IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

1027

Accelerating Restarted GMRES With Mixed
Precision Arithmetic

Neil Lindquist

, Piotr Luszczek™, and Jack Dongarra

, Fellow, IEEE

Abstract—The generalized minimum residual method (GMRES) is a commonly used iterative Krylov solver for sparse, non-symmetric
systems of linear equations. Like other iterative solvers, data movement dominates its run time. To improve this performance, we
propose running GMRES in reduced precision with key operations remaining in full precision. Additionally, we provide theoretical results
linking the convergence of finite precision GMRES with classical Gram-Schmidt with reorthogonalization (CGSR) and its infinite
precision counterpart which helps justify the convergence of this method to double-precision accuracy. We tested the mixed-precision
approach with a variety of matrices and preconditioners on a GPU-accelerated node. Excluding the incomplete LU factorization without
fillin (ILU(0)) preconditioner, we achieved average speedups ranging from 8 to 61 percent relative to comparable double-precision
implementations, with the simpler preconditioners achieving the higher speedups.

Index Terms—Linear systems, multiple precision arithmetic

1 INTRODUCTION

HE generalized minimum residual method (GMRES) is
Tan iterative solver for sparse, non-symmetric systems of
linear equations [1]. Like most iterative solvers, GMRES
consists mostly of matrix-vector and vector-vector opera-
tors, resulting in a low computational intensity. Hence,
reducing data movement is necessary to improve perfor-
mance. Towards this end, we present an implementation of
GMRES using a mix of single- and double-precision that is
designed to achieve the same final accuracy as double-preci-
sion GMRES while reducing data movement.

In short, GMRES constructs a basis for the Krylov sub-
space using Arnoldi’s procedure [2], then finds the solution
vector from that subspace that minimizes the 2-norm of the
resulting residual. One particularly useful modification to
GMRES is restarting, which is used to limit the memory
usage and computational requirements of the growing Kry-
lov basis [3]. We focus on two schemes for orthogonalizing
the Krylov basis in the Arnoldi procedure, modified Gram-
Schmidt (MGS) and classical Gram-Schmidt with reortho-
gonalization (CGSR). The former is often used due to its
lower computational and data-access costs [4], while the lat-
ter better retains orthogonality and can be implemented
using matrix-vector products [5]. For CGSR, we always
reorthogonalize once, which is sufficient to provide

o Neil Lindquist and Piotr Luszczek are with Innovative Computing Labora-
tory, University of Tennessee, Knoxville, TN 37996 USA.
E-mail: {nlindqul, luszczek|@icl.utk.edu.

e Jack Dongarra is with Innovative Computing Laboratory, University of
Tennessee, Knoxville, TN 37996 USA, and with Oak Ridge National Labo-
ratory, Oak Ridge, TN 37831 USA, and also with the University of Man-
chester, M13 9PL Manchester, U.K. E-mail: dongarra@icl.utk.edu.

Manuscript received 24 Feb. 2021; revised 15 June 2021; accepted 16 June 2021.
Date of publication 22 June 2021; date of current version 15 Oct. 2021.
(Corresponding author: Neil Lindquist.)

Recommended for acceptance by S. Alam, L. Curfman Mclnnes, and K. Nakajima.
Digital Object Identifier no. 10.1109/TPDS.2021.3090757

numerically stability [6]. Additionally, we focused on a left-
preconditioned version of GMRES but expect the results to
hold for right-preconditioned versions too. Algorithm 1
shows the formulation of GMRES we used.

Based on our previous work, we focus on a specific
mixed-precision strategy that has been successful regarding
both accuracy and CPU performance [7]. This approach
uses single precision everywhere except to compute the
residual and update the solution. Specifically, it uses double
precision for lines 3 and 25 in Algorithm 1 and uses single
precision for everything else. (L.e., computation done in
double precision is labeled with u,, and computation done
in single precision is labeled with w,y). This requires a copy
of A in single precision, and two vector type conversions
per restart (z; and ui) but has the advantage of otherwise
using existing uniform-precision kernels. Our previous
work included experiments with the effects on convergence
when reducing various parts of GMRES and using different
restart strategies; those experiments guided the design of
our mixed-precision scheme. Herein, we extend the support
for this approach by providing stronger theoretical analysis
of the reduced precision inner solver and new experimental
results on a GPU-accelerated node with a variety of
preconditioners.

2 PREvVIOUS WORK

The idea of using multiple precisions to improve perfor-
mance has been applied successfully to a variety of prob-
lems, particularly in recent years [8]. Furthermore, it is a
well-established method for improving the performance of
solving systems of linear equations, particularly for dense
linear systems [9], [10].

One approach to using multiple precisions in GMRES is
to store the preconditioner in reduced precision and doing
the rest of the computation in full precision [11]. The
approximate nature of the preconditioner means that reduc-
ing the floating-point precision has a limited reduction in

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

1028

quality. One interesting variation of this is to precondition a
full-precision GMRES with a reduced-precision GMRES
(possibly with a preconditioner of its own) [12]. This is simi-
lar to our approach, but we use iterative refinement as the
outer solver instead of GMRES.

Algorithm 1. Restarted GMRES in Mixed-Precision With
Left Preconditioning [3]

1: Ae R, x9,b€R",
2: fork=1,2,...do

3: ZE — b— Axk (uhigh)

4: If || z||, is small enough, stop
50 = M 'z (tiew)
6.

7

8

M '~ AT

(uhigh)

B—lrelly, s0— B (tiow)
v — /B, Vi [vi] (th1ow)
j 0
9: loop until the restart condition is met
10: j—j+1
11: we— M 'Av; (tow)
12: w,hy ..., hj; — orth(w, V}) > MGS or CGSR
130 hjyry— [lwll, (t1ow)
14: 1)]'+1 — w/thrl‘j (’LL]OW>
150 Vi < [V, vj4] (wow)
16: fori=1,...,57—1do
7 [] 8]] (t100)
hit1 =B hit o
18: end for
% rg ation. matri hi;
[5, } — rOtdthD-mdtI‘lX({ "y }) (iow)
o (2015 2[4
8j+1 B« 0
| hig aj B hij
2t {hﬂ'*l«ﬁ} - {*ﬂj 0‘:1}) [’mu] (s
22: end loop i
230 H e {hishicipe; S [s1,-..5]]"
24: wy, — V;H 's (Uiow)
25: Tpy — T+ ug (tnign)
26: end for
27: procedure MGSw, V;
28 [ui,...,v] <V
29: fori=1,2,..,jdo
30: hij—w-v; (Uiow)
31: w — w — h; jv; (t1ow)
32: end for
33: returnw,hyj, ..., h;;
34: end procedure
35: procedure CGSRw, V;
36: h—Vi'w (Ulow)
37 w—w-Vjh (Wow)
38: g — ‘/}Tw (ulow)
390 we—w-Vg (tiow)
40: [h@,j, R h(m‘}T —h+g (ulow)
41: return w, hyj,.... h;;

42: end procedure

There has recently been useful theoretical work for vary-
ing the working precision as the iteration progresses in a
non-restarted GMRES [13]. Notably, part of this work shows

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

that computing the Arnoldi process in finite-precision
allows GMRES to converge at approximately the same rate
as GMRES computed exactly until an accuracy related to
round-off error is reached. Our theoretical results in Sec-
tion 3 are based on some of these ideas. There exists further
theoretical work on reducing the accuracy of just the matrix
vector products in GMRES and other Krylov solvers as the
number of inner iterations progresses [14], [15], [16]. These
approaches may avoid the need to restart, unlike our work;
however, they increase the complexity of implementation
and achieving high accuracy may require estimating the
smallest singular value.

For restarted GMRES, there have been a few works
involving using multiple precisions in the GMRES algo-
rithm. The first is using mixed-precision iterative refine-
ment where the inner solver is a single-precision
GMRES [17], [18]. This approach is similar to what we
tested; however, that work tests only limited configurations
of GMRES and matrices. The second approach is to store
just the Krylov basis in reduced precision, which was tested
with both floating- and fixed-point formats and 32- and 16-
bits per value [19]. It was successful in providing a speedup
with the 32-bit floating-point version providing the best
median speedup at 1.4 times. However, the scheme, as
described, requires custom, high-performance, mixed-preci-
sion kernels, which increases the cost of implementation
due to the limited availability of existing mixed-precision
routines.

One final work with GMRES is the use of integer arith-
metic [20]. While integer GMRES did not involve a reduc-
tion in data movement, it does show GMRES achieving a
full-precision solution with limited iteration overhead when
the solver uses an alternative data format. Relatedly, there
has been work to use data compression techniques in flexi-
ble GMRES, although only for the non-orthogonalized Kry-
lov vectors [21].

Mixed precision approaches have also been used for
other iterative solvers. Like GMRES, mixed precision
approaches include a reduced precision preconditioner [22],
[23] and using a reduced precision solver inside iterative
refinement [17]. However, with Krylov methods, iterative
refinement discards the subspace at each restart; so, the
strategy of “reliable updates” has been proposed, which
retains information about the Krylov subspace across
restarts [24], [25]. Finally, there has been some exploration
of the use of alternate data representations, such as data
compression, in iterative solvers [26], [27], [28].

3 NUMERICAL PROPERTIES OF MIXED PRECISION
GMRES

It is important to understand the effects of reductions in
precision on the accuracy of the final solutions. Note that
restarted GMRES is equivalent to iterative refinement using
a non-restarted GMRES as the inner solver, which provides
a powerful tool for recovering accuracy. This equivalence
can be seen by noting that lines 5 through 24 in Algorithm 1
are equivalent to a non-restarted GMRES with an initial
guess of x; and the remaining form iterative refinement of
the non-restarted GMRES.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

LINDQUIST ET AL.: ACCELERATING RESTARTED GMRES WITH MIXED PRECISION ARITHMETIC

First, consider the parts of the solver that must remain in
full precision. Notably, the linear system being solved, Az =
b, must be stored in full precision. In general, reductions in
the accuracy of A and b directly change the problem being
solved and can introduce a backward error on the order of
the reduced precision. If z is stored in reduced precision, a
similar forward error will be introduced. As an extension of
this, adding the updates from the inner solve to x must be
done in full precision, to ensure x remains in full precision.
Finally, the residual r = b — Az must be computed in full
precision, otherwise errors smaller than the reduced preci-
sion accuracy cannot be corrected.

Next, consider the effects of reducing precision in the
computation of the error correction. For stationary iterative
refinement, it is well-known that the error correction can be
computed in reduced precision while still achieving a full
precision final solution [9]. For GMRES, the theory is less
developed. Note that single-precision GMRES is backwards
stable to single precision [29], [30]. Then, mixed-precision
iterative refinement can use this GMRES to compute a dou-
ble-precision backwards-stable solution [31]. Thus, the
approach should be backwards-stable to full-precision.
However, this analysis ignores the possibility of restarting
before a single-precision accurate solution is achieved
which is a significant issue in practice due to the increasing
memory cost of GMRES.

Recent work has shown that MGS-GMRES converges at
approximately the same rate whether the Arnoldi process is
computed in finite precision or exactly until the relative
residual is below a roundoff-dependent threshold [13].
Unfortunately, it is difficult to turn this into a useful general-
purpose bound. Towards this end, we provide the following
theorem for CGSR-GMRES which takes advantage of the bet-
ter orthogonality of CGSR to describe the accuracy of the
finite precision solution relative to the exact precision one [5].

Theorem 1. Let X; and xg-e) be the solutions computed by j itera-
tions of finite precision GMRES and exact GMRES, respec-
tively, without restarting. Let b be the right-hand side vector.
Suppose u < 1073 and cy(n, j)uk(AV;) < 1 for a particular
cs(n,) € O(n?5%) with V; being the computed Krylov basis.
Let 8, = (1+u)/?and §_ = (1 — /u)"/*. Then

b — AxGlly < 8257216 — Ax|l,
+ 98 ugl| All, I %,
+ 8257y, AN
+ 887 e (m,)l All 1

c1(n, Hul| Al |G
N 1(n,)ull Al 1%l

8- — ij1/25+
38|l
5 — Vj,jl/25+

X (yp + v+ (v + Yujy; + 9uj'?)
x8,8°1(2+ yp)).

where c1(n, j) € O(nj) and xg-W) is the solution computed by j
iterations of a particular weighted-GMRES.

1029

The polynomials ¢i(n,7) and c¢4(n,j) are the same as
those in Giraud et al.’s error analysis of CGSR [6]. Note that
X; and x!(,e) are equivalent to uy from Algorithm 1 when the
restart condition is met after j inner iterations.

_ 94 e — W .
When u=2"2, | x| ~ [~ [x"Il, #?u<1, and

j
p*/?u < 1, this can be simplified to

16— A%l
AN FI3G], + N6l
16— Ax I,

AN R 11, + (1811,
+ (4% 4 305 + 3p5"/% + 3y (n. j))u.

In other words, finite precision CGSR-GMRES converges at
effectively the same rate as its exact counterpart until an
error of approximately (4;%2 + 305 + 3pj'/2 + 3ci(n, j))u is
reached. This implies that for restarted GMRES, if full preci-
sion GMRES can converge, then reduced precision GMRES
should either converge similarly or satisfy the backward
error threshold. In the latter case, the backward stability of
iterative refinement will result in a backward stable solu-
tion [31]. In the former cases, we expect similar behavior,
but differences in vector directions may reduce effective-
ness when the solver restarts.

It should be noted that the low-order polynomials ¢; and
¢4 can quickly become onerous for realistically sized matri-
ces. Fortunately, the bounds provided by this theorem are
much worse than will occur in practice. First, they assume
round-off error will always accumulate without cancella-
tion. However, the recent work on probabilistic error
bounds for dot-products has shown that a relative error of
about uy/n holds with probability close to 1, compared the
formal worst-case bound of un [32]. Second, the error
bounds assume that the dot product summation is done
sequentially. However, GPU accelerated systems distribute
the work across many threads which helps reduce the accu-
mulation of errors [33].

4 IMPLEMENTATION CONSIDERATIONS

Periodic restarting is a key component in obtaining full
precision accuracy in this approach as it relies on iterative
refinement. For many problems, both the memory con-
straints and the increasing computational load will force
the solver to restart before the accuracy of the inner solver
is achieved. However, for some problems, GMRES can
produce a full precision solution in relatively few itera-
tions; in these cases, waiting to restart until after a fixed
number of inner iterations will result in a stalled improve-
ment when the round-off error has overwhelmed any
meaningful contributions to the computed solution. We
have previously discussed and tested various restart strat-
egies [7]. In that work, we found that an effective restart
strategy was to initiate the first restart when the residual
approximation improves by a factor of 1075, then initiate
subsequent restarts after the same number of inner
iterations.

Total memory usage is an important constraint, particu-
larly when considering the smaller memory sizes of GPU

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

1030 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022
TABLE 1
Properties of the Matrices Tested Without a Preconditioner
Condition RHS
Matrix Rows Nonzeros Lower Bound Provided
af_0_k101 5.0 x 10° 1.8 x 107 5.5 x 10°t yes
af_shell9 5.0 x 10° 1.8 x 107 1.2 x 10%F yes
apache?2 7.2 % 10° 4.8 x 10° 3.0 x 109t no
atmosmod3 1.3 x 108 8.8 x 10° 6.4 x 10° yes
BenElechil 2.5 x 10° 1.3 x 107 1.3 x 1064 yes
bone010 9.9 x 10° 4.8 x 107 1.6 x 10%% no
Bump_2911 2.9 x 100 1.3 x 108 7.5 x 10%¢ no
cagel3 4.5 x 10° 7.5 x 10° 1.1 x 10! no
cageld 1.5 x 10° 2.7 x 107 9.6 x 10° no
crankseg_1 5.3 x 104 1.1 x 107 1.4 x 1074 no
CurlCurl_2 8.1 x 10° 8.9 x 10° 4.1 x 10°% no
CurlCurl_4 2.4 x 108 2.7 x 107 3.4 x 10°% no
ecology? 1.0 x 106 5.0 x 109 3.2 x 107+ no
F1 3.4 x 10° 2.7 x 107 7.1 x 10°f yes
FEM_3D_thermal2 1.5 x 10° 3.5 x 106 2.5 x 103 no
G3_circuit 1.6 x 108 7.7 % 105 6.0 x 109t no
hood 2.2 x 10° 9.9 x 10° 3.8 x 10°t no
language 4.0 x 10° 1.2 x 109 5.9 x 102 no
marinel 4.0 x 10° 6.2 x 10° 3.8 x 10°} yes
mc2depi 5.3 x 10° 2.1 x 10° 1.3 x 10" no
ns3Da 2.0 x 10* 1.7 x 10° 5.6 x 10 yes
parabolic_fem 5.3 x 10° 3.7 x 106 2.1 x 10°% yes
poisson3Db 8.6 x 10* 2.4 x 109 2.6 x 10° yes
pwtk 2.2 x 10° 1.2 x 107 6.9 x 10°t no
rajat31 4.7 x 108 2.0 x 107 4.0 x 108 no
stomach 2.1 x 10° 3.0 x 10° 2.9 x 10! no
t2em 9.2 x 10° 4.6 x 10° 2.2 x 10°t no
thermal2 1.2 x 10° 8.6 x 10° 1.5 x 10% yes
tmt_unsym 9.2 x 10° 4.6 x 105 2.3 x 1084 no
torso2 1.2 x 10° 1.0 x 106 2.0 x 10! no
torso3 2.6 x 10° 4.4 x 10° 9.5 x 10! no
venkat01 6.2 x 101 1.7 x 10° 1.3 x 10°% yes

tCondition estimator reached 200 000 iterations before the LSQR convergence criteria.

accelerators. Consider GMRES implemented for matrices in
compressed sparse row (CSR) format and restarting after, at
most, m inner iterations. The matrix entries, right-hand
side, and solution take combined 12n,,. + O(n) bytes. The
double-precision GMRES requires an additional 8nm +
O(n+m?) bytes. Instead, the mixed precision variant
requires an additional 4n,,, + 4nm + O(n + m?*) bytes. For
problems with many nonzeros per row relative to m, the
mixed-precision approach will require a larger total allo-
cation, which may be onerous on memory-constrained
systems. Storing the low-order and high-order bytes sepa-
rately would circumvent this issue [34]. Regardless of
matrix storage, the mixed-precision approach always has a
smaller increase in allocation for an increase in m. On
some large problems, this may allow for a larger basis and,
thus, take better advantage of superlinear convergence in
GMRES [35].

5 EXPERIMENTAL RESULTS

To test the performance of our approach on GPUs, we
implemented a restarted GMRES using the Kokkos per-
formance portability library [36] and NVIDIA’s cuBLAS
and cuSPARSE libraries. Kokkos was chosen for ease of
use and is not expected to perform significantly different

from a CUDA implementation. To limit expensive memory
transfers between CPU and GPU, all computation is done
on the GPU and only the high level control flow is done on
the CPU.

Various matrices in CSR format from the SuiteSparse
collection with more than a million nonzero elements
were tested [37]. Furthermore, we only used matrices that
converged with fewer than 300 restarts for a given config-
uration. If a file ending with _b was provided by SuiteS-
parse, the first column was used as the right-hand side.
For other matrices, the right-hand side was computed
from a solution where each element was randomly
selected from the uniform range [0, 1). The matrices tested
are shown in Table 1. In addition to structural properties,
the table contains lower bounds of the condition numbers
of these matrices, computed by testing forward error vec-
tors of LSQR [38]. Many of the poorly conditioned matri-
ces reached the iteration limit before LSQR’s convergence
criteria, so they may have significantly worse condition-
ing than these lower bounds imply.

We tested the effectiveness of the mixed-precision
approach for a variety of preconditioners. First is the
identity matrix to test unpreconditioned GMRES. While
in practice some form of preconditioner is almost always
used, not using a preconditioner makes it easier to compute

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

LINDQUIST ETAL.: ACCELERATING RESTARTED GMRES WITH MIXED PRECISION ARITHMETIC

1031

3.00 1

2.00 +
1.50 ~

1.00 ~
0.75 1

0.50 4

Speedup over baseline

0.25 =

F1 -

apache2 +
atmosmodj +
cagel3 -
cageld
crankseg_1
CurlCurl_2 4
CurlCurl_4
ecology?2 A

FEM_3D_thermal2 4

G3_circuit -

language -,
mc2depi -
ns3Da 4
poisson3Db +
rajat31 o
stomach o
t2em
thermal2 4
_unsym —
torso2 A
torso3 A

parabolic_fem -
tmt_uns

4.00
3.00 +

2.00 1
1.50 A

1.00 4
0.75 4

0.50 4

Speedup over baseline

Mixed Single

F1 4

apache2 A
atmosmodj -
cagel3 +
cageld o
crankseg_1 -
CurlCurl_2 4
CurlCurl_4 4
ecology?2 4

FEM_3D_thermal2 <

Fig. 1.

condition numbers. Second is a scalar Jacobi preconditioner.
This is a diagonal matrix where each element is the inverse
of the corresponding diagonal element of A to provide a
measure of row scaling. Third is an ILU(0). This is a powerful
preconditioner formed through Gaussian Elimination,
except only entries that are nonzero in A are computed.
However, the sparse triangular solves needed to apply the
factorization cannot be parallelized to efficiently use a GPU.
So, fourth, we test ILU(0), except with the triangular solves
replaced with Jacobi iterations [39], [40]. Because we are
focusing on how well the mixed-precision approach works
for different types of preconditioners, we test each precondi-
tioner in isolation and do not compare them. Furthermore,
each preconditioner is computed in double precision, then
converted to the appropriate precision to limit differences
caused by preconditioner differences. In addition to testing
double-precision GMRES and the proposed mixed-precision
GMRES, we also tested a completely single-precision imple-
mentation and reducing the precision of just the precondi-
tioner. In order to use existing uniform-precision kernels, the
input and output of the preconditioner are converted to sin-
gle precision.
Each test was run to reach a backward error of

[b — Azl

2 <1071,

[Allg [l + (15l
Any test requiring more than 300 restarts was considered a
failure, with the tested matrices chosen to all succeed using
the double-precision implementation. At most 100 inner

G3_circuit -

language
mc2depi
ns3Da A
parabolic_fem -
poisson3Db +
rajat31 4
stomach
t2em +
thermal2 A
tmt_unsym
torso2
torso3 -

Relative performance of unpreconditioned GMRES with MGS (top) or CGSR (bottom).

iterations were run before restarting, with three restart strat-
egies tested:

1) just the inner-iteration count,

2) the residual approximation improving by a factor of
10719, and

3) the residual approximation improving by a factor of

107% for the first restart and the same number of
inner iterations after that.

Note that mixed precision was only tested with the third
strategy to prevent the choice of restart strategy from inap-
propriately benefiting it. For each configuration we ran the
code three times, plotting the median, with error bars for
the minimum and maximum. Run times include construct-
ing the preconditioner and any type conversions. The restart
strategy with the smallest median was plotted. Speedups
were computed as the inverse of the geometric mean of the
normalized mixed-precision times.

Our implementation is available at bitbucket.org/icl/
mixed-precision-gmresunder the tag TPDS. We used Kok-
kos 3.1.01, CUDA 10.2.89, MKL 2019.3.199, and GCC
7.3.0. Code was run on a machine with a single NVIDIA
V100 GPU and two Haswell 10-core Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30GHz processors. Each CPU core has a
32 KiB L1 instruction cache, a 32 KiB L1 data cache, and a
256 KiB L2 cache. Each processor has a single 25 MiB L3
cache, and the entire node has 32 GiB of memory. The
V100 card has 80 streaming multiprocessors, a 128 KiB L1
cache for each multiprocessor, a 6 MiB shared L2 cache,
and a 16 GiB memory.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

1032

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

TABLE 2
Inner lteration Counts for Unpreconditioned GMRES
Double Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR
apache2 21 400 21 400 21 500 21 500 29200 29 300
atmosmodj 200 200 300 300 300 300
cagel3 30 30 30 30 45 45
cagel4 30 30 30 30 30 30
crankseg_1 6300 6200 6300 6 300 7 300 5900
CurlCurl_2 9900 9900 9900 9900 12 300 12 300
CurlCurl_4 21100 21100 21100 21 100 26 400 26 400
ecology?2 900 900 900 900 1800 1800
F1l 29200 29200 29 200 29200 - -
FEM_3D_thermal2 300 300 300 300 - -
G3_circuit 28 200 28 200 27 500 28 200 29 200 -
language 29 29 58 58 145 87
mc2depi 10 400 10200 12 100 12 900 19 500 19 500
ns3Da 1400 1400 1400 1400 - -
parabolic_fem 3500 3500 3500 3500 4100 4100
poisson3Db 300 300 300 300 - -
rajat3l 4000 4 000 2900 2 000 1700 2500
stomach 300 300 300 300 300 300
t2em 4 800 4800 4 800 4 800 5100 5100
thermal2 21100 28 500 25 600 28 500 - -
tmt_unsym 500 500 500 500 500 500
torso2 80 80 80 80 - -
torso3 200 200 200 200 300 300
o 2.00
< 150 1
8 1.00 4 :
g 0.75 -
o
2 0.50 -
xe)
[J]
a :
v 025 h T
S 3 2 o2 33 9 v o FITE 38R LI oI DR e >3 3 2
¥ £ U E 9N O» O ©@ 3 5 o E £ c 3 @ % T am ey E 2 5 5 ©
o5& 3 c 88 L00 T 55" 2¢¢ds “egf 55 2 s g
< % © £ 8 g s 5 5 3% £ m & E S & @ s & g
S = 5 © O O 1O 2 5 [S
om v [a)] o o =
m ©
I o
s
o
o 3.00
£ Preconditioner Mixed Single
@ 2.00 A
8 1.50 A
3
2 1.00 -
2 0.75
©°
® 0.50
&
T T
S <© ¢ ? N o o ©® 3 3 ©° E £ £ 35 n 12 a8 g oy £ 2 T
o 9 8 g c e @ 9 O O 3 5 © 2 O c v & T 5 5 5 8 8
= % o o Q v] = — — o P ml c £ S a = 2 2 .u' S
' © g Q £ c S 3 (0] =0 © a8 2 = £ >
© © a 5 9 © o g S =
I o
=
&

Fig. 2. Relative performance of GMRES with a scalar Jacobi preconditioner and MGS (top) or CGSR (bottom).

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

LINDQUIST ETAL.: ACCELERATING RESTARTED GMRES WITH MIXED PRECISION ARITHMETIC 1033
TABLE 3

Inner lteration Counts for GMRES Preconditioned With Jacobi

Double Preconditioner Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR MGS CGSR
af_0_k101 18 200 14 300 16 800 14900 19 800 12700 - -
af_shell9 21 000 20 500 22700 23 600 27 600 28 400 - -
apache?2 11 700 11 700 10 400 10900 9800 8500 16 700 17 200
atmosmodj 200 200 300 300 300 300 300 300
bone010 14 600 19 000 19 100 21 500 25 600 28 200 - -
Bump_2911 3500 3500 4100 3900 4100 4100 16 400 16 600
cagel3 22 19 22 22 22 22 33 33
cageld 22 22 22 19 22 22 22 22
crankseg_1 800 800 800 800 800 800 1300 1200
CurlCurl_2 1500 1500 1500 1500 1500 1500 1500 1500
CurlCurl_4 1900 1900 1900 1900 1900 1900 1900 1900
ecology?2 800 800 800 800 800 800 1600 1600
F1l 3600 3600 3300 3600 3600 3800 - -
FEM_3D_thermal2 60 60 60 60 60 60 - -
G3_circuit 1100 1100 1100 1100 1100 1100 1200 1200
hood 3900 3900 4100 4100 4100 4000 - -
language 29 29 58 58 58 58 145 87
mc2depi 11 000 10 600 13 200 - 12 600 12200 - -
ns3Da 14 300 14 400 14 800 14 600 15000 14 900 - -
parabolic_fem 3600 3600 3700 3700 3700 3700 4400 4400
poisson3Db 400 400 400 400 400 400 - -
pwtk 13 500 18 400 15700 16 600 17 700 20200 - -
rajat31l 600 600 700 700 700 700 700 800
stomach 130 100 130 100 130 130 130 130
t2em 4 800 4800 4800 4 800 4 800 4800 5100 5100
thermal?2 21400 25 300 25 400 25500 22700 25500 29 800 -
tmt_unsym 500 500 500 500 500 500 500 500
torso2 56 47 56 56 56 56 - -
torso3 134 100 100 100 134 134 134 134
venkat01 96 96 96 96 96 96 96 96

First, the results when no preconditioner is used are
shown in Fig. 1. The average speedups for the mixed-pre-
cision approach were 18 percent for MGS and 61 percent
for CGSR. Furthermore, it provided a speedup for most
of the tested matrices and with CGSR almost doubled the
performance on many of the matrices. It only reduced
performance for atmosmodj using MGS and language.
The single-precision implementation only satisfied the
target accuracy on 16 of the 23 problems; for these prob-
lems, it had average speedups of 0 and 35 percent, respec-
tively. The total number of inner iterations was mostly
consistent between the double- and mixed-precision
implementations, as is shown in Table 2, with the single-
precision implementations needing similar or more itera-
tions. The most notable exception is rajat31, which con-
verged in significantly fewer iterations with the mixed-
and single-precision implementations, contributing to its
much higher speedups. We have been unable to deter-
mine the source of this behavior; we speculate that the
floating-point error happens to perturb the Krylov sub-
space to better contain the solution. For language, the
baseline implementation converged after 29 iterations
without restarting, whereas the mixed-precision imple-
mentation restarted once after 29 iterations for a total of
58 iterations. Of the matrices with provided right-hand
sides, atmosmodj had a significant increase in the num-
ber of iterations, but mixed-precision was still able to

achieve a speedup with CGSR; thermal2 also had an
increase in iterations for MGS, but still performed on par
with the baseline. For the matrices with comparable itera-
tion counts, many can achieve approximately a 2x
speedup with CGSR; however, some only obtained mod-
est speedups. These reduced speedups correlate with the
matrices with a high number of nonzeros per row relative
to the size of the basis; thus, transferring the column-
index array of the matrix will have a larger influence on
the runtime. As per Table 1, even matrices with condition
larger than the inverse of single-precision unit roundoff
could be solved more efficiently with the mixed-precision
approach; although, this may depend on the right-hand
side. Finally, the matrices with right-hand sides from the
SuiteSparse collection overall behaved similar to those
with generated right-hand sides.

Second are the results for a scalar Jacobi precondi-
tioner, shown in Fig. 2. The average speedups for the
mixed-precision implementation were 12 and 50 percent
for MGS and CGSR, respectively. The single-precision
preconditioner outperformed the double-precision imple-
mentation in some cases. However, it failed on mc2depi
for CGSR and provided an average slowdown of 8 per-
cent for both orthogonalization schemes on the successful
matrices. The single-precision implementation failed to
satisfy the target accuracy in 11 of the 30 problems; the
remaining problems had average speedups of —8% (i.e., a

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

1034

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

o 2.00
£ Preconditioner Mixed Single
o 1.50 4
%]
©
QO
5 1.00 4 (R
[T ¥
3 II e |
.
o 0.75 A
=
2
o 0.50 1
Q. L]
)
T rr—Tr—TrT—T T Tr—T T Trr—TrrTrrTrrT1T 1T 1T "1 ""17T "1T ""T "1 "T "T "1
o = 0 § & o o o4 1 1 1 > wL F 5 O v g Ao g o n v g T s 9 o o
- O c S5 © 9w w © T T O O © € g m & m B & J o 9 9 g
¥ € ¢ € g 9 o ©» @ 3 S5 O E = 5 ¢ & v e = g d E 2 5 5 ¢
Olmlggmgggﬁuug EU|?‘°UC-L—)°EO g 5 £ £ ¢
Y— — T O = W) I
o' ® © E ¢ 9 S 3 5 9 58255 8 o 2] £ = g
© = & O O I s O £
© o o - a +
m ©
1 o
=
w
w
g2.00
61'50_
@
© 1.00 =y~ 1
= =1] - B]
o 4
g 0.75
o
S 0.50
el
o}
]
Q.
)
O-25IIIIIIIIIIIIIIIIIIIIIIIIIIIII
O=<Do'_En—|-—|-—l|_|_|>U-EDU’WQD®DMUQJE>OOO
- O < 5 ©o o 0o © T T O 9 ®@8 € g m & m £ © J n 0 ¢ 5
¥ € ¢ € § 9 o o @ 3 S5 o E-&D'Clec-EEchoog
o @8 v = ¢ © © $ O O 3 g Y @ o o < Y o © o g 5 = £ £
o ! o o w g5 U v = T 0o w":E = 3 & 8 o 3
I'®m ©®© £ < 2o c £ m g £ o 7 7 < 9]
© z & c 3 3 ¢ o =2 2 5 v E >
-
T o 5] Ja) C g =
m ©
1 Q
=
w
[

Fig. 3. Relative performance of CGSR GMRES with an ILU(0) preconditioner and MGS (top) or CGSR (bottom).

slowdown) and 23 percent, respectively. For MGS, there
were five matrices where the mixed-precision implemen-
tation failed to outperform double precision. For CGSR,
mixed-precision outperformed double-precision for all
matrices except language. The total number of inner
iterations for a matrix was mostly consistent between the
tested configurations, as is shown in Table 3, with lan-
guage again taking twice the iterations and pwtk taking
fewer iterations with MGS compared to CGSR. Like
the non-preconditioned results, better speedups were
achieved on matrices that had a small number of non-
zeros per row relative to the size of the basis, which
relates to the costs of matrix-vector products compared to
orthogonalization.

Third are the results for an ILU(0) preconditioner,
shown in Fig. 3. The average speedup for mixed-precision
was —9% and —7% for MGS and CGSR, respectively (i.e.,
a slowdown). For the single-precision preconditioner, the
speedups were —8% and —9% instead. There are a few
factors that we attribute the lack of improvement to. The
single-precision implementation failed to produce an
accurate enough solution to 7 of the problems; the
remaining problems had average speedups of —11% and
—10%, respectively. First, both sparse triangular solves
have limited parallelism for the GPU to exploit, particu-
larly when there are few nonzeros per row; this results in
the GPU bandwidth being underutilized and limited ben-
efit by reducing the size of the data. Furthermore, the
poor performance of the triangular solves causes them to
make up a large part of the performance. Second, the

factorization is done in double-precision for both imple-
mentations, making it a fixed cost in the performance.
Third, because of the effectiveness of the preconditioner,
a high percentage of matrices can be solved without
restarting in double-precision; however, the mixed-preci-
sion implementation must always restart at least once.
These restarts incur overhead by computing the solution
update and new residual, and reduce the rate of conver-
gence for some matrices, increasing the iteration count,
by discarding information on the old Krylov subspace
and interfering with GMRES’s superlinear conver-
gence [35]. Table 4 shows the relevant iteration counts
and that the baseline can converge without restarting for
11 out of the 29 matrices.

Finally, are the results for an ILU(0) preconditioner with
five Jacobi iterations for triangular solves, shown in Fig. 4.
The speedup was 8 and 13 percent for MGS and CGSR,
respectively. Additionally, the single-precision precondi-
tioner was able to achieve some improvement overall,
with speedups of 3 and 4 percent, respectively. The single-
precision implementation failed to produce an accurate
enough solution to 3 of the problems; the remaining prob-
lems had average speedups of 4 and 4 percent, respec-
tively. Note that while the triangular solves have been
improved, the other factors limiting the improvement of
the regular ILU(0) preconditioner remain. Table 5 shows
the iteration counts and that the baseline only needed to
restart on 5 of the 13 matrices.

While testing the performance, we discovered
that using CGSR provides better performance in GPU-

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

LINDQUIST ET AL.: ACCELERATING RESTARTED GMRES WITH MIXED PRECISION ARITHMETIC

1035
TABLE 4

Inner lteration Counts for GMRES Preconditioned With ILU(0)

Double Preconditioner Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR MGS CGSR
af_0_k101 4500 4 400 5500 7700 5200 6 600 7 700 7 800
af_shell9 2200 2200 2200 2200 2400 2500 - -
apache2 600 600 600 600 800 800 700 700
atmosmodj 82 82 82 82 200 164 200 164
BenElechil 3900 4300 4 600 4500 4200 4500 - -
bone010 1200 1200 1200 1200 1200 1200 2200 4700
cagel3 7 7 8 8 8 8 12 12
cageld 7 7 7 7 8 8 8 8
crankseg_1 200 200 200 200 200 200 400 300
CurlCurl_2 600 600 600 600 600 600 700 700
CurlCurl_4 1400 1400 1400 1400 1400 1400 1700 1700
ecology?2 200 200 200 200 200 200 300 300
Fl 1 000 1 000 1000 1000 1 000 1000 - -
FEM_3D_thermal2 10 10 12 12 12 12 - -
G3_circuit 200 200 200 200 300 300 300 300
language 9 9 14 14 14 14 28 42
marinel 300 300 300 300 300 300 300 300
mc2depi 1700 1700 1600 1600 1700 1700 1800 1700
ns3Da 200 200 200 200 200 200 - -
parabolic_fem 800 800 800 800 800 800 900 900
poisson3Db 100 100 174 174 174 174 - -
rajat31l 10 10 9 9 18 18 18 18
stomach 17 17 18 18 20 18 20 18
t2em 600 600 600 600 600 600 600 600
thermal?2 4800 5100 5100 5100 5200 5100 5700 5700
tmt_unsym 200 200 200 200 200 200 200 200
torso2 11 11 12 12 12 12 - -
torso3 35 35 48 48 48 48 48 48
venkat01 12 12 12 12 12 12 12 12

accelerated GMRES compared to MGS, despite the extra
orthogonalization. However, results showing this perfor-
mance difference do not appear in literature, outside of a
few assertions that CGSR is better for GPU-accelerated
systems [19], [41]. The overall speedup is higher for sim-
pler preconditioners and the mixed-precision implemen-
tation, as shown in Table 6. Recall that MGS requires j
dot-products alternated with j vector additions for the jth
inner iteration while CGSR merely requires four matrix-
vector products. Thus, CGSR launches significantly fewer

2.00
@ Preconditioner Mixed Single
¢ 1.50 H
©
o)
o
é) Ill M .-
o 1.00 4= - s &
2 1
©
o
o 0.75
2]
T T T T T T T T T T T T T
m < () © E Ke] K E [E o m —
— oD N [a) [S] = o o o
2 o ® m & m © ¢ 2 > a0 0 =
D O 3w e g § E € 5 5 &8
© c O c Y o o S 5 8 8 ¢
O U c = & S 9] | c
© _8 K] %) £ G>J
- s O €
fos o -~
@©
o

kernels which reduces overhead; furthermore, high GPU
utilization is easier to obtain with larger kernels than
smaller ones. The better speedup for mixed- and single-
precision implementations likely comes from reductions
in the cost of the kernel’s execution making the kernel
launches more costly relative to the total time. Similarly,
when GMRES uses a cheaper preconditioner, it spends a
higher percentage of its runtime doing the orthogonaliza-
tion which results in a better speedup for switching from
MGS to CGSR.

Speedup over baseline

ym -

T T T T T T T T T T T T
m < (] © E Ke) < E o~ o m —
— — ()] [a)] [a) = o] E o (e} o
9 ¢ 8 m = @m & & £ 7 2 2 F
o ()] =} wn | c £ i £ c o o ~
© © o < Y o o o D5, ¥ + T
o v C > 0 +— c | [0]

©) n w e - >
- © IS

© o

= o =

©

[«

Fig. 4. Relative performance of CGSR GMRES with an ILU(0) preconditioner using five Jacobi iterations for triangular solves and MGS (top) or CGSR

(bottom).

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

1036 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022
TABLE 5
Inner Iteration Counts for GMRES Preconditioned Using ILU(0) With Five Jacobi Iterations for Triangular Solves
Double Preconditioner Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR MGS CGSR
cagel3 7 7 8 8 8 8 12 12
cageld 7 7 8 8 8 8 8 8
language 9 9 14 14 14 14 21 35
ns3Da 200 200 200 200 200 200 - -
parabolic_fem 800 800 800 800 800 800 900 900
poisson3Db 100 100 174 174 174 174 - -
stomach 21 21 22 22 22 22 22 22
t2em 800 800 800 800 800 800 800 800
thermal2 5100 5100 5000 5100 5100 5100 5700 5 800
tmt_unsym 200 200 200 200 200 200 200 200
torso2 11 11 12 12 12 12 - -
torso3 48 48 64 64 64 64 64 64
venkat01 16 16 16 16 16 16 16 16
TABLE 6

Average Speedup of CGSR-GMRES versus MGS-GMRES for
Various Configurations

Double Mixed Single
Preconditioner Speedup Speedup Speedup
Identity 36% 87% 181%
Jacobi 34% 79% 116%
ILU(0) 4% 7% 4%
ILU(0) with Jacobi 8% 13% 4%

6 CONCLUSION

Like previous works with similar uses of precision [7], [18],
[19], [20], our mixed-precision implementation never
required more than twice the total inner iterations than the
double-precision implementation, and usually much less
than twice the total inner iterations when many restarts are
needed. This reinforces the ideas provided by Section 3. Fur-
thermore, looking at the matrices tested without a precondi-
tioner, as listed in Table 1, none of the matrices satisfy
n*u < 1,letalone O(n*j*)ux(AV;) < 1.S0, cs(n, j) from The-
orem 1 can likely be significantly improved, which correlates
with the analysis of the types of dot-product bounds used.

Between the theoretical results in Section 3 and the exper-
imental results in Section 5, there is strong evidence that this
mixed-precision approach for GMRES retains double-preci-
sion accuracy. Performance improvement was less clear cut,
with the ILU(0) preconditioner seeing a slowdown. How-
ever, tests with GPU-friendly preconditioners and baselines
that restarted consistently showed speedups, especially
with CGSR orthogonalization.

There are three main future directions for this work. The
first direction is to understand the performance of mixed-
precision GMRES on multi-GPU and distributed systems.
These systems are important for solving problems too large
to be solved effectively or even fit on a single compute unit.
However, they have additional communication costs to coor-
dinate and exchange data. The second direction is to investi-
gate the use of alternative data representations. 16-bit
floating-point formats are one possibility but reduce the

accuracy by half compared to single precision. However,
alternative techniques, such as compression, may allow
using less than 32-bits per value without significantly reduc-
ing accuracy. Furthermore, it may be possible to reduce the
memory needed for matrix indices. The third direction is to
extend these ideas to other formulations of GMRES and other
Krylov methods. One particularly important class of GMRES
variants are the communication avoiding and pipelined
algorithms, which try to reduce communication overheads
when running on distributed systems.

ACKNOWLEDGMENTS

This work was supported in part by the University of Ten-
nessee under Grant MSE E01-1315-038 as Interdisciplinary
Seed funding, in part by UT Battelle subaward under Grant
4000123266 and in part by National Science Foundation
under OAC under Grant 2004541.

REFERENCES

[1] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM]. Sci. Stat. Comput., vol. 7, no. 3, pp. 856-869, 1986.

[2] W. E. Arnoldi, “The principle of minimized iteration in the solu-
tion of the matrix eigenvalue problem,” Quart. Appl. Math., vol. 9,
pp- 17-29, 1951.

[3] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Phila-
delphia, PA, USA: SIAM Press, 2003.

[4] C.C.Paige and Z. Strakos, “Residual and backward error bounds
in minimum residual Krylov subspace methods,” SIAM]. Sci.
Comput., vol. 23, no. 6, pp. 1898-1923, May 2002.

[5] L.Giraud,]. Langou, and M. Rozloznik, “The loss of orthogonality
in the Gram-Schmidt orthogonalization process,” Comput. Math.
Appl., vol. 50, no. 7, pp. 1069-1075, Oct. 2005.

[6] L. Giraud, J. Langou, M. Rozloznik, and]. van den Eshof,
“Rounding error analysis of the classical Gram-Schmidt orthogo-
nalization process,” Numerische Mathematik, vol. 101, no. 1, pp. 87—
100, July 2005.

[71 N. Lindquist, P. Luszczek, and J. Dongarra, “Improving the per-
formance of the GMRES method using mixed-precision
techniques,” in Proc. Driving Sci. Eng. Discov. Convergence HPC,
Big Data Al, 2020, pp. 51-66.

[8] A. Abdelfattah et al., “A survey of numerical linear algebra meth-
ods utilizing mixed-precision arithmetic,” Int. J. High Perform.
Comput. Appl., vol. 35, no. 4, pp. 344-369, Mar. 2021.

[9]1 J. H. Wilkinson, Rounding Errors in Algebraic Processes. Princeton,
NJ, USA: Prentice-Hall, 1963.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

LINDQUIST ET AL.: ACCELERATING RESTARTED GMRES WITH MIXED PRECISION ARITHMETIC

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[301

[31]

[32]

A. Buttari,]. Dongarra, J. Langou,]J. Langou, P. Luszczek, and
J. Kurzak, “Mixed precision iterative refinement techniques for
the solution of dense linear systems,” Int. J. High Perform. Comput.
Appl., vol. 21, no. 4, pp. 457-466, Nov. 2007.

L. Giraud, A. Haidar, and L. T. Watson, “Mixed-precision precon-
ditioners in parallel domain decomposition solvers,” in Proc.
Domain Decomposition Methods Sci. Eng. XVII., 2008, pp. 357-364.
M. Baboulin et al., “Accelerating scientific computations with
mixed precision algorithms,” vol. 180, pp. 25262533, 2008.

S. Gratton, E. Simon, D. Titley-Peloquin , and P. Toint, “Exploiting
variable precision in GMRES,” SIAM]. Sci. Comput., 2020,
arXiv:1907.10550.

J. V. D. Eshof and G. L. G. Sleijpen, “Inexact Krylov subspace
methods for linear systems,” SIAM]. Matrix Anal. Appl., vol. 26,
no. 1, pp. 125-153, Jan. 2005.

A. Bouras and V. Frayssé, “Inexact matrix-vector products in Kry-
lov methods for solving linear systems: A relaxation strategy,”
SIAM]. Matrix Anal. Appl., vol. 26, no. 3, pp. 660-678, Jan. 2005.

V. Simoncini and D. B. Szyld, “Theory of inexact Krylov subspace
methods and applications to scientific computing,” SIAM]. Sci.
Comput., vol. 25, no. 2, pp. 454—477, Jan. 2003.

H. Anzt, V. Heuveline, and B. Rocker, “Mixed precision iterative
refinement methods for linear systems: Convergence analysis
based on Krylov subspace methods,” in Proc. 10th Int. Conf. Appl.
Parallel Sci. Comput., 2010, pp. 237-247.

H. Anzt, V. Heuveline, and B. Rocker, “An error correction
solver for linear systems: Evaluation of mixed precision
implementations,” in Proc. High Perform. Comput. Comput. Sci.,
2011, pp. 58-70.

J. I. Aliaga, H. Anzt, T. Grutzmacher, E. S. Quintana-Ort i, and
A. E. Tomas, “Compressed basis GMRES on high performance
GPUs,” 2020, arXiv:2009.12101.

T. Iwashita, K. Suzuki, and T. Fukaya, “ An integer arithmetic-
based sparse linear solver using a GMRES method and iterative
refinement,” in Proc. IEEE/ACM 11th Workshop Latest Adv. Scalable
Algorithms Large-Scale Syst., 2020, pp. 1-8.

E. Agullo, F. Cappello, S. Dj, L. Giraud, X. Liang, and N. Schen-
kels, “Exploring variable accuracy storage through lossy compres-
sion techniques in numerical linear algebra: A first application to
flexible GMRES,” Inria Bordeaux Sud-Ouest, Paris, France, Res.
Rep. RR-9342, 2020.

A. Buttari, . Dongarra, J. Kurzak, P. Luszczek, and S. Tomov,
“Using mixed precision for sparse matrix computations to
enhance the performance while achieving 64-bit accuracy,” ACM
Trans. Math. Softw., vol. 34, no. 4, pp. 17:1-17:22, Jul. 2008.

M. Emans and A. van der Meer, “Mixed-precision AMG as linear
equation solver for definite systems,” Procedia Comput. Sci., vol. 1,
no. 1, pp. 175-183, 2010.

M. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi, “Solving
lattice QCD systems of equations using mixed precision solvers on
GPUs,” Comput. Phys. Commun., vol. 181,no. 9, pp. 1517-1528, 2010.
R. Strzodka and D. Goddeke, “Pipelined mixed precision algo-
rithms on FPGAs for fast and accurate PDE solvers from low pre-
cision components,” in Proc. 14th Annu. IEEE Symp. Field-
Programmable Custom Comput. Mach., 2006, pp. 259-270.

H. Anzt, G. Flegar, T. Griitzmacher, and E. S. Quintana-Ort {,
“Toward a modular precision ecosystem for high-performance
computing,” Int. . High Perform. Comput. Appl., vol. 33, no. 6,
pp- 1069-1078, Nov. 2019.

O. S. Lawlor, “In-memory data compression for sparse matrices,”
in Proc. 3rd Workshop Irregular Appl. Architectures Algorithms,
Nov. 2013, pp. 1-6.

N. Lindquist, “Reducing memory access latencies using data com-
pression in sparse, iterative linear solvers,” Bachelor’s thesis, Saint
John’s Univ., New York, NY, USA, Apr. 2019.

C. C. Paige, M. Rozloznik, and Z. Strakos, “Modified Gram-Schmidt
(MGS), least squares, and backward stability of MGS-GMRES,”
SIAM J. Matrix Anal. Appl., vol. 28, no. 1, pp. 264-284, 2006.

J. Drkosovd, A. Greenbaum, M. Rozloznik, and Z. Strakos,
“Numerical stability of GMRES,” BIT Numer. Math., vol. 35, no. 3,
pp- 309-330, Sept. 1995.

E. Carson and N. J. Higham, “Accelerating the solution of linear
systems by iterative refinement in three precisions,” SIAM]. Sci.
Comput., vol. 40, no. 2, pp. A817-A847, Jan. 2018.

N. J. Higham and T. Mary, “A new approach to probabilistic
rounding error analysis,” SIAM]. Sci. Comput., vol. 41, no. 5,
pp- A2815-A2835, Jan. 2019.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

1037

N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd
ed. Philadelphia, PA, USA: SIAM, 2002.

H. Anzt, J. Dongarra, and E. S. Quintana-Orti, “Adaptive precision
solvers for sparse linear systems,” in Proc. 3rd Int. Workshop Energy
Efficient Supercomput., 2015, pp. 2:1-2:10.

H. A. Van der Vorst and C. Vuik, “The superlinear convergence
behaviour of GMRES,”]. Comput. Appl. Math., vol. 48, no. 3,
pp. 327-341, 1993.

H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory
access patterns,” |. Parallel Distrib. Comput., vol. 74, no. 12,
pp- 3202-3216, 2014.

T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1-25,
Nov. 2011.

H. Avron, A. Druinsky, and S. Toledo, “ Spectral condition-num-
ber estimation of large sparse matrices,” Numer. Linear Algebra
Appl., vol. 26, no. 3, May 2019, Art. no. €2235.

H. Anzt, E. Chow, and]. Dongarra, “Iterative sparse triangular
solves for preconditioning,” in Proc. Eur. Conf. Parallel Process.,
2015, pp. 650-661.

E. Chow, H. Anzt,]. Scott, and]. Dongarra, “Using Jacobi itera-
tions and blocking for solving sparse triangular systems in incom-
plete factorization preconditioning,” J. Parallel Distrib. Comput.,
vol. 119, pp. 219-230, Sep. 2018.

J. Dubois, C. Calvin, and S. Petiton, “ Performance and numerical
accuracy evaluation of heterogeneous multicore systems for Kry-
lov orthogonal basis computation,” in Proc. Int. Conf. High Perform.
Comput. Comput. Sci., 2011, pp. 45-57.

Neil Lindquist received the BA degree in com-
puter science and mathematics from Saint John'’s
University, Collegeville, Minnesota. He is cur-
rently working toward his graduate degree with
Innovative Computing Laboratory, University of
Tennessee, Knoxville’s Tickle College of Engi-
neering. His research interests include numerical
linear algebra, and the effects of data representa-
tion on performance and accuracy.

Piotr Luszczek received the BS and MSc degrees
in computer science from the AGH University of Sci-
ence and Technology in Krakéw, Poland, and the
PhD degree in computer science from the University
of Tennessee Knoxville. He is currently a research
assistant professor with Innovative Computing Lab-
oratory, University of Tennessee, Knoxville’s Tickle
College of Engineering. His research interests
include benchmarking, numerical linear algebra for
high-performance computing, automatic perfor-
mance tuning for modern hardware, and stochastic

models for performance. He has more than a decade of experience develop-
ing HPC numerical software for large scale, distributed memory systems
with multicore processors and hardware accelerators. He is currently a co-
Pl for the ECP xSDK project, the primary goal of which is to improve access
to world-class software on exascale machines.He was the recipient of Goo-
gle Scholar h-index of 38 and the i10-index of 105.

Jack Dongarra (Fellow, IEEE) is currently an Amer-
ican University distinguished professor of computer
science with Electrical Engineering and Computer
Science Department, University of Tennessee, a
distinguished research staff member with Computer
Science and Mathematics Division, Oak Ridge
National Laboratory, and an adjunct professor with
Computer Science Department, Rice University. He
is the Turing Fellow with the Schools of Computer
Science and Mathematics, University of Manches-
ter, and a Faculty Fellow with the Institute for

Advanced Study, Texas A&M University. He is the founding director of Inno-
vative Computing Laboratory.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2022 at 18:16:05 UTC from IEEE Xplore. Restrictions apply.

