumptions one could rely on.

Another way to break the lower bound is by considering algorithms that go beyond the stochastic
oracle framework of Section 2, utilizing more powerful oracles that nevertheless could be equally
easy to implement. Understanding the lower bound can inform us of what type of such extensions
might be useful, thus guiding development of novel types of optimization algorithms.

5.1. Relying on a Bounded Third Derivative

As we have mentioned, Theorem 1 does not hold in the special case of quadratic objectives of the
form Q(x) = 1

2x
>Ax + b>x for p.s.d. A, e.g. least squares problems, in which case the min-max

rate is much better, and Accelerated Local SGD achieves:

EQ(x̂)−Q∗ ≤ c ·
(
HB2

K2R2
+

σB√
MKR

)
(14)

Since improvement over the lower bound is possible when the objective is exactly quadratic, it
stands to reason that similar improvement should be possible when the objective is sufficiently close
to quadratic. Indeed, Yuan and Ma (2020) analyze another accelerated variant of Local SGD in the
smooth, convex setting with the additional assumption that the Hessian ∇2F (x) is α-Lipschitz.
Their algorithm converges at a rate

EF (x̂)− F ∗ ≤ Õ

(
HB2

KR2
+

σB√
MKR

+

(
Hσ2B4

MKR3

)1/3

+

(
ασ2B5

R4K

)1/3
)

(15)

This can improve over the lower bound in Theorem 1 in certain parameter regimes, for instance,
(15) is better if

H2B2

σ2
≤ R3

MK
and α ≤ Õ

(
min

{
σR5/2

B2K1/2
,

H3BK

σ2R2 log6M

})
(16)

However, Yuan and Ma’s guarantee does not always improve over the lower bound, and it is not
completely clear to what extent further improvement over their algorithm might be possible. In an
effort to understand when it may or may not be possible to improve, we extend our lower bound to
the case where∇2F is α-Lipschitz:

Theorem 4 For any H,B, σ,Q,K,R > 0 and any M ≥ 2, there exists a convex, H-smooth
objective F with ‖x∗‖ ≤ B and with ∇2F being Q-Lipschitz with respect to the L2 norm, and a
stochastic gradient oracle g with E‖g(x) − ∇F (x)‖2 ≤ σ2 for all x, such that with probability
at least 1

2 all of the oracle queries {xmk,r} made by any distributed-zero-respecting intermittent
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communication algorithm (see Definition 18 in Appendix D) will have suboptimality

min
m,k,r

F (xmk,r)− F ∗ ≥ c ·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,

√
QσB2

K1/4R2 log7/4M
,
σB√
KR

}]
We prove this lower bound in Appendix D using the same construction (4) as we used for The-

orem 1, but using the parameter β to control the third derivative of F . This lower bound does not
match the guarantee of Yuan and Ma’s algorithm, so it does not resolve the min-max complexity.
However, there is reason to suspect that the lower bound is closer to the min-max rate, at least in cer-
tain regimes. For instance, when Q is taken to zero, i.e. the objective becomes quadratic, we know
that Theorem 4 is tight while (15) can be larger by a factor of K. For that reason, we suspect that
(15) is suboptimal, but further analysis will be needed. At any rate, our lower bound does establish
that there is a limit to the utility of assuming a Lipschitz Hessian. Specifically, there can be no ad-
vantage over the optimal algorithm from Section 4 once Q ≥ O

(
max

{
H2
√
K

σ log1/2M
, σR

3 log7/2M

B2
√
K

})
.

Theorem 4 and Yuan and Ma’s algorithm also highlight a substantial qualitative difference be-
tween distributed and sequential optimization: in the sequential setting, there is never any advantage
to assuming that the objective is close to quadratic. In fact, worst-case instances for sequential opti-
mization are exactly quadratic (Nemirovsky and Yudin, 1983; Nesterov, 2004; Simchowitz, 2018).

Beyond requiring that the Hessian be Lipschitz, there are other ways of measuring an objec-
tive’s closeness to a quadratic. Two notable examples are self-concordance (Nesterov, 1998) and
quasi-self-concordance (Bach et al., 2010), which bound the third derivative of F in terms of the
second derivative: we say that F is Q-self-concordant when for all x, v, f(t) = F (x+ tv) satisfies
|f ′′′(t)| ≤ 2Qf ′′(t)3/2 and we say it is Q-quasi-self-concordant if |f ′′′(t)| ≤ Qf ′′(t). There has
been recent interest in such objectives (Bach et al., 2010; Zhang and Xiao, 2015; Karimireddy et al.,
2018; Carmon et al., 2020) which arise e.g. in logistic regression problems. In Appendix D, we
extend the lower bound in Theorem 4 to these settings.

5.2. Statistical Learning Setting: Assumptions on Components

Stochastic optimization commonly arises in the context of statistical learning, where the goal is to
minimize the expected loss with respect to a model’s parameters. In this case, the objective can
be written F (x) = Ez∼Df(x; z), where z ∼ D represents data drawn i.i.d. from an unknown
distribution, and the “components” f(x; z) represent the loss of the model parametrized by x on the
example z.

In the setting of Theorem 1, we only place restrictions on the F itself, and on the first and
second moments of g. However, in the statistical learning setting, it is often natural to assume that
the loss function f(·; z) itself satisfies particular properties for each z individually. For instance,
in our setting we might assume f is convex and smooth and furthermore that the gradient oracle is
given by g(x) = ∇f(x; z) for an i.i.d. z ∼ D. This is a non-trivial restriction on the stochastic
gradient oracle, and it is conceivable that this property could be leveraged to design and analyze a
method that converges faster than the lower bound in Theorem 1 would allow.

In particular, the specific stochastic gradient oracle (7) used to prove Theorem 1 cannot be
written as the gradient of a random smooth function. In this sense, the lower bound construction is
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somewhat “unnatural,” however, we are not aware of any analysis that meaningfully3 exploits the
fact that g = ∇f(·; z). An interesting question is whether such an assumption can be used to prove
a better convergence guarantee, or whether Theorem 1 can be proven using a stochastic gradient
oracle that obeys this constraint.

5.3. Statistical Learning Setting: Repeated Access to Components

In the statistical learning setting, it is also natural to consider algorithms that can evaluate the gra-
dient at multiple points for the same datum z. Specifically, allowing the algorithm access to a
pool of samples z1, . . . , zN drawn i.i.d. from D and to compute ∇f(x; z) for any chosen x and zn
opens up additional possibilities. Indeed, Arjevani et al. (2019) showed that multiple—even just
two—accesses to each component enables substantially faster convergence (T−1/3 vs. T−1/4) in
sequential stochastic non-convex optimization. Similar results have been shown for zeroth-order
and bandit convex optimization (Agarwal et al., 2010; Duchi et al., 2015; Shamir, 2017; Nesterov
and Spokoiny, 2017), where accessing each component twice allows for a quadratic improvement
in the dimension-dependence.

In sequential smooth convex optimization, if F has “finite-sum” structure (i.e. D is the uniform
distribution on {1, . . . , N}), then allowing the algorithm to pick a component and access it multi-
ple times opens the door to variance-reduction techniques like SVRG (Johnson and Zhang, 2013).
These methods have updates of the form:

xt+1 = xt − ηt(∇f(xt; zt)−∇f(x̃; zt) +∇F (x̃)) (17)

Computing this update therefore requires evaluating the gradient of f(x; zt) at two different points,
which necessitates multiple accesses to a chosen component. This stronger oracle access allows
faster rates compared with a single-access oracle (see discussion in, e.g., Arjevani et al., 2020).

Most relevantly, in the intermittent communication setting, distributed variants of SVRG are
able to improve over the lower bound in Theorem 1 (Wang et al., 2017; Lee et al., 2017; Shamir,
2016; Woodworth et al., 2018). For example, in the intermittent communication setting when f is
H-smooth and L-Lipschitz, and where the algorithm can access each component multiple times,
Woodworth et al. show that using distributed SVRG to optimize an empirical objective composed
of suitably many samples is able to achieve convergence at the rate

EF (x̂)− F ∗ ≤ c ·
((

HB2

RK
+

LB√
MKR

)
log

MKR

LB

)
(18)

While this guarantee (necessarily!) holds in a different setting than Theorem 1, the Lipschitz bound
L is generally analogous to the standard deviation of the stochastic gradient variance, σ (indeed, L
is an upper bound on σ). With this in mind, this distributed SVRG algorithm can beat the lower
bound in Theorem 1 when σ, L, and K are sufficiently large.

3. Numerous papers assume that F (x) = Ez∼Df(x; z) and g = ∇f(·; z) for some smooth, convex f (e.g. Bottou
et al., 2018; Nguyen et al., 2019; Koloskova et al., 2020; Woodworth et al., 2020a). Nevertheless, the purpose of
this assumption is to bound E‖g(x)‖2 or E‖g(x) − ∇F (x)‖2 in terms of σ2

∗ = E‖g(x∗)‖2. In other words, one
could prove the same guarantees in the setting of Theorem 1 with the additional constraint of the form E‖g(x)‖2 ≤
σ2
∗ + Γ‖x − x∗‖2 for some parameter Γ. Since the variance of the gradient oracle in our lower bound construction

is bounded everywhere by a constant σ2, it therefore applies to these analyses.
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5.4. Higher Order and Other Stronger Oracles

Yet another avenue for improved algorithms in the intermittent communication setting is to use
stronger stochastic oracles. For instance, a stochastic second-order oracle that estimates ∇2F (x)
(Hendrikx et al., 2020) or a stochastic Hessian-vector product oracle that estimates∇2F (x)v given
a vector v, which can typically be computed as efficiently as stochastic gradients. In the sta-
tistical learning setting, some recent work also considers a stochastic prox oracle which returns
arg miny f(y; z) + 1

2‖x− y‖
2 (Wang et al., 2017; Chadha et al., 2021).

As an example, a stochastic Hessian-vector product oracle, in conjunction with a stochastic
gradient oracle can be used to efficiently implement a distributed Newton algorithm. Specifically,
the Newton update xt+1 = xt − ηt∇2F (xt)

−1∇F (xt) can be rewritten as

xt+1 = xt + ηt arg min
y

{
1

2
y>∇2F (xt)y +∇F (xt)

>y

}
(19)

That is, each update can be viewed as the solution to a quadratic optimization problem, and its
stochastic gradients can be computed using stochastic Hessian-vector and gradient access to F . The
DiSCO algorithm (Zhang and Xiao, 2015) uses distributed preconditioned conjugate gradient de-
scent to find an approximate Newton step. Alternatively, as previously discussed, this quadratic
can be minimized to high accuracy using a single round of communication using Accelerated Local
SGD. Under suitable assumptions (e.g., that F is convex, smooth and self-concordant), this algo-
rithm may converge substantially faster than the lower bounds in Theorems 1 and 4 would allow for
first-order methods.

Differences from Sequential Setting: Interestingly, in the sequential setting there is no benefit to
using stochastic Hessian-vector products over and above what can be achieved using just a stochas-
tic gradient oracle. This is because the worst-case instances are simply quadratic, in which case
Hessian-vector products and gradients are essentially equivalent. This adds to a list of structures
that facilitate distributed optimization while being essentially useless in the sequential setting. Like-
wise, objectives being quadratic or near-quadratic facilitates distributed optimization but does not
help sequential algorithms since, again, the hard instances for sequential optimization are already
quadratic. Furthermore, accessing a statistical learning gradient oracle ∇f(·; z) multiple times can
allow for faster distributed algorithms—e.g. distributed SVRG or using the stochastic gradients to
implement stochastic Hessian-vector products via finite-differencing—but it does not generally help
in the sequential case without further assumptions (like the problem having finite-sum structure).

5.5. Beyond Single-Sample Oracles

Another class of distributed optimization algorithms, which includes ADMM (Boyd et al., 2011) and
DANE (Shamir et al., 2014), involve solving an optimization problem on each machine m = 1..M
at each round r of the form

min
x

1

K

K∑
k=1

f(x; zmk,r) + λr,m‖x− yr,m‖2, (20)

where f(·; z) are components of the objective F (x) = Ef(x, z), and the vectors yr,m and scalars
λr,m are chosen by the algorithm. Although these methods also involve processing K samples, or

11
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components, at each round on each machine, and then communicating between the machines, they
are quite distinct from the stochastic optimization algorithms we consider, and fall well outside the
“stochastic optimization with intermittent communication” model we study. The main distinction is
that in this paper we are focused on stochastic optimization methods, where each oracle access or
“atomic operation” involves a single “data point” zmk,r (a single component of a stochastic objective),
or in our first-order model, a single stochastic gradient estimate, and can generally be performed in
time O(d), where d is the dimensionality of x. In particular, each round consists of K separate
accesses, and in all the methods we consider, can be implemented in time O(dK). In contrast,
(20) is a complex optimization problem involving many data points, and cannot be solved with
O(K) atomic operations4. This distinction results in the first term of the lower bound in Theorem 1,
namely the “optimization term” HB2/(K2R2), not applying for methods using (20). In particular,
even ignoring M − 1 machines and running the Mini-Batch Prox method (Wang et al., 2017) on a
single machine results ensures a suboptimality of

EF (x̂)− F ∗ ≤ O
(

σB√
KR

)
, (21)

entirely avoiding the first term of Theorem 1, and beating the lower bound when σ2 is small.
Another difference is that DANE, as well as other methods which target Empirical Risk Mini-

mization such as DiSCO (Zhang and Xiao, 2015) and AIDE (Reddi et al., 2016), work on the same
batch of K examples per machine in all rounds, i.e. they use zmk,r = zmk with only KM (rather
than KRM ) random samples {zmk }k∈[K],m∈[M ]. In our setup and terminology, they thus require
repeated access to components, as discussed above in Section 5.3. Furthermore, since they only use
KM samples overall, they cannot guarantee suboptimality better than σB/

√
KM , a factor of

√
R

worse than the second term in Theorem 1.
The Mini-Batch Prox guarantee (21) is disappointing, and suboptimal, once σ2 andM are large,

and DANE is not optimal, at least when R is large. Understanding the min-max complexity of the
class of methods which solve (20) at each round on each machine thus remains an important and
interesting open problem. We note that lower bounds and the optimality of some of these methods
were studied in Arjevani and Shamir (2015), but in a somewhat different, non-statistical distributed
setting.
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Appendix A. A Framework for Proving Lower Bounds for Randomized Algorithms

Our lower bounds are based on the idea of showing that in sufficiently high dimension, any random-
ized algorithms behaves almost as if it is zero-respecting, meaning that its oracle queries are close
to the subspace spanned by the previously-seen oracle responses. To formalize this, for a vector x,
we define its α-progress as

progα(x) := max{i : |xi| > α} (22)
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Our lower bound proceeds by showing that any intermittent communication algorithm will fail to
achieve a high amount of progress, even for randomized algorithms that leave the span of previous
stochastic gradient queries. We now define the properties that we will require from our oracle
construction:

Definition 5 A stochastic zeroth- and first-order oracle that returns (f(x; z), g(x; z)) for z ∼ D is
an (α, p, δ)-robust-zero-chain if there exist sets Z0,Z1 such that

1. P(z ∈ Z0 ∪ Z1) ≥ 1− δ

2. P(z ∈ Z0|z ∈ Z0 ∪ Z1) ≥ 1− p

3. For all z ∈ Z0 and all x, prog0(g(x; z)) ≤ progα(x) and there exist functions f1, f2, . . .
and g1, g2, . . . such that

progα(x) ≤ i =⇒

{
f(x; z) = fi(x1, x2, . . . , xi; z)

g(x; z) = gi(x1, x2, . . . , xi; z)

4. For all z ∈ Z1 and all x, prog0(g(x; z)) ≤ progα(x) + 1 and there exist functions f1, f2, . . .
and g1, g2, . . . such that

progα(x) ≤ i =⇒

{
f(x; z) = fi(x1, x2, . . . , xi+1; z)

g(x; z) = gi(x1, x2, . . . , xi+1; z)

In this section, our main result is to show that any algorithm that interacts with a robust zero chain
will have low progress:

Lemma 6 Let (f, g) be an (α, p, δ)-robust-zero-chain, let U ∈ RD×d be a uniformly random
orthogonal matrix with U>U = Id×d for D ≥ d + 2γ2

α2 log(32MKRd), and let xmk,r be the
kth oracle query on the mth machine during the rth round of communication for an intermittent
communication algorithm that interacts with the oracle (fU , gU ) for fU (x; z) = f(U>x; z) and
gU (x; z) := Ug(U>x; z). Then if maxm,k,r‖xmk,r‖ ≤ γ, then the algorithm’s output x̂ will have
progress at most

P
(

progα(U>x̂) ≤ min{KR, 8KRp+ 12R logM + 12R}
)
≥ 5

8
− 2MKRδ

The main ideas leading to Lemma 6 stem from Woodworth and Srebro (2016) and Carmon et al.
(2017), who show that when a random rotation is applied to the objective and the dimension is suffi-
ciently large, every algorithm behaves essentially as if its queries remained in the span of previously
seen gradients. In the original arguments, the proof of this claim was extremely complicated and
required a great deal of care due to subtleties with conditioning on the stochastic gradient oracle
queries. Since then, the argument has gradually be refined and simplified, culminating in Carmon
(2020) who presents the simplest argument to date. The proof of 6 therefore resembles the proof
of (Proposition 2.4 Carmon, 2020), however, the arguments must be extended to accomodate the
intermittent communication setting.
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To facilitate our proofs, we introduce some notation. Recalling Z0 and Z1 from Definition 5,
we define

Smk,r = min

{
d,

k−1∑
k′=1

1{zmk′,r ∈ Z1}+
r−1∑
r′=1

max
1≤m′≤M

K∑
k′=1

1{zm′k′,r′ ∈ Z1}

}
(23)

We will show that this quantity Smk,r essentially upper bounds the α-progress of the kth query during
the rth round of communication on the mth machine. We also define the following “good events”
where the progress of the algorithm’s oracle queries remains small

Gmk,r =
{

progα(U>xmk,r) ≤ Smk,r
}

(24)

Ḡmk,r =
⋂
k′<k

Gmk′,r ∩
⋂
r′<r

⋂
m′,k′

Gm′k′,r′ (25)

We also define the event
Z =

{
∀m,k,r zmk,r ∈ Z0 ∪ Z1

}
(26)

Finally, we use
U≤i = [U1, U2, . . . , Ui, 0, . . . , 0] (27)

to denote the matrix U with the (i+ 1)th through dth columns replaced by zeros.
We begin by showing that when the good events Ḡmk,r happen, the algorithm’s queries are deter-

mined by only a subset of the columns of U .

Lemma 7 Let (f, g) be an (α, p, δ)-robust-zero-chain, let U ∈ RD×d be a uniformly random
orthogonal matrix withU>U = Id×d, and let xmk,r be the kth oracle query on themth machine during
the rth round of communication for an intermittent communication algorithm that interacts with the
oracle (fU , gU ) for fU (x; z) = f(U>x; z) and gU (x; z) := Ug(U>x; z). Then conditioned on S—
the σ-algebra generated by {Smk,r}m,k,r—the events Ḡmk,r and Z, and the query xmk,r is a measurable
function of ξ—the algorithm’s random coins—and U≤Smk,r . Similarly, conditioned on S, Z, and⋂M
m=1 Ḡ

m
K,R, the output of the algorithm, x̂ is a measurable function of ξ and U≤maxm SmK,R

.

Proof The dependence structure of an intermittent communication algorithm’s queries is determined
by the communication between the machines. Specifically, the mth machine’s kth query during the
rth round of communication can only depend on oracle queries that have been communicated to that
machine at that time. In other words, xmk,r may depend on oracle responses(

fU (xmk′,r; z
m
k′,r), gU (xmk′,r; z

m
k′,r)

)
(28)

for k′ < k—i.e., oracle queries made on that machine earlier in the current round of communication,
or on oracle responses (

fU (xm
′

k′,r′ , z
m′
k′,r′), gU (xm

′
k′,r′ , z

m′
k′,r′)

)
(29)

for r′ < r—i.e., oracle queries made on any machine in earlier rounds of communication. Letting ξ
denote the random coins of the algorithm, there are thus query functions Qmk,r such that

xmk,r = Qmk,r
({

xmk′,r, fU (xmk′,r, z
m
k′,r), gU (xmk′,r, z

m
k′,r) : k′ < k

}
∪
{
xm
′

k′,r′ , fU (xm
′

k′,r′ , z
m′
k′,r′), gU (xm

′
k′,r′ , z

m′
k′,r′) : r′ < r

}
, ξ

)
(30)
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The key question is: upon which columns of U does the righthand side of this equation depend
when we condition on S and Ḡmk,r? To answer this, we note that by Definition 5, if z ∈ Z0 then for
any x with progα(U>x) ≤ i, we have

fU (x; z) = f(U>x; z) = fi(U
>
≤ix; z) (31)

gU (x; z) = g(U>x; z) = Ugi(U
>
≤ix; z) (32)

and furthermore, prog0(g(U>x; z)) so Ugi(U>≤ix; z) = U≤igi(U
>
≤ix; z). Therefore, for z ∈ Z0 and

progα(U>x) ≤ i, the oracle response (fU (x; z), gU (x; z)) depends only on U≤i. By essentially the
same argument, for z ∈ Z1 and progα(U>x) ≤ i, the oracle response (fU (x; z), gU (x; z)) depends
only on U≤i+1.

Therefore, conditioned on the events Z and Ḡmk,r, for each m′, k′, r′ such that m′ = m, r′ = r,

and k′ < k or r′ < r, let im
′

k′,r′ = min
{
d, Sm

′
k′,r′ + 1{zm′k′,r′ ∈ Z1}

}
≤ Smk,r then

fU (xm
′

k′,r′ ; z
m′
k′,r′) = fU

≤im′
k′,r′

(xm
′

k′,r′ ; z
m′
k′,r′) = fU≤Sm

k,r
(xm

′
k′,r′ ; z

m′
k′,r′) (33)

gU (xm
′

k′,r′ ; z
m′
k′,r′) = gU

≤im′
k′,r′

(xm
′

k′,r′ ; z
m′
k′,r′) = gU≤Sm

k,r
(xm

′
k′,r′ ; z

m′
k′,r′) (34)

We conclude that conditioned on Z and Ḡmk,r

xmk,r = Qmk,r
({

xmk′,r, fU≤Sm
k,r

(xmk′,r, z
m
k′,r), gU≤Sm

k,r
(xmk′,r, z

m
k′,r) : k′ < k

}
∪
{
xm
′

k′,r′ , fU≤Sm
k,r

(xm
′

k′,r′ , z
m′
k′,r′), gU≤Sm

k,r
(xm

′
k′,r′ , z

m′
k′,r′) : r′ < r

}
, ξ

)
(35)

so conditioned on S, Z, and Ḡmk,r, xmk,r is a measurable function of U≤Smk,r and ξ.
We can apply the same argument to the algorithm’s output

x̂ = X̂

({
xmk,r, gU≤maxm Sm

K,R
(xmk,r, z

m
k,r)
}
m,k,r

, ξ

)
(36)

which is measurable with respect to U≤maxm SmK,R
and ξ conditioned on S, Z, and ∩mḠmK,R.

Next, we show a constant-probability upper bound on the random variables Smk,r:

Lemma 8 For any (α, p, δ)-robust-zero-chain,

P
(

max
m,k,r

Smk,r ≥ min{KR, 8KRp+ 12R logM + 12R}
∣∣∣∣Z) ≤ 1

4

Proof The claim is implied by

P

(
R∑
r=1

max
1≤m≤M

K∑
k=1

1{zmk,r ∈ Z1} ≥ min{KR, 8KRp+ 12R logM + 12R}

∣∣∣∣∣Z
)
≤ 1

4
(37)
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The seed, z, for the oracle queries are independent, so, conditioned onZ the indicators 1{zmk,r ∈ Z1}
are independent Bernoulli random variables with success probability at most p. It follows that for
each m and r,

∑K
k=1 1{zmk,r ∈ Z1} are independent Binomial(K, p) random variables.

Therefore, for each r, by the union bound and then the Chernoff bound, for any c ≥ 0

P

(
max

1≤m≤M

K∑
k=1

1{zmk,r ∈ Z1} ≥ (1 + c)Kp

∣∣∣∣∣Z
)
≤M exp

(
−c

2Kp

2 + c

)
(38)

Furthermore, for any random variable X ∈ [0,K], EX =
∫K

0 P(X ≥ x)dx. Therefore, for any
ε > 0

E

[
max

1≤m≤M

K∑
k=1

1{zmk,r ∈ Z1}

∣∣∣∣∣Z
]

=

∫ K

0
P

(
max

1≤m≤M

K∑
k=1

1{zmk,r ∈ Z1} ≥ x

∣∣∣∣∣Z
)
dx (39)

= Kp

∫ 1−p
p

−1
P

(
max

1≤m≤M

K∑
k=1

1{zmk,r ∈ Z1} ≥ (1 + c)Kp

∣∣∣∣∣Z
)
dc

(40)

≤ (1 + ε)Kp+MKp

∫ 1−p
p

ε
exp

(
−c

2Kp

2 + c

)
dc (41)

≤ (1 + ε)Kp+MKp

∫ ∞
ε

exp

(
−cεKp

2 + ε

)
dc (42)

= (1 + ε)Kp+
M(2 + ε)

ε
exp

(
−ε

2Kp

2 + ε

)
(43)

For the second line we used the change of variables x→ (1 + c)Kp. We take ε = 1 + 3
Kp logM to

conclude

E

[
max

1≤m≤M

K∑
k=1

1{zmk,r ∈ Z1}

∣∣∣∣∣Z
]
≤ (1+ε)Kp+

M(2 + ε)

ε
exp

(
−ε

2Kp

2 + ε

)
≤ 2Kp+3 logM+3

(44)
It follows that

E

[
R∑
r=1

max
1≤m≤M

K∑
k=1

1{zmk,r ∈ Z1}

∣∣∣∣∣Z
]
≤ 2KRp+ 3R logM + 3R (45)

We conclude using Markov’s inequality plus the observation that Smk,r ≤ KR for all m, k, r.

Using the previous lemmas, we prove the main result:

Lemma 9 Let (f, g) be an (α, p, δ)-robust-zero-chain, let U ∈ RD×d be a uniformly random
orthogonal matrix with U>U = Id×d for D ≥ d + 2γ2

α2 log(32MKRd), and let xmk,r be the
kth oracle query on the mth machine during the rth round of communication for an intermittent
communication algorithm that interacts with the oracle (fU , gU ) for fU (x; z) = f(U>x; z) and
gU (x; z) := Ug(U>x; z). Then if maxm,k,r‖xmk,r‖ ≤ γ, then the algorithm’s output x̂ will have
progress at most

P
(

progα(U>x̂) ≤ min{KR, 8KRp+ 12R logM + 12R}
)
≥ 5

8
− 2MKRδ
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Proof We begin by conditioning on Z and S, the σ-algebra generated by {Smk,r}m,k,r and bounding

P
(

progα(U>x̂) > max
m

SmK,R ∨ ∃m,k,r progα(U>xmk,r) > Smk,r

∣∣∣Z,S)
= P

{progα(U>x̂) > max
m

SmK,R

}
∪
⋃
m,k,r

{
progα(U>xmk,r) > Smk,r

} ∣∣∣∣∣∣Z,S
 (46)

= P

{{progα(U>x̂) > max
m

SmK,R

}
∩

M⋂
m=1

ḠmK,R

}
∪
⋃
m,k,r

{
progα(U>xmk,r) > Smk,r

}
∩ Ḡmk,r

∣∣∣∣∣∣Z,S


(47)

≤ P

[
progα(U>x̂) > max

m
SmK,R,

M⋂
m=1

ḠmK,R

∣∣∣∣∣Z,S
]

+
∑
m,k,r

P
({

progα(U>xmk,r) > Smk,r

}
∩ Ḡmk,r

∣∣∣Z,S)
(48)

≤
∑

i>maxm SmK,R

P

(
|〈Ui, x̂〉| > α,

M⋂
m=1

ḠmK,R

∣∣∣∣∣Z,S
)

+
∑
m,k,r

∑
i>Smk,r

P
(∣∣〈Ui, xmk,r〉∣∣ > α, Ḡmk,r

∣∣Z,S)
(49)

By Lemma 7, there exist measurable functions Amk,r and Bmk,r such that

xmk,r = Amk,r(U≤Smk,r , ξ)1{Z, Ḡ
m
k,r}+ Bmk,r(U, ξ)1{¬Z ∨ ¬Ḡmk,r} (50)

Therefore,

P
(

progα(U>x̂) > max
m

SmK,R ∨ ∃m,k,r progα(U>xmk,r) > Smk,r

∣∣∣Z,S)
≤

∑
i>maxm SmK,R

P

(∣∣∣〈Ui, Â(U≤maxm SmK,R
, ξ)
〉∣∣∣ > α,

M⋂
m=1

ḠmK,R

∣∣∣∣∣Z,S
)

+
∑
m,k,r

∑
i>Smk,r

P
(∣∣∣〈Ui, Amk,r(U≤Smk,r , ξ)〉∣∣∣ > α, Ḡmk,r

∣∣∣Z,S) (51)

≤
∑

i>maxm SmK,R

P
(∣∣∣〈Ui, Â(U≤maxm SmK,R

, ξ)
〉∣∣∣ > α

∣∣∣Z,S)
+
∑
m,k,r

∑
i>Smk,r

P
(∣∣∣〈Ui, Amk,r(U≤Smk,r , ξ)〉∣∣∣ > α

∣∣∣Z,S) (52)

The algorithm’s random coins, ξ, and the stochastic gradient oracles’ random coins, {zmk,r}m,k,r
which determine Z and S, are independent of the random rotation U . Furthermore, for i > Smk,r,
Ui conditioned on U≤Smk,r is a uniformly random vector on the (D − Smk,r)-dimensional unit sphere
orthogonal to the range of U≤Smk,r . Furthermore, by assumption ‖Amk,r(U≤Smk,r , ξ)‖ ≤ γ. Therefore,
following Carmon (2020) concentration of measure on the sphere implies (Ball et al., 1997)

P
(∣∣∣〈Ui, Amk,r(U≤Smk,r , ξ)〉∣∣∣ > α

∣∣∣Z,S) ≤ 2 exp

(
−

(D − Smk,r + 1)α2

2γ2

)
(53)
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Using the fact that Smk,r ≤ d and D ≥ d+ 2γ2

α2 log(32MKRd), we conclude that

P
(

progα(U>x̂) > max
m

SmK,R ∨ ∃m,k,r progα(U>xmk,r) > Smk,r

∣∣∣Z,S)
≤ 2(MKR+ 1)d exp

(
−(D − d+ 1)α2

2γ2

)
(54)

≤ 2(MKR+ 1)d exp

(
−

(d+ 2γ2

α2 log(32MKRd)− d+ 1)α2

2γ2

)
≤ 1

8
(55)

To complete the proof of the lemma, we note that for T = min{KR, 8KRp+ 12R logM + 12R}
we can upper bound

P
(

progα(U>x̂) > T
)

≤ P
(

progα(U>x̂) > max
m,k,r

Smk,r ∨ ∃m,k,r progα(U>xmk,r) > Smk,r, max
m,k,r

Smk,r ≤ T
)

+ P
(

max
m,k,r

Smk,r > T

)
(56)

≤ P
(

progα(U>x̂) > max
m,k,r

Smk,r ∨ ∃m,k,r progα(U>xmk,r) > Smk,r

)
+ P

(
max
m,k,r

Smk,r > T

)
(57)

= P
(

progα(U>x̂) > max
m,k,r

Smk,r ∨ ∃m,k,r progα(U>xmk,r) > Smk,r

∣∣∣∣Z)P(Z)

+ P
(

max
m,k,r

Smk,r > T

∣∣∣∣Z)P(Z)

+ P
(

progα(U>x̂) > max
m,k,r

Smk,r ∨ ∃m,k,r progα(U>xmk,r) > Smk,r

∣∣∣∣¬Z)P(¬Z)

+ P
(

max
m,k,r

Smk,r > T

∣∣∣∣¬Z)P(¬Z) (58)

≤ P
(

progα(U>x̂) > max
m,k,r

Smk,r ∨ ∃m,k,r progα(U>xmk,r) > Smk,r

∣∣∣∣Z)
+ P

(
max
m,k,r

Smk,r > T

∣∣∣∣Z)+ 2(1− P(Z)) (59)

By (55), the first term is bounded by 1
8 , by Lemma 8 the second term is at most 1

4 , and by the union
bound,

P(Z) ≥ (1− δ)MKR ≥ 1−MKRδ (60)

This completes the proof.

Appendix B. An Extension to Large-Norm Queries

In the previous section, we introduce a tool for proving lower bounds for algorithm’s whose oracle
queries have norm bounded by γ. Here, we show how to modify the hard instances so that the lower
bound applies for any algorithm, even with unboundedly large oracle queries.

22



THE MIN-MAX COMPLEXITY OF DISTRIBUTED STOCHASTIC OPTIMIZATION

Lemma 10 The scalar function

Γ̃(t) =


0 t ≤ 0∫ t
0 exp

(
− 1
s(1−s)

)
ds∫ t

0 exp
(
− 1
s(1−s)

)
ds

t ∈ (0, 1)

1 t ≥ 1

is twice differentiable, and for all t: |Γ̃′(t)| ≤ 4 and |Γ̃′′(t)| ≤ 60.

Proof Let C =
∫ t

0 exp
(
− 1
s(1−s)

)
ds. It is straightforward to confirm numerically that C ≥ 1

200 .

First, we compute the derivatives of Γ̃(t) for t ∈ (0, 1):

Γ̃′(t) =
1

C
exp

(
− 1

t(1− t)

)
(61)

Γ̃′′(t) =
1

C
exp

(
− 1

t(1− t)

)
1− 2t

t2(1− t)2
(62)

Because
lim
t↗1

Γ̃′(t) = lim
t↘0

Γ̃′(t) = lim
t↗1

Γ̃′′(t) = lim
t↘0

Γ̃′′(t) = 0 (63)

we conclude that Γ̃ is twice differentiable on R. Furthermore,

sup
t
|Γ̃′(t)| = 1

C
sup
s≤ 1

4

exp

(
−1

s

)
=

1

C
e−4 ≤ 200e−4 ≤ 4 (64)

and

sup
t
|Γ̃′′(t)| = 1

C
sup
t∈(0,1)

exp

(
− 1

t(1− t)

)∣∣∣∣ 1− 2t

t2(1− t)2

∣∣∣∣ (65)

≤ 1

C
sup
t∈(0,1)

exp

(
− 1

t(1− t)

)
1

t2(1− t)2
(66)

=
1

C
sup
s≥4

s2 exp(−s) (67)

Finally, d
dss

2 exp(−s) = (2− s)s exp(−s), which is negative for all s ≥ 4, so we conclude

sup
t
|Γ̃′′(t)| ≤ 1

C
42e−4 ≤ 200 · 16e−4 ≤ 60 (68)

This completes the proof.

Lemma 11 For Γ̃ as defined in Lemma 10 and any a, b > 0, we define

Γ(x) = Γ̃(a(‖x‖ − b))

This function is twice differentiable, 4a-Lipschitz, and 60a2-smooth.
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Proof We recall from Lemma 10 that |Γ̃′| ≤ 4 and |Γ̃′′| ≤ 60. We now compute the gradient and
Hessian of Γ:

∇Γ(x) = aΓ̃′(a(‖x‖ − b)) x

‖x‖
(69)

∇2Γ(x) = a2Γ̃′′(a(‖x‖ − b)) xx
>

‖x‖2
+
aΓ̃′(a(‖x‖ − b))

‖x‖

(
I − xx>

‖x‖2

)
(70)

We note that since b > 0, x = 0 =⇒ Γ̃′(a(‖x‖ − b)) = 0, so the gradient and Hessian are
well-defined (and equal to zero) at the point x = 0.

It is easy to see that for any x

‖∇Γ(x)‖ =

∥∥∥∥aΓ̃′(a(‖x‖ − b)) x

‖x‖

∥∥∥∥ = a
∣∣∣Γ̃′(a(‖x‖ − b))

∣∣∣ ≤ 4a (71)

Similarly, the eigenvalues of ∇2Γ(x) are a2Γ̃′′(a(‖x‖ − b)) (with multiplicity 1) and aΓ̃′(a(‖x‖−b))
‖x‖

(with multiplicity dimension− 1). Therefore,

∥∥∇2Γ(x)
∥∥ ≤ max

{
a2|Γ̃′′(a(‖x‖ − b))|, a|Γ̃

′(a(‖x‖ − b))|
‖x‖

}
(72)

Furthermore, since Γ̃′(0) = 0 and |Γ̃′′| ≤ 60, we have |Γ̃′(a(‖x‖ − b))| ≤ 60 max{a(‖x‖ − b), 0}
so ∥∥∇2Γ(x)

∥∥ ≤ max

{
60a2,

60a2(‖x‖ − b)
‖x‖

}
= 60a2 (73)

This completes the proof.

Lemma 12 Let F be convex and H-smooth with F ∗ = 0 and minx:F (x)=F ∗‖x‖ ≤ B, and let Γ be
defined as in Lemma 11 for

a = min

{
1

408B
,

√
σ2

32ρ2

}
and b = 2B

Then
F̃ (x) := (1− Γ(x))F (x) + 42H max{0, ‖x‖ −B}2

satisfies the following:

1. F̃ is convex and 124H-smooth

2. F̃ (x) = F (x) for all x with ‖x‖ ≤ B

3. F̃ (x) = 42H max{0, ‖x‖ −B}2 for all x with ‖x‖ ≥ 2B + max

{
408B,

√
32ρ2

σ2

}
.

4. For any x, F̃ (x)−minx F̃ (x) ≥ F (x)− F ∗.
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Furthermore, if f(x) and g(x) are stochastic zeroth-order and first-order oracles for F with vari-
ance

E(f(x)− F (x))2 ≤ ρ2

E‖g(x)−∇F (x)‖2 ≤ σ2

Then,
g̃(x) = (1− Γ(x))g(x)− f(x)∇Γ(x) + 42H max{0, ‖x‖ −B} x

‖x‖

is an unbiased stochastic gradient oracle for F̃ with variance at most

E‖g̃(x)−∇F̃ (x)‖2 ≤ 3σ2

Proof Let c = 84H . We first note that the second derivative of the second term in the definition of
F̃ is

d2

dx2

c

2
max

{
0, ‖x‖ − b

2

}2

=
d

dx
cmax

{
0, ‖x‖ − b

2

}
x

‖x‖
(74)

=

{
0 ‖x‖ < b

2

c xx
>

‖x‖2 + cmax
{

0, 1− b
2‖x‖

}(
I − xx>

‖x‖2

)
‖x‖ ≥ b

2

(75)

The eigenvalues of this matrix are c (with multiplicity 1) and cmax
{

0, 1− b
2‖x‖

}
∈ [0, c) (with

multiplicity dimension− 1), and therefore this term is convex and c = 84H-smooth. Furthermore,
for ‖x‖ ≥ b,

cmax

{
0, 1− b

2‖x‖

}
≥ c

2
(76)

and therefore this term is actually c
2 = 42H-strongly convex on {x : ‖x‖ ≥ b}.

From here, we define ϕ(x) = (1− Γ(x))F (x) to be the first term of F̃ . We will now show that
ϕ is convex and H-smooth on {x : ‖x‖ ≤ b} and is 40H-smooth on {x : ‖x‖ ≥ b} which, together
with the previous results, implies that F̃ is convex and 124H-smooth everywhere.

The first piece is simple: for x ∈ {x : ‖x‖ ≤ b}, Γ(x) = 0 so ϕ(x) = F (x), which is
convex and H-smooth. For the second part, we fix arbitrary x, y with ‖x‖ ≤ ‖y‖ and upper bound
‖∇ϕ(x) −∇ϕ(y)‖. If 1 ≤ a(‖x‖ − b) ≤ a(‖y‖ − b), then (1 − Γ(x)) = (1 − Γ(y)) = Γ′(x) =
Γ′(y) = 0, so∇ϕ(x) = ∇ϕ(y) = 0, so ϕ is 0-smooth on the set {x : a(‖x‖ − b) ≥ 1}. Otherwise,
when a(‖x‖ − b) < 1 we have

‖∇ϕ(x)−∇ϕ(y)‖
= ‖(1− Γ(x))∇F (x)− F (x)∇Γ(x)− (1− Γ(y))∇F (y) + F (y)∇Γ(y)‖ (77)

≤ |Γ(y)− Γ(x)|‖∇F (x)‖+ |1− Γ(y)|‖∇F (x)−∇F (y)‖
+ |F (x)|‖∇Γ(y)−∇Γ(x)‖+ |F (y)− F (x)|‖∇Γ(y)‖ (78)

From here, we note that the fact that F is H-smooth and has a minimizer with norm at most B
implies that F is H(B + b + 1

a)-Lipschitz on the set {x : a(‖x‖ − b) < 1} ⊆ {x : ‖x − x∗‖ ≤
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B + b+ 1
a}. Also, from Lemma 11, Γ is 4a-Lipschitz and 60a2-smooth. Therefore, from (78), we

can upper bound:

‖∇ϕ(x)−∇ϕ(y)‖

≤ H

(
4a

(
B + b+

1

a

)
+ 1 + 30a2

(
B + b+

1

a

)2

+ 4a

(
B + b+

1

a

))
‖x− y‖ (79)

= H
(
270a2B2 + 204aB + 39

)
‖x− y‖ (80)

With our choice a ≤ 1
408B , this means ‖∇ϕ(x)−∇ϕ(y)‖ ≤ 40H‖x− y‖, so ϕ is 40H-smooth on

{x : ‖x‖ ≥ b}. This concludes the proof of points 1 and 2, and the third point follows immediately
from the fact that a(‖x‖ − b) ≥ 1 =⇒ Γ(x) = 1.

For the fourth point, we begin by observing that since F has a minimizer x∗ with ‖x∗‖ ≤ B =
b
2 ,

min
x
F̃ (x) ≤ F̃ (x∗) = (1− Γ(x∗))F (x∗) +

c

2
max

{
0, ‖x∗‖ − b

2

}2

= F ∗ (81)

Furthermore, since F ≥ F ∗ = 0 and c
2 max

{
0, ‖x∗‖ − b

2

}
≥ 0, we have minx F̃ (x) ≥ 0 = F ∗,

so minx F̃ (x) = F ∗ = 0. Now, all that remains is to show that F̃ (x) ≥ F (x).
Let x be a point with ‖x‖ ≤ b, then Γ(x) = 0 so

F̃ (x) = F (x) +
c

2
max

{
0, ‖x‖ − b

2

}2

≥ F (x) (82)

Otherwise, if x has norm ‖x‖ > b, we already showed that on the set {y : ‖y‖ > b}, ϕ(y) =

(1 − Γ(y))F (y) is 40H = 10c
21 -smooth and the second term c

2 max
{

0, ‖y‖ − b
2

}2
is c

2 -strongly
convex. Therefore, F̃ is c

42 = 2H-strongly convex on {y : ‖y‖ > b}. Let xb = b x
‖x‖ be the

projection of x onto the set {y : ‖y‖ ≤ b}. By the H-smoothness of F , we have

F (x) ≤ F (xb) + 〈∇F (xb), x− xb〉+
H

2
‖x− xb‖2 (83)

On the other hand, by the 2H-strong convexity of F̃ on {y : ‖y‖ > b}, we have

F̃ (x) ≥ F̃ (xb) +
〈
∇F̃ (xb), x− xb

〉
+H‖x− xb‖2 (84)

= F̃ (xb) +

〈
∇F (xb) + cmax

{
0, ‖x‖ − b

2

}
x

‖x‖
, x− xb

〉
+H‖x− xb‖2 (85)

> F̃ (xb) + 〈∇F (xb), x− xb〉+H‖x− xb‖2 (86)

≥ F (x) +
H

2
‖x− xb‖2 > F (x) (87)

Finally, for the point about the stochastic gradient oracle, it is easy to see that g̃ is unbiased
because

Eg̃(x) = (1− Γ(x))Eg(x)− Ef(x)∇Γ(x) + cH max{0, ‖x‖ −B} x

‖x‖
= ∇F̃ (x) (88)
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For the variance, we also have that

E
∥∥∥g̃(x)−∇F̃ (x)

∥∥∥2
= E‖(1− Γ(x))(g(x)−∇F (x))− (f(x)− F (x))∇Γ(x)‖2 (89)

≤ 2(1− Γ(x))2E‖g(x)−∇F (x)‖+ 2E(f(x)− F (x))2‖∇Γ(x)‖2 (90)

≤ 2σ2 + 32a2ρ2 (91)

≤ 3σ2 (92)

This completes the proof.

Lemma 13 Fix any H,B, σ, ρ,K,R > 0 and M ≥ 2, and let

γ = 2B + max

{
408B,

√
32ρ2

σ2

}

Suppose that there is a family of objectives on Rd that are convex, H
124 -smooth, and have a min-

imizer with norm less than B, and that each objective, F , in the family is equipped with an
oracle (f(x), g(x)) such that E(f(x), g(x)) = (F (x),∇F (x)), E(f(x) − F (x))2 ≤ ρ2

3 , and
E‖g(x) − ∇F (x)‖2 ≤ σ2

3 , and suppose that for any intermittent communication algorithm whose
oracle queries are guaranteed to have norm less than γ, their output will have error at least
EF (x̂)− F ∗ ≥ ε for at least one function in the family.

Then, there exists another family of objectives on Rd that are convex, H-smooth, and have a
minimizer with norm less than B, and each objective, F̃ , in the family is equipped with a stochastic
gradient oracle g̃ such that Eg̃(x) = ∇F̃ (x) and E‖g̃(x) − ∇F̃ (x)‖2 ≤ σ2, and such that the
output of any intermittent communication algorithm (whose oracle queries may have arbitrarily
large norm) will have error at least EF̃ (x̂)− F̃ ∗ ≥ ε.

Proof For each F, f, g in the original family of objectives, we define F̃ , g̃ in terms of the function
Γ as in Lemma 12, and we consider the family of all of these F̃ ’s. As shown in Lemma 12, these
F̃ ’s are each convex, H-smooth, and have a minimizer with norm at most B, and g̃ is an unbiased
estimate of∇F̃ with variance at most σ2.

Now, suppose towards contradiction that some optimization algorithm can ensure that its output
satisfies EF̃ (x̂) − F̃ ∗ < ε for every objective F̃ in the modified family. By point 4 in Lemma 12,
this means ε > EF̃ (x)− F̃ ∗ ≥ EF (x)− F ∗, so this algorithm could optimize all of the objectives
in the original family to error less than ε. Furthermore, although this algorithm might query g̃ at
points with norm greater than γ, these queries could actually be simulated via queries to the oracle
(f(x), g(x)) using points of norm less than γ. In particular, by point 3 of Lemma 12, for ‖x‖ ≥ γ

g̃(x) = ∇F̃ (x) = 84H max{0, ‖x‖ −B} x

‖x‖
(93)

and therefore no oracle queries at all are needed to simulate queries to g̃ with large norm. At the
same time, for ‖x‖ < γ,

g̃(x) = (1− Γ(x))g(x)− f(x)∇Γ(x) + 84H max{0, ‖x‖ −B} x

‖x‖
(94)
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can be calculated using a single query to (f(x), g(x)) at x with norm ‖x‖ < γ. Therefore, the
existence of such an algorithm that can optimize F̃ to accuracy less than εwould imply the existence
of an algorithm whose queries to (f(x), g(x)) all have norm less than γ that can optimize F to
accuracy less than ε, which is a contradiction. We therefore conclude that no such algorithm can
exists.

Appendix C. Proof of Theorem 1

Now, we are ready to prove our lower bounds. We construct a hard instance for the lower bound
using the scalar functions ψ : R→ R:

ψ(x) =

√
Hx

2β
arctan

(√
Hβx

2

)
− 1

2β2
log

(
1 +

Hβ2x2

4

)
(95)

where H is the parameter of smoothness, and β > 0 is another parameter that controls the third
derivative of ψ which we will set later. The hard instance is then

F (x) = −ψ′(ζ)x1 + ψ(xN ) +
N−1∑
i=1

ψ(xi+1 − xi) (96)

where ζ and N are additional parameters that will be chosen later. Lemma 14 below summarizes
the relevant properties of F

Lemma 14 For any H > 0, β > 0, B > 0, and N ≥ 2, we set ζ = B
N3/2 . Then, F is convex,

H-smooth, and ∇2F (x) is H3/2β
3 -Lipschitz; there exists x∗ ∈ arg minx F (x) with ‖x∗‖ ≤ B; and

for any x with progα(x) ≤ N
2 for α ≤ min

{
N

12β
√
H
,
√
HβB2

64N2

}
,

F (x)− F ∗ ≥

{
N

12β2 β2 > 4N3

HB2

HB2

64N2 β2 ≤ 4N3

HB2

Proof First, we note that 0 ≤ ψ′′(x) = H
4+Hβ2x2

≤ H
4 . Therefore, F is the sum of convex functions

and is thus convex itself. We now compute the Hessian of F :

∇2F (x) = ψ′′(xN )eNe
>
N +

N−1∑
i=1

ψ′′(xi+1 − xi)(ei+1 − ei)(ei+1 − ei)> (97)

Therefore, for any u ∈ R,

u>∇2F (x)u ≤ ψ′′(xN )u2
N +

N−1∑
i=1

ψ′′(xi+1 − xi)(ui+1 − ui)2 (98)

≤ H

4

[
u2
N +

N−1∑
i=1

2u2
i+1 + 2u2

i

]
(99)

≤ H‖u‖2 (100)
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We conclude that∇2F (x) � H · I and thus F is H-smooth.
Next, we compute the tensor of 3rd derivatives of F :

∇3F (x) = ψ′′′(xN )e⊗3
N +

N−1∑
i=1

ψ′′′(xi+1 − xi)(ei+1 − ei)⊗3 (101)

where

ψ′′′(x) =
−2H2β2x

(4 +Hβ2x2)2
(102)

Therefore, for any u, v ∈ R,

∣∣∇3F (x)[u, u, v]
∣∣ ≤ ∣∣ψ′′′(xN )u2

NvN
∣∣+

N−1∑
i=1

∣∣ψ′′′(xi+1 − xi)(ui+1 − ui)2(vi+1 − vi)
∣∣ (103)

We can bound this in several different ways using Lemma 19:

|ψ′′′(x)| ≤ H3/2β

12
(104)

|ψ′′′(x)| ≤ 2βψ′′(x)3/2 (105)

|ψ′′′(x)| ≤
√
Hβ

2
ψ′′(x) (106)

Therefore,

∣∣∇3F (x)[u, u, v]
∣∣ ≤ ∣∣ψ′′′(xN )u2

NvN
∣∣+

N−1∑
i=1

∣∣ψ′′′(xi+1 − xi)(ui+1 − ui)2(vi+1 − vi)
∣∣ (107)

≤ sup
x
|ψ′′′(x)|‖v‖∞

(
|uN |2 +

N−1∑
i=1

(ui+1 − ui)2

)
(108)

≤ sup
x
|ψ′′′(x)|4‖u‖2‖v‖ (109)

Above, we used the Hölder inequality
∑

i|aibi| ≤ ‖a‖1‖b‖∞. We conclude that F is β-self-
concordant. We conclude that∇2F (x) is 4 supx|ψ′′′(x)|-Lipschitz. To conclude, we upper bound

sup
x
|ψ′′′(x)| = sup

x

∣∣∣∣ −2H2β2x

(4 +Hβ2x2)2

∣∣∣∣ (110)

To do so, we maximize the simpler function x 7→ x
(1+x2)2

. We note that

d

dx

x

(1 + x2)2
=

1− 3x2

(1 + x2)3
(111)

d2

dx2

x

(1 + x2)2
=

12x(x2 − 1)

(1 + x2)4
(112)
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Therefore, the derivative is zero at ±1/
√

3 and as x → ±∞ and the second derivative is negative
only for +1/

√
3, and limx→±∞

x
(1+x2)2

= 0. Therefore, we conclude that

sup
x

x

(1 + x2)2
= sup

x

|x|
(1 + x2)2

=

√
1
3

(1 + 1
3)2

=
3
√

3

16
(113)

By rescaling, we conclude that

sup
x

∣∣ψ′′′(x)
∣∣ = sup

x

2H2β2|x|
(4 +Hβ2x2)2

=
H3/2β

4
sup
x

∣∣∣√Hβx2

∣∣∣(
1 +

(√
Hβx
2

)2
)2 =

3
√

3H3/2β

64
<
H3/2β

12

(114)
Combining this with (109) completes the upper bound on the Hessian Lipschitz parameter.

We now bound the norm of the minimizer of F . The first-order optimality condition∇F (x∗) =
0 indicates

[∇F (x∗)]1 = 0 = ψ′(−ζ)− ψ′(x∗2 − x∗1)

[∇F (x∗)]i = 0 = ψ′(x∗i − x∗i−1)− ψ′(x∗i+1 − x∗i ) 1 < i < N

[∇F (x∗)]N = 0 = ψ′(x∗N − x∗N−1) + ψ′(x∗N )

(115)

Because ψ′(x) = arctan(x) is invertible on its range, we conclude that x∗i − x∗i+1 = ζ for i < N ,
and x∗N = ζ. So, the following point minimizes F :

x∗ = ζ

N∑
i=1

(N − i+ 1)ei (116)

This point has norm

‖x∗‖2 = ζ2
N∑
i=1

(N − i+ 1)2 =
ζ2

6

(
2N3 + 3N2 +N

)
≤ ζ2N3 (117)

Therefore, setting ζ2 = B2

N3 ensures the existence of a minimizer with norm less than B.
At this point,

F (x∗) = −Nζψ′(ζ) + ψ(ζ) +

N∑
i=1

ψ(−ζ) = N(ψ(ζ)− ζψ′(ζ)) (118)

Finally, by Jensen’s inequality and the convexity of ψ, for any I

I∑
i=1

ψ(xi+1 − xi) = I · 1

I

I∑
i=1

ψ(xi+1 − xi) ≥ Iψ
(
xI+1 − x1

I

)
(119)
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Therefore, for any x with progα(x) = I ≤ N
2 ,

F (x) = −ψ′(ζ)x1 + ψ(xN ) +
N−1∑
n=1

ψ(xi+1 − xi) (120)

≥ −ψ′(ζ)x1 + Iψ

(
xI+1 − x1

I

)
(121)

≥ −ψ′(ζ)x1 + Iψ

(
x1 − α
I

)
(122)

≥ inf
y
−ψ′(ζ)y + Iψ

(
y − α
I

)
(123)

The minimizing y above satisfies

0 = −ψ′(ζ) + ψ′
(
y − α
I

)
=⇒ y = α+ Iζ (124)

so
F (x) ≥ −ψ′(ζ)(α+ Iζ) + Iψ(ζ) (125)

Finally, we conclude that

F (x)− F ∗ ≥ I
(
ψ(ζ)− ζψ′(ζ)

)
− αψ′(ζ)−N

(
ψ(ζ)− ζψ′(ζ)

)
(126)

= (N − I)
(
ζψ′(ζ)− ψ(ζ)

)
− αψ′(ζ) (127)

≥ N

4β2
log

(
1 +

Hβ2ζ2

4

)
− α
√
H

β
(128)

Where we used that

ψ(ζ) =

√
Hζ

2β
arctan

(√
Hβζ

2

)
− 1

2β2
log

(
1 +

Hβ2ζ2

4

)
(129)

ψ′(ζ) =

√
H

2β
arctan

(√
Hβζ

2

)
≤ π
√
H

4β
<

√
H

β
(130)

From here, we consider two cases, if β2 > 4
Hζ2

, then

F (x)− F ∗ > N

4β2
log(2)− α

√
H

β
>

N

6β2
− α
√
H

β
≥ N

12β2
(131)

Otherwise, if β2 ≤ 4
Hζ2

then we use that for x ≤ 1, log(1 + x) ≥ x
2 and conclude

F (x)− F ∗ > N

4β2
· Hβ

2ζ2

8
− α
√
H

β
=
HB2

32N2
− α
√
H

β
≥ HB2

64N2
(132)

This completes the proof.
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Now, we define a stochastic zeroth- and first-order oracle for F . First, we specify the distribution
over z:

z =


0 with probability (1− p)(1− δ)
1 with probability p(1− δ)
2 with probability δ

(133)

Then, f and g are defined as

f(x; 0) = F (
[
x1, . . . , xprogα(x), 0, . . . , 0

]
)

f(x; 1) = F (
[
x1, . . . , xprogα(x)+1, 0, . . . , 0

]
)

f(x; 2) =
1

δ
F (x)− 1− δ

δ
((1− p)f(x; 0) + pf(x; 1))

(134)

and

g(x; 0) =

progα(x)∑
i=1

eie
>
i ∇F (

[
x1, . . . , xprogα(x), 0, . . . , 0

]
)

g(x; 1) =
1

p

progα(x)+1∑
i=1

eie
>
i ∇F (

[
x1, . . . , xprogα(x)+1, 0, . . . , 0

]
)− 1− p

p
g(x; 0)

g(x; 2) =
1

δ
∇F (x)− 1− δ

δ

progα(x)+1∑
i=1

eie
>
i ∇F (

[
x1, . . . , xprogα(x)+1, 0, . . . , 0

]
)

(135)

The following lemma relates the properties of ψ to those of F and g:

Lemma 15 For F defined as in (96) and the oracle (f, g)

1. Ezf(x; z) = F (x) and Ezg(x; z) = ∇F (x)

2. supx Ez(f(x; z)− F (x))2 ≤ 12Hα2

β2δ
+ 3N2H2α4

δ

3. supx Ez‖g(x; z)−∇F (x)‖2 ≤ 6H(1−p)
β2p

+ 6NH2α2
(

1
p + 1

δ

)
4. (f, g) is an (α, p, δ)-robust-zero-chain.

Proof We will prove each property one by one.
1) This is a simple calculation. For f , we have

Ezf(x; z) = (1− p)(1− δ)f(x; 0) + p(1− δ)f(x; 1) + δf(x; 2) (136)

= (1− p)(1− δ)f(x; 0) + p(1− δ)f(x; 1)

+ δ

(
1

δ
F (x)− 1− δ

δ
((1− p)f(x; 0) + pf(x; 1))

)
(137)

= F (x) (138)
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For the gradient, let

∇0 =

progα(x)∑
i=1

eie
>
i ∇F (

[
x1, . . . , xprogα(x), 0, . . . , 0

]
) (139)

∇1 =

progα(x)+1∑
i=1

eie
>
i ∇F (

[
x1, . . . , xprogα(x)+1, 0, . . . , 0

]
) (140)

Then

Ezg(x; z)

= (1− p)(1− δ)g(x; 0) + p(1− δ)g(x; 1) + δg(x; 2) (141)

= (1− p)(1− δ)∇0 + p(1− δ)
(

1

p
∇1 −

1− p
p
∇0

)
+ δ

(
1

δ
∇F (x)− 1− δ

δ
∇1

)
(142)

= ∇F (x) (143)

2) For any x

Ez(f(x; z)− F (x))2

= (1− p)(1− δ)(f(x; 0)− F (x))2 + p(1− δ)(f(x; 1)− F (x))2 + δ(f(x; 2)− F (x))2 (144)

= (1− p)(1− δ)(f(x; 0)− F (x))2 + p(1− δ)(f(x; 1)− F (x))2

+ δ

(
1

δ
F (x)− 1− δ

δ
((1− p)f(x; 0) + pf(x; 1))− F (x)

)2

(145)

= (1− p)(1− δ)(f(x; 0)− F (x))2 + p(1− δ)(f(x; 1)− F (x))2

+
(1− δ)2

δ
((1− p)f(x; 0) + pf(x; 1)− F (x))2 (146)

≤
(

(1− p)(1− δ) +
2(1− δ)2(1− p)2

δ

)
(f(x; 0)− F (x))2

+

(
p(1− δ) +

2(1− δ)2p2

δ

)
(f(x; 1)− F (x))2 (147)

≤ 3

δ

(
(f(x; 0)− F (x))2 + (f(x; 1)− F (x))2

)
(148)
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We will address each term separately.

(f(x; 0)− F (x))2 = (F (
[
x1, . . . , xprogα(x), 0, . . . , 0

]
)− F (x))2 (149)

=

ψ(−xprogα(x))−
N−1∑

i=progα(x)

ψ(xi+1 − xi)− ψ(xN )

2

(150)

≤ 2
(
ψ(−xprogα(x))− ψ(xprogα(x)+1 − xprogα(x))

)2
+ 2

 N−1∑
i=progα(x)+1

ψ(xi+1 − xi) + ψ(xN )

2

(151)

≤ 2

(√
H

β
α

)2

+ 2

 N∑
i=progα(x)+1

ψ(2α)

2

(152)

≤ 2Hα2

β2
+
N2H2α4

2
(153)

Above, we used that |ψ′(x)| =
∣∣∣√H2β arctan

(√
Hβx
2

)∣∣∣ ≤ √
H
β so ψ is

√
H
β -Lipschitz, and also

|ψ′′(x)| = H
4+Hβ2x2

≤ H
4 so ψ is H

4 -smooth. Similarly,

(f(x; 1)− F (x))2 = (F (
[
x1, . . . , xprogα(x)+1, 0, . . . , 0

]
)− F (x))2 (154)

=

ψ(−xprogα(x)+1)−
N−1∑

i=progα(x)+1

ψ(xi+1 − xi)− ψ(xN )

2

(155)

≤ 2
(
ψ(−xprogα(x)+1)− ψ(xprogα(x)+2 − xprogα(x)+1)

)2
+ 2

 N−1∑
i=progα(x)+1

ψ(xi+1 − xi) + ψ(xN )

2

(156)

≤ 2

(√
H

β
α

)2

+ 2

 N∑
i=progα(x)+1

ψ(2α)

2

(157)

≤ 2Hα2

β2
+
N2H2α4

2
(158)

Therefore,

Ez(f(x; z)− F (x))2 ≤ 12Hα2

β2δ
+

3N2H2α4

δ
(159)
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3) Using the same∇0 and ∇1 as above, we first expand

Ez‖g(x; z)−∇F (x)‖2

≤ (1− p)‖∇0 −∇F (x)‖2 +
1

p
‖∇1 − (1− p)∇0 − p∇F (x)‖2 +

(1− δ)2

δ
‖∇1 −∇F (x)‖2

(160)

≤ 3(1− p)
p

‖∇0 −∇F (x)‖2 +
3

δ
‖∇1 −∇F (x)‖2 (161)

Before proceeding, we recall that ψ′′(x) ≤ H
4 and |ψ′(x)| ≤

√
H
β . Therefore, for j = progα(x),

‖∇0 −∇F (x)‖2

=

∥∥∥∥∥−ψ′(ζ)e1 +

j−1∑
i=1

ψ′(xi+1 − xi)(ei+1 − ei) + ψ′(−xj)(−ej)

+ψ′(ζ)e1 − ψ′(xN )eN −
N−1∑
i=1

ψ′(xi+1 − xi)(ei+1 − ei)

∥∥∥∥∥
2

(162)

=

∥∥∥∥∥∥−ejψ′(−xj)− ψ′(xN )eN −
N−1∑
i=j

ψ′(xi+1 − xi)(ei+1 − ei)

∥∥∥∥∥∥
2

(163)

≤ 2
∥∥−ψ′(−xj)ej − ψ′(xj+1 − xj)(ej+1 − ej)

∥∥2

+ 2

∥∥∥∥∥∥ψ′(xN )eN +
N−1∑
i=j+1

ψ′(xi+1 − xi)(ei+1 − ei)

∥∥∥∥∥∥
2

(164)

≤ 2

(
H

β2
+
H2

16
α2

)
+ 32(N − j − 1)

H2

16
α2 (165)

≤ 2H

β2
+ 2NH2α2 (166)
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Similarly,

‖∇1 −∇F (x)‖2

=

∥∥∥∥∥−ψ′(ζ)e1 +

j∑
i=1

ψ′(xi+1 − xi)(ei+1 − ei) + ψ′(−xj+1)(−ej+1)

+ψ′(ζ)e1 − ψ′(xN )eN −
N−1∑
i=1

ψ′(xi+1 − xi)(ei+1 − ei)

∥∥∥∥∥
2

(167)

=

∥∥∥∥∥∥−ej+1ψ
′(−xj+1)− ψ′(xN )eN −

N−1∑
i=j+1

ψ′(xi+1 − xi)(ei+1 − ei)

∥∥∥∥∥∥
2

(168)

≤ 2
∥∥−ej+1ψ

′(−xj+1)− ψ′(xj+2 − xj+1)(ej+2 − ej+1)
∥∥2

+ 2

∥∥∥∥∥∥ψ′(xN )eN +
N−1∑
i=j+2

ψ′(xi+1 − xi)(ei+1 − ei)

∥∥∥∥∥∥
2

(169)

≤ 10
H2

16
α2 + 32(N − j − 2)

H2

16
α2 (170)

≤ 2NH2α2 (171)

We conclude that

Ez‖g(x; z)−∇F (x)‖2 ≤ 3(1− p)
p

(
2H

β2
+ 2NH2α2

)
+

6NH2α2

δ
(172)

≤ 6H(1− p)
β2p

+ 6NH2α2

(
1

p
+

1

δ

)
(173)

4) Comparing (134) and (135) to Definition 5, it is easy to see that (f, g) is an (α, p, δ)-robust-zero-
chain with Z0 = {0} and Z1 = {1}.

Lemma 16 Let H,B, σ2 > 0 and let g be a stochastic gradient oracle with variance bounded by
σ2. Then for any algorithm that accesses the oracle T times, there exists a function in one dimension
such that the algorithm’s output will have error at least

EF (x̂)− F ∗ ≥ 3

8
min

{
σB√
T
,HB2

}
Proof Consider the following pair of objectives:

F+(x) =
a

2
x2 + bx

F−(x) =
a

2
x2 − bx

(174)

with a stochatic gradient oracles

z ∼ N (0, σ2)

g+(x; z) = ∇F+(x) + z

g−(x; z) = ∇F−(x) + z

(175)
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First, we note that for any x,

F+(x)−min
x
F+(x) ≤ b2

2a
=⇒ x ≤ 0 =⇒ F−(x)−min

x
F−(x) ≥ b2

2a
(176)

and vice versa. Therefore, any algorithm that succeeds in optimizing both F+ and F− to accuracy
better than b2

2a with probability at least 3
4 needs to determine which of the two functions it is opti-

mizing with probability at least 3
4 . However, by the Pinsker inequality, the total variation distance

between T queries to g+ and g− is at most

‖P+−P−‖TV ≤
√

1

2
DKL(P+‖P−) (177)

≤
√
T

2
DKL(N (2b, σ2)‖N (0, σ2)) (178)

=
b

σ

√
T (179)

Therefore, if b ≤ 3σ
4
√
T

, no algorithm can optimize to accuracy better b2

2a with probability greater

than 3
4 . Finally, we note that F+ and F− are a-smooth, and have minimizers ∓ b

a . Therefore, we

take b = min
{
aB, 3σ

4
√
T

}
and a = min

{
H, 3σ

4B
√
T

}
so that the objectives are H-smooth and have

solutions of norm B and with probability at least 1
4

max
∗∈{+,−}

EF∗(x̂)−min
x
F∗(x) ≥ min

{
aB2

2
,

9σ2

32aT

}
≥ min

{
HB2

2
,

3σB

8
√
T

}
(180)

This completes the proof.

Theorem 1 For any H,B, σ,K,R > 0 and M ≥ 2, and any intermittent communication algo-
rithm, there exists a convex, H-smooth objective which has a minimizer with norm at most B in any
dimension

d ≥ 2KR+

(
109

(
1 +KR+

(
HB

σ

)3/2

M(KR)5/4

)
+

6144H2B2MKR

σ2

)
log(64MK2R2)

and a stochastic gradient oracle, g, with Ez‖g(x; z)−∇F (x)‖2 ≤ σ2 such that the algorithm’s
output will have error at least

EF (x̂)− F ∗ ≥ c ·
(
HB2

K2R2
+ min

{
σB√
MKR

, HB2

}
+ min

{
HB2

R2(1 + log2M)
,
σB√
KR

})
for a numerical constant c.
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Proof We set the parameters of the objective (96) and the oracles (134) and (135) according to

p = min

{
1,

√
HB

√
σK3/4R3/4

}
(181)

δ =
1

16MKR
(182)

N = min{2KR, 16KRp+ 24R(1 + logM)} (183)

α = min

{
N

12β
√
H
,

√
HβB2

64N2
,
σ
√
pδ

5H
√
N

}
(184)

β =
2N3/2

√
HB

(185)

By Lemma 14, the objective (96) is convex,H-smooth, and has a minimizer with norm less than
B. In order to apply Lemma 6, we will also introduce a random rotationU , but sinceU>U = IN×N ,
this does not affect the convexity, smoothness, or norm of the minimizers of the objective, so we
conclude that our construction satisfies the necessary conditions.

Furthermore, by Lemma 15, the stochastic zeroth- and first-order oracles defined in (134) and
(135) are unbiased and, with our choice of α ≤ σ

√
pδ

5H
√
N

and (as we will show) p ≥ 12H
12H+β2σ2 , they

have variance bounded by

sup
x

Ez(f(x; z)− F (x))2 ≤ 12Hα2

β2δ
+

3N2H2α4

δ
(186)

≤ 12σ2p

25HNβ2
+

3σ4p2δ

625H2
=: ρ2 (187)

sup
x

Ez‖g(x; z)−∇F (x)‖2 ≤ 6H(1− p)
β2p

+ 6NH2α2

(
1

p
+

1

δ

)
≤ σ2 (188)

Next, on the way to applying Lemma 6, we introduce a uniformly random rotation for U ∈
Rd×N , and consider F (U>x) with oracle (fU , gU ). With our choice of d, we note that

d ≥ N +
2γ2

α2
log(32MKRN) (189)

for

γ = 2B + max

{
408B,

√
32ρ2

σ2

}
(190)

Therefore, by Lemma 6, for any algorithm whose queries are bounded in norm by γ, the algorithm’s
output x̂ will satisfy

P
(

progα(U>x̂) ≤ min{KR, 8KRp+ 12R(1 + logM)}
)
≥ 5

8
− 2MKRδ ≥ 1

2
(191)

Therefore, with our choice of

N = min{2KR, 16KRp+ 24R(1 + logM)} (192)
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we have that progα(U>x̂) ≤ N
2 with probability at least 1

2 . It therefore follows from Lemma 14
that with probability at least 1

2

F (U>x̂)− F ∗ ≥

{
N

12β2 β2 > 4N3

HB2

HB2

64N2 β2 ≤ 4N3

HB2

(193)

=
HB2

64 min{2KR, 16KRp+ 24R(1 + logM)}2
(194)

≥ HB2

512K2R2
+

HB2

32768K2R2p2 + 73728R2(1 + logM)2
(195)

≥ 1

73728

(
HB2

K2R2
+ min

{
HB2

K2R2p2
,

HB2

R2(1 + logM)2

})
(196)

From here, what remains is to show how small p can be taken. Above, we claimed that our choice
satisfies p ≥ 12H

12H+β2σ2 , but this is a more complicated statement than it appears since β is defined
in terms of N , which is, in turn, defined in terms of p. We have

12H

12H + β2σ2
=

12H

12H + 4σ2N3

HB2

(197)

=
4H2B2

4H2B2 + 4σ2N3
(198)

=
4H2B2

4H2B2 + 4σ2 min{2KR, 16KRp+ 24R(1 + logM)}3
(199)

≤ 4H2B2

4H2B2 + 4σ2(2KRp)3
(200)

Therefore, it suffices to set

p ≥ 4H2B2

4H2B2 + 4σ2(2KRp)3
(201)

⇐⇒ 32σ2K3R3p4 + 4H2B2p ≥ 4H2B2 (202)

⇐= p4 ≥ min

{
1,

H2B2

8σ2K3R3

}
(203)

so, our choice of p is sound. Therefore, we can lower bound

EF (U>x̂)− F ∗ ≥ 1

2
· 1

73728

(
HB2

K2R2
+ min

{
HB2

K2R2p2
,

HB2

R2(1 + logM)2

})
(204)

≥ 1

2
· 1

73728

(
HB2

K2R2
+ min

{
HB2

K2R2 HB
σK3/2R3/2

,
HB2

R2(1 + logM)2

})
(205)

≥ 1

2
· 1

73728

(
HB2

K2R2
+ min

{
σB√
KR

,
HB2

R2(1 + logM)2

})
(206)

This lower bound applies to all algorithm’s whose queries are bounded by γ. To extend the result to
all randomized algorithms, we apply Lemma 13, which results in only a constant factor degredation
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in the lower bound. Finally, we apply Lemma 16 to conclude that

EF (x̂)− F ∗ ≥ 1

4
min

{
HB2,

σB√
MKR

}
(207)

This completes the proof.

Corollary 17 There is a numerical constant, c, such that no intermittent communication algorithm
can guarantee for anyH-smooth, λ-strongly convex objective F and stochastic gradient oracle with
variance less than σ2 that its output will have suboptimality

EF (x̂)− F ∗ ≤ c ·
(
F (0)− F ∗

K2R2
exp

(
−
√
λ

H
KR

)
+

σ2

λMKR

+ min

{
F (0)− F ∗

R2 log2M
exp

(
−
√
λ

H
R logM

)
,

σ2

λKR

})
Proof Suppose there were an algorithm which guaranteed convergence at a rate

G(x̂)−G∗ ≤ c ·
(
G(0)−G∗

K2R2
exp

(
−
√
λ

H
KR

)
+

σ2

λMKR

+ min

{
G(0)−G∗

R2 log2M
exp

(
−
√
λ

H
R logM

)
,

σ2

λKR

})
(208)

for any λ-strongly convex function G. Then, we could use this algorithm to optimize a merely
convex F with ‖x∗‖ ≤ B by applying it to the λ-strongly convex G(x) = F (x) + λ

2‖x‖
2. Using

x∗G to denote the minimizer of G, this would ensure (for a universal constant c which may change
from line to line)

F (x̂)− F ∗ ≤ G(x̂)− F ∗ (209)

= G(x̂)−G(x∗) +
λ

2
‖x∗‖2 (210)

≤ G(x̂)−G(x∗G) +
λB2

2
(211)

≤ c ·
(
G(0)−G∗

K2R2
exp

(
−
√
λ

H
KR

)
+

σ2

λMKR
(212)

+ min

{
G(0)−G∗

R2 log2M
exp

(
−
√
λ

H
R logM

)
,

σ2

λKR

})
+ λB2 (213)

≤ c ·
(
HB2

K2R2
exp

(
−
√
λ

H
KR

)
+

σ2

λMKR
(214)

+ min

{
HB2

R2 log2M
exp

(
−
√
λ

H
R logM

)
,

σ2

λKR

}
+ λB2

)
(215)
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Consequently, if we choose

λ = max

{
H

K2R2
,

σ

B
√
MKR

,
H

R2 log2M
,

σ

B
√
KR

}
(216)

then this approach would guarantee

F (x̂)− F ∗ ≤ c ·
(
HB2

K2R2
+

σB√
MKR

+ min

{
HB2

R2 log2M
,
σB√
KR

}
(217)

+B2 max

{
H

K2R2
,

σ

B
√
MKR

,
H

R2 log2M
,

σ

B
√
KR

})
(218)

= c ·
(
HB2

K2R2
+

σB√
MKR

+ min

{
HB2

R2 log2M
,
σB√
KR

})
(219)

In light of the lower bound in Theorem 1, we conclude that no algorithm can provide a guarantee
that is more than a constant factor better than (208).

Appendix D. Proof of Theorem 4

In this section, we extend Theorem 1 to the case where the objective is required to exhibit higher-
order smoothness. Although we are confident that similar results as Theorem 4 would apply to
arbitrary randomized algorithms, we prove the lower bound here just for zero-respecting algorithms
(Carmon et al., 2017):

Definition 18 (Distributed Zero-Respecting Intermittent Communication Algorithm) We say
that a parallel method is an intermittent communication algorithm if for each m, k, r, there exists a
mapping Amk,r such that xmk,r, the kth query on the mth machine during the rth round of communica-
tion, is computed as

xmk,r = Amk,r
([
xm
′

k′,r′ , g
(
xm
′

k′,r′

)]
m′∈[M ],k′∈[K],r′<r

,
[
xmk′,r, g

(
xmk′,r

)]
k′<k

, ξ

)
where ξ is a string of random bits that the algorithm may use for randomization. In addition, for
a vector x, we define support(x) := {j : xj 6= 0}, and we say that an intermittent communication
algorithm is distributed zero-respecting

support(xmk,r) ⊆
⋃

m′∈[M ],k′∈[K],r′<r

support
(
g(xm

′
k′,r′)

)
∪
⋃
k′<k

support
(
g(xmk′,r)

)
We construct a hard instance for the lower bound using the scalar functions ψ : R→ R:

ψ(x) =

√
Hx

2β
arctan

(√
Hβx

2

)
− 1

2β2
log

(
1 +

Hβ2x2

4

)
(220)

where H is the parameter of smoothness, and β > 0 is another parameter that controls the third
derivative of ψ which we will set later. The hard instance is then

F (x) = −ψ′(ζ)x1 + ψ(xN ) +

N−1∑
i=1

ψ(xi+1 − xi) (221)
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where ζ and N are additional parameters that will be chosen later. Lemma 20 below summarizes
the relevant properties of F , whose proof relies on the following bounds on ψ′′′:

Lemma 19 For any H,β ≥ 0,

|ψ′′′(x)| ≤ H3/2β

12

|ψ′′′(x)| ≤ 2βψ′′(x)3/2

|ψ′′′(x)| ≤
√
Hβ

2
ψ′′(x)

Proof The third derivative of ψ is

ψ′′′(x) =
−2H2β2x

(4 +Hβ2x2)2
(222)

For the first claim, we first maximize the simpler function x 7→ x
(1+x2)2

. We note that

d

dx

x

(1 + x2)2
=

1− 3x2

(1 + x2)3
(223)

d2

dx2

x

(1 + x2)2
=

12x(x2 − 1)

(1 + x2)4
(224)

Therefore, the derivative is zero at ±1/
√

3 and the second derivative is negative only for +1/
√

3,
furthermore, limx→±∞

x
(1+x2)2

= 0. Therefore, we conclude that

max
x∈R

x

(1 + x2)2
= max

x∈R

|x|
(1 + x2)2

=

√
1
3

(1 +
√

1
3

2

)2

=
3
√

3

16
(225)

By rescaling, we conclude that

max
x∈R

∣∣ψ′′′(x)
∣∣ = max

x∈R

2H2β2|x|
(4 +Hβ2x2)2

=
H3/2β

4
max
x∈R

∣∣∣√Hβx2

∣∣∣(
1 +

(√
Hβx
2

)2
)2 =

3
√

3H3/2β

64
<
H3/2β

12

(226)
This establishes the first claim. For the second claim, we observe that

∣∣ψ′′′(x)
∣∣ =

2
√
Hβ2|x|√

4 +Hβ2x2
ψ′′(x)3/2 ≤ 2

√
Hβ2|x|√
Hβ2x2

ψ′′(x)3/2 = 2βψ′′(x)3/2 (227)

Finally, for the third claim, we start by noting

∣∣ψ′′′(x)
∣∣ =

2Hβ2|x|
4 +Hβ2x2

ψ′′(x) (228)
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We now consider the function x 7→ x
1+x2

, for which

d

dx

x

1 + x2
=

1− x2

(1 + x2)2
(229)

d2

dx2

x

1 + x2
=

2x(x2 − 3)

(1 + x2)3
(230)

We conclude that

max
x∈R

|x|
1 + x2

=
1

1 + 12
=

1

2
(231)

and therefore,

max
x∈R

2Hβ2|x|
4 +Hβ2x2

=
√
Hβmax

x∈R

∣∣∣√Hβx2

∣∣∣
1 +

(√
Hβx
2

)2 =

√
Hβ

2
(232)

This completes the proof.

Lemma 20 For anyH ≥ 0, β > 0, ζ > 0, andN ≥ 2, F is convex, H-smooth, β-self-concordant,√
Hβ
2 -quasi-self-concordant, and ‖∇3F (x)‖ ≤ 4H3/2β

3 .

Proof First, we note that 0 ≤ ψ′′(x) = H
4+Hβ2x2

≤ H
4 . Therefore, F is the sum of convex functions

and is thus convex itself. We now compute the Hessian of F :

∇2F (x) = ψ′′(xN )eNe
>
N +

N−1∑
i=1

ψ′′(xi+1 − xi)(ei+1 − ei)(ei+1 − ei)> (233)

Therefore, for any u ∈ R,

u>∇2F (x)u ≤ ψ′′(xN )u2
N +

N−1∑
i=1

ψ′′(xi+1 − xi)(ui+1 − ui)2 (234)

≤ H

4

[
u2
N +

N−1∑
i=1

2u2
i+1 + 2u2

i

]
(235)

≤ H‖u‖2 (236)

We conclude that∇2F (x) � H · I and thus F is H-smooth.
Next, we compute the tensor of 3rd derivatives of F :

∇3F (x) = ψ′′′(xN )e⊗3
N +

N−1∑
i=1

ψ′′′(xi+1 − xi)(ei+1 − ei)⊗3 (237)

where

ψ′′′(x) =
−2H2β2x

(4 +Hβ2x2)2
(238)
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Therefore, for any u ∈ R,

∣∣∇3F (x)[u, u, u]
∣∣ ≤ ∣∣ψ′′′(xN )u3

N

∣∣+
N−1∑
i=1

∣∣ψ′′′(xi+1 − xi)(ui+1 − ui)3
∣∣ (239)

We can bound this in several different ways using Lemma 19:

|ψ′′′(x)| ≤ H3/2β

12
(240)

|ψ′′′(x)| ≤ 2βψ′′(x)3/2 (241)

|ψ′′′(x)| ≤
√
Hβ

2
ψ′′(x) (242)

Therefore,

∣∣∇3F (x)[u, u, u]
∣∣ ≤ ∣∣ψ′′′(xN )u3

N

∣∣+
N−1∑
i=1

∣∣ψ′′′(xi+1 − xi)(ui+1 − ui)3
∣∣ (243)

≤ H3/2β

12

[
|uN |3 + 8

N−1∑
i=1

|ui+1|3 + |ui|3
]

(244)

≤ 4H3/2β

3
‖u‖3 (245)

Above, we used that |a−b|3 ≤ (|a|+|b|)3 ≤ 8(|a|3 +|b|3). We conclude that ‖∇3F (x)‖ ≤ 4H3/2β
3 .

Similarly,

|∇3F (x)[u, u, u]| ≤ |ψ′′′(xN )||uN |3 +
N−1∑
i=1

|ψ′′′(xi+1 − xi)||ui+1 − ui|3 (246)

≤ 2β

[
ψ′′(xN )3/2(u2

N )3/2 +
N−1∑
i=1

ψ′′(xi+1 − xi)3/2((ui+1 − ui)2)3/2

]
(247)

≤ 2β

[
ψ′′(xN )u2

N +
N−1∑
i=1

ψ′′(xi+1 − xi)(ui+1 − ui)2

]3/2

(248)

= 2β
〈
∇2F (x)u, u

〉3/2 (249)

For the final inequality, we used that |a|3/2 + |b|3/2 ≤ (|a|+ |b|)3/2. We conclude that F is β-self-
concordant.

44



THE MIN-MAX COMPLEXITY OF DISTRIBUTED STOCHASTIC OPTIMIZATION

Finally,

|∇3F (x)[u, u, u]| ≤ |ψ′′′(xN )||uN |3 +

N−1∑
i=1

|ψ′′′(xi+1 − xi)||ui+1 − ui|3 (250)

≤
√
Hβ

2

[
ψ′′(xN )|uN |3 +

N−1∑
i=1

ψ′′(xi+1 − xi)|ui+1 − ui|3
]

(251)

≤
√
Hβ

2

[
ψ′′(xN )|uN |2 +

N−1∑
i=1

ψ′′(xi+1 − xi)|ui+1 − ui|2
]

(252)

·max

{
|uN |, max

1≤i≤N−1
|ui+1 − ui|

}
≤
√
Hβ

2
‖u‖∇2F (x)[u, u] (253)

For the second to last line, we applied the Hölder inequality
∑

i|aibi| ≤ ‖a‖1‖b‖∞. We conclude

that F is
√
Hβ
2 -quasi-self-concordant.

We will now proceed to construct a stochastic gradient oracle for F . To do so, we define prog(x)
to be the highest index of a non-zero coordinate of x:

prog(x) = prog0(x) = max{j : xj 6= 0} (254)

With this in hand, we define F− to be equal to the objective with the prog(x)th term removed:

F−(x) = ψ′(−ζ)x1 + ψ(xN ) +

prog(x)−1∑
i=1

ψ(xi+1 − xi) +
N−1∑

i=prog(x)+1

ψ(xi+1 − xi) (255)

The stochastic gradient oracle for F is then given by

g(x) =

{
∇F−(x) with probability 1− p
∇F (x) + 1−p

p (∇F (x)−∇F−(x)) with probability p
(256)

The following Lemma shows that g is a suitable stochastic gradient oracle for F :

Lemma 21 For any H,β, σ, ζ,N , if p ≥ π2H
π2H+8σ2β2 then for any x

Eg(x) = ∇F (x)

E‖g(x)−∇F (x)‖2 ≤ σ2

Proof First, we compute the expectation of g(x):

Eg(x) = (1− p)∇F−(x) + p

(
∇F (x) +

1− p
p

(
∇F (x)−∇F−(x)

))
= ∇F (x) (257)
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Second, the variance can be bounded by

E‖g(x)−∇F (x)‖2 = (1− p)
∥∥∇F−(x)−∇F (x)

∥∥2
+ p

∥∥∥∥1− p
p

(
∇F (x)−∇F−(x)

)∥∥∥∥2

(258)

=
1− p
p

∥∥ψ′(xprog(x)+1 − xprog(x))(eprog(x)+1 − eprog(x))
∥∥2 (259)

≤ 2(1− p)
p

sup
x∈R

(
ψ′(x)

)2 (260)

=
2(1− p)

p
· π

2H

16β2
(261)

Therefore, taking p ≥ π2H
π2H+8σ2β2 ensures the variance is bounded by σ2.

In order to prove the lower bound, we will show that with constant probability, all of the iter-
ates generated by any distributed zero-respecting intermittent communication algorithm will have
progress prog(x) ≤ N/2, and we will proceed to show that this implies high suboptimality. The
next Lemma upper bounds the progress of the algorithm’s iterates:

Lemma 22 For any H,β, ζ, σ,K,R > 0 and N,M ≥ 2, let p = max
{

2
K ,

π2H
π2H+8σ2β2

}
. Then

with probability at least 1
2 , all of the oracle queries made by any distributed zero-respecting inter-

mittent communication algorithm will have progress at most

max
m,k,r

prog(xmk,r) ≤ min

{
RK, max

{
48R logM,

4π2HKR

π2H + 8σ2β2

}}
Proof To begin, fix any vector x and let j = prog(x). Then since ψ′(0) = 0,

∇F−(x) = ψ′(−ζ)e1 + ψ′(xN )eN +
∑
i 6=j

ψ′(xi+1 − xi)(ei+1 − ei) (262)

= ψ′(−ζ)e1 +

j−1∑
i=1

ψ′(xi+1 − xi)(ei+1 − ei) (263)

∈ span{e1, . . . , ej} (264)

Therefore, prog(∇F−(x)) ≤ prog(x), so

P[prog(g(x)) > prog(x)] = p (265)

By a similar argument, is also easy to confirm that prog(g(x)) ≤ prog(x) + 1.
By the definition of a distributed zero-respecting algorithm, the kth oracle query on the mth

machine in the rth round of communication has progress no greater than the highest progress of
any stochastic gradient that is available, i.e. any stochastic gradients computed by any machine in
rounds 1, . . . , r − 1, and the first k − 1 gradients computed on machine m in round r. As shown
above, each stochastic gradient oracle query allows the algorithm to increase its progress by at most
one, and only with probability p.

Therefore, the maximum amount of progress that can be made on the mth machine during the
rth round of communication is upper bounded by a Binomial(K, p) random variable, and the total
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progress made by all the machines during the rth round is upper bounded by the maximum of M
independent Binomial(K, p) random variables. Let nmr ∼ Binomial(K, p) denote the amount of
progress made by the mth machine during the rth, then for any n

P
[
max
m,k,r

prog(xmk,r) > n

]
≤ P

[
R∑
r=1

max
1≤m≤M

nmr > n

]
(266)

To start, by the union bound and then the Chernoff bound, for each r and any ε > 0

P
[

max
1≤m≤M

nmr ≥ (1 + ε)Kp

]
≤M P

[
n1
r ≥ (1 + ε)Kp

]
≤M exp

(
−ε

2Kp

2 + ε

)
(267)

For any random variable X ∈ [0,K], EX =
∫K

0 P[X ≥ x]dx. Therefore, for each r and any ε > 0

E
[

max
1≤m≤M

nmr

]
=

∫ (1+ε)Kp

0
P
[

max
1≤m≤M

nmr ≥ x
]
dx+

∫ K

(1+ε)Kp
P
[

max
1≤m≤M

nmr ≥ x
]
dx (268)

≤ (1 + ε)Kp+

∫ 1−p
p

ε
P
[

max
1≤m≤M

nmr ≥ (1 + c)Kp

]
dc (269)

≤ (1 + ε)Kp+M

∫ ∞
ε

exp

(
−c

2Kp

2 + c

)
dc (270)

≤ (1 + ε)Kp+M

∫ ∞
ε

exp

(
−cεKp

2 + ε

)
dc (271)

= (1 + ε)Kp+
M(2 + ε)

εKp
exp

(
−ε

2Kp

2 + ε

)
(272)

We apply this result with ε = 2 + 2 logM
Kp so, recalling that p ≥ 2/K and M ≥ 2,

E
[

max
1≤m≤M

nmr

]
≤ (1 + ε)Kp+

M(2 + ε)

εKp
exp

(
−ε

2Kp

2 + ε

)
(273)

≤ 4Kp+ 2 logM (274)

= max

{
8,

π2HK

π2H + 8σ2β2

}
+ 2 logM (275)

≤ max

{
24 logM,

2π2HK

π2H + 8σ2β2

}
(276)

Therefore, in light of (266) we use Markov’s inequality to conclude

P
[
max
m,k,r

prog(xmk,r) > 2RE
[

max
1≤m≤M

nmr

]]
≤ P

[
R∑
r=1

max
1≤m≤M

nmr > 2RE
[

max
1≤m≤M

nmr

]]
≤ 1

2

(277)

We conclude by substituting for E[max1≤m≤M nmr ] and noting that nmr ≤ K always.

The final piece of the proof is to show that if prog(x) ≤ N/2 then F (x)− F ∗ is large:
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Lemma 23 For any H,β,B > 0 and N ≥ 2, set ζ2 = B2

N3 . Then, ‖x∗‖ ≤ B and for any x such
that prog(x) ≤ N

2 ,

F (x)− F ∗ ≥

{
N

6β2 β2 > 4N3

HB2

HB2

48N2 β2 ≤ 4N3

HB2

Proof The first-order optimality condition∇F (x∗) = 0 indicates

[∇F (x∗)]1 = 0 = ψ′(−ζ)− ψ′(x∗2 − x∗1)

[∇F (x∗)]i = 0 = ψ′(x∗i − x∗i−1)− ψ′(x∗i+1 − x∗i ) 1 < i < N

[∇F (x∗)]N = 0 = ψ′(x∗N − x∗N−1) + ψ′(x∗N )

(278)

So, x∗i − x∗i+1 = ζ for i < N , and x∗N = ζ, therefore,

x∗ = ζ
N∑
i=1

(N − i+ 1)ei (279)

The minimizer has norm

‖x∗‖2 = ζ2
N∑
i=1

(N − i+ 1)2 =
ζ2

6

(
2N3 + 3N2 +N

)
(280)

We therefore choose ζ2 = B2

N3 so that ‖x∗‖ ≤ B. In this case,

min
x:‖x‖≤B

F (x) = F (x∗) (281)

= ψ′(−ζ)x∗1 + ψ(x∗N ) +
N−1∑
i=1

ψ
(
x∗i+1 − x∗i

)
(282)

= Nζψ′(−ζ) +Nψ(ζ) (283)

= −Nζ
√
H

2β
arctan

(√
Hβζ

2

)
(284)

+N

[√
Hζ

2β
arctan

(√
Hβζ

2

)
− 1

2β2
log

(
1 +

Hβ2ζ2

4

)]

= − N

2β2
log

(
1 +

HB2β2

4N3

)
(285)

Now, consider some x such that prog(x) = n ≤ N
2 , and observe that

F (x) = ψ′(−ζ)x1 + ψ(xN ) +
N−1∑
i=1

ψ(xi+1 − xi) (286)

= ψ′(−ζ)x1 + ψ(xn) +

n−1∑
i=1

ψ(xi+1 − xi) (287)
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Therefore, by the same argument as above,

F (x) ≥ − n

2β2
log

(
1 +

HB2β2

4N3

)
(288)

and we conclude that

F (x)− F ∗ ≥ N

4β2
log

(
1 +

HB2β2

4N3

)
(289)

From here, we consider two cases, if β2 > 4N3

HB2 , then

F (x)− F ∗ > N

4β2
log(2) >

N

6β2
(290)

Otherwise, if β2 ≤ 4N3

HB2 then we use that for x ≤ 1, log(1 + x) ≥ x
2 and conclude

F (x)− F ∗ > N

4β2
>

N

6β2
· HB

2β2

8N3
=
HB2

48N2
(291)

This completes the proof.

We are now ready to prove a lower bound in terms of β, which Theorem 4 instantiates for
different constraints on the objective:

Lemma 24 For any H,B, σ,K,R, β > 0 and any M ≥ 2, there exists a convex, H-smooth
objective F with ‖x∗‖ ≤ B and a stochastic gradient oracle g with E‖g(x) −∇F (x)‖2 ≤ σ2 for
all x such that with probability at least 1

2 , all of the oracle queries, {xmk,r}, made by any distributed
zero-respecting intermittent communication algorithm have suboptimality

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,
β4σ4B2

HK2R2
,
σB√
KR

}]
Furthermore, the objective F is simultaneously β-self-concordant,

√
Hβ
2 -quasi-self-concordant, and

has supx,u|∇3F (x)[u, u, u]| ≤ 4H3/2β
3 ‖u‖3.

Proof By Lemma 20, F as defined in (221) is H-smooth, convex, β-self-concordant,
√
Hβ
2 -quasi-

self-concordant, and has supx,u|∇3F (x)[u, u, u]| ≤ 4H3/2β
3 ‖u‖3. Furthermore, by Lemma 21, g

as defined in (256) is unbiased and has variance bounded by σ2 for the choice of p used in Lemma
22. Finally, when we choose ζ2 = B2

N3 , the minimizer of F has norm ‖x∗‖ ≤ B by Lemma 23.
Therefore, the objective F and stochastic gradient oracle g are suitable for the lower bound.

By Lemma 22, with probability at least 1
2 , all of the iterates of any distributed zero-respecting

intermittent communication algorithm will have progress at most

max
m,k,r

prog(xmk,r) ≤ min

{
RK, max

{
48R logM,

4π2HKR

π2H + 8σ2β2

}}
(292)

For the rest of the proof, we condition on this event and set

N = min

{
2KR, max

{
96R logM,

8π2HKR

π2H + 8σ2β2

}}
(293)
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so that maxm,k,r prog(xmk,r) ≤
N
2 . By Lemma 23, this means that

min
m,k,r

F (xmk,r)− F ∗ ≥

{
N

6β2 β2 > 4N3

HB2

HB2

48N2 β2 ≤ 4N3

HB2

(294)

Thus, if β2 ≤ 4N3

HB2 , then

min
m,k,r

F (xmk,r)−F ∗ ≥
HB2

48N2
=

HB2

48 min
{

4K2R2, max
{

9216R2 log2M, 64π4H2K2R2

(π2H+8σ2β2)2

}} (295)

Therefore, there is a universal constant c such that

min
m,k,r

F (xmk,r)− F ∗ ≥ c ·
(
HB2

K2R2
+ min

{
HB2

R2 log2M
,
σ4β4B2

HK2R2

})
(296)

On the other hand, if β2 > 4N3

HB2 , since N = N(β) is a non-increasing function of β, we can

always instantiate the lower bound in terms of β′ < β such that β′2 = 4N(β′)3

HB2 . With this choice, in
light of (295), there is a universal constant c such that

min
m,k,r

F (xmk,r)− F ∗ ≥ c ·

[
HB2

K2R2
+ min

{
HB2

R2 log2M
,

(π2H + 8σ2β′2)2B2

HK2R2

}]
(297)

Furthermore, with our choice of β′,

β′
2

=
4N(β′)3

HB2
(298)

=
4

HB2
min

{
8K3R3, max

{
963R3 log3M,

83π6H3K3R3

(π2H + 8σ2β′2)3

}}
(299)

≥ 4K3R3

HB2
min

{
8,

83π6H3

(π2H + 8σ2β′2)3

}
(300)

≥ 32K3R3

HB2

π6H3

(π2H + 8σ2β′2)3
(301)

Therefore,

1

8σ2
(π2H + 8σ2β′

2
)4 ≥ β′2(π2H + 8σ2β′

2
)3 ≥ 32π6H2K3R3

B2
(302)

=⇒ (π2H + 8σ2β′
2
)2 ≥ 16π3HσK3/2R3/2

B
(303)

In light of (297), we conclude that

min
m,k,r

F (xmk,r)− F ∗ ≥ c ·
[
HB2

K2R2
+ min

{
HB2

R2 log2M
,
σB√
KR

}]
(304)

Combining Lemma 16 with (296) and (304) completes the proof. We note that the lower bound
in Lemma 16 is achieved by a quadratic hard instance, which is 0-self-concordant, 0-quasi-self-
concordant, and has 0-Lipschitz Hessian.
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Theorem 4 For any H,B, σ,Q,K,R > 0 and any M ≥ 2, there exists a convex, H-smooth
objective F with ‖x∗‖ ≤ B and with ∇2F being Q-Lipschitz with respect to the L2 norm, and a
stochastic gradient oracle g with E‖g(x) − ∇F (x)‖2 ≤ σ2 for all x, such that with probability
at least 1

2 all of the oracle queries {xmk,r} made by any distributed-zero-respecting intermittent
communication algorithm (see Definition 18 in Appendix D) will have suboptimality

min
m,k,r

F (xmk,r)− F ∗ ≥ c ·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,

√
QσB2

K1/4R2 log7/4M
,
σB√
KR

}]
Proof By Lemma 24, the objective F and stochastic gradient oracle g satisfy the necessary condi-
tions with F having ‖∇3F (x)‖ ≤ 4H3/2β

3 . In terms of β and the other problem parameters, the
lower bound is then

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,
β4σ4B2

HK2R2
,
σB√
KR

}]
(305)

with probability 1
2 . Below, we will use the fact that we can instantiate the lower bound in terms

of any H ′ ≤ H without invalidating the result since an H ′-smooth objective is also H-smooth.
This allows us to maximize the lower bound over H ′ ≤ H to achieve a tighter result. Choosing
β = 3Q

4H3/2 ensures that ‖∇3F (x)‖ ≤ Q, i.e.∇2F is Q-Lipschitz, so

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,
Q4σ4B2

H7K2R2
,
σB√
KR

}]
(306)

In the event that the Q4σ4B2

H7K2R2 term is the minimizer, we can take H ′ =
√
Qσ log1/4M
K1/4 ≤ H to

conclude

min
m,k,r

F (xmk,r)− F ∗

≥ c ·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,

√
QσB2

K1/4R2 log7/4M
,
σB√
KR

}]
(307)

This completes the proof.

Theorem 25 For any H,B, σ,Q,K,R > 0 and any M ≥ 2, there exists a convex, H-smooth
objective F with ‖x∗‖ ≤ B and a stochastic gradient oracle g with E‖g(x) −∇F (x)‖2 ≤ σ2 for
all x, such with probability at least 1

2 all of the oracle queries {xmk,r} made by any distributed-zero-
respecting intermittent communication algorithm will have suboptimality lower bounded as follows:
When the objective, F , is required to be Q-self-concordant

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,

Q2σ2B2

KR2 logM
,
σB√
KR

}]
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When the objective, F , is required to be Q-quasi-self-concordant

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,

QσB2

√
KR2 log3/2M

,
σB√
KR

}]
Proof By Lemma 24, the objective F and stochastic gradient oracle g satisfy the necessary condi-
tions with F being β-self concordant and

√
Hβ
2 -quasi-self-concordant. In terms of β and the other

problem parameters, the lower bound is then

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,
β4σ4B2

HK2R2
,
σB√
KR

}]
(308)

with probability 1
2 . Below, we will use the fact that we can instantiate the lower bound in terms of

any H ′ ≤ H without invalidating the result since an H ′-smooth objective is also H-smooth. This
allows us to maximize the lower bound over H ′ ≤ H to achieve a tighter result. We proceed by
considering the two cases separately.

Self-Concordance: Choosing β = Q ensures that F is Q-self-concordant, so

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,
Q4σ4B2

HK2R2
,
σB√
KR

}]
(309)

In the event that the Q4σ4B2

HK2R2 term is the minimizer, we can take H ′ = Q2σ2 logM
K ≤ H to conclude

that

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,

Q2σ2B2

KR2 logM
,
σB√
KR

}]
(310)

Quasi-self-Concordance: Choosing β = 2Q√
H

ensures that F is Q-quasi-self-concordant, so

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,
Q4σ4B2

H3K2R2
,
σB√
KR

}]
(311)

In the event that the Q4σ4B2

H3K2R2 term is the minimizer, we can take H ′ = Qσ log1/2M√
K

≤ H to conclude
that

min
m,k,r

F (xmk,r)−F ∗ ≥ c·
[
HB2

K2R2
+ min

{
σB√
MKR

,HB2

}
+ min

{
HB2

R2 log2M
,

QσB2

√
KR2 log3/2M

,
σB√
KR

}]
(312)

This completes the proof.

52


	Introduction
	Setting and Notation
	The Lower Bound
	A Matching Upper Bound and an Optimal Algorithm
	Better than Optimal: Breaking the Lower Bound
	Relying on a Bounded Third Derivative
	Statistical Learning Setting: Assumptions on Components
	Statistical Learning Setting: Repeated Access to Components
	Higher Order and Other Stronger Oracles
	Beyond Single-Sample Oracles

	A Framework for Proving Lower Bounds for Randomized Algorithms
	An Extension to Large-Norm Queries
	Proof of Theorem 1
	Proof of Theorem 4

