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Abstract

This work studies finite-sample properties of the risk of the minimum-norm interpolating
predictor in high-dimensional regression models. If the effective rank of the covariance
matrix Σ of the p regression features is much larger than the sample size n, we show that
the min-norm interpolating predictor is not desirable, as its risk approaches the risk of
trivially predicting the response by 0. However, our detailed finite-sample analysis reveals,
surprisingly, that this behavior is not present when the regression response and the features
are jointly low-dimensional, following a widely used factor regression model. Within this
popular model class, and when the effective rank of Σ is smaller than n, while still allowing
for p ! n, both the bias and the variance terms of the excess risk can be controlled, and
the risk of the minimum-norm interpolating predictor approaches optimal benchmarks.
Moreover, through a detailed analysis of the bias term, we exhibit model classes under
which our upper bound on the excess risk approaches zero, while the corresponding upper
bound in the recent work Bartlett et al. (2020) diverges. Furthermore, we show that
the minimum-norm interpolating predictor analyzed under the factor regression model,
despite being model-agnostic and devoid of tuning parameters, can have similar risk to
predictors based on principal components regression and ridge regression, and can improve
over LASSO based predictors, in the high-dimensional regime.

Keywords: Interpolation, minimum-norm predictor, finite sample risk bounds, predic-
tion, factor models, high-dimensional regression

1. Introduction

Motivated by the widely observed phenomenon that interpolating deep neural networks
generalize well despite having zero training error, there has been a recent wave of literature
showing that this is a general behaviour that can occur for a variety of models and prediction
methods (Hastie et al., 2019; Feldman, 2019; Muthukumar et al., 2019; Mei and Montanari,
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2019; Belkin et al., 2019a, 2018b,a, 2019b, 2018c; Jun et al., 2019; Mitra, 2019; Ma et al.,
2017; Liang and Rakhlin, 2018; Xing et al., 2018; Bartlett et al., 2020).

One of the simplest settings is the prediction of a real-valued response y ∈ R from
vector-valued features X ∈ Rp via generalized least squares (GLS). The GLS estimator
α̂ = X+y is based on the Moore-Penrose pseudo-inverse of the n × p data matrix X and
response vector y ∈ Rn, obtained from n i.i.d. copies (Xi, yi), i ∈ [n], of (X, y), with p > n.
It coincides with the minimum-norm estimator, which in the case that X has full rank,
interpolates the data. The interpolation property of α̂ means that Xα̂ = y. We refer to the
corresponding predictor as the minimum-norm interpolating predictor.

This paper is devoted to the finite-sample statistical analysis of prediction via the gen-
eralized least squares estimator α̂. We first note that ideally, the prediction risk R(α̂) :=
EX,y

[
(X"α̂− y)2

]
of α̂ approaches the optimal risk infα∈Rp EX,y

[
(X"α− y)2

]
. Unfortu-

nately, this often turns out not to be the case. Theorem 1, stated in Section 2, proves that
the ratio R(α̂)/R(0) approaches 1 in the regime re(ΣX) ! n. Clearly, this is undesirable as
R(0) is the non-optimal null risk of trivially predicting via the zero weight vector, ignoring
the data. The effective rank re(ΣX) of the p × p covariance matrix ΣX of X is defined as
the ratio between the trace of ΣX and its operator norm, and is at most equal to its rank,
re(ΣX) ≤ p. In particular, if ΣX is well-conditioned, with re(ΣX) & p, then the prediction
risk R(α̂) of the minimum norm interpolator approaches the trivial risk R(0), whenever
p ! n. This was previously observed, from a different perspective, in Hastie et al. (2019).

This opens the question as to whether, in the high-dimensional p > n setting, there
exist underlying distributions of the data that allow R(α̂) to be close to an optimal risk
benchmark. The recent work Bartlett et al. (2020) provides a positive answer to this
question, primarily focusing on sufficient conditions on the spectrum of ΣX that can lead
to consistent prediction.

In this paper we show that the joint structure of (X, y), not just the marginal structure
of X as considered in Bartlett et al. (2020), is important to understanding the conditions
under which consistent prediction is possible with α̂. In particular, we provide a detailed
and novel finite-sample analysis of the prediction risk R(α̂) when the pair (X, y) follows a
linear factor regression model, y = Z"β + ε, X = AZ + E, in the regime

p ! n but re(ΣX) < c · n,

for an absolute constant c > 0. Here (X, y) ∈ Rp × R are observable random features and
response, Z ∈ RK is a vector of unobservable sub-Gaussian random latent factors with
K < p, A ∈ Rp×K is a loading matrix relating Z to X, and E and ε are mean-zero sub-
Gaussian noise terms independent of Z and each other. Under this model, the observation
made in inequality (7) of Section 3.1 below shows that re(ΣX) is less than c · n as long as
K < c1 · n and the signal-to-noise ratio ξ := λK(AΣZA")/‖ΣE‖ ! p/n ≥ c2 · re(ΣE)/n for
suitable absolute constants c1, c2 > 0. Here ΣZ and ΣE denote the covariance matrices of
Z and E respectively, and ξ is the ratio between the Kth eigenvalue of AΣZA" and the
operator norm of ΣE . Section 3 is dedicated to deriving population-level properties of the
factor regression model that are relevant to the performance of the GLS α̂.

Our primary contribution is the study of R(α̂) under the factor regression model, and
in this regime. In Section 4 we present a detailed finite-sample study of the risk R(α̂) of the
model-agnostic interpolating predictor ŷx = X"α̂ in factor regression models with p > n and
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K < n, but with K allowed to grow with n. Our main result is Theorem 16 in Section 4.2.
It provides a finite-sample bound on the excess risk R(α̂)−σ2

ε of α̂ in the high-dimensional
setting p > n, relative to the natural risk benchmark E[ε2] := σ2

ε in the factor regression
model; the excess risk relative to the benchmark infα∈Rp EX,y

[
(X"α− y)2

]
is also derived in

this theorem. As a consequence, we obtain sufficient conditions under which the prediction
risk R(α̂) approaches the optimal risk, by adapting to the embedded dimension K. The
excess risk not only decreases beyond the interpolation boundary to a non-zero value as
observed in Hastie et al. (2019), but does indeed decrease to zero, as desired. We remark
that at least for Gaussian (X, y), Bartlett et al. (2020) provides an alternative bound to
Theorem 16. However, Theorem 16 provides an improved rate for typical factor regression
models, and in particular provides examples when the upper bound on the excess risk in
Bartlett et al. (2020) diverges, yet our results show that prediction is consistent; see Section
4.3 for a detailed comparison.

Table 1 below offers a snap-shot of our main results. The first row is a reminder that
all results are established for p > n, while the second row separates the regimes of re(ΣX)
larger or smaller than n. The third row specifies the assumptions on (X, y), namely sub-
Gaussianity or, in addition, the factor regression model. The last row gives finite-sample
bounds. The risk bounds in the bottom right panel are stated under the assumptions
that the operator norms ‖ΣZ‖ and ‖ΣE‖ are constant and re(ΣE) & p. These simplifying
assumptions are made here for transparency of presentation and are not made in the body of
the paper. The bottom right panel shows that the variance term V decreases if p ! n log n

p > n

re(ΣX) > C · n re(ΣX) < c · n, K < n

(X, y) sub-Gaussian
(X, y) sub-Gaussian

y = β"Z + ε

X = AZ + E

∣∣∣R(α̂)
R(0) − 1

∣∣∣ "
√

n/re(ΣX)

R(α̂)− σ2
ε " BZ + V

BZ = ‖β‖2 · p/(n · ξ)
V = {(n/p) + (K/n)} log n

Table 1: Behavior of risk R(α̂). Here C > 1, c > 0 are absolute constants with C > c. (i)
R(α̂) approaches null risk R(0) for well-conditioned matrices ΣX when p ! n (left
panel); (ii) Variance term vanishes when p ! n log n and K log n ) n; Bias term
vanishes for ξ := λK(AΣZA")/‖ΣE‖ ! ‖β‖2p/n (right panel).

and K log n ) n and that the bias term BZ decreases provided that the signal-to-noise ratio
ξ := λK(AΣZA")/‖ΣE‖ is large enough. Specifically, we need that ξ ! ‖β‖2p/n, which for
‖β‖2 " K amounts to ξ ! p ·K/n. For instance, as explained in Section 3.1, a common,
natural situation is ξ & p and the bias is small for K ) n. In clustering problems where
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the p coordinates of X can be clustered in K groups of approximately eqal size m ≈ p/K
as discussed in Section 3.1, we find ξ & p/K. In that case, BZ vanishes if n ! K2.

We emphasize that a condition on the effective rank of ΣX alone is not enough to
guarantee that R(α̂) is close to the optimal risk σ2

ε . As argued in Section 3.4, if we assume
the model X = AZ + E, but instead of assuming that y is also a function of Z, as in this
work, we have a standard linear model y = X"θ + η, with θ ∈ Rp, then the bias term
cannot be ignored, unless ‖θ‖ → 0, which is typically not the case in high dimensions.
In Section 3.3 we show that the best linear predictor α∗ = Σ+

XΣXy, that minimizes the
risk EX,y

[
(X"α− y)2

]
, does in fact satisfy ‖α∗‖ → 0 under the factor regression model

y = Z"β + ε and thus that this is a natural setting for studying when the GLS generalizes
well. From this perspective, this work illustrates the critical role played in the risk analysis
by a modeling assumption in which (X, y) are jointly low-dimensional.

Finally, we remark that prediction under factor regression models has been well studied,
starting with classical factor analysis that can be traced back to the 1940s (Joreskog, 1967,
1969, 1970, 1977; Lawley, 1940, 1941, 1943), including the pertinent work Anderson and
Rubin (1956). A number of works ranging from purely Bayesian (Aguilar and West, 2000;
Bhattacharya and Dunson, 2011; Hahn et al., 2013; Carvalho et al., 2008) to variational
Bayes (Blei et al., 2017) to frequentist (Bing et al., 2019; Fan et al., 2013a, 2011, 2013b,
2017; Izenman, 2008; Jolliffe, 1982; Stock and Watson, 2002a,b, 2012) show that this class
of models can be a useful framework for constructing and analyzing predictors of y from
high-dimensional and correlated data. The literature on finite-sample prediction bounds
under factor regression models is relatively limited, with instances provided by Bing et al.
(2019); Fan et al. (2013a, 2011, 2013b, 2017), and most existing results established for K
fixed. Relevant for the work presented here, the (non-Bayesian) prediction schemes that
have been studied in generic factor regression models are often variations of principal com-
ponent regression in K < n fixed dimensions, and therefore typically do not interpolate the
data. From this perspective, the results of this paper complement this existing literature,
by studying the behavior of interpolating predictors in factor regression. Furthermore, in
Section 4.4 we derive an upper bound on the excess risk of prediction based on principal
components, under the factor regression model, and find that it is comparable to the excess
risk bound of the interpolating predictor, in the regime p ! n, provided that the covariance
matrix ΣE of the noise is well conditioned. This provides further motivation for the use of
α̂ in the setting discussed here.

The rest of the paper is organized as follows.
Section 2 derives sufficient conditions on ΣX and σ2

y := E[y2] under which R(α̂) ap-
proaches the trivial risk R(0). This section motivates the remainder of the paper, in which
we study the risk behaviour when these conditions are violated.

Section 3 introduces the factor regression model (5) and derives population-level prop-
erties that are relevant to the performance of the GLS α̂. Bounds on the effective rank and
spectrum of ΣX under (5) are given in Section 3.1, and reveal what key quantities to control
in order to obtain non-trivial prediction risk bounds associated with the GLS estimate α̂.
Target risk benchmarks then are introduced in Section 3.2.

Section 3.3 investigates at the population level the properties of the best linear pre-
dictor α∗ = Σ+

XΣXy, under the factor regression model. We demonstrate the interesting
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phenomenon that under model (5), ‖α∗‖ → 0 and yet R(α∗)/R(0) ,→ 1. We argue that this
is in contrast to the behaviour of the best linear predictor θ in a standard linear regression
model in which E[y|X] = X"θ and typically ‖θ‖ is fixed or growing with p. We give a com-
parison between factor regression and standard linear regression in Section 3.4, commenting
on assumptions on the operator norm of ΣX , and on implications for prediction with the
GLS.

The remainder of the paper, Section 4, contains our analysis of the GLS α̂ and its
prediction risk, under the factor regression model. Section 4.1 gives a preview of our main
findings. In the noiseless case ΣE = 0, we have that ‖α̂‖ → 0 (just like ‖α∗‖ → 0), but
R(α̂)−R(α∗) achieves the parametric rate K/n, up to a log(n) factor. In fact, we establish
X"α̂ = Z"β̂ for the least squares estimate β̂ based on observed (Z,y).

Section 4.2 contains our main results in the more realistic setting ΣE ,= 0. It estab-
lishes when α̂ interpolates, and shows that typically ‖α̂‖ → 0, as in the noiseless case.
Furthermore, in agreement with the findings in Section 4.1, R(α̂)/R(0) does not approach
1. Instead, the finite-sample risk bound in Theorem 16 shows that under appropriate con-
ditions on re(ΣE) and the signal-to-noise ratio ξ, the excess risk R(α̂)−R(α∗) converges to
zero.

Section 4.3 presents a comparison with recent related work. In particular, we give
a detailed comparison with Bartlett et al. (2020), which provides risk bounds for ŷx =
X"α̂, for sub-Gaussian data (X, y), and offers sufficient conditions on ΣX for optimal risk
behavior, with emphasis on the optimality of the variance component of the risk. We present
simplified versions of the generic bias and variance bounds obtained in Bartlett et al. (2020)
under the factor regression model, which are derived in Appendix C.4. Table 2 of Section
4.3 summarizes our findings that the bound on the excess risk in Bartlett et al. (2020) is
often larger in order of magnitude than the bound given in Theorem 16 of Section 4.2. In
particular, we exhibit instances of the factor regression model class under which the excess
risk upper bound in Bartlett et al. (2020) diverges, yet our upper bound approaches zero.
We also compare our work to Mei and Montanari (2019), which gives an asymptotic analysis
of the ridge regression estimator with arbitrarily small (but non-zero) regularization for a
type of factor regression model.

Section 4.4 is devoted to a comparison with prediction via principal component regres-
sion and )1 and )2 penalized least squares, under the factor regression model.

All proofs and ancillary results are deferred to the Appendix. In particular, Theorem
30 in the Appendix complements Theorem 16 by showing the risk behavior of α̂ for n > c ·p
for an absolute constant c > 0, and is included for completeness.

1.1 Notation

Throughout the paper, for a vector v ∈ Rd, ‖v‖ denotes the Euclidean norm of v.
For any matrix A ∈ Rn×m, ‖A‖ denotes the operator norm and A+ the Moore-Penrose
pseudo-inverse. See Appendix E for a definition of the pseudo-inverse and a summary of its
properties used in this paper.
For a positive semi-definite matrix Q ∈ Rp×p, and vector v ∈ Rp, we define ‖v‖2Q := v"Qv,
let λ1(Q) ≥ λ2(Q) ≥ · · · ≥ λp(Q) be its ordered eigenvalues, κ(Q) := λ1(Q)/λp(Q) its
condition number, and re(Q) := tr(Q)/‖Q‖ its effective rank.
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The identity matrix in dimension m is denoted Im.
The set {1, 2, . . . ,m} is denoted [m].
Letters c, c′, c1, C, etc., are used to denote absolute constants, and may change from line
to line.

2. Interpolation and the Null Risk

Given i.i.d. observations (X1, y1), . . . , (Xn, yn), distributed as (X, y) ∈ Rp×R, let X ∈ Rn×p

be the corresponding data matrix with rows X1, . . . Xn, and let y := (y1, . . . , yn)" ∈ Rn. For
the rest of the paper, unless specified otherwise, we make the blanket assumption that p > n.

We are interested in studying the prediction risk associated with the minimum )2-norm
estimator α̂ defined as

α̂ := argmin
{
‖α‖ : ‖Xα− y‖ = min

u
‖Xu− y‖

}
. (1)

We define the prediction risk for any α ∈ Rp as

R(α) := EX,y[(X
"α− y)2]. (2)

The expectation is over the new data point (X, y), independent of the observed data (X,y).
In particular, since α̂ is independent of (X, y), we have R(α̂) = EX,y

[
(X"α̂− y)2 |X,y

]
=

EX,y
[
(X"α̂− y)2

]
. If the data matrix X has full rank of n < p, then minu∈Rp ‖Xu−y‖ = 0

and
α̂ := arg min

α: Xα=y
‖α‖. (3)

Regardless of the rank of X, Equation (1) always has the closed form solution α̂ = X+y,
where X+ is the Moore-Penrose pseudo-inverse of X; we prove this fact in section D.1 for
completeness. We begin our consideration of the minimum-norm estimator α̂ = X+y by
showing that its risk R(α̂) approaches the null risk R(0) whenever the effective rank re(ΣX)
grows at a rate faster than n. Proofs for this section are contained in Appendix A. We
make the following distributional assumption.

Assumption 1. X = Σ1/2
X X̃ and y = σyỹ, where X̃ ∈ Rp has independent entries, and

both X̃ and ỹ have zero mean, unit variance, and sub-Gaussian constants bounded by an
absolute constant.

Theorem 1. Suppose Assumption 1 holds and re(ΣX) > C · n for some absolute constant
C > 1 large enough. Then, with probability at least 1−ce−c′n for absolute constants c, c′ > 0,

∣∣∣∣
R(α̂)

R(0)
− 1

∣∣∣∣ "
√

n

re(ΣX)
. (4)

As a consequence, α̂ is not a useful estimator in the regime re(ΣX) ! n, as trivially
predicting with the null vector 0 ∈ Rp will give asymptotically equivalent results. This
occurs, for instance, when ΣX is well conditioned and p/n → ∞. Figure 2 in Hastie et al.
(2019) depicts an example of this behavior: it plots E[‖α̂−α‖2|X] as a function of the ratio
γ = p/n, where (X, y) follows the linear model y = α"X + ε with ΣX = Ip.
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This motivates the study of R(α̂) when the condition re(ΣX) > C · n of Theorem 1
fails. The recent work Bartlett et al. (2020) developed bounds for the excess risk R(α̂) −
infα∈Rp R(α) under the linearity assumption E[y|X] = X"θ (for some θ ∈ Rp), and used
this to show that the excess risk goes to zero for a certain class of benign covariance matrices
that in particular satisfy re(ΣX)/n → 0 and ‖ΣX‖ = 1.

In this work we are interested in obtaining risk bounds for R(α̂) under a different
model, the factor regression model (5) given below. In this model, while re(ΣX)/n remains
bounded, ‖ΣX‖ typically grows with p (see Lemma 4 below), in contrast to the assumption
‖ΣX‖ = 1 of the definition of benign matrices in Bartlett et al. (2020). Furthermore, the
results in Bartlett et al. (2020) only apply to model (5) when (X, y) are assumed to be
jointly Gaussian. In this case, their bound offers an alternative result, which we compare
to our main result in Section 4.3 below. We find that in this common regime, we obtain a
tighter bound.

3. Factor Regression Models

In this paper, we consider the factor regression model (FRM). This is a latent factor model
in which we single out one variable, y ∈ R, to emphasize its role as the response relative to
input covariates X ∈ Rp, while both X and y are directly connected to a lower dimensional,
unobserved, random vector Z ∈ RK , with mean zero and K < n. Specifically, the factor
regression model postulates that

X = AZ + E, y = Z"β + ε, (5)

where β ∈ RK is the latent variable regression vector, A ∈ Rp×K is a unknown loading
matrix, and ε ∈ R and E ∈ Rp are mean zero additive noise terms independent of one
another and of Z. We let ΣE := Cov(E), ΣZ := Cov(Z) and σ2

ε := Var(ε). For the remainder
of the paper we will assume that the data consist of n i.i.d. pairs (Xi, yi) satisfying (5), in
that

Xi = AZi + Ei, yi = Z"
i β + εi ∀i ∈ [n], (6)

where the latent factors Z1, . . . , Zn ∈ RK are i.i.d. copies of Z, and the error terms Ei ∈ Rp

and εi ∈ R for i = 1, . . . , n are i.i.d. copies of E and ε, respectively. We recall that X ∈ Rn×p

is the matrix with rows X1, . . . , Xn and y ∈ Rn is the vector with entries y1, . . . , yn. We
similarly let Z ∈ Rn×K be the matrix with rows Z1, . . . , Zn.

The remainder of this section is dedicated to deriving population-level properties of the
factor regression model that are relevant to the performance of the GLS α̂. In particular,
we will (1) bound the effective rank of ΣX , (2) bound the eigenvalues of ΣX , (3) define
two natural risk benchmarks and show when they are asymptotically equivalent, (4) show
that the weight vector of the best linear predictor has vanishing norm, and (5) prove that,
nonetheless, the null risk R(0) is clearly sub-optimal. The first two properties reflect the
low-rank structure of the covariance matrix ΣX and are presented in Section 3.1. The risk
benchmarks are introduced and analyzed in Section 3.2. Section 3.3 investigates the prop-
erties of the best linear predictor α∗ = Σ+

XΣXy at the population level, showing properties
(4) and (5). The fourth property in particular is a consequence of the joint low-dimensional
structure of (X, y) via the vector of covariances ΣXy. It is a distinct property of the factor
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regression model that sets it apart from the classical regression model where the response
y is linearly related to X via E[y|X] = θ"X. We present a comparison between factor
regression and classical linear regression in Section 3.4.

3.1 Effective Rank and Spectrum of ΣX in the FRM

Theorem 1 and its discussion above imply that in order for the generalized least squares
estimator α̂ to have asymptotically better prediction performance than the trivial estimator
0 ∈ Rp, the ratio re(ΣX)/n must remain bounded as n and p grow, as a first requirement.

Using that ΣX = AΣZA" + ΣE under (5), we find

re(ΣX) =
tr(ΣX)

‖ΣX‖

≤ tr(AΣZA") + tr(ΣE)

‖AΣZA"‖ (since ‖ΣX‖ ≥ ‖AΣZA
"‖)

≤ K +
tr(ΣE)

‖AΣZA"‖ (since tr(AΣZA
") ≤ K‖AΣZA

"‖)

≤ K +
‖ΣE‖

λK(AΣZA")
· tr(ΣE)

‖ΣE‖
, (since ‖AΣZA

"‖ ≥ λK(AΣZA
"))

where we use the convention that tr(ΣE)/‖ΣE‖ = re(ΣE) = 1 if ΣE = 0. We thus have

re(ΣX)

n
≤ K

n
+

1

ξ

re(ΣE)

n
, (7)

where
ξ := λK(AΣZA

")/‖ΣE‖, (8)

can be viewed as a signal-to-noise ratio since ΣX = AΣZA"+ΣE , and we use the convention
that ξ = ∞ and re(ΣE)/ξ = 0 when ΣE = 0. In standard factor regression models (Anderson
and Rubin, 1956), ΣE = Ip, in which case re(ΣE) = p, but in our analysis we allow for a
general ΣE , with possibly smaller re(ΣE). The following simple result follows directly from
(7).

Lemma 2. Under model (5), we have re(ΣX)/n ≤ c3 whenever

K

n
≤ c1 and ξ ≥ c2

re(ΣE)

n
, (9)

for positive absolute constants c1, c2, c3.

Remark 3. We remark on conditions under which (9) holds. Suppose that the eigenvalues
of ΣZ and ΣE are constant, that is, c1 ≤ λK(ΣZ) ≤ ‖ΣZ‖ ≤ C1 and c2 < λp(ΣE) ≤ ‖ΣE‖ <
C2, for some c1, c2, C1, C2 ∈ (0,∞), both standard assumptions in factor models. Then,

re(ΣE) & p, and ξ =
λK(AΣZA")

‖ΣE‖
& λK(A"A), (10)

so the condition (9) reduces to K/n ≤ c1 and

λK(A"A) ! p

n
. (11)

We give a few examples of A that imply (11):
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1. For a well-conditioned matrix A ∈ Rp×K with entries taking values in a bounded
interval, λK(A"A) & p, and (11) holds.

2. Treating A as a realization of a random matrix with i.i.d. entries and p ! K, then by
standard concentration arguments (see Vershynin (2019), for example) we once again
have λK(A"A) ! p, with high probability, and (11) holds.

3. In other situations, (11) is an assumption. It is a very natural, and mild, require-
ment in factor regression models, and if A is structured and sparse, (11) can be given
further interpretation. For instance, the model X = AZ + E has been used and an-
alyzed in Bunea et al. (2019) for clustering the p components of X around the latent
Z-coordinates, via an assignment matrix A ∈ {0, 1}p×K , and when ΣE is an approx-
imately diagonal matrix. Denoting the size of the smallest of the K non-overlapping
clusters by m, for some integer 2 ≤ m ≤ p, it is immediate to see (Lemma 31 in
Appendix D.4) that λK(A"A) ≥ m. Furthermore, when these K clusters are approx-
imately balanced, then m ≈ p/K and (11) holds, provided K " n.

The positive repercussion of Lemma 2 is that under condition (9) and for small enough
constant c3, Theorem 1 no longer applies. This in turn opens up the possibility of showing
that, under the data generating model (5) with restrictions (9), the risk R(α̂) will approach
optimal risk benchmarks. We define the benchmark risks in terms of the best linear pre-
dictors of y from X and Z, respectively, in Section 3.2, and show that R(α̂) can indeed
approach these benchmarks in Sections 4.1 and 4.2.

For completeness, we offer the following result characterizing the spectrum of ΣX under
the factor regression model. In particular, as announced in Section 2, we find that the
operator norm ‖ΣX‖ diverges with p under mild conditions. The proof can be found in
Appendix B.1.

Lemma 4. Suppose that for some c1, c2, C1, C2 ∈ (0,∞),

c1 ≤ λK(ΣZ) ≤ ‖ΣZ‖ ≤ C1 and c2 < λp(ΣE) ≤ ‖ΣE‖ < C2. (12)

The spectrum of ΣX can then be characterized as follows:

1. λi(ΣX) ≥ c2 > 0 for all i ∈ [p], i.e., the entire spectrum of ΣX is bounded below;

2. λK(ΣX) ≥ c1λK(A"A), so the first K eigenvalues of ΣX diverge if λK(A"A) → ∞
as p → ∞;

3. c2 ≤ λi(ΣX) ≤ C2 for i > K, i.e., the last p−K eigenvalues of ΣX are bounded above
and below.

After introducing the risk benchmarks below, we investigate the behaviour of the best
linear prediction vector α∗ = Σ+

XΣXy of y from X under the factor regression model in
Section 3.3, and use this in Section 3.4 to clarify the importance of the factor regression
model, in which (X, y) jointly have a low-dimensional structure, in contrast to the classical
linear model y = X"θ + η with low-dimensional structure on X alone.

9
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3.2 Risk Benchmarks

We introduce here two natural benchmarks for R(α̂) under the factor regression model, and
characterize their relationship. Under model (5), if Z ∈ RK were observed, the optimal risk
of a linear oracle with access to Z is

min
v∈RK

E
[
(Z"v − y)2

]
= E[ε2] = σ2

ε , (13)

which we henceforth refer to as the oracle risk. Another natural benchmark to compare
the risk R(α̂) to is the minimum risk possible for any linear predictor α"X, namely R(α∗),
where

α∗ ∈ arg min
α∈Rp

R(α). (14)

Lemma 27 in Appendix D shows that for arbitrary zero-mean (X, y) with finite second
moments, α∗ = Σ+

XΣXy is a minimizer of R(α), where ΣXy := E[Xy] ∈ Rp is the vector of
component-wise covariances.

We can characterize the difference between these two benchmarks, σ2
ε and R(α∗), as

follows. See Appendix B.2 for the proof of this result.

Lemma 5 (Comparison of risk benchmarks). Suppose model (5) holds and let ξ be the
signal-to-noise ratio defined in (8). We have

1. R(α∗)− σ2
ε ≥ 0 with equality if ΣE = 0.

2. Provided the matrices ΣZ , ΣE, and A are full rank,

ξ

1 + ξ
β"(A"Σ−1

E A)−1β ≤ R(α∗)− σ2
ε ≤ β"(A"Σ−1

E A)−1β,

where

β"(A"Σ−1
E A)−1β ≤ 1

ξ
‖β‖2ΣZ

.

In particular, ‖β‖2ΣZ
/ξ → 0 implies R(α∗)− σ2

ε → 0, as p → ∞.

Although the optimal risk R(α∗) is always greater than the oracle risk σ2
ε (part 1 of

Lemma 5), the bound ‖β‖2ΣZ
/ξ on the difference R(α∗) − σ2

ε in part 2 of Lemma 5 is not
a leading term in the excess risk bound given in Theorem 16. From this perspective, we
can view these benchmarks as asymptotically equivalent, but with different interpretations.
Interestingly, the condition limp→∞ ‖β‖2ΣZ

/ξ = 0 forces ‖α∗‖ → 0, see Corollary 9 in the
next section. This is an important feature of the FRM, and its repercussions are discussed
in Section 3.4.

3.3 Best Linear Prediction in Factor Regression Models (Population Level)

In this section we investigate the properties of the population-level predictor α∗, defined in
(14), under the factor regression model (5). In particular, we prove that ‖α∗‖ → 0 and yet
R(0)−R(α∗) > 0 under the conditions

lim
p→∞

‖β‖2ΣZ
/λK(AΣZA

") = 0 and lim inf
p→∞

‖β‖ΣZ > 0. (15)

10
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The property ‖α∗‖ → 0 in particular is a consequence of the joint low-dimensional structure
of (X, y) via the covariance ΣXy = AΣZβ, which the vector α∗ = Σ+

XΣXy depends on.
Proofs for this section can be found in Appendix B.3. We first characterize the norms ‖α∗‖
and ‖α∗‖ΣX ; the latter norm is of interest via the identity

R(0)−R(α∗) = ‖α∗‖2ΣX
. (16)

It is instructive to first consider the simple case of noiseless features, X = AZ, with
E = 0. In this case, the best linear predictor of y from X is α∗"X = (A"α∗)"Z. The
following lemma states that α∗ = A+"β, which by the identity A"A+" = IK when A is full
rank gives

α∗"X = (A"A+"β)"Z = β"Z, (17)

showing that the best linear predictor from X reduces to the best linear predictor from Z.
The lemma then uses this to derive explicit expressions for the norms of α∗.

Lemma 6. Suppose model (5) holds, that ΣE = 0, and that ΣZ and A are full rank. Then,
α∗ = A+"β, and

‖α∗‖2ΣX
= ‖β‖2ΣZ

and ‖α∗‖2 = β"(A"A)−1β.

We next find that in the more realistic case, when ΣE ,= 0, even though identity (17)
no longer holds, we can recover the same identities for ‖α∗‖ΣX and ‖α∗‖, up to constants,
when the noise matrix ΣE is well-conditioned.

Lemma 7. Suppose model (5) holds and that A, ΣZ , ΣE are all full rank. Then, when
ξ = λK(AΣZA")/‖ΣE‖ > c > 1 and κ(ΣE) < C < ∞,

‖α∗‖2ΣX
& ‖β‖2ΣZ

and ‖α∗‖2 & β"(A"A)−1β.

Remark 8. We illustrate our findings in Lemmas 6 and 7 with the following example
(that we will use in our simulations in Section 4.4), where ΣZ = σ2

ZIK , ΣE = σ2
EIp, and

A"A = a2IK . It can be verified that in this case,

α∗ =
σ2
Z

σ2
E + a2σ2

Z

Aβ (18)

‖α∗‖2 = a2σ2
Z

(σ2
E + a2σ2

Z)
2
‖β‖2ΣZ

(19)

‖α∗‖2ΣX
=

a2σ2
Z

σ2
E + a2σ2

Z

‖β‖2ΣZ
. (20)

Since λK(AΣZA") = a2σ2
Z and ξ = a2σ2

Z/σ
2
E, it confirms that ‖β‖2ΣZ

/λK(AΣZA") → 0

forces ‖α∗‖ → 0, while at the same time ‖α∗‖2ΣX
& ‖β‖2ΣZ

when ξ is bounded below (in fact,

‖α∗‖2ΣX
/‖β‖2ΣZ

→ 1 when ξ → ∞ in this example).
We note that while ‖α∗‖ → 0, there is no reason to assume α∗ to be sparse. In this

example, we can see from the explicit formula (18) that α∗
i = 0 ⇐⇒ A"

i !β = 0, whence
row-sparsity of the matrix A induces sparsity of the vector α∗. For a more general A, this
isn’t the case and α∗ isn’t necessarily sparse or even approximately sparse. This observation
is corroborated in our simulations in Section 4.4.

11
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Identity (16), Lemma 6 and Lemma 7 imply the following conclusion.

Corollary 9. Suppose model (5) holds with A, ΣZ , ΣE all full rank, let ξ = λK(AΣZA")/‖ΣE‖ >
c > 1, and suppose κ(ΣE) < C < ∞. Alternatively, suppose that under model (5), ΣE = 0
and A, ΣZ are full rank. Then, in either case, condition (15) implies

lim
p→∞

‖α∗‖ = 0, while lim inf
p→∞

{R(0)−R(α∗)} ! lim inf
p→∞

‖β‖2ΣZ
> 0.

This result shows that while the norm of α∗ converges to zero in the factor regression
model, its risk is separated from the risk of the null predictor 0 by a constant times ‖β‖2ΣZ

.

In fact, as β is an arbitrary vector in RK , the gap R(0) − R(α∗) will typically grow as K
increases.

The behaviour ‖α∗‖ → 0 is a feature of the factor regression model that arises from the
joint low-dimensional structure of the model, as encoded in the covariance ΣXy. This is
in stark contrast to the behaviour of the best linear prediction vector θ in a linear model
y = X"θ+ η, as we do not expect ‖θ‖ to vanish as p grows. We discuss the important roles
played by these quantities in the risk bound analysis in the next section.

3.4 Prediction Under Linear Regression with Conditions on the Design Versus
Prediction Under Latent Factor Regression

The model (5) can be said to have joint low-dimensional structure, in that both the features
X and response y are (noisy) functions of the low-dimensional latent vector Z. We would
like to argue that this structure plays an important role in the behaviour of the GLS α̂,
which we will study in the next section. In particular, to understand the implications of
this joint-low dimensional structure, we could compare model (5) to a model in which X
continues to follow a factor model, but y is connected to X via a linear model:

X = AZ + E, y = X"θ + η, (21)

where θ ∈ Rp is a generic p-dimensional regression vector, and η is zero-mean noise inde-
pendent of X. Model (21) captures the setting in which there is low-dimensional structure
in the features alone.

When (X, y) ∈ Rp × R are jointly Gaussian, Lemma 29 in Appendix D.2 shows the
simple fact that if the factor regression model (5) holds, then (21) holds, with regression
coefficients θ = α∗ and error η := y − X"α∗, independent of X. Here α∗ is the best
linear predictor under the factor regression model (5), which we studied the properties of
in Section 3.3 above.

We can thus compare model (5) and (21) directly in the Gaussian case. We stress that
we do not assume Gaussianity elsewhere in our paper, but use it here to facilitate this
comparison.

In Section 3.3 we found that ‖α∗‖ → 0, provided (15) holds. Thus, when the factor
regression model (5) is viewed as a particular case of (21), we have ‖α∗‖ = ‖θ‖ → 0. This
behavior is in sharp contrast with the typical behavior of a generic linear model y = X"θ+η
as in (21), in which ‖θ‖ is usually fixed or growing with p. We argue that this difference
has important implications for the performance of the GLS predictor α̂.

12
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One way this can be seen is by considering the bound from the recent work Bartlett et al.
(2020) on the excess risk R(α̂)−R(θ), proved under model E(y|X) = XT θ for sub-Gaussian
(X, y). In particular, the bound of Bartlett et al. (2020) contains a bias term given by

‖θ‖2‖ΣX‖max

{√
re(ΣX)

n
,
re(ΣX)

n

}
. (22)

We examine this bound assuming further that model (21) holds. Since

‖ΣX‖max

{√
re(ΣX)

n
,
re(ΣX)

n

}
= max

{√
‖ΣX‖tr(ΣX)

n
,
tr(ΣX)

n

}
≥ tr(ΣX)

n
(23)

and
tr(ΣX)

n
=

tr(ΣE)

n
+

tr(AΣZA")

n
→ ∞

under model (21) with mild assumptions on either ΣE (e.g., ΣE & Ip) or A (see Remark
3), the bias term (22) will only converge to zero if ‖θ‖ → 0.

As noted above, ‖θ‖ → 0 is rather unnatural in a generic model (21). However, we also
noted that when (X, y) are Gaussian and the factor regression model (5) holds, then (21)
holds with ‖θ‖ = ‖α∗‖ → 0, which means that the bias term (22) can converge to zero when
the data is generated by model (5). We take this as indication that the bias in prediction
with α̂ can be significantly lower in the factor regression model (5) compared to a generic
model (21) as a result of the joint low-dimensional structure of model (5).

We note that this discussion is only based on an upper bound (22) on the bias term
of the prediction risk. It nevertheless motivates a full investigation of an alternative upper
bound to (22), directly derived under model (5). This is the subject of Section 4 below,
with our main result presented in Theorem 16.

Remark 10. The authors of Bartlett et al. (2020) take a different route, complementary to
ours, in their analysis of the bound (22). Although they derived it with no assumptions on
‖ΣX‖, the desired convergence to zero is established under the assumption that ΣX belongs
to what is called in Bartlett et al. (2020) a class of benign covariance matrices, that in
particular satisfy ‖ΣX‖ = 1.

This assumption allows the authors to avoid making the unpleasant assumption that a
generic θ would have )2-norm converging to zero with p. To see why, note that when ‖ΣX‖
is bounded, working in the regime re(ΣX)/n → 0 immediately implies

‖ΣX‖max

{√
re(ΣX)

n
,
re(ΣX)

n

}
→ 0,

which in turn means that under the assumption ‖ΣX‖ = 1, their bias term (22) can converge
to zero even when ‖θ‖ ,→ 0, for a generic θ.

However, as we have shown in Lemma 4 above, this class does not cover covariance
matrices ΣX associated with a random vector that obeys a factor model X = AZ + E, as
‖ΣX‖ → ∞ with p in this case. Since in factor regression we argued that ‖θ‖ = ‖α∗‖ → 0,
one can still expect that (22) will vanish, in the regime re(ΣX)/n → 0, even though ‖ΣX‖ →
∞. The results of Section 4 can thus be viewed as complementary to those in Bartlett et al.
(2020).

13
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4. Minimum !2-norm Prediction in Factor Regression

In this section we analyze the GLS α̂, and present our main contribution, namely, novel
finite-sample bounds on the prediction risk R(α̂) relative to the benchmarks laid out in
Section 3.2.

4.1 Exact Adaptation in Factor Regression Models with Noiseless Features

We begin our analysis by considering an extreme case of model (5), in which E = 0 almost
surely, and thus ΣX is degenerate, with re(ΣX) ≤ rank(ΣX) = K.

Proofs for this section are contained in Appendix C.1. We make the following assump-
tions.

Assumption 2. The p ×K matrix A and K ×K matrix ΣZ both have full rank equal to
K.

Assumption 3. E = Σ1/2
E Ẽ, where Ẽ ∈ Rp has independent entries with zero mean, unit

variance, and sub-Gaussian constants bounded by an absolute constant.

Furthermore, Z = Σ1/2
Z Z̃ and ε = σεε̃, where Z̃ ∈ RK and ε̃ ∈ R have zero mean and

sub-Gaussian constants bounded by an absolute constant.

We first analyze the norm of α̂. In Lemma 6 above, we showed that ‖α∗‖2 = β"(A"A)−1β
when ΣE = 0, and as a result, Corollary 9 states that ‖α∗‖ → 0, provided ‖β‖2ΣZ

/λK(AΣZA") →
0 as p → ∞. We now show that α̂ mimics this behavior under the additional condition that
(σ2

ε log n)/λK(AΣZA") → 0 as n → ∞.

Lemma 11. Under model (5) with ΣE = 0, suppose that Assumptions 2 and 3 hold, and
that n > C · K for some large enough absolute constant C > 0. Then, with probability at
least 1− c/n for some absolute constant c > 0,

‖α̂‖2 " 1

λK(AΣZA")

(
‖β‖2ΣZ

+ σ2
ε
K log n

n

)
. (24)

The fact that α̂ vanishes does not imply that R(α̂)/R(0) → 1, just like R(α∗)/R(0) ,→ 1
in Corollary 9. We will now show that in fact the risk R(α̂) approaches the optimal risk
R(α∗) by adapting to the low-dimensional structure of the factor regression model. Let
ŷz := Z"β̂ be the predictor based on the least-squares regression coefficients β̂ := Z+y of
y onto Z; this is the classical least-squares prediction of y under model (5) that an oracle
would use if it had access to the unobserved data matrix Z, and the new, but unobservable,
data point Z. In contrast, let ŷx = X"α̂ be the least-squares predictor of y from X based on
(X,y) only. Theorem 12.1 below shows that the realizable prediction ŷx equals the oracle
prediction ŷz. The second part of the theorem gives lower and upper bounds on the risk
that hold with high probability over the training data.

Theorem 12 (Factor regression with noiseless features). Under model (5) with ΣE = 0,
suppose that Assumption 2 holds.

1. Then, on the event that the matrix Z has full rank K, we have, ŷx = ŷz and R(α̂) =
E(X,y)[(X

"α̂− y)2] = E(Z,y)[(Z
"β̂ − y)2].

14



Interpolating Predictors in High-Dimensional Factor Regression

2. Suppose that Assumption 3 also holds and that n > C · K for some large enough
absolute constant C > 0. Then, with probability at least 1 − c/n for some absolute
constant c > 0, Z has full rank K and

R(α̂)− σ2
ε " σ2

ε
K log n

n
and Eε[R(α̂)]− σ2

ε ! σ2
ε
K

n
. (25)

The risk bounds (25) are the same as the standard risk bounds for prediction in linear
regression in K dimensions with observable design, despite A not being known under model
(5). We note that, since rank(X) = K < n, y may not lie in the range of X and so α̂ may
not interpolate. Nonetheless, under model (5), with E ,= 0 and in the interpolating regime,
we expect that the prediction performance of ŷx will still approximately mimic that of ŷz as
long as the signal, as measured by λK(A"ΣZA), is strong relative to the noise, as measured
by ‖ΣE‖. The next section is devoted to the detailed study of this fact.

Finally, another explanation of the perhaps surprisingly good performance of the GLS is
that it coincides with Principal Component Regression (PCR), see, e.g., Stock and Watson
(2002a), in the case when ΣE = 0. Indeed, this is a natural and practical prediction
method when the covariance matrix ΣX has an approximately low rank. If ΣE = 0, then
ΣX = AΣZA" has rank of at most K and so is exactly low rank. In PCR, the response y is
regressed onto the first K principal components of the data matrix X to estimate a vector
of coefficients (XÛK)+y. Here ÛK ∈ Rp×K has columns equal to the first K eigenvectors
of the sample covariance matrix X"X/n. A new response y is then predicted by α̂"

PCRX,

where α̂PCR := ÛK(XÛK)+y and X is the new feature vector. The following lemma states
that the PCR and GLS predictors coincide when ΣE = 0.

Lemma 13. Define α̂PCR := ÛK(XÛK)+y. On the event {rank(X) = K}, α̂ = α̂PCR.
In particular, when ΣE = 0, K > C · n, and Assumptions 2 & 3 hold, α̂ = α̂PCR with
probability at least 1− c/n for some absolute constant c > 0.

Thus, the prediction α̂"
PCRX of y based on PCR is exactly equal to the prediction α̂"X

based on the GLS, in the case when ΣE = 0. Given that PCR is a natural and widely used
prediction method in this setting, this further explains the performance of the GLS, at least
when ΣE = 0.

4.2 Approximate Adaptation of Interpolating Predictors in Factor Regression

In this section we present our main results on the excess risk of prediction with α̂, relative
to the two benchmarks in Section 3.2 above, under the factor regression model (5) with
E ,= 0.

Our main result, Theorem 16 below, shows that despite the fact that α̂ interpolates, in
that Xα̂ = y (Proposition 14), and that ‖α̂‖ → 0 (Lemma 15), the excess risks can vanish as
a result of approximate adaptation to the embedded low-dimensional structure of (5). The
estimator α̂ is guaranteed to interpolate the data whenever rank(X) = n, or equivalently,
the smallest singular value σn(X) > 0. The next proposition shows that the following set of
conditions in terms of n, K and re(ΣE) guarantee this. Proofs for this section are contained
in Appendix C.2.
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Proposition 14. Under model (5), suppose that Assumptions 2 and 3 hold, and that
re(ΣE) > C · n for some C > 0 large enough. Then, with probability at least 1 − c/n,
for some c > 0,

σ2
n(X) ! tr(ΣE) > 0,

and thus, in particular, α̂ interpolates: Xα̂ = y.

General existing bounds of the type σn(X) ! (
√
p−

√
n) are by now well established in

random matrix theory (Rudelson and Vershynin, 2009). When p > C · n for some C > 1
and the entries of X are i.i.d. sub-Gaussian with zero mean and unit variance, Theorem
1.1 in Rudelson and Vershynin (2009) implies that σ2

n(X) ! p with high probability. By
comparison, Proposition 14 holds forX with i.i.d. sub-Gaussian rows with covariance matrix
ΣX = AΣZA" + ΣE .

The following result shows that as in the noiseless case ΣE = 0 of Lemma 11, ‖α̂‖ → 0,
mimicking the behavior of the best linear predictor α∗. We proved in Lemma 7 and Corollary
9 that ‖α∗‖ → 0 when λK(AΣZA") grows faster than ‖β‖2ΣZ

as p → ∞; we will need here
the additional assumption that n log n/re(ΣE) → 0 to guarantee ‖α̂‖ → 0 as n → ∞. The
proof uses Proposition 14, which requires that the effective rank re(ΣE) is larger than a
constant times n.

Lemma 15. Under model (5), suppose that Assumptions 2 and 3 hold and n > C ·K and
re(ΣE) > C · n hold, for some C > 0. Then, with probability exceeding 1 − c/n, for some
c > 0,

‖α̂‖2 " 1

λK(AΣZA")
‖β‖2ΣZ

+ σ2
ε
n log n

re(ΣE)
. (26)

Despite the fact that ‖α̂‖ → 0 under the conditions stated, we now show that α̂ can
outperform the null predictor 0. If λK(AΣZA") grows faster than tr(ΣE)/n and K/n →
0, then Lemma 2 states that re(ΣX)/n remains bounded, and Theorem 1 allows for the
possibility that α̂ has asymptotically lower risk than 0. Theorem 12 above showed that
R(α̂) − σ2

ε can in fact approach 0 under certain conditions when E = 0. The following
result demonstrates that this can continue to hold even when E ,= 0.

Theorem 16 (Main result: Risk bound for factor regression). Under model (5), suppose
that Assumptions 2 and 3 hold and n > C ·K and re(ΣE) > C · n hold, for some C > 0.
Then, with probability exceeding 1− c/n, for some c > 0,

R(α̂)−R(α∗) ≤ R(α̂)− σ2
ε "

‖β‖2ΣZ

ξ
· re(ΣE)

n
+ σ2

ε
n log n

re(ΣE)
+ σ2

ε
K log n

n
. (27)

Recall ξ := λK(AΣZA")/‖ΣE‖ is the signal-to-noise ratio.

Remark 17. Suppose n ! σ2
εK log n and re(ΣE) ! σ2

εn log n. We then find that α̂ interpo-
lates by Proposition 14, and the behavior of α̂ is determined by the eigenvalue λK(AΣZA")
or, equivalently, the signal-to-noise ratio ξ = λK(AΣZA"))/‖ΣE‖.

(a) If λK(AΣZA") ! tr(ΣE)/n, then Lemma 2 implies that R(α̂) need no longer approach
the trivial null risk R(0).
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(b) If λK(AΣZA") ! ‖β‖2ΣZ
, then Lemma 15 implies ‖α̂‖ → 0.

(c) If λK(AΣZA") ! ‖β‖2ΣZ
tr(ΣE)/n, then R(α̂) − σ2

ε → 0. Indeed, this assumption,

together with n ! σ2
εK log n and re(ΣE) ! σ2

εn log n, ensures that the right-hand side
of the inequality (27) in Theorem 16 is asymptotically negligible.

The first inequality in (27) is an immediate consequence of the first part of Lemma 5
above. We now discuss the three terms appearing in the upper bound (27) of Theorem 16.
A comparison with the risk bound in Theorem 12 above, where the feature noise E is equal
to zero, reveals that the term σ2

εK log(n)/n in (27) is equal to the risk of the oracle predictor
ŷz up to the multiplicative log n factor, and is small when K ) n. The first two terms can
be viewed as bias and variance components, respectively, that capture the impact of non-
zero ΣE . The first term (bias) is proportional to the effective rank re(ΣE), while the second
term (variance) is inversely proportional to re(ΣE). As such, the variance term is implicitly
regularized by the feature noise E, while for the bias to be small, we need the signal-to-noise
ratio ξ to be sufficiently large. For example, suppose that the eigenvalues of ΣZ and ΣE

are constant, that is, c1 ≤ λK(ΣZ) ≤ ‖ΣZ‖ ≤ C1 and c2 < λp(ΣE) ≤ ‖ΣE‖ < C2, for some
c1, c2, C1, C2 ∈ (0,∞), both standard assumptions in factor models. Then,

re(ΣE) & p, and ξ =
λK(AΣZA")

‖ΣE‖
! λK(A"A). (28)

Provided β has uniformly bounded entries |βi| ≤ C, ‖β‖2ΣZ
≤ C1 ·C2 ·K, and the bias term

in (27) can be bounded as

BZ :=
‖β‖2ΣZ

ξ
· re(ΣE)

n
" Kp

n · λK(A"A)
; (29)

it thus approaches zero whenever

λK(A"A) ! Kp

n
. (30)

We mention that the examples of A in Remark 3 of Section 3.1 all imply (30), provided
K ) n in cases 1 and 2 (since there λK(A"A) ! p), and K2 ) n in case 3 (since there
λK(A"A) ! p/K).

We summarize this discussion in Corollary 18 below.

Corollary 18. Under the same conditions as in Theorem 16, suppose, in particular, that
λK(ΣZ) and ‖ΣE‖ are constant, re(ΣE) & p, and ‖β‖2ΣZ

" K. Then, with probability at
least 1− c/n, for some absolute constant c > 0,

R(α̂)−R(α∗) ≤ R(α̂)− σ2
ε " K

λK(A"A)
× p

n
+ σ2

ε

(
n

p
+

K

n

)
log n. (31)

In particular, if λK(A"A) ! p/K, and with probability at least 1 − c/n, for some absolute
constant c > 0,

R(α̂)−R(α∗) ≤ R(α̂)− σ2
ε " K2

n
+ σ2

ε

(
n

p
+

K

n

)
log n. (32)
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Regime Bias in Theorem 16
Bias in Theorem 4 of
Bartlett et al. (2020)

Common variance

p ≥ n · ξ ‖β‖2ΣZ
· p/(n · ξ) ‖β‖2ΣZ

· p/(n · ξ)

σ2
ε log n {(n/p) + (K/n)}

p ) n · ξ ‖β‖2ΣZ
· p/(n · ξ) ‖β‖2ΣZ

·
√

p/(n · ξ)

ξ ≈ p, ‖β‖2ΣZ
≈ K K/n K/

√
n

ξ ≈ p, ‖β‖2ΣZ
≈ K,

K ≈ n3/4 n−1/4 n1/4

Table 2: Comparison of risk bounds for Gaussian data.

When the data are jointly Gaussian this assumption is, however, satisfied under model
(5). For this common case, Table 2 compares the respective bounds on the bias and variance
terms corresponding to our Theorem 16 and Theorem 4 of Bartlett et al. (2020), respectively.
Again, we emphasize that the results from Bartlett et al. (2020) do not hold in general for
our modeling setup, but can be used to obtain the bounds in Table 2 in the Gaussian case.
The entries in the second column of Table 2 correspond to the bias in Bartlett et al. (2020)
under model (5), simplified in this table for ease of comparison.1

In the setting of this comparison, the variance terms in our Theorem 16 and the bound
in Bartlett et al. (2020) have the same rate, which we display in the third column of Table
2. From the first row of Table 2 we see that when p ≥ n · ξ, the bias terms match as well.
However, this is not an interesting regime, as p ) n · ξ is a necessary condition for either
bound to converge to zero (assuming ‖β‖2ΣZ

is bounded below). In this case, the second row

of Table 2 shows that the bias in Bartlett et al. (2020) becomes ‖β‖2ΣZ

√
p/(n · ξ), which is

larger than our bias bound in Theorem 16 by a factor of
√

n · ξ/p. From the second row
we see that indeed, the upper bound on the excess risk in Bartlett et al. (2020) can diverge
while our bound in Theorem 16 vanishes. For instance, if β is a non-sparse vector in RK

with ‖β‖2ΣZ
≈ K, this phenomenon occurs if the signal-to-noise ratio ξ lies in the range

Kp/n " ξ " K2p/n. This illustrates that the general bound provided in Bartlett et al.
(2020) is not always tight.

The third row of Table 2 compares the bias rates in the simplified case when ‖β‖2ΣZ
≈ K

and ξ ≈ p. The fourth row gives the rates under the further assumption that K ≈ n3/4,
a concrete example of when our rate converges and that of Bartlett et al. (2020) diverges.
Further details and discussion on the comparison of these two results are deferred to Ap-
pendix C.4.

A latent factor regression model similar to (5) has also been studied in Section 7 of
Mei and Montanari (2019) for the ridge regression estimator that minimizes the fit ‖y −

1. For simplicity, we assume for this comparison that the matrices ΣX and ΣE are invertible and that the
condition numbers κ(ΣE) and κ(AΣZA

") are bounded above by an absolute constant. Consequently,
the effective rank re(ΣE) satisfies c · p ≤ re(ΣE) ≤ p, for some c ∈ (0, 1).
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Xa‖2 + λ‖a‖2 for any λ > 0 (strict). Their model is a particular case of our model (5),
with ΣE = σ2

EIp, ΣZ = σ2
ZIK , up to an offset on X so that in their case, |E[X]| > 0.

Clearly, our estimator α̂ can be viewed as the limiting case λ = 0 of ridge regression. Our
results are difficult to compare directly since the analysis in Mei and Montanari (2019) is
asymptotic with p/K → ψ1 and n/K → ψ2 for two absolute constants ψ1,ψ2 ∈ (0,∞).
Nevertheless, Theorem 7 and Figure 9 of Mei and Montanari (2019) also show that the
excess risk R(α̂)− σ2

ε is small in the large ψ1/ψ2 (corresponding to a large p/n) regime, in
line with our assessment.

4.4 Comparison to Other Predictors

In Lemma 13 of Section 4.1 above we showed that in the case of noiseless features, when
ΣE = 0, the regression vector α̂PCR obtained by PCR is exactly equal to the GLS regression
vector α̂ on the event {rank(Z) = K}, which holds with probability at least 1−c/n for some
universal constant c > 0. In this section we show that when ΣE ,= 0, the minimum-norm
estimator α̂ is competitive even with the stylized version α̃PCR := UK(XUK)+y of PCR
under the factor regression model setting (5) and in the high-dimensional regime p ! n.
This is a toy estimator as it uses the unknown dimension K and unknown matrix UK ,
composed of the first K eigenvectors of the population covariance matrix ΣX , in place of
estimates K̂ and ÛK̂ , respectively. We provide a simple proof, found in Appendix C.3, of
the following risk bound for R(α̃PCR). For a detailed comparison of PCR and the GLS, see
Bing et al. (2020), which analyzes the PCR predictor with the empirical matrix ÛK̂ , for a

new, data adaptive, estimator K̂ of K.

Theorem 19. Under model (5), suppose that (X, y) are jointly Gaussian and that Assump-
tion 2 holds. Then, if n > C ·K log n for some C > 0 large enough, with probability at least
1− c/n,

R(α̃PCR)− σ2
ε " ‖ΣE‖ · ‖α∗‖2 p

n
+R(α∗)

K log(n)

n
(33)

In particular, if ΣE = 0, we obtain

R(α̃PCR)− σ2
ε " σ2

ε
K log(n)

n
(34)

while, if λp(ΣE) > 0,

R(α̃PCR)− σ2
ε " κ(ΣE)

‖β‖2ΣZ

ξ

p

n
+ σ2

ε
K log n

n
, (35)

where κ(ΣE) := λ1(ΣE)/λp(ΣE) is the condition number of the matrix ΣE.

Provided κ(ΣE) is bounded above by an absolute constant, the upper bounds for the
minimum-norm and PCR predictors are comparable. Indeed, when κ(ΣE) < C < ∞, the
risk bound of Theorem 16 for the GLS α̂ takes the form

R(α̂)− σ2
ε "

‖β‖2ΣZ

ξ

p

n
+ σ2

ε log n

(
K

n
+

n

p

)
. (36)
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Figure 3: A scatter plot of the components of α∗, from the point in the simulation of Figure 2 with
the largest value of γ. Here p = 7215, K = 69, ΣE = Ip, ΣZ = IK , and A is generated
by sampling each entry iid from N(0, 1/

√
K).

regularization parameter λ → 0, this suggests that for p ! n, in our setting, the optimal
choice of regularization parameter for ridge regression approaches zero Mei and Montanari
(2019); Hastie et al. (2019).

We plot the coefficients of α∗ in Figure 3 for the case p = 7215 and K = 69. We can
see that α∗ is clearly non-sparse, which explains the inferior performance of the LASSO in
this setting.

For completeness, we contrast the above simulation setting in which α∗ is non-sparse
with special case in which α∗ is in fact K-sparse. In this case, we take the matrix A with
columns equal to the canonical basis vectors e1, . . . , eK ∈ Rp, multiplied by

√
p, and we set

β = (1, . . . , 1)", ΣZ = IK and ΣE = Ip. Then A"A = pIK and α∗ is K-sparse since, by
(18) of Remark 8,

α∗
i =

{√
p/(p+ 1) for i = 1, . . . ,K

0 for i = K + 1, . . . , p
.

Figure 4 plots the excess risk of the GLS and other predictors for these model settings.
We see that in this sparse setting the LASSO performs well, as expected, with its excess
risk approximately equal to that of PCR for p ! n, both of which do slightly better than
GLS and Ridge. While LASSO and PCR outperform GLS in this case, we note that the
excess risk of the GLS still decreases towards zero, and performs perhaps surprisingly well
relative to the LASSO, given that the LASSO is specifically tailored to this exactly sparse
setting. Moreover, we emphasize that for more generic choices of model parameters, α∗ will

22





Bunea, Strimas-Mackey, and Wegkamp

Appendix A. Proofs for Section 2

A.1 Proof of Theorem 1

We work on the event

K :=
{
σ2
n(X) ! tr(ΣX), ‖y‖2 " nσ2

y

}
. (37)

On this event, recalling α̂ = X+y and invoking identity (137) in Appendix E,

‖α̂‖2 ≤ ‖X+‖2‖y‖2 = ‖y‖2

σ2
n(X)

" σ2
y

n

tr(ΣX)
. (38)

By Lemma 20 below,
∣∣∣∣
R(θ)

R(0)
− 1

∣∣∣∣ ≤
‖θ‖2ΣX

R(0)
+ 2

√
‖θ‖2ΣX

R(0)
≤ ‖ΣX‖ ‖θ‖

2

R(0)
+ 2

√

‖ΣX‖ ‖θ‖
2

R(0)

for any vector θ ∈ Rp. Combining this with (38) and recalling that σ2
y = E[y2] = R(0), we

find that on K, ∣∣∣∣
R(α̂)

R(0)
− 1

∣∣∣∣ "
n

re(ΣX)
+

√
n

re(ΣX)

Setting C ′ = max(C, 1), when re(ΣX) > C ′n ≥ n, so n/re(ΣX) > 1, we find

n

re(ΣX)
+

√
n

re(ΣX)
≤ 2

√
n

re(ΣX)
.

Thus, on K, ∣∣∣∣
R(α̂)

R(0)
− 1

∣∣∣∣ "
√

n

re(ΣX)
.

All that remains is to bound the probability of K. To this end, note that since we suppose

Assumption 1 holds, we have X = X̃Σ1/2
X , and thus

σ2
n(X) = λn(XX") = λn(X̃ΣXX̃),

where X̃ has i.i.d. entries that have zero mean, unit variance, and sub-Gaussian constants
bounded by an absolute constant. Theorem 21 below thus implies that if re(ΣX) > C · n
for C > 0 large enough, then with probability at least 1− 2e−cn,

σ2
n(X) ≥ tr(ΣX)/2− c0‖ΣX‖n = tr(ΣX) · [1/2− c0n/re(ΣX)].

Using that n/re(ΣX) < 1/C and choosing C large enough,

P(σ2
n(X) ! tr(ΣX)) ≥ 1− 2e−cn. (39)

By Assumption 1, y = σyỹ. Since ỹ1, . . . , ỹn have zero mean and sub-Gaussian con-
stants bounded by an absolute constant, Bernstein’s inequality (Corollary 2.8.3 of Vershynin
(2019)) implies that

P(‖ỹ‖2 ! n) = P
(∣∣∣∣∣

n∑

i=1

ỹ2i

∣∣∣∣∣ ! n

)
≤ 2e−2cn.

Thus,
P(‖y‖2 ! σ2

yn) = P(σ2
y‖ỹ‖2 ! σ2

yn) = P(‖ỹ‖2 ! n) ≤ 2e−2cn.

Combining this with (39) establishes that P(K) ≥ 1− ce−c′n, thus completing the proof. #
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A.2 Lemma 20 and Theorem 21

The proof of Theorem 1 above made crucial use of the following lemma and theorem.

Lemma 20. For any vector θ ∈ Rp,

∣∣∣∣
R(θ)

R(0)
− 1

∣∣∣∣ ≤
‖θ‖2ΣX

R(0)
+ 2

√
‖θ‖2ΣX

R(0)
. (40)

Proof We first show that ΣXα∗ = ΣXy, where ΣXy := E[Xy] and α∗ := Σ+
XΣXy. To this

end, observe that

Cov((I − ΣXΣ+
X)X) = (Ip − ΣXΣ+

X)E[XX"](Ip − ΣXΣ+
X)

= (Ip − ΣXΣ+
X)ΣX(Ip − Σ+

XΣX)

= 0,

where we use that ΣXΣ+
XΣX = ΣX (see Appendix E). Thus (Ip − ΣXΣ+

X)X = 0 a.s., so

ΣXα∗ = ΣXΣ+
XΣXy = E[ΣXΣ+

XXy] = E[Xy] = ΣXy. (41)

Fixing θ ∈ Rp, we have

R(θ)−R(0) = E[(X"θ − y)2]− E[y2]
= θ"E[XX"]θ − 2θ"E[Xy]

= ‖θ‖2ΣX
− 2θ"ΣXy

= ‖θ‖2ΣX
− 2θ"ΣXα∗ (by (41)),

so by the Cauchy-Schwarz inequality,

|R(θ)−R(0)| ≤ ‖θ‖2ΣX
+ 2‖θ‖ΣX‖α

∗‖ΣX . (42)

Next observe that

R(0) = E[y2] = E(y −X"α∗ +X"α∗)2 = R(α∗) + ‖α∗‖2ΣX
≥ ‖α∗‖2ΣX

,

where we use that by (41),

E(X"α∗)(X"α∗ − y) = α∗"ΣXα∗ − α∗"ΣXy = 0.

Thus, ‖α∗‖2ΣX
≤ R(0), so by (42),

|R(θ)−R(0)| ≤ ‖θ‖2ΣX
+ 2‖θ‖ΣX

√
R(0). (43)

Dividing both sides by R(0) gives the final result.
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Theorem 21. Suppose W is an n×r random matrix with independent subgaussian entries
that have zero mean and unit variance. Then for any positive semi-definite matrix Σ ∈ Rr×r

and some c′ > 0 large enough, with probability at least 1− 2e−cn,

tr(Σ)/2−c′(M2+M4)‖Σ‖n ≤ λn(WΣW") ≤ λ1(WΣW") ≤ 3tr(Σ)/2+c′(M2+M4)‖Σ‖n,

where M := maxi,j ‖Wij‖ψ2.
2

A similar result for diagonal Σ has been derived in Lemma 9 of Bartlett et al. (2020).
We make use of the Hanson-Wright inequality in our proof to deal with non-diagonal Σ.
Theorem 4.6.1 in Vershynin (2019) provides similar two-sided bounds for the smallest and
largest eigenvalue of WΣW", when Σ = Ir.
Proof We will prove that for some c′ ≥ 1,

‖WΣW" − tr(Σ)In‖ ≤ c′(M2 +M4)‖Σ‖n+ tr(Σ)/2 (44)

with probability at least 1−2e−cn. Equation (44) implies that for any v ∈ Rn with ‖v‖ = 1,

|v"WΣW"v − tr(Σ)| ≤ c′(M2 +M4)‖Σ‖n+ tr(Σ)/2,

and so

tr(Σ)/2− c′(M2 +M4)‖Σ‖n ≤ v"WΣW"v ≤ 3tr(Σ)/2 + c′(M2 +M4)‖Σ‖n.

Taking the minimum and maximum over v ∈ Sn−1 then gives the desired result.

We now prove (44). Let N be a 1/4-net of Sn−1 with |N | ≤ 9n, which exists by Corollary
4.2.13 of Vershynin (2019). Then by Exercise 4.4.3 of Vershynin (2019),

‖WΣW" − tr(Σ)In‖ = sup
v∈Sn−1

|v"WΣW"v − tr(Σ)| ≤ 2 sup
v∈N

|v"WΣW"v − tr(Σ)|, (45)

where we use that WΣW" − tr(Σ)In is symmetric in the first step.
Now fix v ∈ Sn−1 and define B = W"v ∈ Rr. Observe that B has mean zero entries that

are independent because the columns of W are independent. Furthermore, by Proposition
2.6.1 of Vershynin (2019),

‖Bi‖2ψ2
= ‖

∑

j

Wjivj‖2ψ2
≤ C

∑

j

‖Wji‖2ψ2
v2j ≤ max

li
‖Wli‖2ψ2

∑

j

v2j = CM2,

where we used ‖v‖2 = 1 in the last step. Thus, by the Hanson-Wright inequality (Theorem
6.2.1 in Vershynin (2019)),

P
(
|B"ΣB − EB"ΣB| ≥ c1M

2t
)
≤ 2 exp

{
−c2min

(
t/‖Σ‖, t2/‖Σ‖2F

)}
, (46)

where we can choose c1 > 0 large enough such that c2 ≥ 12.

2. We define the sub-Gaussian norm of any real-valued random variable U by ‖U‖ψ2 := inf{t > 0 :
E exp(U2/t) < 2}. We say U is sub-Gaussian when ‖U‖ψ2 < ∞.
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Note that

EB"ΣB =
∑

i,j,k,l

EviWijΣjlWklvk =
∑

ij

v2iΣjjEW2
ij = ‖v‖2tr(Σ) = tr(Σ), (47)

where in the second step we use that W has independent mean zero entries, in the third
step we use that EW2

ij = 1 for all i, j, and in the final step we use that ‖v‖ = 1.

Choosing t = ‖Σ‖n/2 +
√
n‖Σ‖2F /2 in (46) and using that c2 ≥ 12, we observe that

c2t/‖Σ‖ = c2n/2 + c2

√
n‖Σ‖2F /(2‖Σ‖) ≥ c2n/2 ≥ 3n,

and

c2t
2/‖Σ‖2F = c2

[
n‖Σ‖/(2‖Σ‖F ) +

√
n/2

]2 ≥ c2n/4 ≥ 3n.

Thus,

P
(
|B"ΣB − tr(Σ)| ≥ c1M

2‖Σ‖n/2 + c1M
2
√

n‖Σ‖2F /2
)

≤ 2e−3n, (48)

where we used (47). Finally, using

‖Σ‖2F = tr(Σ2) ≤ ‖Σ‖tr(Σ),

and the inequality 2ab ≤ a2 + b2,

c1M
2
√

n‖Σ‖2F /2 ≤ c1M
2
√
(c1M2n‖Σ‖)(tr(Σ)/c1M2)/2 ≤ c21M

4n‖Σ‖/4 + tr(Σ)/4.

Thus, by (48), and for c′ > 0 large enough,

P
(
|B"ΣB − tr(Σ)| ≥ c′(M2 +M4)‖Σ‖n+ tr(Σ)/4

)
≤ 2e−3n. (49)

Denoting c′(M2 +M4)‖Σ‖n+ tr(Σ)/4 by L, we thus have

P
(
‖WΣW" − tr(Σ)In‖ ≥ 2L

)
≤ P

(
2 sup
v∈N

|v"WΣW"v − tr(Σ)| ≥ 2L

)
(by (45))

≤
∑

v∈N
P
(
|v"WΣW"v − tr(Σ)| ≥ L

)
(union bound)

≤ 2× 9ne−3n (by (49))

= 2en log(9)−3n ≤ 2e−cn,

where we define c = 3 − log(9) > 0 in the last step. This shows (44) and completes the
proof.
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Appendix B. Proofs for Section 3

B.1 Proof of Lemma 4 from Section 3.1

We will use ΣX = AΣZA" + ΣE and the min-max formula for eigenvalues,

λi(ΣX) = min
S:dim(S)=i

max
x∈S:‖x‖=1

x"ΣXx, (50)

where the minimum is taken over all linear subspaces S ⊂ Rp with dimension i. We prove
the three points one by one.

1. Since for any x ∈ Rp, x"AΣZA"x ≥ 0, we have

x"ΣXx ≥ x"ΣEx,

so by (50), for any i ∈ [p],

λi(ΣX) ≥ λi(ΣE) ≥ λp(ΣE) > c2.

2. For any x ∈ Rp,

x"ΣXx = x"AΣZA
"x+ x"ΣEx

≥ x"AΣZA
"x

≥ λK(ΣZ)x
"AA"x

≥ c1 · x"AA"x.

Plugging this into (50) with i = K, we find λK(ΣX) ≥ c1λK(A"A) as claimed.

3. For any x ∈ Rp, x"ΣEx ≤ ‖ΣE‖. Using this in (50), we find for any i > K,

λi(ΣX) ≤ ‖ΣE‖+ λi(AΣZA
") = ‖ΣE‖ < C2,

where in the second step we use that rank(AΣZA") ≤ K, so λi(AΣZA") = 0 for
i > K. Combining this with λi(ΣX) > c2 from part 1 above completes the proof.

#

B.2 Proof of Lemma 5 from Section 3.2

Using y = Z"β + ε and the fact that ε is independent of X and Z,

R(α∗) = E[(α∗"X − y)]2 = E[(α∗"X − Z"β)]2 + σ2
ε ≥ σ2

ε ,

which proves the first claim. Using X = AZ + E, we further find

R(α∗)− σ2
ε = E[(α∗"X − Z"β)]2 = α∗"ΣXα∗ + β"ΣZβ − 2α∗"AΣZβ. (51)

Now suppose ΣE and ΣZ are invertible as in the second claim. Then in particular,

λp(ΣX) ≥ λp(ΣE) > 0,
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so ΣX is invertible and thus Σ+
X = Σ−1

X . Also, ΣXy = E[Xy] = AΣZβ, so

α∗ = Σ+
XΣXy = Σ−1

X AΣZβ.

Defining Ā := AΣ1/2
Z and β̄ := Σ1/2

Z β, we have α∗ = Σ−1
X Āβ̄. Plugging this into (51) and

simplifying, we find

R(α∗)− σ2
ε = β̄"

[
IK − Ā"Σ−1

X Ā
]
β̄. (52)

By the Woodbury matrix identity,

Σ−1
X = (ĀĀ" + ΣE)

−1 = Σ−1
E − Σ−1

E Ā(IK + Ā"Σ−1
E Ā)−1Ā"Σ−1

E ,

so letting Ḡ := IK + Ā"Σ−1
E Ā,

Ā"Σ−1
X Ā = Ā"Σ−1

E Ā− Ā"Σ−1
E ĀḠ−1Ā"Σ−1

E Ā.

Now using Ā"Σ−1
E Ā = Ḡ− IK , we find

Ā"Σ−1
X Ā = (Ḡ− IK)− (Ḡ− IK)Ḡ−1(Ḡ− IK)

= Ḡ− IK − (IK − Ḡ−1)(Ḡ− IK)

= Ḡ− IK − [Ḡ− IK − IK + Ḡ−1]

= IK − Ḡ−1.

Using this to simplify (52), we find

R(α∗)− σ2
ε = β̄"Ḡ−1β̄ = β̄"(IK + ĀΣ−1

E Ā)−1β̄. (53)

Letting H := ĀΣ−1
E Ā, we find

R(α∗)− σ2
ε = β̄"H−1/2(IK +H−1)−1H−1/2β̄. (54)

For the lower bound, first observe that

R(α∗)− σ2
ε = β̄"H−1/2(IK +H−1)−1H−1/2β̄ ≥ β̄"H−1β̄

1 + ‖H−1‖ =
β"(AΣ−1

E A)−1β

1 + λ−1
K (H)

.

Furthermore,
λK(H) = λK(Ā"Σ−1

E Ā) ≥ λK(AΣZA
")/‖ΣE‖ = ξ, (55)

so using this in the previous display,

R(α∗)− σ2
ε ≥

β"(A"Σ−1
E A)−1β

1 + ξ−1
=

ξ

1 + ξ
· β"(A"Σ−1

E A)−1β.

To obtain the upper bound on R(α∗) we use

R(α∗)−σ2
ε = β̄"H−1/2(IK+H−1)−1H−1/2β̄ ≤ β̄"H−1β̄

1 + λK(H−1)
≤ β̄"H−1β̄ = β"(AΣ−1

E A)−1β,

where in the last step we use Σ1/2
Z H−1Σ1/2

Z = (AΣ−1
E A)−1. Finally,

β"(AΣ−1
E A)−1β = β̄"H−1β̄ ≤ ‖β‖2ΣZ

/λK(H) ≤ ‖β‖2ΣZ
/ξ,

where we use (55) in the last step.
#
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B.3 Proofs for Section 3.3

B.3.1 Proof of Lemma 6

Let Ā = AΣ1/2
Z and β̄ := Σ1/2

Z β. Using ΣX = AΣZA" = ĀĀ", we find

α∗ = Σ+
XĀβ̄ = (ĀĀ")+Āβ̄ = Ā+"β̄, (56)

where we use Lemma 32 in the last step. Using this formula, we obtain

‖α∗‖2ΣX
= β̄"Ā+(ĀĀ")Ā+"β̄ = β̄"β̄ = ‖β‖2ΣZ

,

where we use that Ā is full rank since A and ΣZ are full rank, and thus Ā+Ā = IK by
Lemma 32.

Next, by identity (131) in Lemma 32, and the fact that A+A = IK and ΣZ is invertible,

Ā+ = (AΣ1/2
Z )+ = Σ−1/2

Z A+.

Using this in (56) we find that α∗ = A+"β, and thus

‖α∗‖2 = β"A+A+"β = β"(A"A)−1A"A+"β,

where we use A+ = (A"A)−1A" by Lemma 32. Thus, again using A+A = A"A+" = IK ,
we find

‖α∗‖2 = β"(A"A)−1β,

as claimed. #

B.3.2 Proof of Lemma 7

Defining Ā = AΣ1/2
Z and β̄ = Σ1/2

Z β, we have α∗ = Σ−1
X Āβ̄. Now recall that since A and

ΣZ are full rank, so is Ā and thus Ā+Ā = Ā"Ā+" = IK (see Appendix E). Thus,

α∗ = Σ−1
X Āβ̄

= Σ−1
X ĀĀ"Ā+"β̄

= Σ−1
X (ΣX − ΣE)Ā

+"β̄ (since ΣX = ĀĀ" + ΣE)

= (Ip − Σ−1
X ΣE)Ā

+"β̄.

By the Woodbury matrix identity applied to Σ−1
X = (ĀĀ" + ΣE)−1,

Ip − Σ−1
X ΣE = Σ−1

E ĀḠ−1Ā",

where Ḡ := IK + Ā"Σ−1
E Ā. Using this in the previous display,

α∗ = Σ−1
E ĀḠ−1Ā"Ā+"β̄ = Σ−1

E ĀḠ−1β̄, (57)

where we again use Ā+Ā = Ā"Ā+" = IK in the second step.
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Bounds on ‖α∗‖2ΣX
: By (57), we find

‖α∗‖2ΣX
= β̄"Ḡ−1Ā"Σ−1

E (ĀĀ" + ΣE)Σ
−1
E ĀḠ−1β̄

= β̄"Ḡ−1(Ā"Σ−1
E Ā)2Ḡ−1β̄ + β̄"Ḡ−1(Ā"Σ−1

E Ā)Ḡ−1β̄

= β̄"Ḡ−1(Ḡ− IK)2Ḡ−1β̄ + β̄"Ḡ−1(Ḡ− IK)Ḡ−1β̄.

Expanding the above and simplifying, we find

‖α∗‖2ΣX
= β̄"[IK − Ḡ−1]β̄ = ‖β‖2ΣZ

− β̄"Ḡ−1β̄. (58)

Recalling that R(α∗)− σ2
ε = β̄"Ḡ−1β̄ from (53) above, Lemma 5 implies that

0 ≤ β̄"Ḡ−1β̄ ≤ ‖β‖2ΣZ
/ξ.

Combining this with (58) yields

(1− ξ−1) · ‖β‖2ΣZ
≤ ‖α∗‖2ΣX

≤ ‖β‖2ΣZ
.

Thus, when ξ > c > 1, ‖α∗‖2ΣX
& ‖β‖2ΣZ

, as claimed.

Bounds on ‖α∗‖2: Using (57), we find

‖α∗‖2 = β̄"Ḡ−1Ā"Σ−2
E ĀḠ−1β̄. (59)

Thus,

‖α∗‖2 ≤ 1

λp(ΣE)
β̄"Ḡ−1Ā"Σ−1

E ĀḠ−1β̄

=
1

λp(ΣE)
β̄"Ḡ−1(Ḡ− IK)Ḡ−1β̄

=
1

λp(ΣE)
(β̄"Ḡ−1β̄ − β̄"Ḡ−2β̄)

≤ 1

λp(ΣE)
β̄"Ḡ−1β̄. (60)

We also have

‖α∗‖2 ≥ 1

‖ΣE‖
β̄"Ḡ−1Ā"ΣE

−1ĀḠ−1β̄

=
1

‖ΣE‖
β̄"Ḡ−1(Ḡ− IK)Ḡ−1β̄

=
1

‖ΣE‖
[β̄"Ḡ−1β̄ − β̄"Ḡ−2β̄]

≥ 1

‖ΣE‖
β̄"Ḡ−1β̄ · [1− 1/λK(Ḡ)] (61)

≥ 1

‖ΣE‖
β̄"Ḡ−1β̄ · [1− 1/ξ], (62)
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where in the final step we used

λK(Ḡ) = 1 + λK(Ā"Σ−1
E Ā) ≥ λK(Ā"Ā)/‖ΣE‖ = ξ.

Combining (60) and (62),

(
ξ − 1

ξ

)
1

‖ΣE‖
β̄"Ḡ−1β̄ ≤ ‖α∗‖2 ≤ 1

λp(ΣE)
β̄"Ḡ−1β̄.

Recalling that R(α∗)− σ2
ε = β̄"Ḡ−1β̄ from (53) above, Lemma 5 implies

(
ξ − 1

ξ + 1

)
1

‖ΣE‖
β"(A"Σ−1

E A)−1β ≤ ‖α∗‖2 ≤ 1

λp(ΣE)
β"(A"Σ−1

E A)−1β. (63)

As shown at the end of this proof using the singular value decomposition of A, we have that

λp(ΣE) · β"(A"A)−1β ≤ β"(A"Σ−1
E A)−1β ≤ ‖ΣE‖ · β"(A"A)−1β.

Combining this with (63) proves that

(
ξ − 1

ξ + 1

)
· 1

κ(ΣE)
· β"(A"A)−1β ≤ ‖α∗‖2 ≤ κ(ΣE) · β"(A"A)−1β. (64)

Thus, when ξ > c > 1 and κ(ΣE) < C, ‖α∗‖2 & β"(A"A)−1β, as claimed.

Proof of (64): Write the singular value decomposition A = UASAV "
A , where UA is an p×K

matrix with satisfying U"
AUA = IK , VA is a K ×K orthogonal matrix, and SA is a K ×K

diagonal matrix with positive entries (since we assume rank(A) = K). Then,

(A"Σ−1
E A)−1 = (VASAU

"
AΣ−1

E UASAV
"
A )−1 = VAS

−1
A (U"

AΣ−1
E UA)

−1S−1
A V "

A . (65)

Thus,

β"(A"Σ−1
E A)−1β = β"VAS

−1
A (U"

AΣ−1
E UA)

−1S−1
A V "

A β

≥ β"VAS
−2
A V "

A β · 1

‖U"
AΣ−1

E UA‖
,

so using
‖U"

AΣ−1
E UA‖ ≤ ‖Σ−1

E ‖ = 1/λp(ΣE),

we find
β"(A"Σ−1

E A)−1β ≥ λp(ΣE) · β"VAS
−2
A V "

A β. (66)

We next observe that since U"
AUA = IK

(A"A)−1 = (VASAU
"
AUASAV

"
A )−1 = VAS

−2
A V "

A , (67)

and thus, by (66),
β"(A"Σ−1

E A)−1β ≥ λp(ΣE) · β"(A"A)−1β,

32



Interpolating Predictors in High-Dimensional Factor Regression

which proves the lower bound in (64). To prove the upper bound, we use that by (65),

β"(A"Σ−1
E A)−1β = β"VAS

−1
A (U"

AΣ−1
E UA)

−1S−1
A V "

A β

≤ β"VAS
−2
A V "

A β · 1

λK(U"
AΣ−1

E UA)
.

Thus, since
λK(U"

AΣ−1
E UA) ≥ λK(U"

AUA)λp(Σ
−1
E ) = 1/‖ΣE‖,

we have

β"(A"Σ−1
E A)−1β ≤ ‖ΣE‖ · β"VAS

−2
A V "

A β = ‖ΣE‖ · β"(A"A)−1β,

where in the last step we use (67). This establishes the upper bound of (64), completing
the proof.

#

B.3.3 Proof of Corollary 9

Under the conditions stated, by either Lemma 6 or Lemma 7, ‖α∗‖2 " β"(A"A)−1β. Thus,
using that ΣZ is invertible,

‖α∗‖2 " β"(A"A)−1β = β"Σ1/2
Z (Σ1/2

Z A"AΣ1/2
Z )−1Σ1/2

Z β ≤ ‖β‖2ΣZ
/λK(AΣZA

"), (68)

so ‖α∗‖ → 0 when ‖β‖2ΣZ
/λK(AΣZA") → 0.

For the second claim, we have

R(0)−R(α∗) = ‖α∗‖2ΣX
(by (16))

! ‖β‖2ΣZ
. (by either Lemma 6 or Lemma 7)

The claim follows by taking the limit inferior as p → ∞ on both sides of the inequality and
using condition (15). #

Appendix C. Proofs for Section 4

C.1 Proofs for Section 4.1

In the proofs of Lemma 11 and Theorem 12, we will use the event

A :=
{
‖Z̃+ε̃‖2 " log(n)tr(Z̃+"Z̃+), c1n ≤ σ2

K(Z̃) ≤ ‖Z̃‖2 ≤ c2n
}
, (69)

which occurs with probability at least 1 − c/n, as shown in Lemma 22 below, where Z =

Z̃Σ1/2
Z and ε = σεε̃ by Assumption 3.

C.1.1 Proof of Lemma 11

On the event A defined in (69), and using λK(ΣZ) > 0 by Assumption 2,

σ2
K(Z) = λK(ZZ") = λK(Z̃ΣZZ̃

") ≥ λK(ΣZ) · σ2
n(Z̃) ! λK(ΣZ) · n > 0, (70)
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so rank(Z) = K and thus Z+Z = IK by Lemma 32 in Appendix E. Similarly, since A is of
dimension p×K and rank(A) = K by Assumption 2,

A"A+" = (A+A)" = IK .

Using these two results together with (131) of Lemma 32, we find

X+ = (ZA")+ = (Z+ZA")+(ZA"A+")+ = A+"Z+. (71)

Thus, on the event A,

α̂ = X+y = A+"Z+y, (72)

so

‖α̂‖2 = ‖A+"Z+y‖2

= ‖A+"Z+Zβ +A+"Z+ε‖2 (by y = Zβ + ε)

≤ 2‖A+"β‖2 + 2‖A+"Z+ε‖2 (since Z+Z = IK on A)

= 2‖A+"β‖2 + 2‖(AΣ1/2
Z )+"Z̃+ε‖2,

where in the last step we used that by Lemma 32,

A+"Z = A+"(Z̃Σ1/2
Z )+ = A+"Σ−1/2

Z Z̃+ = (AΣ1/2
Z )+"Z̃+.

Continuing, and using

A+A+" = (A"A)−1A"A+" = (A"A)−1,

we find

‖α̂‖2 " β"(A"A)−1β + ‖(AΣ1/2
Z )+‖2 · σ2

ε · ‖Z̃+ε̃‖2

" β"(A"A)−1β +
1

λK(AΣZA")
σ2
ε log(n)tr(Z̃

+"Z̃+) (on A)

≤ β"(A"A)−1β +
1

λK(AΣZA")
σ2
ε log(n)K‖Z̃+‖2

= β"(A"A)−1β +
1

λK(AΣZA")
σ2
ε log(n)K

1

σ2
K(Z̃)

" β"(A"A)−1β +
1

λK(AΣZA")
σ2
ε log(n)

K

n
(on A)

≤ 1

λK(AΣZA")

(
‖β‖2ΣZ

+ σ2
ε log(n)

K

n

)
. (by (68))

Under the assumptions of this Lemma, the event A holds with probability at least 1− c/n
by Lemma 22, so the proof is complete. #
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C.1.2 Proof of Theorem 12

Part 1: By (72), α̂ = A+"Z+y on the event A defined in (69). Thus, using X = AZ and
A"A+" = IK since A is full rank by Assumption 2,

ŷx = X"α̂ = Z"A"A+"Z+y = Z"Z+y = Z"β̂ = ŷz. (73)

Part 2: Using the independence of ε and Z together with (73), the excess risk can be written
as

R(α̂)− σ2
ε = E[(X"α̂− Z"β)2] = E[(Z"β̂ − Z"β)2] = ‖β̂ − β‖2ΣZ

. (74)

By (70), rank(Z) = K and Z+Z = IK on the event A defined in (69). Thus,

β̂ = Z+y = Z+Zβ + Z+ε = β + Z+ε,

so by (74),

R(α̂)− σ2
ε = ‖Z+ε‖2ΣZ

= ‖Σ1/2
Z Z+ε‖2. (75)

By (131) of Lemma 32,

Σ1/2
Z Z+ = Σ1/2

Z (Z̃Σ1/2
Z )+ = Σ1/2

Z (Z̃+Z̃Σ1/2
Z )+(Z̃Σ1/2

Z Σ−1/2
Z )+ = Σ1/2

Z Σ−1/2
Z Z̃+ = Z̃+, (76)

where we used that Z̃+Z̃ = IK since rank(Z̃) = K on A. Thus by (75), we find that on A,

R(α̂)− σ2
ε = ‖Z̃+ε‖2 = σ2

ε‖Z̃+ε̃‖2 " σ2
ε log(n)tr(Z̃

+"Z̃+). (77)

We then use that rank(Z̃+) = K and that ‖Z̃+‖ = 1/σK(Z̃) from Lemma 32 in Appendix
E below to find that on A,

tr(Z̃+"Z̃+) ≤ K‖Z̃+"Z̃+‖ = K‖Z̃+‖2 = K

σ2
K(Z̃)

" K

n
.

Plugging this into (77) completes the proof of the upper bound.
For the lower bound, first observe that on A,

EεR(α̂)− σ2
ε = Eε‖Z̃+ε‖2 = σ2

εtr(Z̃
+"Z̃+) ≥ σ2

εKλK(Z̃+"Z̃+) = σ2
εKσ2

K(Z̃+),

so using σK(Z̃+) = 1/‖Z̃‖ by Lemma 32 again,

EεR(α̂)− σ2
ε ≥ σ2

ε
K

‖Z̃‖2
! σ2

ε
K

n
.

#

Lemma 22. Suppose that Assumptions 2 & 3 hold and that n > C · K for some large
enough absolute constant C > 0. Then there exists c > 0 such that

P
{
‖Z̃+ε̃‖2 " log(n)tr(Z̃+"Z̃+), c1n ≤ σ2

K(Z̃) ≤ ‖Z̃‖2 ≤ c2n
}
≥ 1− c/n.
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Proof Since Z̃ has independent rows with entries that are zero mean, unit variance, and
have sub-Gaussian constants bounded by an absolute constant, Theorem 4.6.1 of Vershynin
(2019) gives that with probability at least 1− 2/n,

√
n− c′′(

√
K +

√
log n) ≤ σn(Z̃) ≤ ‖Z̃‖ ≤

√
n+ c′′(

√
K +

√
log n).

and thus

√
n · [1− c′′(

√
K/n+

√
log(n)/n)] ≤ σn(Z̃) ≤ ‖Z̃‖ ≤

√
n · [1− c′′(

√
K/n+

√
log(n)/n)].

Using that n > CK we can choose C large enough such that

c′′(
√
K/n+

√
log(n)/n) < c0 < 1,

and thus
P
(
c3n ≤ σ2

K(Z̃) ≤ ‖Z̃‖2 ≤ c4n
)
≥ 1− 2/n. (78)

The bound
P
(
‖Z̃+ε̃‖2 " log(n)tr[Z̃+"Z̃+]

)
≥ 1− e−cn

follows from Lemma 23, which we state below. Combining this with (78) proves that A
occurs with probability at least 1− c/n.

The following result is a slightly adapted version of Lemma 19 from Bartlett et al. (2020)
and the discussion that follows.

Lemma 23. Suppose ε̃ ∈ Rn has independent entries with sub-Gaussian constants bounded
by an absolute constant, and suppose M ∈ Rn×n is a positive semidefinite matrix indepen-
dent of ε̃. Then, with probability at least 1− e−cn,

ε̃"M ε̃ " log(n) · tr(M).

C.1.3 Proof of Lemma 13

Suppose rank(X) = K. We can then write the singular value decomposition of X as
X = V̂KD̂Û"

K , where V̂K ∈ Rn×K , ÛK ∈ Rp×K , and D̂ ∈ RK×K are full rank, and V̂ "
K V̂K =

Û"
K ÛK = IK . Thus,

(XÛK)+ = (V̂KD̂Û"
K ÛK)+ = (V̂KD̂)+.

By Lemma 32 of Appendix E, we thus have

(XÛK)+ = (V̂ +
K V̂KD̂)+(V̂KD̂D̂+)+

= D̂+V̂ +
K (since V̂K and D̂ full rank)

= D̂+(V̂ "
K V̂K)+V̂ "

K

= D̂+V̂ "
K . (by V̂ "

K V̂K = IK)

We thus find
α̂PCR = ÛK(XÛK)+y = ÛKD̂+V̂ "

K y = X+y = α̂,
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where we recognize ÛKD̂+V̂ "
K as the pseudoinverse of X in the third step.

Now suppose that Assumptions 2 & 3 hold and K > C · n. Then by Lemma 22 above,
P{σ2

K(Z̃) ! n} ≥ 1− c/n. Thus, using

σ2
K(Z) = σ2

K(Z̃Σ1/2
Z ) ≥ λK(ΣZ)σ

2
K(Z̃)

and that λK(ΣZ) > 0 by Assumption 2,

P{rank(X) = K} ≥ P{σ2
K(Z) ! n} ≥ P{σ2

K(Z̃) ! n} ≥ 1− c/n,

which completes the proof. #

C.2 Proofs for Section 4.2

In this section we begin with the proof of Lemma 15 and our main result, Theorem 16,
which rely on Proposition 14, proved subsequently. The proofs of Lemma 15 and Theorem
16 use the event

E := E1 ∩ E2 ∩ E3, (79)

where for positive absolute constants c1 to c6,

E1 :=
{
σ2
n(X) ≥ c1tr(ΣE), ‖E‖2 ≤ c2tr(ΣE), c3n ≤ σ2

K(Z̃) ≤ ‖Z̃‖2 ≤ c4n
}
,

E2 :=
{
ε̃"X+"ΣXX+ε̃ ≤ c5 log(n)tr(X

+"ΣXX+)
}
,

E3 :=
{
ε̃"X+"X+ε̃ ≤ c6 log(n)tr(X

+"X+)
}
.

We will show in Lemma 24 below that E occurs with probability at least 1 − c/n for an
absolute constant c > 0.

C.2.1 Proof of Theorem 15

Using α̂ = X+y, y = Zβ + ε, and that A is full rank by Assumption 2, we find

α̂ = X+y

= X+Zβ +X+ε

= X+ZA"A+"β +X+ε (A+A = IK since rank(A) = K)

= X+(X−E)A+"β +X+ε (using X = ZA" +E)

= X+XA+"β −X+EA+"β +X+ε.

Thus, using (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

‖α̂‖2 ≤ 3‖X+XA+"β‖2 + 3‖X+EA+"β‖2 + 3‖X+ε‖2

" ‖X+X‖2‖A+"β‖2 + ‖E‖2

σ2
n(X)

‖A+"β‖2 + σ2
ε ε̃

"X+"X+ε̃

≤ ‖A+"β‖2 + ‖A+"β‖2 + σ2
ε log(n)tr(X

+"X+),
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where in the last step holds on the event E , and uses that ‖X+X‖ ≤ 1 since X+X is a
projection matrix. Recalling that by (68),

‖A+"β‖2 = β"(A"A)−1β ≤ ‖β‖2ΣZ
/λK(AΣZA

"),

and using that rank(X) ≤ n, we find that on E ,

‖α̂‖2 " 1

λK(AΣZA")
‖β‖2ΣZ

+ σ2
ε log(n) · n · ‖X+‖2

=
1

λK(AΣZA")
‖β‖2ΣZ

+ σ2
ε
n log n

σ2
n(X)

" 1

λK(AΣZA")
‖β‖2ΣZ

+ σ2
ε
n log n

tr(ΣE)
.

By Lemma 24, E holds with probability at least 1− c/n, so the proof is complete. #

C.2.2 Proof of Theorem 16

Using that Z, E and ε are independent of one another and of α̂, we have

R(α̂) = E[(X"α̂− y)2]

= E[(Z"A"α̂− Z"β − ε+ E"α̂)2]

= σ2
ε + ‖Σ1/2

E α̂‖2 + ‖Σ1/2
Z (A"α̂− β)‖2.

Since α̂ = X+y = X+Zβ +X+ε,

‖Σ1/2
E α̂‖2 ≤ 2‖Σ1/2

E X+Zβ‖2 + 2‖Σ1/2
E X+ε‖2 := 2B1 + 2V1.

Similarly,

‖Σ1/2
Z (A"α̂− β)‖2 ≤ 2‖Σ1/2

Z (A"X+Z− IK)β‖2 + 2‖Σ1/2
Z A"X+ε‖2 := 2B2 + 2V2.

We thus have R(α̂) − σ2
ε " B + V , where we view B := B1 + B2 as a bound on the bias

component of the risk and V := V1 + V2 as a bound on the variance component. In what
follows, we bound the four terms

B1 = ‖Σ1/2
E X+Zβ‖2

B2 = ‖Σ1/2
Z (A"X+Z− IK)β‖2

V1 = ‖Σ1/2
E X+ε‖2

V2 = ‖Σ1/2
Z A"X+ε‖2.

Bounding the bias component: On the event E defined in (79), σn(X) > 0 and by As-
sumption 2 and (70) above, σ2

n(Z) ! λK(ΣZ)n > 0. Thus X and Z are of rank n and K
respectively, so by Lemma 32 of Appendix E, XX+ = In and Z+Z = IK . It follows that

Z+ −A"X+ = Z+XX+ −A"X+ (since XX+ = In)

= (Z+X−A")X+

= (Z+[ZA" +E]−A")X+ (since X = ZA" +E)

= Z+EX+, (since Z+Z = IK) (80)
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and thus again using Z+Z = IK

B2 = ‖Σ1/2
Z (A"X+Z− IK)β‖2 = ‖Σ1/2

Z (A"X+ − Z+)Zβ‖2 = ‖Σ1/2
Z Z+EX+Zβ‖2.

By (76) above and the fact that Z is full rank on E , Σ1/2
Z Z+ = Z̃+, so on E ,

B2 = ‖Z̃+EX+Zβ‖2 ≤ ‖E‖2

σ2
K(Z̃)

‖X+Zβ‖2 " tr(ΣE)‖X+Zβ‖2

n
,

where we also used that ‖Z̃+‖2 = 1/σ2
K(Z̃). Since B1 = ‖Σ1/2

E X+Zβ‖2 ≤ ‖ΣE‖‖X+Zβ‖2,
and

‖ΣE‖ = tr(ΣE)
‖ΣE‖
tr(ΣE)

=
tr(ΣE)

n
· n

re(ΣE)
" tr(ΣE)

n
,

where we used the assumption re(ΣE) > c1n in the last step, we also have that on E ,

B = B1 +B2 "
tr(ΣE)‖X+Zβ‖2

n
. (81)

To bound ‖X+Zβ‖2, we first use A"A+" = IK and ZA" = X−E to find

‖X+Zβ‖2 = ‖X+ZA"A+"β‖2 ≤ 2‖X+XA+"β‖2 + 2‖X+EA+"β‖2.

The second term can be bounded, on the event E , by

‖E‖2‖A+"β‖2

σ2
n(X)

"‖A+"β‖2.

On the other hand, the first term can be bounded as ‖X+XA+"β‖2 ≤ ‖A+"β‖2 using the
fact that X+X is a projection matrix, so we find that on E ,

‖X+Zβ‖2 " ‖A+"β‖2. (82)

Finally, we have

‖A+"β‖2 = β"(A"A)−1β = β"Σ1/2
Z (Σ1/2

Z A"AΣ1/2
Z )−1Σ1/2

Z β ≤
‖β‖2ΣZ

λK(AΣZA")
. (83)

Combining this with (82) and plugging into (81), we find that on the event E ,

B "
‖β‖2ΣZ

λK(AΣZA")

tr(ΣE)

n
=

‖β‖2ΣZ
‖ΣE‖

λK(AΣZA")
· tr(ΣE)

‖ΣE‖n
=

‖β‖2ΣZ

ξ

re(ΣE)

n
. (84)

Bounding the variance component: First note that

V = V1 + V2 = ‖Σ1/2
E X+ε‖2 + ‖Σ1/2

Z A"X+ε‖2 = ε"X+"ΣXX+ε = σ2
ε ε̃X

+"ΣXX+ε̃,

so on the event E ,

V " σ2
ε log(n)tr(X

+"ΣXX+) = σ2
ε log(n)

{
tr(X+"ΣEX

+) + tr(X+"AΣZA
"X+)

}
, (85)
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where we use ΣX = AΣZA"+ΣE in the second step. The first term in (85) can by bounded
as

tr(X+"ΣEX
+) ≤ ‖ΣE‖ · n‖X+"X+‖ = ‖ΣE‖

n

σ2
n(X)

" n

re(ΣE)
, (86)

where in the first step we used that rank(X+) = rank(X) = n and in the last step that
σ2
n(X) ! tr(ΣE) on E .
For the second term in (85),

tr(X+"AΣZA
"X+) ≤ K‖Σ1/2

Z A"X+‖2 (since rank(AΣZA
") = K)

= K‖Σ1/2
Z (Z+ − Z+EX+)‖2 (by (80) above)

≤ 2K‖Z̃+‖2 + 2K‖Z̃+‖2‖E‖2‖X+‖2,

where we use that Σ1/2
Z Z+ = Z̃+ from (76) in the final step. Continuing, we find

tr(X+"AΣZA
"X+) " K

σ2
K(Z̃)

(
1 +

‖E‖2

σ2
n(X)

)
" K

n
, (87)

where we use the bounds defining E1 in the last inequality. Combining (87) and (86) with
(85), we conclude that on E ,

V " σ2
ε
n log n

re(ΣE)
+ σ2

ε
K log n

n
.

Combining this with the bias bound (84) gives the bound in the statement of the theorem.
By Lemma 24 below, P(E) ≥ 1− c/n, so the proof is complete. #

Lemma 24. Under model (5), suppose that Assumptions 2 and 3 hold and n > C ·K and
re(ΣE) > C · n hold, for some C > 0. Then P(E) ≥ 1− c/n, where E := E1 ∩ E2 ∩ E3 and

E1 :=
{
σ2
n(X) ≥ c1tr(ΣE), ‖E‖2 ≤ c2tr(ΣE), c3n ≤ σ2

K(Z̃) ≤ ‖Z̃‖2 ≤ c4n
}
,

E2 :=
{
ε̃"X+"ΣXX+ε̃ ≤ c5 log(n)tr(X

+"ΣXX+)
}
,

E3 :=
{
ε̃"X+"X+ε̃ ≤ c6 log(n)tr(X

+"X+)
}
,

for positive constants c1 to c6.

Proof We have P(Ec) ≤ P(Ec
1) + P(Ec

2) + P(Ec
3). The bounds P(Ec

2) ≤ e−cn and P(Ec
3) ≤

e−cn follow immediately from Lemma 23 in Appendix C.1 above, using the fact that ε̃
has independent entries with sub-Gaussian constants bounded by an absolute constant.
Considering P(Ec

1), we have

P(Ec
1) ≤ P{σ2

n(X) ≤ c1tr(ΣE)}+ P{‖E‖2 ≥ c2tr(ΣE)}+ P{c3n ≤ σ2
K(Z̃) ≤ ‖Z̃‖2 ≤ c4n}

The three terms above can be bounded as follows. Recall that we assume n > CK and
re(ΣE) > Cn for some C > 1 large enough.
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1. Since re(ΣE) > Cn, Proposition 14 can be applied to conclude

P{σ2
n(X) ≤ c1tr(ΣE)} ≤ 2e−cn.

2. By Assumption 3, E = ẼΣ1/2
E , where Ẽ has independent entries with zero mean, unit

variance, and sub-Gaussian constants bounded by an absolute constant. Thus,

‖E‖2 = ‖EE"‖ = ‖ẼΣEẼ
"‖,

and by applying Theorem 21 with Ẽ and ΣE we find that with probability at least
1− 2e−cn,

‖E‖2 ≤ tr(ΣE) + c′‖ΣE‖n = tr(ΣE) · (1 + c′n/re(ΣE)) " tr(ΣE),

where the last inequality holds since n/re(ΣE) < 1/C. Thus for c2 > 0,

P{‖E‖2 ≥ c2tr(ΣE)} ≤ 2e−cn.

3. By (78) we have that with probability at least 1− 2/n,

c3n ≤ σ2
K(Z̃) ≤ ‖Z̃‖2 ≤ c4n.

Combining the previous three steps shows that P(Ec
1) ≤ c/n.

C.2.3 Proof of Proposition 14

We will work on the event

F := {σ2
n(EU(K+1):p) ≥ c4tr(ΣE), ‖Z̃‖2 ≤ c5n},

where U(K+1):p ∈ Rp×(p−K) has columns equal to the orthonormal eigenvectors of ΣX cor-
responding to the smallest p−K eigenvalues.

Bounding P(F): By Assumption 3, E = ẼΣ1/2
E , where Ẽ has independent sub-Gaussian

entries with zero mean, unit variance, sub-Gaussian constants bounded by an absolute
constant. Thus, letting

Q = U(K+1):pU
′
(K+1):p,

we have
σ2
n(EU(K+1):p) = λn(EQE") = λn(ẼΣ1/2

E QΣ1/2
E Ẽ").

We can now apply Theorem 21, stated and proved above in Section A, with Ẽ and Σ1/2
E QΣ1/2

E .
Noting that M = maxij ‖Ẽ‖ψ2 is bounded by an absolute constant by Assumption 3, this
implies that with probability at least 1− 2e−cn,

σ2
n(EU(K+1):p) ≥ tr(Σ1/2

E QΣ1/2
E )/2− c′‖Σ1/2

E QΣ1/2
E ‖n. (88)
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Since Q is a projection matrix, ‖Σ1/2
E QΣ1/2

E ‖ ≤ ‖ΣE‖‖Q‖ = ‖ΣE‖. Furthermore,

tr(Σ1/2
E QΣ1/2

E ) = tr(ΣEQ)

= tr(ΣE)− tr(ΣE(I −Q))

≥ tr(ΣE)−K‖ΣE(I −Q)‖ (since rank(I −Q) = K)

≥ tr(ΣE)−K‖ΣE‖‖I −Q‖
= tr(ΣE)−K‖ΣE‖ (since ‖I −Q‖ = 1)

≥ tr(ΣE)− n‖ΣE‖. (since n ≥ K)

Plugging these two results into (88), we find that with probability at least 1− 2e−cn,

σ2
n(EU(K+1):p) ≥ tr(ΣE)/2−(1/2+c′)n‖ΣE‖ = tr(ΣE) · [1/2−(1/2+c′)n/re(ΣE)] ! tr(ΣE),

(89)
where in the last inequality we use that n/re(ΣE) < 1/C and choose C large enough.

Also, since Z̃ has independent rows with entries that have zero mean, unit variance, and
sub-Gaussian constants bounded by an absolute constant, we have that by Theorem 4.6.1
of Vershynin (2019),

‖Z̃‖2 ≤ c2n,

with probability at least 1− e−c′n. Combining this with 89 we conclude that

P(F) ≥ 1− ce−c′n.

Bounding σn(X) on F : We now show that σ2
n(X) ! tr(ΣE) holds on the event F . Let

ΣX = UDU" with U ∈ Rp×p orthogonal and D = diag(λ1(ΣX), . . . ,λp(ΣX)). Define
UK ∈ Rp×K to be the sub-matrix of U containing the first K columns, and define U(K+1):p

to be composed of the last p−K columns of U . Then

Ip = UU" = UKU"
K + U(K+1):pU

"
(K+1):p,

so

λn(XX") = λn(XUKU"
KX" +XU(K+1):pU

"
(K+1):pX

") ≥ λn(XU(K+1):pU
"
(K+1):pX

"),

where we use the min-max formula for eigenvalues in the last step. This implies

σn(X) ≥ σn(XU(K+1):p). (90)

By Weyl’s inequality for singular values, and using X = ZA" +E,

|σn(XU(K+1):p)− σn(EU(K+1):p)| ≤ ‖ZA"U(K+1):p‖,

so by (90),

σn(X) ≥ σn(XU(K+1):p) ≥ σn(EU(K+1):p)− ‖ZA"U(K+1):p‖ !
√

tr(ΣE)− ‖ZA"U(K+1):p‖,
(91)
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where the last inequality holds on the event F . We show below that ‖ZA"U(K+1):p‖ "√
n‖ΣE‖ on F , which implies that

σn(X) !
√

tr(ΣE)− c
√

n‖ΣE‖ =
√
tr(ΣE) · (1− c

√
n/re(ΣE)) !

√
tr(ΣE),

where in the last inequality we use that n/re(ΣE) < 1/C and choose C large enough.

Upper bound of ‖ZA"U(K+1):p‖: On the event F ,

‖ZA"U(K+1):p‖2 = ‖Z̃Σ1/2
Z A"U(K+1):p‖ ≤ ‖Z̃‖2‖Σ1/2

Z A"U(K+1):p‖2 " n‖Σ1/2
Z A"U(K+1):p‖2.

(92)
Furthermore, using ΣX = AΣZA" + ΣE , and that U"

(K+1):pΣXU(K+1):p = D(K+1):p where

we define D(K+1):p := diag(λK+1(ΣX), . . . ,λp(ΣX)),

‖Σ1/2
Z A"U(K+1):p‖2 = ‖U"

(K+1):pAΣZA
"U(K+1):p‖

= ‖U"
(K+1):pΣXU(K+1):p − U"

(K+1):pΣEU(K+1):p‖

= ‖D(K+1):p − U"
(K+1):pΣEU(K+1):p‖

≤ λK+1(ΣX) + ‖U"
(K+1):pΣEU(K+1):p‖

≤ λK+1(ΣX) + ‖ΣE‖‖U"
(K+1):pU(K+1):p‖

= λK+1(ΣX) + ‖ΣE‖,

where we use U"
(K+1):pU(K+1):p = Ip−K in the last step. Thus, using that

λK+1(ΣX) = λK+1(ΣX)− λK+1(AΣZA
") ≤ ‖ΣE‖

by Weyl’s inequality and the fact that λK+1(AΣZA") = 0, we find

‖Σ1/2
Z A"U(K+1):p‖2 ≤ 2‖ΣE‖.

Combining this with (92), we find that on F ,

‖ZA"U(K+1):p‖ "
√

n‖ΣE‖.

#

C.3 Proof of Theorem 19 from Section 4.4

Let DK = U"
KΣXUK = diag(λ1(ΣX), . . . ,λK(ΣX)) and note that since A and ΣZ are rank

K by Assumption 2,

λK(ΣX) ≥ λK(AΣZA
") ≥ λK(ΣZ)λK(AA") > 0,

and thus DK is invertible. Furthermore, define η = y − X"α∗ with variance σ2
η = E[η2],

and the sample version η = y −Xα∗. We work on the event D := D1 ∩D2, where

D1 :=
{
σ2
K(XUKD−1/2

K ) ! n, ‖XΣ−1/2
X ‖2 " p

}
,
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and

D2 :=
{
‖(XUKD−1/2

K )+η‖2 " log(n) · σ2
η · tr[(XUKD−1/2

K )+"(XUKD−1/2
K )+]

}
.

As the last step of this proof, we will show that P(D) ≥ 1− c′/n.
Letting η := y −X"α∗, we have

E[Xη] = E[Xy]− E[XX"]α∗ = ΣXy − ΣXΣ+
XΣXy = 0, (93)

where we used (41) in the last step. Thus,

R(α̃PCR) := E[(X"α̃PCR − y)2]

= E
[
(X"α̃PCR −X"α∗ − η)2

]

= E
[
(X"α̃PCR −X"α∗)2

]
+ E[η2] (by 93)

= ‖α̃PCR − α∗‖2ΣX
+R(α∗). (94)

Defining the projection matrix P = UKU"
K , and writing

y = Xα∗ + η = XPα∗ +X(Ip − P )α∗ + η,

we find

α̃PCR = UK(XUK)+y

= UK(XUK)+XPα∗ + UK(XUK)+X(Ip − P )α∗ + UK(XUK)+η.

From the fact that XUK is an n × K matrix with K < n and rank(XUK) = K on the
event D1, we have (XUK)+XUK = IK by Lemma 32 of Appendix E below. Thus, using
P = UKU"

K we have (XUK)+XP = U"
K . Applying this in the previous display, we find

α̃PCR = Pα∗ + UK(XUK)+X(Ip − P )α∗ + UK(XUK)+η.

It thus follows from the decomposition (94) that

R(α̃PCR)−R(α∗) = ‖α̃PCR − α∗‖2ΣX

" ‖(Ip − P )α∗‖2ΣX
+ ‖UK(XUK)+X(Ip − P )α∗‖2ΣX

+ ‖UK(XUK)+η‖2ΣX

=: B1 +B2 + V. (95)

Bounding B1: We find

B1 = ‖Σ1/2
X (Ip − P )α∗‖2 ≤ ‖Σ1/2

X (Ip − P )‖2‖α∗‖2 = ‖(I − P )ΣX(I − P )‖‖α∗‖2. (96)

Since I−P is a projection onto the span of the last p−K eigenvectors of ΣX with eigenvalues
λK+1(ΣX), . . . ,λp(ΣX), we have ‖(I − P )ΣX(I − P )‖ = λK+1(ΣX). By Weyl’s inequality,

λK+1(ΣX) = λK+1(ΣX)− λK+1(AΣZA
") ≤ ‖ΣE‖,
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where we used that λK+1(AΣZA") = 0 in the first step since rank(AΣZA") = K. Thus

‖Σ1/2
X (Ip − P )‖2 ≤ ‖ΣE‖,

and combining this with (96) we find

B1 ≤ ‖ΣE‖‖α∗‖2. (97)

Bounding B2: Recalling DK = U"
KΣXUK ,

B2 = α∗"(Ip − P )X"(XUK)+"U"
KΣXUK(XUK)+X(I − P )α∗

= ‖D1/2
K (XUK)+X(Ip − P )α∗‖2. (98)

Observe that by Lemma 32 of Appendix E,

(XUKD−1/2
K )+ = [(XUK)+(XUK)D−1/2

K ]+ · [XUKD−1/2
K D1/2

K ]+ = D1/2
K (XUK)+, (99)

where we used that XUK is a full rank n×K matrix with K < n so (XUK)+(XUK) = IK .
Using this in (98) yields

B2 = ‖(XUKD−1/2
K )+X(Ip − P )α∗‖2

≤ ‖X(Ip − P )α∗‖2

σ2
K(XUKD−1/2

K )

≤
‖XΣ−1/2

X ‖2

σ2
K(XUKD−1/2

K )
· ‖Σ1/2

X (Ip − P )α∗‖2

" p

n
‖Σ1/2

X (Ip − P )α∗‖2,

where the last step holds on D. Recalling that ‖Σ1/2
X (Ip − P )α∗‖2 = B1 and using (97), we

find that
B2 " ‖ΣE‖ · ‖α∗‖2 p

n
. (100)

Bounding V : We have on D,

V = η"(XUK)+"U"
KΣXUK(XUK)+η

= η"(XUK)+"DK(XUK)+η

= ‖D1/2
K (XUK)+η‖2

= ‖(XUKD−1/2
K )+η‖2 (by (99))

" σ2
η · log(n) · tr[(XUKD−1/2)+"(XUKD−1/2)+] (on D2)

≤ σ2
η · log(n) ·K · ‖(XUKD−1/2)+‖2 (since rank(XUKD−1/2) = K)

= σ2
η ·

K log n

σ2
K(XUKD−1/2)

" σ2
η ·

K log n

n
. (on D1).
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Recalling η = y −X"α∗ so σ2
η = R(α∗),

V " R(α∗) · K log n

n
. (101)

Combining this with (97) and (100) proves (33).

In the case ΣE = 0, the bound (34) follows immediately from (33). When λp(ΣE) > 0,
Lemma 5 of Section 3.2 implies

R(α∗) ≤ σ2
ε +

‖β‖2

ξ
.

When λp(ΣE) > 0, we also have that

‖α∗‖2 ≤ κ(ΣE)β
"(A"A)−1β ≤ 1

λp(ΣE)
·
‖β‖2ΣZ

ξ
.

Plugging the last two displays into (33) gives

RPCR(β̂)−R(α∗) " κ(ΣE)
‖β‖2ΣZ

ξ
· p
n
+

‖β‖2ΣZ

ξ

K log n

n
+ σ2

ε
K log n

n

" κ(ΣE)
‖β‖2ΣZ

ξ
· p
n
+ σ2

ε
K log n

n
,

where in the second step we use that

K log n < c · n " p ≤ κ(ΣE)p.

This proves (35). All that remains is to bound the probability of the event D.

Bounding P(D): We first bound the probability P(D1). Note that the matrix XUKD−1/2
K

has independent Gaussian rows D−1/2
K U"

KXi, with covariance

E[D−1/2
K U"

KXiX
"
i UKD−1/2

K ] = D−1/2
K U"

KΣXUKD−1/2
K = D−1/2

K DKD−1/2
K = IK ,

and so XUKD−1/2
K i.i.d. N(0, 1) entries. Thus, by Theorem 4.6.1 of Vershynin (2019), with

probability at least 1− 2/n,

σK(XUKD−1/2
K ) ≥

√
n− c(

√
K+

√
log n) =

√
n · [1− c

√
K/n− c

√
log(n)/n] !

√
n, (102)

where in the last step we use the assumption that n > CK > C and choose C large enough.

Similarly, XΣ−1/2
X is a n× p matrix with i.i.d. N(0, 1) entries, so again by by Theorem

4.6.1 of Vershynin (2019), with probability at least 1− 2e−n,

‖XΣ−1/2
X ‖ ≤

√
n+ c(

√
p+

√
n) " √

p. (103)

Using a union bound to combine this with (102), we find

P(D1) ≥ 1− c′/n,
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for some c′ > 0.
To bound P(D2), first note that by (93) and the assumption that (X, y) are Gaussian,

X and η are independent. Furthermore, η̃ = η/ση has independent N(0, 1) entries. We
can thus apply Lemma 23 from Appendix C.1 above with

M = (XUKD−1/2
K )+"(XUKD−1/2

K )+

to conclude that with probability at least 1− e−cn,

‖(XUKD−1/2
K )+η‖2 = η"Mη = σ2

ηη̃
"M η̃ " σ2

η · log(n) · tr(M),

and so P(Dc
2) ≤ e−cn. #

C.4 Detailed Comparison of the Bias and Variance Terms in Section 4.3

In this sections we give a detailed comparison between our Theorem 16 and Theorem 4 in
Bartlett et al. (2020). We assume throughout this section that the matrices ΣX and ΣE

are invertible and the condition number κ(ΣE) of the matrix ΣE is bounded above by an
absolute constant c1.

First define the effective ranks

rk(ΣX) :=

∑
i>k λi(ΣX)

λi+1(ΣX)
, Rk(ΣX) :=

(∑
i>k λi(ΣX)

)2
∑

i>k λ
2
i (ΣX)

.

The bound of Bartlett et al. (2020) is stated to hold for probability at least 1 − δ for a
general δ < 1 such that log(1/δ) > n/c for an absolute constant c > 1. Taking δ = e−c′n

(for an appropriate c′) to ease comparison with our results, the bound then states that with
when model (5) holds, (X, y) are jointly Gaussian, rank(ΣX) ≥ n, and n is large enough,
with probability at least 1− e−c′n,

R(α̂)−R(α∗) " B + V,

where

B := ‖α∗‖2‖ΣX‖max

{√
r0(ΣX)

n
,
r0(ΣX)

n
, 1

}
, (104)

and

V := σ2
ε log(n)

(
n

RK∗(ΣX)
+

K∗

n

)
(105)

are bounds on the bias and variance respectively, and

K∗ = min{k ≥ 0 : rk(ΣX)/n ≥ b}, (106)

where b > 1 is an absolute constant.
We now compare these two terms to the corresponding terms in our bound in Theorem

16.
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C.4.1 Comparison of Variance Terms

We first compare the variance term V to corresponding variance term in our Theorem 16,
display (27). Note that as long as the SNR

ξ := λK(AΣZA
")/‖ΣE‖

grows fast enough, K∗ = K for large enough n, where K is the dimension of the latent
variables Z ∈ RK in the factor regression model.

Lemma 25. If K/n = o(1), re(ΣE)/n → ∞, and ξ → ∞, such that ξ−1re(ΣE)/n = o(1),
then K∗ = K for all n large enough.

Thus, under the conditions stated in Lemma 25 and for n large enough,

V := σ2
ε log(n)

(
n

RK(ΣX)
+

K

n

)
.

Using the convexity of x 4→ x2, we can bound RK(ΣX) above via

RK(ΣX) =

(∑p
i=K+1 λi(ΣX)

)2
∑p

i=K+1 λ
2
i (ΣX)

≤
(p−K)

∑p
i=K+1 λ

2
i (ΣX)

∑p
i=K+1 λ

2
i (ΣX)

≤ p.

Thus,

V ≥ σ2
ε log(n)

(
n

p
+

K

n

)
. (107)

When κ(ΣE) < c1, p " re(ΣE) ≤ p, and so the variance term in the bound of our Theorem
16 is

σ2
ε log(n)

(
n

r0(ΣE)
+

K

n

)
" σ2

ε log(n)

(
n

p
+

K

n

)
.

Thus, comparing with (107), we see that under the stated conditions our variance bound is
the same as that of Bartlett et al. (2020), up to absolute constants.

Proof [Proof of Lemma 25] We will prove that

r%(ΣX)

n
≤ K

n
(1 + ξ−1) +

1

ξ

re(ΣE)

n
, for 0 ≤ ) ≤ K − 1 (108)

and that
rK(ΣX)

n
≥ re(ΣE)

n
− K

n
. (109)

Together with the definition of K∗ in (106), these two bounds imply Lemma 25.
First note that for 0 ≤ ) ≤ K,

p∑

i=%+1

λi(ΣX) = tr(ΣX)−
%∑

i=1

λi(ΣX)

= tr(ΣE) + tr(AΣZA
")−

%∑

i=1

λi(ΣX)

= tr(ΣE) +
K∑

i=%+1

λi(AΣZA
") +

%∑

i=1

(λi(AΣZA
")− λi(ΣX)), (110)
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where the sums from ) + 1 to K and from 1 to ) are defined to be zero when ) = K and
) = 0, respectively.

Proof of (108): By Weyl’s inequality,

|λi(AΣZA
")− λi(ΣX)| ≤ ‖ΣE‖, (111)

so by (110),

p∑

i=%+1

λi(ΣX) ≤ tr(ΣE) + (K − ))λ%+1(AΣZA
") + )‖ΣE‖

≤ tr(ΣE) +Kλ%+1(AΣZA
") +K‖ΣE‖. (112)

From the min-max formula for eigenvalues we have

λ%+1(ΣX) = min
S:dim(S)=%+1

max
x∈S:‖x‖=1

x"ΣXx,

where the minimum is taken over all linear subspaces S ⊂ Rp with dimension )+ 1. Since
x"ΣXx ≥ x"AΣZA"x for any x ∈ Rp, this implies

λ%+1(ΣX) ≥ λ%+1(AΣZA
"). (113)

Combining (112) and (113), we find

r%(ΣX) =

∑p
i=%+1 λi(ΣX)

λ%+1(ΣX)

≤ K

(
1 +

‖ΣE‖
λ%+1(AΣZA")

)
+

tr(ΣE)

λ%+1(AΣZA")

≤ K

(
1 +

‖ΣE‖
λK(AΣZA")

)
+

tr(ΣE)

λK(AΣZA")

= K(1 + ξ−1) + ξ−1re(ΣE),

which completes the proof of (108).

Proof of (109): Equation (110) for ) = K is

p∑

i=K+1

λi(ΣX) = tr(ΣE) +
K∑

i=1

(λi(AΣZA
")− λi(ΣX)).

Again using (111),
p∑

i=K+1

λi(ΣX) ≥ tr(ΣE)−K‖ΣE‖. (114)

Since

λK+1(ΣX) = λK+1(ΣX)− λK+1(AΣZA
") (since λK+1(AΣZA

") = 0)

≤ ‖ΣE‖ (Weyl’s inequality). (115)
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Combining (114) and (115), we find

rK(ΣX) =

∑p
i=K+1 λi(ΣX)

λK+1(ΣX)
≥ re(ΣE)−K,

which proves (109).

C.4.2 Comparison of Bias Terms

A more interesting comparison arises between the bias term B and the corresponding bias
term in Theorem 16, display (27). Here we will see how the approach we take in this
paper, explicitly taking advantage of the structure of the factor regression model, leads to
a stronger bound under certain conditions

Lemma 26. Suppose ξ := λK(AΣZA")/‖ΣE‖ > 1 and A, ΣZ , ΣE are all full rank. Then

B ≥
(
ξ − 1

ξ + 1

)
· 1

κ(ΣE)
‖β‖2ΣZ

max

(√
r0(ΣX)

n
,
r0(ΣX)

n

)
, (116)

where
r0(ΣX)

n
≥ 1

2

r0(AΣZA")

n
+

1

2κ(AΣZA")

1

ξ

re(ΣE)

n
. (117)

In particular, if ξ > c1 > 1 and κ(ΣE) < c2, κ(AΣZA") < c2 for absolute constants c1, c2,

B ! ‖β‖2ΣZ
max

(√
1

ξ

p

n
,
1

ξ

p

n

)
. (118)

Compared to our bias bound ‖β‖2ΣZ
p/(n · ξ) in Theorem 16, there is an additional

quantity r0(AΣZA")/n of order O(K/n). Ignoring this quantity, provided both κ(ΣE) and
κ(AΣZA") are uniformly bounded, we obtain the lower bound (118). When p/(n · ξ) < 1,
this rate is worse by a factor

√
p/(n · ξ), compared to the bias term ‖β‖2ΣZ

p/(n · ξ) in The-
orem 16.

Proof [Proof of Lemma 26] Using that A, ΣZ , ΣE are all full rank, by (64) above,

‖α∗‖2 ≥
(
ξ − 1

ξ + 1

)
· 1

κ(ΣE)
· β"(A"A)−1β ≥

(
ξ − 1

ξ + 1

)
· 1

κ(ΣE)

‖β‖2ΣZ

‖AΣZA"‖ .

Thus, using ‖ΣX‖ = ‖AΣZA" + ΣE‖ ≥ ‖AΣZA"‖,

‖ΣX‖‖α∗‖2 ≥
(
ξ − 1

ξ + 1

)
· 1

κ(ΣE)
‖β‖2ΣZ

,

which implies (116).
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To prove (117), we first recall that r0(ΣX) = tr(ΣX)/‖ΣX‖ and ΣX = AΣZA" + ΣE ,
which implies that

r0(ΣX)

n
=

tr(AΣZA")

n‖ΣX‖ +
tr(ΣE)

n‖ΣX‖ .

Observing that ‖ΣX‖ ≤ ‖AΣZA"‖ + ‖ΣE‖ ≤ 2‖AΣZA"‖, where we use that ‖ΣE‖ ≤
‖AΣZA"‖ by the assumption ξ > 1, we find

r0(ΣX)

n
≥ 1

2

r0(AΣZA")

n
+

1

2

tr(ΣE)

n‖AΣZA"‖

=
1

2

r0(AΣZA")

n
+

1

2

λK(AΣZA")

‖AΣZA"‖
‖ΣE‖

λK(AΣZA")

tr(ΣE)

n‖ΣE‖

=
1

2

r0(AΣZA")

n
+

1

2κ(AΣZA")

1

ξ

re(ΣE)

n
,

which proves (117).

Appendix D. Supplementary Results

D.1 Closed Form Solutions of Min-Norm Estimator and Minimizer of R(α)

Lemma 27. For zero mean random variables X ∈ Rp and y ∈ R, suppose ΣX := E[XX"]
and σ2

y := E[y2] are finite, and let ΣXy = E[Xy]. Then α∗ := Σ+
XΣXy is a minimizer of

R(α):
R(α∗) = min

α∈Rp
R(α).

Proof We have

R(α) = E[(X"α− y)2] = α"ΣXα+ σ2
y − 2α"ΣXy,

so since R(α) is convex, α is a minimizer if and only if

∇αR(α) = 2ΣXα− 2ΣXy = 0.

By (41), ΣXα∗ = ΣXy, so the claim is proved.

For X ∈ Rn×p and y ∈ Rn, let

α̂ := argmin
{
‖α‖ : ‖Xα− y‖ = min

u
‖Xu− y‖

}
.

We then have the following result.

Lemma 28. α̂ = X+y.

Proof We establish the proof in two steps.
Step 1: Existence and uniqueness of α̂. Since

∇u‖Xu− y‖2 = 2X"Xu− 2X"y,
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and ‖Xu− y‖2 is convex in u, u is a minimizer of u 4→ ‖Xu− y‖2 if and only if

X"Xu = X"y. (119)

By the properties of the pseudo-inverse, X"XX+ = X", so

X"X(X+y) = X"y,

and thus X+y is a minimizer of ‖Xu−y‖. The set of vectors u satisfying X"Xu = X"y is
also convex, so α̂ is a minimizer of a strictly convex function ‖ · ‖ over a non-empty convex
set. Such a minimizer exists and is unique, so α̂ exists and is unique.

Step 2: formula for α̂. Since α̂ is a minimizer of ‖Xu− y‖, it must satisfy 119, i.e.

X"Xα̂ = X"y. (120)

We can write
α̂ = X+Xα̂+ (I −X+X)α̂,

and using XX+X = X as well as the fact that X+X is symmetric (see Appendix E), a
quick calculation gives

‖α̂‖2 = ‖X+Xα̂‖2 + ‖(I −X+X)α̂‖2.

Thus ‖X+Xα̂‖ ≤ ‖α̂‖2, and also

X"X(X+Xα̂) = X"Xα̂ = X"y,

where we used XX+X = X in the first step and 120 in the second step. Thus X+Xα̂ is a
minimizer of ‖ · ‖ among minimizers of ‖Xu − y‖. Since by Step 1 above α̂ is the unique
such minimizer, X+Xα̂ = α̂. Thus,

α̂ = X+Xα̂

= (X"X)+X"Xα̂ (since X+ = (X"X)+X")

= (X"X)+X"y (by 120)

= X+y. (since X+ = (X"X)+X")

D.2 Proof that (5) is a Special Case of (21) in the Gaussian Case

Lemma 29. Suppose that (X, y) follows model (5) with mean zero and is furthermore jointly
Gaussian. Then model (21) holds with θ = α∗ and and error η := y −X"α∗, independent
of X, where α∗ = Σ+

XΣXy is the best linear predictor under model (5).

Proof We first compute

E[Xη] = E[X(y −X"α∗)2] = E[XX"]α∗ − E[Xy] = ΣXα∗ − ΣXy,
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where we use that X and y are mean zero in the final step. Using the fact that ΣXα∗ = ΣXy

from (41) above, we find E[Xη] = 0 so X and η are uncorrelated, where we again use that
(X, y) are mean zero, so η is mean zero. Since X and y are jointly normal, it follows that
X and η are jointly normal. Thus, X and η are independent and so model (21) holds as
claimed.

D.3 Risk of α̂ Under the Factor Regression Model for p ) n

For completeness, we provide a risk bound for the minimum-norm estimator α̂ under the
factor regression model in the low-dimensional regime p ) n.

Theorem 30. Under model 5, suppose that Assumptions 1, 2 & 3 hold. Then if n > C · p
for some C > 0 large enough and p ≥ K, with probability at least 1− c/n,

R(α̂)− σ2
ε " κ(ΣE)

‖β‖2ΣZ

ξ
+

p

n
σ2
ε log n,

where κ(ΣE) = λ1(ΣE)/λp(ΣE) is the condition number of ΣE.

Proof As in the proof of Theorem 16 found in section C.2.2 above,

R(α̂) ≤ 2(B1 +B2) + 2(V1 + V2),

where

B1 = ‖Σ1/2
E X+Zβ‖2

B2 = ‖Σ1/2
Z (A"X+Z− IK)β‖2

V1 = ‖Σ1/2
E X+ε‖2

V2 = ‖Σ1/2
Z A"X+ε‖2.

We will bound these four terms on the event B = B1 ∩ B2, where

B1 := {‖Ẽ‖2 < c1n, σ2
K(Z̃) > c2n, σ2

p(X̃) ≥ c3n}

and
B2 :=

{
ε̃"X+"ΣXX+ε̃ ≤ c5 log(n) · tr(X+"ΣXX+)

}
.

As the last step of the proof, we will show that P(B) ≥ 1− c/n.

Bounding the bias component: First observe that since K < n, when Z is full rank, Z+Z =
IK and so

A"X+ = Z+ZA"X+ = Z+(X−E)X+ = Z+XX+ − Z+EX+.

Thus,

B2 = ‖(A"X+Z− IK)β‖2

= ‖(Z+XX+Z− IK)β − Z+EX+Zβ‖2ΣZ

≤ 2‖(Z+XX+Z− IK)β‖2ΣZ
+ 2‖Z+EX+Zβ‖2ΣZ

. (121)
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Note that since p ≥ K, by Assumption 2, rank(A) = K so by Lemma 32 of Appendix E,

A"A+" = IK . (122)

We thus have

‖(Z+XX+Z− IK)β‖2ΣZ
= ‖(Z+XX+Z− Z+Z)β‖2ΣZ

= ‖Z̃+(XX+ − Ip)Zβ‖2

≤ ‖(XX+ − Ip)Zβ‖2

σ2
K(Z̃)

" 1

n
‖(XX+ − Ip)Zβ‖2 (on B)

=
1

n
‖(XX+ − Ip)ZA

"A+"β‖2 (by (122))

=
1

n
‖(XX+ − Ip)(X−E)A+"β‖2 (since X = ZA" +E)

=
1

n
‖(XX+ − Ip)EA+"β‖2 (since XX+X = X)

≤ 1

n
‖XX+ − Ip‖ · ‖EA+"β‖2

≤ 1

n
‖EA+"β‖2

" n‖ΣE‖
n

‖β‖2ΣZ

λK(AΣZA")
(on B and by (83))

=
‖β‖2ΣZ

ξ
, (123)

where in the penultimate step we used

‖A+"β‖2 ≤
‖β‖2ΣZ

λK(AΣZA")
(124)

from (83). We can bound the second term in 121 as follows:

‖Z+EX+Zβ‖2ΣZ
= ‖Z̃+EX+Zβ‖2

≤ ‖E‖2

σ2
K(Z̃)

‖X+Zβ‖2

" ‖ΣE‖ · ‖X+Zβ‖2 (on B)
= ‖ΣE‖ · ‖X+ZA"A+"β‖2 (since A"A+" = IK)

= ‖ΣE‖ · ‖X+(X−E)A+"β‖2 (since X = ZA" +E)

≤ 2‖ΣE‖ · ‖X+XA+"β‖2 + 2‖ΣE‖ · ‖X+EA+"β‖2

" ‖ΣE‖‖A+"β‖2 + ‖ΣE‖
‖E‖
σ2
p(X)

‖A+"β‖2 (since ‖X+X‖ ≤ 1)

" ‖ΣE‖ · κ(ΣE)‖A+"β‖2

≤ κ(ΣE)
‖β‖2ΣZ

ξ
. (by (124))
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Using this and (123) in (121), and using the fact that κ(ΣE) > 1, we find that on the event
B,

B2 " κ(ΣE)
‖β‖2ΣZ

ξ
. (125)

Bounding the variance component: We have

V1 + V2 = ε"X+"ΣXX+ε

= σ2
ε ε̃

"X+"ΣXX+ε̃ (by Assumption 3)

" σ2
ε log(n)tr(X

+"ΣXX+) (on B2)

≤ σ2
ε log(n) · p‖X+"ΣXX+‖ (since rank(X+) = p)

= σ2
ε log(n) · p‖Σ

1/2
X X+‖2. (126)

From Assumption 1, X = X̃Σ1/2
X , and from Lemma 32 of Appendix E below,

(X̃Σ1/2
X )+ = (X̃+X̃Σ1/2

X )+(X̃Σ1/2
X Σ−1/2

X )+ = Σ−1/2
X X̃+.

Using this in (126), we find

V1 + V2 " σ2
ε log(n) · p‖X̃+‖2 = σ2

ε log(n)
p

σ2
p(X̃)

.

Proof that P(B) ≥ 1 − c/n: The bounds P(B1) ≥ 1 − c/n and P(B2) ≥ 1 − e−cn follow re-
spectively from Theorem 4.6.1 of Vershynin (2019) and Lemma 23 in Appendix C.1 above,
by similar reasoning as in the proof of Theorem 16, for example.

D.4 Signal to Noise Ratio Bound for Clustered Variables

We present here a lower bound on the signal-to-noise ratio ξ = λK(AΣZA")/‖ΣE‖ in terms
of the number |Ia| of features related to cluster a only, for 1 ≤ a ≤ K. We recall the
definition

Ia := {i ∈ [p] : |Aia| = 1, Aib = 0 for b ,= a} .

Lemma 31. ξ ≥ mina |Ia| · λK(ΣZ)/‖ΣE‖.
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Proof For any v ∈ RK with ‖v‖ = 1,

v"A"Av = ‖Av‖2 =
p∑

i=1

(
K∑

a=1

Aiava

)2

≥
∑

i∈I

(
K∑

a=1

Aiava

)2

=
K∑

b=1

∑

i∈Ib

A2
ibv

2
b

=
K∑

b=1

|Ib|v2b (|Aib| = 1 for i ∈ Ib)

≥ min
a

|Ia| ·
K∑

b=1

v2b = min
a

|Ia|. (since ‖v‖ = 1).

Thus, using λK(AΣZA") ≥ λK(ΣZ)λK(A"A),

ξ = λK(AΣZA
")/‖ΣE‖ ≥ λK(A"A)λK(ΣZ)/‖ΣE‖ ≥ min

a
|Ia|λK(ΣZ)/‖ΣE‖,

which completes the proof.

Appendix E. Properties of the Moore-Penrose Pseudo-Inverse

We state the definition and some properties of the pseudo-inverse in this section for com-
pleteness. The material here can be found in Petersen and Pedersen (2012), along with
proofs of some of the statements. For a matrix B ∈ Rn×m, there exists a unique matrix
B+, which we define as the pseudo-inverse of B, satisfying the following four conditions:

BB+B = B (127)

B+BB+ = B+ (128)

BB+ is symmetric (129)

B+B is symmetric (130)

We will use the following properties of the pseudo-inverse in this paper.

Lemma 32. For any B ∈ Rn×m and C ∈ Rm×d,

(BC)+ = (B+BC)+(BCC+)+. (131)
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Furthermore, for any matrix B ∈ Rn×m with r = rank(B) and smallest non-zero singular
value σr(B),

B"BB+ = B" (132)

B"(BB")+ = B+ (133)

(B"B)+B" = B+ (134)

B+B = Im if r = m (135)

BB+ = In if r = n (136)

‖B+‖ = 1/σr(B) (137)

rank(B+) = rank(B) = r. (138)
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