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YuZu: Neural-Enhanced Volumetric Video Streaming

Anlan Zhang!

Abstract

Differing from traditional 2D videos, volumetric videos pro-
vide true 3D immersive viewing experiences and allow view-
ers to exercise six degree-of-freedom (6DoF) motion. How-
ever, streaming high-quality volumetric videos over the In-
ternet is extremely bandwidth-consuming. In this paper, we
propose to leverage 3D super resolution (SR) to drastically
increase the visual quality of volumetric video streaming. To
accomplish this goal, we conduct deep intra- and inter-frame
optimizations for off-the-shelf 3D SR models, and achieve
up to 542x speedup on SR inference without accuracy degra-
dation. We also derive a first Quality of Experience (QoE)
model for SR-enhanced volumetric video streaming, and vali-
date it through extensive user studies involving 1,446 subjects,
achieving a median QoE estimation error of 12.49%. We then
integrate the above components, together with important fea-
tures such as QoE-driven network/compute resource adapta-
tion, into a holistic system called YuZu that performs line-rate
(at 30+ FPS) adaptive SR for volumetric video streaming. Our
evaluations show that YuZu can boost the QoE of volumetric
video streaming by 37% to 178% compared to no SR, and
outperform existing viewport-adaptive solutions by 101% to
175% on QoE.

1 Introduction

Volumetric video is an emerging type of multimedia con-
tent. Unlike traditional videos and 360° panoramic videos [28,
53] that are 2D, every frame in a volumetric video consists of
a 3D scene represented by a point cloud or a polygon mesh.
The 3D nature of volumetric video enables viewers to ex-
ercise six degree-of-freedom (6DoF) movement: a viewer
can not only “look around” by changing the yaw, pitch, and
roll of the viewing direction, but also “walk” in the video by
changing the translational position in 3D space. This leads to
a truly immersive viewing experience. As the key technology
of realizing telepresence [49], volumetric video has registered
numerous applications. They can be viewed in multiple ways:
through VR/MR (virtual/mixed reality) headsets or directly
on PCs (similar to how we play 3D games).

Despite the potentials, streaming volumetric videos over the
Internet faces a key challenge of high bandwidth consumption.
High-quality volumetric content requires hundreds of Mbps
bandwidth [27,71]. To improve the Quality of Experience
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(QoE) under limited bandwidth, prior work has mostly fo-
cused on viewport-adaptive streaming (i.e., mainly streaming
content that will appear in the viewport) [27,41,50]. How-
ever, they are ineffective when the entire scene falls inside the
viewport. They also require 6DoF motion prediction that is
unlikely to be accurate for fast motion. Some other proposals
explored remote rendering [26,52] (e.g., having an edge node
transcode 3D scenes into regular 2D frames). However, they
require not only 6DoF motion prediction, but also edge/cloud-
side transcoding that is difficult to scale, as summarized in
Table 1.

In this paper, we employ a different and orthogonal ap-
proach toward improving the QoE of volumetric video stream-
ing through 3D super resolution (3D SR). SR was initially de-
signed for improving the visual quality of 2D images [21,65].
Recently, researchers in the computer vision community de-
veloped SR models for point clouds [43, 61, 63, 70]. This
inspires us to employ SR for volumetric video streaming, as
each frame of a volumetric video is typically either a point
cloud or a 3D mesh.' Although there have been recent success-
ful attempts on applying SR to 2D video streaming [22,39,68],
3D-SR-enhanced volumetric video streaming is unique and
challenging due to the following reasons.

o There is a fundamental difference between pixel-based 2D
frames and volumetric frames consisting of unstructured 3D
points, making processing volumetric videos (even without
SR) vastly different from 2D videos.

e Due to its 3D nature, the computation overhead of 3D SR is
very high. We apply off-the-shelf 3D SR models to volumetric
videos [1], and find that the runtime performance of 3D SR is
unacceptably poor — achieving only ~0.1 frames per second
(FPS) on a PC with a powerful GPU. In contrast, 2D SR
can achieve line-rate upsampling by simply downscaling the
model [68], but we find that only doing model downscaling is
far from being adequate for line-rate 3D SR (i.e., at 30+ FPS).
e Given its recent debut, there lacks research on basic in-
frastructures such as tools and models supporting volumetric
video streaming. For example, there is no QoE model for
volumetric videos that can guide bitrate adaptation or critical
SR parameter selection; the wide range of factors affecting
the QoE make constructing such a model quite challenging.

o There are other practical challenges to overcome, such as a
lack of color produced by today’s 3D SR models.

To address the above challenges, we begin by developing to

'We focus on point-cloud-based volumetric videos in this work, but the
key concepts of YuZu also apply to mesh-based volumetric videos.
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Schemes ‘ Refs ‘

Advantages (@) and Disadvantages (©)

Direct Streaming N/A

Direct + VA [27,41]
Direct + SR YuZu
Remote Rendering [26,52]

@ Easy to implement, best QoE (if bandwidth is sufficient). © Highest network bandwidth (BW) usage.
@ Lower BW usage. © BW saving depends on user’s motion, QoE depends on motion prediction.

@ Good QoE, further lower BW usage, adaptively trades compute resource for BW. © Requires training.
@ Lowest BW usage. © QoE depends on motion prediction, need edge support (poor scalability).

Table 1: Four categories of volumetric video streaming approaches (VA = Viewport Adaptation; SR = Super Resolution).

our knowledge a first QoE model for assessing SR-enhanced
volumetric video streaming. The model takes into account
a variety of factors that may affect the QoE, such as video
resolution (i.e., point density)’, viewing distance, upsampling
ratio, SR-incurred distortion, and QoE metrics from tradi-
tional video streaming. We validate our model by conducting
two IRB-approved user studies involving 1,446 voluntary par-
ticipants from 40 countries, using a major genre of volumetric
content, i.e., portraits of single/multiple people. The validation
results confirm its accuracy, with a median QoE estimation
error of 12.49%. Our user studies offer definitive evidence
that 3D SR can significantly boost the QoE of volumetric
video streaming.

Next, we design, implement, and evaluate YuZu, which
is to our knowledge a first SR-enhanced volumetric video
streaming system. At its core, YuZu deeply optimizes the
end-to-end upsampling pipeline in three aspects: intra-frame
SR, inter-frame SR, and network-compute resource manage-
ment, whose synergy helps drastically improve the runtime
performance of SR while retaining the inference accuracy.

For intra-frame SR, our approaches are not limited to
generic optimizations for deep learning models such as modi-
fying SR models’ structures for fast-paced SR. More impor-
tantly, we consider the factors that are unique to 3D SR and
its data representation: we design a mechanism that leverages
the low-resolution content (i.e., the input to the SR model,
which is typically discarded after being fed into the model)
to reduce the SR model complexity; we also trim the pre-
processing and post-processing stages of 3D SR and tailor
them to volumetric video streaming. Note that these optimiza-
tions are generic, applicable to all the 3D SR models we have
investigated [43,61,63,70].

For inter-frame SR, YuZu speeds up SR by caching and
reusing 3D SR results across consecutive frames. Realizing
that none of the 2D inter-frame encoding techniques can be
directly applied to volumetric videos, we design an effec-
tive inter-frame content reference scheme for SR-enhanced
point cloud streams, followed by robust criteria determining
whether SR results can be reused between two frames. We
then extend reusing SR results from two to multiple con-
secutive frames through a dynamic-programming-based op-
timization. The synergy of the above intra- and inter-frame
acceleration schemes fills the huge gap between off-the-shelf
3D SR models’ performance and what is required for line-rate
upsampling of point cloud streams.

YuZu further performs network-compute resource man-

2The resolution of a point cloud is defined as its point density; the resolu-
tion of a volumetric video is the avg. resolution of its point cloud frames.

agement through making judicious decisions about the qual-
ity level of the to-be-fetched content and its upsampling ratio.
These two decision dimensions are subject to the dynamic net-
work bandwidth and limited compute resources, respectively,
which need to be jointly considered given their complex trade-
offs — a unique challenge compared to traditional adaptive
bitrate (ABR) video streaming. YuZu takes a QoE-driven ap-
proach by maximizing the utility function derived from our
QoE model. To solve the underlying optimization problem
in real time, we develop a hybrid, two-stage algorithm that
employs coarse-grained and fine-grained search at different
time to efficiently find a good approximate solution. In addi-
tion, YuZu performs fast colorization of SR results through
efficient nearest point search.

We implement the above components and integrate them
into YuZu in 10,848 lines of code. Our extensive evalua-
tions indicate that YuZu can achieve line-rate, adaptive, high-
quality 3D SR. We highlight key evaluation results as follows.
o Our user study suggests that 3D SR can boost the volumetric
video QoE by 37% to 178% compared to no SR.
¢ Our optimizations speed up 3D SR by 140x to 542x and
reduce GPU memory usage by 68% to 90% with no accuracy
degradation, compared to the vanilla SR models [43,61].

o Compared to a recently proposed viewport-adaptive volu-
metric video streaming system [27], YuZu improves the QoE
by 100.6% to 174.9%.

To summarize, we make the following contributions.

e We build an empirical QoE model for SR-enhanced volu-
metric videos, and validate it through large-scale user studies
involving 1,446 participants. We build our models using volu-
metric content of single/multiple human portraits, a major ap-
plication of volumetric video streaming. Note that the model
can be applied to non-SR volumetric videos belonging to the
same genre, with an SR ratio of 1.

e We propose and design YuZu, an SR-enhanced, QoE-aware
volumetric video streaming system.

e We implement YuZu, and conduct extensive evaluations for
its QoE improvement and runtime performance.

2 Background and Motivation

Recently, the computer vision community extended SR to
static point clouds [43,61,63,70]. When applied to a video v,
SR trains offline a deep neural network (DNN) model M that
upsamples low-resolution frames L(v) to high-resolution ones
H(v), using the original (high-resolution) frames F(v) for
training. In the online inference, the server sends M and L(v)
to the client, which infers H(v) = M(L(v)). SR leverages the
overfitting property of DNN to ensure that H(v) is highly
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similar to F(v). It achieves bandwidth reduction (or QoE
improvement when bandwidth remains the same) since the
combined size of M and L(v) is much smaller than F(v).

We start with a straightforward approach: applying PU-
GAN [43], a state-of-the-art 3D SR model, to upsample every
point cloud frame of a volumetric video. PU-GAN operates
by dividing the entire point cloud of a frame into smaller
patches, each consisting of a subset of points. Both SR train-
ing and inference are performed on a per-patch (as opposed to
a per-frame) basis, i.e., each patch is upsampled individually.
Its DNN model is based on a generative adversarial network
(GAN) and realizes three key stages: feature extraction, fea-
ture expansion, and point set generation.

We next describe a case study using PU-GAN to motivate
YuZu. Our testing video was captured by three depth cameras.
It has 3,622 frames, each consisting of ~100K points depicting
a performing actor. We use all its frames to train a PU-GAN
model. We set the SR ratio (i.e., upsampling ratio) to 4, mak-
ing the input and output point clouds consist of roughly 25K
and 100K points, respectively. We have both positive and neg-
ative findings from this case study. On the positive side, the
model can accurately reconstruct each individual frame, i.e.,
each upsampled point cloud is highly similar to the original
one in terms of the geometric structure, as quantified by the
Earth Mover’s Distance (EMD [54]):

.1

Lemp(1,G) = min. m ;le o(x)ll )
where I and G are the upsampled point cloud and the ground
truth, respectively; ¢ : I — G is a bijection from the points in
I to those in G. The average EMD value across all frames is
1.47cm, which confirms good upsampling accuracy [43]; it is
also verified by our IRB-approved user studies (§4.2). Also
encouragingly, we find that SR indeed achieves significant
bandwidth savings. For this 2-minute video, the compressed
sizes of F(v), M, and L(v) are 1.40 GB, 560 KB, and 0.36
GB, respectively, leading to a bandwidth reduction of 74.2%.

Despite the above encouraging results, we notice three
major issues from the above case study.

e A Lack of Quality-of-Experience (QoE) Model. For tra-
ditional 2D video streaming, there exist numerous studies on
modeling the viewer’s QoE [15, 18,69]. In contrast, volumet-
ric videos are still in their infancy. There is a lack of generic
QoE models that researchers can leverage, not to mention a
lack of understanding of how SR impacts QoE.

e Unacceptably Poor Runtime Performance. 3D SR models
are computationally much more heavyweight than 2D SR
models. When applying PU-GAN to the above video, the
runtime performance is extremely poor. On a machine with
an NVIDIA 2080Ti GPU, the upsampling FPS is only 0.1,
far below the desired FPS of at least 30. Besides, the GPU
memory usage of PU-GAN is 7GB (out of the 11GB available
memory of 2080Ti). This is one reason why all the off-the-
shelf 3D SR models operate on a per-patch basis, as this saves
memory compared to processing a full frame.

o No Color Support. We find that no existing 3D SR model
can restore the color information of upsampled point cloud.

Note that the last two limitations are common in that they
also apply to all other 3D SR models for point clouds that we
have examined, such as MPU [61] and PU-Net [70].

3 YuZu Overview

YuZu is to our knowledge the first SR-enhanced volumetric
video streaming system. It streams video-on-demand volumet-
ric content stored on an Internet server to client hosts. On the
server side, the volumetric video is divided into chunks each
consisting of a fixed number of frames (i.e., point clouds en-
coded by schemes such as Octree [34,46] and k-d tree [35,44]).
Each chunk is encoded into multiple versions with different
resolutions (i.e., point densities). The SR model training and
volumetric content preprocessing (e.g., patch reuse computa-
tion, see §5.2) are performed offline on the server side. Similar
to a typical DASH server, the YuZu server is stateless (and
thus scalable), and all the streaming logic runs on the client
side. As shown in Figure 1, the client fetches from the server
the video chunks, which can possibly be at a low resolution.
Since 3D SR models typically operate on a per-patch basis,
the client segments each frame into patches, upsamples them
through 3D SR, efficiently colors them (§5.4), and renders
them to the viewer.

To achieve line rate SR, YuZu employs novel optimizations
tailored to SR-enhanced volumetric video streaming. Regard-
ing intra-frame optimizations, off-the-shelf 3D SR models
are strategically adapted; low-resolution patches before SR
are properly leveraged instead of being discarded; and the
patch generation is accelerated (§5.1). For inter-frame opti-
mizations, previous SR results are judiciously reused (§5.2).

A crucial decision that YuZu must make is to determine
what resolution (quality level) to fetch for each chunk, as well
as which SR ratio to apply for upsampling each patch, subject
to the resource constraints jointly imposed by the network
and computation. YuZu addresses this through a principled,
efficient, and QoE-driven discrete optimization framework
(§5.3). The framework utilizes a first-of-its-kind QoE model
that we derive from ratings of 1,446 real users (§4).

4 QoE Model for Volumetric Videos

For SR-enhanced volumetric video streaming, its QoE is af-
fected by a wide range of factors. The large space formed
by these factors and their interplay make constructing QoE
models much more challenging than conventional videos.

4.1 An Empirical QoE Model

We first enumerate factors that may affect the QoE for SR-
enhanced volumetric video streaming. They are derived based
on the domain knowledge of SR and our communication with
other volumetric video viewers.
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Server Human Users’ Ratings Age 18-25: 21.8%, 26-30: 29.0%,
Oftthe-shell  [Bfing Traimng @ | o | g 31-35: 20.4%, 35+: 28.8%
3D SR Model Male- .
ey - ale: 60.3%, Female: 39.2%,
o AAR R o SR Model Chunk Downloader - - Offline QoE Gender
S 2252 2= ~| Optimization and Decompressor ! Model Other: 0.5%
e (85.1.1) Low-res | Chunks i Coneratonlig) US: 55.0%, IN: 28.1%,
1
. > : [ Patch Generation (§5.1.2) | ! I QoE Country | BR:5.0%, IT: 2.7%,
Fom v Pge | Qptimized | 51,165 Patches ) Download y Model (40 Total) | UK: 1.2%, DE: 1.0%,
I odels 1 Decision | . .
Control Data UL +{ 3D SR Upsampling and | |___ - ___] ggm’g&lt‘é CA: 0.9%, Other: 6.1%
Upsampled Patches | _ Colorization (§5.4) Upsampling Resource Educati Bachelor: 59.1%,
Horres | Lowres Decision Adaptation UCAtion | aster: 23.8%, Other: 17.1%
v Cached Patches Patches § (8§85.3)
Cache for Reusi SR Results —————— AN, . .
seg: Rees?Jrlts ?53'2? M:r:?jeR(gr?dL': L P (E) Viewer Table 2: Demographics of the 1,446 subjects

Figure 1: The system architecture of YuZu.

o Point Density. Similar to 2D image resolution, a 3D object
with a higher point density (resolution) contains more details
and thus offers a better QoE.
¢ Viewing Distance. As the viewing distance increases, a
rendered 3D object becomes smaller in the displayed view,
and is thus less sensitive to quality degradation.
¢ SR Ratio and Distortion. A higher SR ratio leads to a
higher point density (and thus more QoE gain), but also po-
tentially higher distortions (and thus more QoE loss).
o Artifacts caused by Patches. As described in §2, a typical
3D SR model operates by upsampling individual point subsets
called patches. If patches within a frame have non-uniform
qualities (caused by different SR ratios), the perceived QoE
will be affected.
o Invisibility due to Finite Viewport and Occlusion. Due
to the 3D nature of volumetric videos, a viewer can see only
content that is inside the viewport and not occluded. Outside-
viewport or occluded content brings no impact on the QoE.
® QoE Metrics for Regular Video Streaming. They include
factors such as stall and inter-frame quality switches [69].
Next, we develop an empirical QoE model that considers
the above factors. Since SR is performed on a per-patch basis,
we first model the QoE for each individual patch as:

gi.j=8(dij,ri;,0; ;) —h(EMD,$; ;) 2

where ¢; ; is the quality of patch j in frame i; d;; is the
patch’s original point density before SR; §; ; is the viewing
distance to the patch; r; ; is the SR ratio of the patch. Eq. 2 has
two terms: g(-) considers the patch’s perceived density after
SR, and h(-) accounts for the QoE penalty incurred by SR
distortion, quantified by the viewing distance and the EMD
(Eq. 1) between the upsampled patch and the high-quality
patch (ground truth). We empirically define g(-) and A(:) as:

g(dij,rij;8ij) =wi(8;j) xdijxri; )
h(EMD78,'1j) =W2(5i,j) x EMD (4)

where wi(8; ;) and w»(9; ;) are weights parameterized on
d; j. Intuitively, in Eq. 3, after SR, the perceived point density
improves by a factor of r; ;; the QoE gain brought by a higher
point density after SR (Eq. 3) and the QoE penalty caused by
SR distortion (Eq. 4) depend on the viewing distance.

6-DoF Motion

in our user studies.

Now given a single frame i, we define its quality Q; as the
average of all its visible patches’ quality values:
0, - ELu )
XjVij
where v; j € {0,1} is 1 iff the patch is visible, i.e., it falls
inside the viewport and is not occluded by other patches. To
account for the artifacts caused by patches, we define inter-
patch quality switch IV 4I¢h a5 the quality variation across the
visible patches within frame i. To account for inter-frame
quality switches, we define inter-frame quality switch Iif rame
as the quality change from frame i -1 to frame i:

17" = StdDev ({g; |V j,vi; > 0}) (6)
17 = Q- Qi | (7)

For a volumetric video playback, a possible way to model
its overall QOE is a linear combination of Q;, I” arch. Iif rame
and If’““ (the stall of frame i). We choose a linear form that

is widely used in 2D Internet videos [69]. Thus, we have

Q()E — ZQ! _ Zlup(si)lipalch _ Z,Llf(ﬁi)llframe _ Zﬂs(si)lismu

()

Note that depending on the viewing distance, the weights
Up, uy, and pg may differ (e.g., viewers may be more sensitive
to stalls when watching a scene at a closer distance), so we
parameterize the weights with the viewing distance. In Eq. 8,
0; summarizes the viewing distances to all the patches in
frame i. We empirically choose &; = (X;vi ;8 ;)/(X;vi;)-
Also note that the above model is generic and applicable to
non-SR-enhanced and non-patch-based volumetric videos as
it encompasses special cases without using SR (#; j=1) or

patches (17 ach_y),

4.2 Model Validation through User Studies

We next conduct user studies with two purposes: validating
our QoE model and deriving the model parameters. Our QoE
model considers many factors as described in §4.1. The high-
level approach of the user study is to let participants sub-
jectively rate the QoE for all the combinations of the above
factors’ different degrees of impairments, and then use the
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Scheme Ix1 | 1x2 | 1x3 | 1x4 | 2x1 | 2x2 | 3x1| 4x1
Pt. density | 25%| 25%| 25%| 25%| 50%| 50%| 75%| 100%
SRratio | - x2 | x3 | x4 |- x2 |- -
Table 3: 8 impaired versions (except 4x1) of a video segment. In
scheme m x n, m is the point density level and 7 is SR ratio.
Videos: {Long Dress, Loot [1]; Band, Haggle [36]}
Avg. frame quality Q;: 7 values uniformly selected from Table 3
Avg. distance dist; j: {1m, 2m, 3m, 4m}
Avg. inter-patch switch 1/ atch, 10.00,0.45,0.90}
Avg. inter-frame switch Iif ane. 10.00,0.45,0.90}
Avg. stall I {0.00,0.01,0.03}

Table 4: The factors and their values selected for model validation.

subjects’ ratings to train/validate our QoE model. We obtained
IRB approvals for our studies. Instead of performing in-person
studies, we conduct both studies online by letting users watch
pre-generated videos capturing the rendered viewports (with
impairments). We take this approach because: (1) it allows
vastly scaling up the study, (2) it helps get diverse users world-
wide, and (3) the IRB forbids in-person user studies during
COVID-19. We have collected responses from 1,446 subjects,
whose demographics are shown in Table 2.

We start by studying the QoE gain brought by SR. We
have collected 512 subjects’ responses with a total number
of 57,344 ratings. The key finding is that SR can effectively
boost the QoE. For example, at 1m, compared to 1x1, the
(user-rated) QoE increases by 37%, 75%, 150% for 1x2, 1x3,
and 1x4, respectively; 2x2 improves the QoE by 178% com-
pared to 2x 1. The details can be found in Appendix A.

Next, we validate the overall QoE model (Eq. 8). We choose
four videos: Long Dress showing a dancing female, Loot
showing a speaking male, Band showing three people play-
ing instruments, and Haggle showing three people debating.
Long Dress and Loot are obtained from the 8i dataset [1], each
consisting of 800K points per frame for 10 seconds. Band
and Haggle are from the CMU Panoptic dataset [36], each
consisting of 300K and 100K points per frame, respectively;
we select 10-second segments for our study. For each video,
we create 8 versions listed in Table 3. Note that since the par-
ticipants need to watch a large number of impaired copies, the
video length (10 seconds) has to be short. Also note that the
videos have different point densities, as we want to make the
QoE model generic, applicable to different resolutions. We
will experimentally verify this shortly. We use our optimized
PU-GAN algorithm (details in §5.1) to perform upsampling
and create video clips at 4K resolution for four viewing dis-
tances: 1m, 2m, 3m, and 4m, which are determined from a
separate IRB-approved user study whose details are described
in Appendix B. To maintain a fixed viewing distance d, we
display the viewport at d meters in front of and facing the
viewer. We design a survey using Qualtrics [11] and publish
it on Amazon Mechanical Turk (AMT) [2].

We study the impact of all the factors in Eq. 8 on the QoE.
Table 4 lists them and their impairment levels. They lead to
a total of 756 combinations for each video segment. Since

letting subjects perform (726) pairwise comparisons is infea-
sible, for each combination, we generate one video clip by
putting the impaired version and the high-quality “ground
truth” version (4 x 1, I” arch _ Ii.f rame _ Il‘-‘m” =0, same viewing
distance) side by side, in a random order. To generate the im-
paired version, we randomly add perturbations to the patches’
quality levels to match the corresponding I/’ ach and Il.f rame
values, and randomly inject stalls to match Il:"t“”. We then ask
each subject to watch 100 randomly selected video clips from
the 756 clips of a randomly selected video segment. After
watching each clip, the subject is asked to rate which side
provides a better QoE through 7 choices (“left looks {much
better, better, slightly better, similar to, slightly worse, worse,
much worse} than right”) If the impaired version is {similar
to, slightly worse, worse, much worse} than the ground truth,
we give the impaired version a score of {3,2,1,0}, respectively.

We have collected 934 subjects’ responses with a total num-
ber of 93,400 ratings for the above survey published on AMT.
For each viewing distance, we use the subjects’ ratings to cal-
culate the average score of each of the 756 impaired clips on a
scale from 0 to 3, and use it as the QoE ground truth. We then
perform 10-fold cross-validation to validate our QoE model
(Eq. 8, trained using multi-variable linear regression) for each
viewing distance. Figure 2 plots the CDF of the QoE predic-
tion errors at each viewing distance. The median prediction
error for 1m, 2m, 3m, 4mis 11.4%, 12.2%, 12.8%, and 12.9%,
respectively. The (Person, Spearman) correlation coefficients
between the ground-truth QoE score and the predicted QoE
score are also high: (0.89, 0.89) at 1m, (0.87, 0.88) at 2m,
(0.87, 0.88) at 3m, and (0.85, 0.85) at 4m.

The above QoE models are trained from all four videos.
Table 5 shows the Spearman correlation coefficients between
the ground-truth QoE and cross-video prediction results. We
use the data of three videos to train a QoE model and use it to
predict the QoE for the remaining video. The results indicate
that the same QoE model and its parameters are applicable to
volumetric content of the same genre (portraits of people — a
major application of volumetric streaming — in our case). We
also confirm that most parameters trained from different video
segments are indeed quite similar, in spite of the segments’
different point densities. When applied to other genres, the
model’s parameters may differ, as to be explored in our future
work (the same happens to 2D videos [68]). Table 6 lists our
final model’s parameters trained using the entire dataset. The
model will be used by YuZu.

5 System Design of YuZu

We now detail the system design of YuZu (Figure 1) that
addresses the challenges we identified in §2.

5.1 Accelerating SR Upsampling

To accelerate 3D upsampling, we take a principled approach
by exploring three orthogonal directions:
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Figure 3: Using a 3x SR model to realize 4x SR.

00000

o Model Optimization. How to simplify the upsampling
logic while retaining the inference accuracy? (§5.1.1)

e Data Reduction. How to strategically feed less data to SR
models with negligible impact on QoE? (§5.2)

o Pre-processing and Post-processing Trimming. How to
simplify the sophisticated pre- and post-processing stages
without incurring side effects on inferences? (§5.1.2)

Our optimizations can apply to all 3D SR models we have
investigated [43,61,63,70] and they are video-agnostic. In §7,
we demonstrate the optimization results for two SR models:
PU-GAN [43] and MPU [61].

5.1.1 SR Model Optimization

We take a “top-down” approach by first optimizing the model
as a whole and then fine-tuning its detailed structure. For most
machine learning models (including 2D SR), after performing
an inference, the input is no longer needed and will be dis-
carded. Our investigated 3D SR models [43,61,63,70] make
no exception. We instead make a fundamental observation
regarding 3D point clouds. Different from a 2D image, a point
cloud is a set of unstructured points, which means that point
clouds can be merged via a simple set union operation. We
also note that 3D SR’s output points refine and differ from
the input. Based on this key insight, we propose a simple yet
effective optimization: YuZu merges the input low-density
point cloud with the SR output in order to improve the visual
quality, or to reduce the computation overhead while main-
taining the same upsampling ratio. For example, as shown
in Figure 3, to achieve 4x upsampling, instead of using a 4x
SR model, we can use a (computationally more efficient) 3x
SR model and merge the input with the output. Since SR ex-
ploits the overfitting nature of DNN, the spatial distributions
of upsampled points and the ground truth are expected to be
highly similar. By leveraging the input data and downgrading
the SR ratio from 4x to 3x, we can achieve an acceleration
of up to ~35% without hurting the SR accuracy (Figure 6).
Note that in offline training, the loss function is computed
after merging the input low-density point cloud with the SR
output. This makes the trained models aware of and adaptive

Table 5: Spearman correlation coefficient between QoE ground
truth and cross-video prediction. XYZ = W means using the
model trained from videos X, Y, and Z to predict video W’s QoE.

Table 6: Parameters of the
final model used in YuZu.

to the merging process, improving the upsampling accuracy
compared to computing the loss function before that.

Next, we explore modifying 3D SR model’s DNN structure
for inference acceleration. By profiling the inference time of
PU-GAN, we find that its three stages, feature extraction, fea-
ture expansion, and point set generation, take 78.3%, 19.3%,
and 2.4% of execution time, respectively (4x SR). Within the
feature extraction stage that dominates the runtime overhead,
most operations are convolutions. We make the same observa-
tion for other 3D SR models that we investigated [61,63,70].

To accelerate convolutions, we replace the original feature
extraction, which (e.g., in the case of PU-GAN) enhances
the solution in PointNet++ [51] through dynamic graph con-
volution [56], with a recent proposal called spherical kernel
function (SKF) [42]. SKF partitions a 3D space into multiple
volumetric bins and specifies a learnable parameter to con-
volve the points in each bin. In contrast to continuous filter
approaches (e.g., multilayer perceptron) used in existing SR
models, SKF is a discrete metric-based spherical convolu-
tional kernel, and is thus computationally attractive for dense
point clouds. Moreover, it is applicable to all the 3D SR mod-
els we examined. We find that SKF brings no degradation to
the upsampling accuracy (§7.3). One reason may be that the
kernel asymmetry of SKF facilitates learning fine geometric
details of point clouds [42].

In addition to utilizing SKF, we conduct layer-by-layer
profiling [22, 66] to fine-tune the SR model’s performance-
accuracy tradeoff. Take PU-GAN as an example. We remove
the last two dense layers of feature extraction and several
heavyweight convolution layers in the feature expansion stage,
as they make limited contributions to the upsampling accu-
racy. We also judiciously remove a small number of expanded
features to reduce the GPU memory footprint. For other 3D
SR models, their model tuning follows a similar approach.

5.1.2 Trimming Pre- and Post-Processing

Recall from §2 that to ensure a manageable model complexity,
a 3D SR model divides a point cloud into small patches as
basic units for upsampling. We discover that as an important
pre-processing step, the patch generation process incurs a high
overhead. For example, PU-GAN generates the patches by
applying kNN to the seeds created by downsampling. Since
the generated patches may overlap, after upsampling, PU-
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GAN needs to perform post-processing: it applies the furthest
point sampling [48] to remove duplicated points.

To mitigate the above overhead, YuZu adopts a simple
patch generation method. It divides the space into cubic cells,
and assigns each non-empty cell (i.e., a cell that contains
points) to a patch. Compared to the default patch genera-
tion approaches used by PU-GAN and other 3D SR frame-
works [43,61], our approach runs very fast; it also brings no
overlap among patches, thus eliminating the post-processing
step (i.e., overlap removal). In addition, the patches now
have a simple geometry shape, so that they can be indexed,
searched, and manipulated at runtime. Meanwhile, We find
that our patch generation approach does not sacrifice the up-
sampling accuracy and may even improve the accuracy com-
pared to vanilla PU-GAN and MPU (§7.3). This is likely
because cubic cells provide a more consistent structure for
the patches, making it easier to perform SR. We also investi-
gate several other patch generation methods based on Voronoi
diagram [24] and 3D SIFT [55], but none outperforms our
cubic-cell-based approach from either the performance or the
accuracy perspective.

5.2 Caching and Reusing SR Results

Videos usually exhibit similarities across frames. We find that
volumetric videos make no exceptions. This indicates rich
opportunities for caching and reusing SR results.

Atahigh level, YuZu reuses SR results based on the similar-
ity between patches, which is the basis of inter-frame encod-
ing. Inter-frame similarity has been extensively studied and
exploited in 2D videos. However, none of the 2D inter-frame
encoding techniques can be directly applied to volumetric
videos due to the fundamental difference between pixel-based
2D frames and volumetric frames consisting of unstructured
points. There are very few studies on 3D inter-frame encod-
ing [37,46]; they are incompatible with YuZu’s patch-based
upsampling, and incur high complexity hindering line-rate
decoding. Due to the above reasons, we design our own SR
caching/reusing algorithm. Our algorithm is agnostic of and
orthogonal to a specific SR model.

YuZu reuses 3D SR results on a per-patch basis to match
the patch-based upsampling procedure. Recall from §5.1.2
that YuZu generates patches using 3D cubic cells. Let p(i, j)
denote patch j of frame i, and let N(i,j) denote the num-
ber of points in p(i, j). YuZu allows reusing the SR result
of p(i, j) for subsequent consecutive patches at the same lo-
cation, i.e., p(i+1,j),p(i+2,j), and so on. YuZu restricts
reusing patches only at the same location due to two con-
siderations. First, we empirically observe that most patch
similarities indeed occur at the same cell location; this makes
the benefits (in terms of reduced SR overhead) of reusing a
patch belonging to a different cell marginal. Second, allowing
reusing a patch at a different cell will drastically increase the
overhead of pre-computing the caching/reusing decisions.

We now describe YuZu’s SR reuse algorithm. YuZu first

determines offline the similarity of two patches. For each
patch pair (p(i,j),p(i+1,j)), YuZu computes a Weighted
Complete Bipartite Graph [17] B: p(i, j) = p(i+1, j), which
we find to be suitable for dealing with unstructured points. In
the bipartite graph, there is a directed edge from every point in
p(i, ) to every point in p(i+1, j), and the weight of the edge
is their Euclidean distance. We then calculate the minimum-
weight matching (MWM) [57] for the graph, i.e., finding
N(i,j) edges such that (1) these edges share no common
vertices (points), and (2) the sum of their weights is minimized.
Intuitively, the MWM identifies a transformation from p(i, j)
to p(i+1,j) with a minimum moving distance for the points.
The Hungarian algorithm [17] that computes the MWM has
a complexity of O(N*) where N = max{N(i, j),N(i+1,j)}.
We instead employ a faster O(N 2) approximation algorithm
that is found to work well in practice.’

We call every edge in the MWM a point motion vector
(PMYV). A PMV differs from a 2D video’s motion vector,
which represents a macroblock in a frame based on the posi-
tion of the same or a similar macroblock in another reference
frame. Leveraging the PMVs, we determine that p(i+ 1, j)
and p(i, j) are similar if three criteria are satisfied. (1) N(i, j)
and N(i+ 1,j) differ by no more than 1,%; (2) the average
length of all the PMVs is smaller than 1,; (3) the top 90-
percentile of the shortest PMV is smaller than 1),.. These three
criteria dictate that p(i,j) and p(i+ 1, j) have a similar num-
ber of points, and the points’ collective motions are small.
Figure 4 shows how 1, impacts EMD and the patch reuse
ratio (% of patches that can reuse a previous SR result). As
shown, increasing 1, increases the reuse ratio, but meanwhile
decreases the accuracy. According to Figure 4, we set 1, to
0.01m to balance the performance and accuracy. Using similar
methods, we empirically set n,=10 and 1,=0.01m.

Next, we consider how to reuse an SR result across mul-
tiple patches belonging to consecutive frames. We define
simj(i1,i2) € {0,1} to be 1 if and only if p(iy, j) and p(iz, j)
are similar, i.e., satisfying the above three criteria where
ip > i1. Figure 5 shows an example of 6 consecutive patches
at location j where V1 <x <y <6:simj(x,y) =0 except that
simj(1,2), simj(2,3), sim;(2,4), and sim;(2,6) are 1. YuZu
allows a patch’s SR result to be reused across consecutive
patches if they are all similar to the first patch. For example,
Patches 3 and 4 can reuse Patch 2’s SR result. However, YuZu
does not let Patch 6 reuse Patch 2 because sim (2,5) = 0. We
make this design decision for two reasons. First, we observe
that non-consecutive patches are unlikely to be similar in real
volumetric videos. Second, supporting non-consecutive reuse
requires computing sim(x,y)Vx <y, making offline video
processing slow.

We develop an algorithm that minimizes the number of

3The approximation algorithm sorts all the edges by their weights in
ascending order. It then adds the edges to the MWM in that order and skips
edges that share points with an existing edge in the matching, until every
point in p(i, j) or every point in p(i+ 1, j) is in the MWM.
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patches to be upsampled, to boost the online SR performance.
For example, in Figure 5, the minimum number of patches to
be upsampled is 4: Patches 1, 2, 5, and 6. YuZu efficiently and
optimally solves this through dynamic programming (DP).
Given n patches p(1, j),..., p(n, j) and their sim ; information,
let u(i, j) be the minimum number of patches that need to be
upsampled in {p(i,j),...,p(n, j)} if we decide to upsample
p(i,j). Then u(i, j) can be derived through DP as:

{u(k+ 1,j)}}+1

©))
The RHS of Eq. 9 examines each patch following p(i, j) and
updates u(i, j) if stopping reusing p(i,j) at p(k+1,j) yields
a better u(i, j). The search continues until hitting a patch
that is not similar to p(i, j). Eq. 9 can be solved backwards
starting from u(n+ 1, j) = 0. The solution is u(1, j).

Since YuZu streams VoD volumetric content, all the above
logic (calculating MWM, sim, and DP) is performed offline
for each patch location j. Thus, there is no runtime overhead.
The SR reuse decisions are sent to the client as meta data,
which is only 0.5KB per frame for our testing video in §2.

u(i,j)=minu(i+1,j min
@) { (i1, )’i<k£n:Vi<t£k:sim,»(i,t)=1

5.3 Network/Compute Resource Adaptation

YuZu adapts to not only the fluctuating network condition
(similar to the job of traditional bitrate adaptation algo-
rithms [45,64,69]), but also the available compute resource,
due to the high computation overhead of 3D SR. More impor-
tantly, these two dimensions incur a tradeoff: given a fixed
playback deadline, should YuZu download high-resolution
content, or download lower-resolution content and spend time
upsampling it? Fortunately, our QoE model (§4.1) dictates
how to quantitatively balance this tradeoff.

We first formulate an online network/compute adaptation
problem. The video is divided into n chunks each consist-
ing of f frames. To achieve fine-grained adaptation, each
chunk is further spatially segmented into b blocks (e.g., b=5%),
which are the atomic scheduling units in YuZu’s adaptation
algorithm. Each block consists of multiple patches (recall
from §5.1.2 that each patch occupies a cubic cell). At runtime,
YuZu considers all the blocks belonging to a finite horizon
of the next w chunks, and searches for their quality and SR
ratio assignments that maximize the QoE defined in Eq. 8.
This formulation extends the model predictive control (MPC)
scheme [69] that proves to be effective for traditional 2D

video streaming. The solution space is O(8"?) (the 8 possible
assignments are listed in Table 3).

We consider how to efficiently solve the above discrete op-
timization problem. An exhaustive search is clearly infeasible.
Due to the large solution space, even the memorization ap-
proach (FastMPC [69]) is not practical. Another possibility is
a learning-based approach such as Pensieve [45]. However, it
requires offline training and may incur a non-trivial inference
overhead. Moreover, a recent work [64] indicates that rein-
forcement learning based bitrate adaptation solutions do not
necessarily outperform simple buffer-based approaches [33].

To overcome the above challenges, we develop a
lightweight approximation algorithm. It executes in two
stages: first determine the quality and SR ratios of to-be-
downloaded chunks, and then fine-tune the SR ratios before
upsampling. Specifically, in the first stage, before download-
ing each chunk, YuZu performs a coarse-grained search by
assuming that all the blocks in each chunk have the same
quality/SR-ratio assignment. The rationale is that, at this
moment, the playback deadline is still far away (compared
to Stage 2), and thus the network/computation-load uncer-
tainty diminishes the benefits brought by a block-level, fine-
grained search. Meanwhile, this reduces the solution space
from O(8"?) to O(8"). Specifically, we (1) start with a quasi-
optimal solution obtained from an even coarser-grained search
at the granularity of every two consecutive chunks, and (2)
perform pruning by bounding [19]. After the above two opti-
mizations, for a practical w (e.g., w=10), the search time (for
maximizing the QoE in Eq. 8) becomes negligible compared
to the downloading and upsampling time. To estimate I} all
in Eq. 8, at runtime, YuZu continuously estimates (1) the net-
work bandwidth using the method in [29] and (2) the local
processing time of a frame using EWMA-based estimation.

The second stage takes place before upsampling each frame.
At this stage, the playback deadline gets closer and thus a
block-level, fine-grained search would be beneficial. To re-
duce the search complexity, YuZu employs Simulated Anneal-
ing (SA) [40] — a probabilistic, greedy approach that approxi-
mates the global optimum. Our algorithm begins with setting
all the blocks’ SR ratios to the lowest (no SR). For each block,
the algorithm tries to increase its SR ratio by one level. If the
resulting QoE of the finite horizon increases, this change is
always accepted; otherwise, we may still accept this change
with a probability of exp(—%), where A is the decrease of
the QoE and ¢ is the current number of iterations, to avoid a
potential local maximum. To speed up the SA algorithm, we
reduce the finite horizon to two frames: the previous frame
and the current (to be upsampled) frame — we empirically find
that conducting frequent adaptations with a short horizon at
a per-frame basis outperforms infrequent adaptations with a
long horizon at a per-chunk basis in terms of the QoE.
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5.4 Coloring SR Results

As described in §2, none of the 3D SR models we investigated
performs colorization. There are two high-level approaches
for colorization. One is augmenting the SR models by adding
the color component. This may yield good colorization results,
but at the cost of significantly increasing the SR workload.
Given this concern, YuZu takes a much more lightweight
approach: approximating each upsampled point’s color using
the color of the nearest point in the low-density point cloud
(i.e., the input to the SR model). In Appendix C, we present
the details of our method and experimentally confirm that it
can indeed produce good visual quality (with a PSNR >38).

6 Implementation

We integrate all the components in §5 into YuZu, a holistic
system as shown in Figure 1. Our implementation consists of
10,848 lines of code (LoC), with 8,326 LoC for the client.

For offline SR model training, we modify the source code of
PU-GAN [10] and MPU [8] using TensorFlow 1.14 [13] and
custom TensorFlow operators from SPH3D-GCN [12]. Our
pre-trained models are saved in the ProtoBuf format [9] that is
language- and platform-neutral, facilitating future reuse. For
online streaming, we implement the client player on Linux in
C++. We use the Draco Library [4] for encoding and decoding
the point cloud data. We employ Bazel [3] to compile the Ten-
sorFlow 1.14 C/C++ library and use the compiled library to
load and execute the SR models. The client pipelines content
fetching (network-bound), point cloud decoding & patch gen-
eration (CPU-bound), 3D SR (GPU-bound), and colorization
(CPU-bound) of different frames for better performance. The
server is also built in C++, with a custom DASH-like protocol
over TCP for client-server communication.

7 Evaluation
7.1 Experimental Setup

Volumetric Videos. We use four point-cloud-based volumet-
ric videos throughout our evaluations. (1) Our own video. We
capture a volumetric video by ourselves using 3 synchronized
depth cameras. It has 3,622 frames (2 min) each consisting
of ~100K points. We refer to this video as Lab. We have
used it to motivate YuZu in §2. (2) The Long Dress (Dress)
and Loot videos (§4.2). They have 300 frames (10 sec) each
consisting of ~100K points. Since they are short, we loop
them (with cold caches) 10 times in our evaluations. (3) The
Haggle video (§4.2). It has 7,800 frames (4’20") each consist-
ing of ~100K points. For all four videos, the eight possible
resolution/SR-ratio assignments are listed in Table 3. For each
video, we train their SR models separately. All the videos are
at 30 FPS, encoded by Draco [4]. Unless otherwise mentioned,
the results reported in the remainder of this section are gen-
erated using all four videos. The average encoded bitrate of
Lab, Dress, Loot, and Haggle (4x1) are 96, 108, 118, and 118
Mbps, respectively.

M; | The vanilla 3D SR model (PU-GAN and MPU)

M, | M and optimizing patch generation

M3 | M, and layer profiling & pruning

M, | M3 and applying the spherical kernal function (SKF)
Ms | M, and merging SR input with SR output

Mg | M5 and caching/reusing SR results

Table 7: SR acceleration methods (cumulative).

3D SR Models. We apply our developed model acceler-
ation techniques to two recently proposed 3D SR models:
PU-GAN [43] and MPU [61]. The two models usually yield
qualitatively similar results, so we show the results of PU-
GAN by default. For certain SR-specific experiments (e.g.,
SR acceleration), we show both models’ results. The models
are trained on a per-video basis. For each video, the total size
of all its models (x2, x3, and x4) is around 1.25 MB.

Metrics and Roadmap. We thoroughly evaluate YuZu in
terms of performance, QoE, and resource utilization. §7.2
evaluates the QoE improvement brought by our 3D SR opti-
mizations using both subjective (i.e., real-user ratings) and
objective (e.g., PSNR [30]) metrics. §7.3 focuses on the per-
formance gain of our 3D SR optimizations, from the per-
spectives of resource usage, inference time, and upsampling
accuracy. §7.4 and §7.5 evaluate the end-to-end performance
(e.g., QoE and data usage) of YuZu. §7.6 provides additional
micro benchmarks.

Network Conditions. We consider the following network
conditions that are readily available in today’s wired and
wireless networks. (1) Wired network with stable bandwidth
(e.g., 50,75, and 100 Mbps) and ~10ms RTT. (2) Fluctuating
bandwidth captured from real LTE networks. We collect 12
bandwidth traces from a major LTE carrier in multiple U.S.
states at diverse locations (campus, malls, streets, ezc.). Across
the traces, their average bandwidth varies from 33.7 to 176.5
Mbps, and the standard deviation ranges from 13.5 to 26.8
Mbps. We use te [6] to replay these traces (with a 50ms base
RTT typically observed in LTE [38]). (3) We also conduct /ive
LTE experiments at 9 diverse locations in a U.S. city where
the average bandwidth varies from 41.1 to 52.4 Mbps and the
standard deviation is between 16.6 and 20.7 Mbps.

Devices. We use a commodity machine with an Intel Core
17-9800X CPU @ 3.80GHz and 32GB memory as the YuZu
server. We use three client hosts: (1) a desktop with an Intel
Core 19-10900X CPU @ 3.70GHz, an NVIDIA GeForce
RTX 2080Ti GPU, and 32GB memory (the default client used
in our evaluations); (2) a desktop with the same CPU, an
NVIDIA GeForce GTX 1660Ti GPU, and 32GB memory;
(3) an NVIDIA Jetson TX2 embedded system board with a
Pascal-architecture GPU of 256 CUDA Cores, 8GB memory,
and a quad-core CPU. They represent a typical high-end PC,
a medium-class PC, and a mobile device, respectively.

User Motion Traces. We collect 32 users’ 6DoF motion
traces when watching the four videos, and replay them in
some experiments. The details about how we collect the mo-
tion traces can be found in Appendix B.
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7.2 SR Quality

Subjective Ratings. Recall that in our user studies, we ask our
participants to rate the SR results generated by our optimized
SR scheme (§5.1). Figure 15 shows that SR brings a signif-
icant boost to the user-perceived QoE. For example, at 1m,
compared to 1x1, the user-rated QoE increases by 37%, 75%,
and 150% for 1x2, 1x3, and 1x4, respectively; 2x2 improves
the QoE by 178% compared to 2x1 (§4.2).

Objective Metric. We also examine how SR improves
PSNR [30], an objective metric of image quality. The method-
ology is as follows. We replay the 32 users’ 6DoF motion
traces of watching the videos under different SR settings, and
save the rendered viewports as images {Isg }. We then repeat
the above process using the original videos (4x1), and capture
the viewport images {lsx| }. We compute the PSNR values
by comparing each image in {Isg} with its corresponding im-
age in {Isx; }. Figure 8 (left) shows the PSNR values for 1x1,
1x2, 1x3,2x2, 1x4, and 1x4 with reusing SR results (denoted
as “1x4D”) across all the captured viewports. We notice a
significant increase of PSNR from 1x1 to 1x2. The PSNR
also increases marginally from 1x2 to 1x4. Meanwhile, the
PSNR change between 1x4 and 1x4D is negligible, indicat-
ing that caching and reusing SR results brings little impact
on the perceived video quality (but drastic performance gain
as shown in §7.3). The results of Lab are similar. Note that
a PSNR value over 30 typically indicates good visual qual-
ity [22,58]. Figure 8 (right) shows the PSNR values for the
unmodified PU-GAN model. The qualitatively similar results
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between the left and right plots of Figure 8 indicate that our
SR acceleration modifications sacrifice little visual quality.
Note the above results include the colorization step, which is
described and separately evaluated in Appendix C.
Comparing Figure 15 and Figure 8, we notice disparities
between users’ QoE ratings and PSNR values. This indicates
that image qualities of rendered 2D content do not directly
reflect the perceived QoE of volumetric content. This is a key
reason for developing the QoE model for volumetric videos.

7.3 SR Performance Breakdown

We now take a closer look at the effectiveness of each of our
proposed methods for accelerating SR. As listed in Table 7,
M denotes the vanilla 3D SR model as the comparison base-
line; M, to Mg are our proposed SR acceleration methods
in §5.1 and §5.2. They are presented in a cumulative fashion,
i.e., M; includes every feature of M;_; plus some new feature.
The experiments are conducted using two 3D SR models (PU-
GAN [43] and MPU [61]), 100Mbps wired network, 4x SR,
with network/compute resource adaptation (§5.3) disabled.
Figures 6 and 7 show the results of PU-GAN and MPU
on the PC (2080Ti) and Jetson TX2 board, respectively. On
the Jetson board, due to its low compute power (and mobile
devices’ small screen size), we reduce the original video’s
resolution from 100K to 20K points per frame (i.e., the SR
is from 5K to 20K points per frame). We consider four met-
rics: (1) maximum GPU memory usage (on Jetson TX2 we
measure the system memory shared by GPU and CPU), (2)
average upsampling speed (in FPS), (3) inference accuracy
measured in EMD between each upsampled frame and the
ground truth (4x1), and (4) visual consistency measured in
EMD between each consecutive pair of upsampled frames.
As shown, on 2080Ti, for PU-GAN (MPU), compared to
M, Mg reduces the GPU memory usage by 87% (90%), accel-
erates the upsampling by 307x (542x), improves the average
upsampling accuracy by 24% (14%), and slightly improves
the consistency. Also, each optimization (M; to Mg) indi-
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Figure 9: Frame processing time breakdown. D&P:
decoding and patch generation; SR: upsampling;
Color: colorization, M&R: merging and rendering.

vidually improves the upsampling speed and possibly other
metric(s). The Jetson setup shows a similar trend. The two
models (PU-GAN and MPU) we studied exhibit similar per-
formance gains as we progressively apply our optimizations,
except that MPU is less sensitive to Ms. This is because of
the network structure difference between PU-GAN and MPU.
Note that we do not apply M3 to MPU because our layer-
by-layer profiling (§5.1.1) reveals there is no layer that only
makes a marginal contribution to the overall upsampling ac-
curacy in the MPU model.

Latency Breakdown. Figure 9 shows the latency break-
down of processing an average frame using PU-GAN (Lab
video, wired 100Mbps, 2080Ti desktop) under two set-
tings: 2x2 and 1x4. As shown, SR remains the most time-
consuming component. The breakdown for MPU is similar.
The above results indicate the importance of SR acceleration.

7.4 Diverse Network Conditions

We evaluate the QoE of YuZu under different network condi-
tions, using the four videos and the associated motion traces.
Stable Bandwidth. We first consider two stable bandwidth:
50Mbps and 75Mbps. Under each bandwidth profile, we run
the full-fledged YuZu (“Full”) and six statically configured
YuZu instances: 4x1, 2x2, and 1x4 with and without SR re-
sult reusing. The QoE results are shown in Figure 10. We
make several observations. First, when the bandwidth is low
(50Mbps), 4x1 (without SR) gives the lowest (and even nega-
tive) QoE. This is because the limited bandwidth leads to high
network-incurred stall when fetching high-resolution content;
SR can effectively improve the QoE by using computation to
compensate for the low bandwidth. Second, when the band-
width increases to 75Mbps, 1x4 gives the lowest QoE due to
the distortion and computation-incurred stall due to the high
SR ratio. Instead, when the bandwidth is sufficient, the player
should fetch the content with a higher quality (e.g., 4x1D).
Third, caching and reusing (C&R) the SR results improves the
QoE when either the bandwidth is low (e.g., 4x1 at 50Mbps),
or the SR ratio is high (e.g., 1x4). Under these two scenarios,
C&R reduces the network and compute resource usage, re-
spectively. The saved resources can be used to improve the
content quality for other frames with more heterogeneity.
Figure 11 compares the (normalized) data usage, which
is defined as the total downloaded bytes including the SR
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Figure 14: YuZu over ViVo.

models and meta data. Compared to 4x1, applying C&R re-
duces the data usage by 40.5%. Also, increasing the SR ratio
reduces the data usage, e.g., 1x4D consumes only 18.3% of
the data compared to 4x1. The full-fledged YuZu with adap-
tation gives the overall best QoE (Figure 10) and low data
usage (Figure 11) by balancing the compute and network re-
source consumption. Compared to 4x 1, full YuZu reduces the
data usage by 52.3% (50Mbps) and 41.9% (75Mbps) while
boosting the QoE by 214% (50Mbps) and 78.3% (75Mbps).

Fluctuating Bandwidth. We repeat the above experiment
over fluctuating bandwidth emulated using our collected LTE
traces (§7.1). The results are shown in Figure 12, which con-
siders both the data usage (x-axis) and the QoE (y-axis). 4x1
yields the highest data usage; further applying C&R (4x1D)
not only reduces the data usage by 40.5%, but also increases
the QoE by 61.8% due to reduced stall. The full YuZu fur-
ther improves the QoE by 21.0% and reduces the average
data usage by 8.2%. This is achieved through strategically
fetching lower-quality blocks and using higher SR ratios. In
addition, the full YuZu improves the QoE by 10.4% to 93.7%,
compared to 1x4 and 2x2 with and without C&R.

Live LTE. We conduct live LTE experiments at 9 locations
in a major U.S. city. As shown in Figure 13, the results are
largely aligned with those in Figure 12, except for the lower
QoE of 4x1. This is because of the lower bandwidth of live
LTE throughout the test locations compared to the LTE traces
used in Figure 12. Compared to 4x1, the full YuZu improves
the QoE by 210.3% and reduces the data usage by 50.8%.

7.5 YuZu vs. Existing Approaches

YuZu vs. Viewport-Adaptive Streaming. We compare YuZu
with ViVo [27], a recently proposed viewport-adaptive ap-
proach. Leveraging 6DoF motion prediction, ViVo determines
what content to fetch and which quality to fetch based on
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predicted viewport and viewing distance. Similar viewport-
adaptive approaches are used in the other systems [41,50].

We develop a custom replication of ViVo on Linux in 7,101
LoC with the same set of configuration parameters. Figure 14
shows the improvement brought by YuZu compared to ViVo
in terms of the overall QoE and its three components (Q;,
1 ach and Il.f me “see Eq. 8), using all four videos and the
users’ motion traces.” Note that both systems exhibit negligi-
ble stall so If’”” is not plotted. As shown, YuZu brings signifi-
cant improvement on the average QoE (by 100.6% to 174.9%)
and on each QoE component. YuZu outperforms ViVo due to
three reasons. First, ViVo does not support SR, which YuZu
leverages to boost the QoE. Second, ViVo’s viewport adapta-
tion approach becomes less effective when the whole scene
appears inside the viewport (which oftentimes appears in our
motion traces). SR does not suffer from this limitation. Third,
to realize viewport adaptive streaming, ViVo has to perform
6DoF motion prediction, which is error-prone. In contrast,
YuZu does not require motion prediction, and therefore ex-
hibits more stable performance in particular when the motion
is fast. Note that viewport-adaptation and SR are orthogonal
approaches and can be jointly applied.

YuZu vs. Simple SR Adaptation. To demonstrate the ef-
ficacy of our network/compute resource adaptation design
(8§5.3), we compare it with a simple adaptation approach that
differs in two aspects. First, unlike YuZu’s two-stage adapta-
tion, it only performs single-stage adaptation before down-
loading each chunk. Second, it employs a deterministic greedy
algorithm that increases the SR ratio of each block within the
finite horizon (in chronological order) until the QoE does not
further improve. In contrast, YuZu employs a probabilistic
greedy approach that is less vulnerable to a local maximum.
We evaluate the simple adaptation algorithm using our LTE
traces (§7.4) and plot its result as “Simple” in Figure 12. Com-
pared to it, the full YuZu increases the average QoE by 11.4%
and reduces the average data usage by 7.9%.

7.6 Micro Benchmarks and Resource Usage

We conduct experiments to show the following. (1) YuZu
can work adaptively with different hardware (we compare
the results on 2080Ti and 1660Ti; we also ported YuZu to
an embedded system, see Figure 7). (2) The main memory
(~5GB) and GPU memory (~2GB) usage of YuZu is accept-
able. (3) The (one-time) offline training time is non-trivial but
acceptable, and the sizes of SR models are negligible (<0.2%
of the video size). The details can be found in Appendix D.

8 Related Work

Volumetric Video Streaming. There exist only a few studies
on point-cloud-based volumetric video streaming [25-27,31,

4ViVo does not have the notion of patch; instead its basic adaptation unit
is a cubic cell. To ensure fair comparisons, we further divide ViVo’s cells into
virtual “patches” with the same size as YuZu and assign to them its parent

cell’s corresponding quality level when calculating I/ atch,

41,50,52,59]. For example, DASH-PC [31] extends DASH to
volumetric videos. PCC-DASH [59] is another DASH-based
streaming scheme of compressed point clouds with bitrate
adaptation support. ViVo [27] introduces visibility-aware op-
timizations for volumetric video streaming. GROOT [41] op-
timizes point cloud compression for volumetric videos. To the
best of our knowledge, there is no existing work on applying
3D SR to volumetric video streaming.

Point Cloud SR. We can classify existing work on point
cloud SR into two categories: optimization-based [16, 32]
and learning-based [43, 61, 63,70]. Most learning-based ap-
proaches follow the workflow established in PU-Net [70],
which divides a point cloud into patches, learns multi-level
point features of each patch, expands the features, and recon-
structs the points from the features. All the above methods are
designed for a single point cloud; they suffer from numerous
limitations when applied to volumetric videos (§2).

Visual Quality Assessment of Point Clouds. The state-
of-the-art visual quality assessment focuses on static, non-SR
point clouds [23, 47, 60]. For example, using a data-driven
approach, Meynet et al. [47] present a full-reference visual
quality metric for colored point clouds. Different from the
above studies, we model the QoE of SR-enhanced volumetric
video streaming. We address new challenges on modeling
the impact of various factors such as the viewing distance,
upsampling ratio, and SR incurred distortion (§4).

SR for Regular 2D Videos. NAS [67, 68] is one of the
first proposals that apply 2D SR to Internet video streaming.
Other recent efforts on 2D SR include PARSEC [22] for
360° panoramic video streaming, LiveNAS [39] for live video
streaming, and NEMO [66] for mobile video streaming. In
contrast, YuZu addresses numerous unique challenges (§1)
on applying 3D SR to volumetric video streaming.

9 Concluding Remarks

In this paper, we conduct an in-depth investigation on apply-
ing 3D SR to streaming volumetric content. Our proposed
QoE model and the YuZu system take a first and important
step toward making SR-enhanced volumetric video streaming
principled, practical, and affordable. YuZu demonstrates how
a series of novel optimizations, which fill a 500x performance
gap, as well as judicious network/compute resource adapta-
tion can help significantly improve the QoE for volumetric
video streaming.
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Appendices
A Evaluation of QoE Gain Brought by SR

We study the QoE model for ¢; ; (Eq. 2) while keeping 1" atch.
Iif "am¢ “and I3 as zero. This allows us to measure the impact
of SR without interference from other factors.

We use the four videos introduced in §4.2 for the experi-
ment. We apply our optimized PU-GAN algorithm (details
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in §5.1) to perform upsampling, and create (g) =28 video
clips where each clip contains 2 out of 8 versions in Table 3
side by side (in a random order). This approach is known as
the double stimulus comparison scale (DSCS) method [5]
as recommended by ITU (International Telecommunication
Union). We repeat the above process for four viewing dis-
tances: 1m, 2m, 3m, and 4m, which are determined from a
separate IRB-approved user study whose details are described
in Appendix B. To maintain a fixed viewing distance d, we
display the viewport at d meters in front of and facing the
viewer. We generate 112 video clips at 4K resolution for each
video segment.

Next, we design a survey using Qualtrics [11] and publish
it on Amazon Mechanical Turk (AMT) [2]. In the survey,
we invite each paid AMT subject to view the 112 clips of
a random video segment (out of the 4 videos) in a random
order. After watching each clip, the subject is asked to rate
which side provides a better QoE through 7 choices (“left
looks {much better, better, slightly better, similar to, slightly
worse, worse, much worse} than right”). We have collected
512 subjects’ responses with a total number of 57,344 ratings.
We show the demographics of the participants in Table 2.

Figure 15 shows the average ratings of the 8 versions across
all the users. The four subplots correspond to the four viewing
distances. We make four observations. First, when the viewing
distance is short, SR can effectively boost the QoE. For exam-
ple, at 1m, compared to 1x1, the (user-rated) QoE increases
by 37%, 75%, 150% for 1x2, 1x3, and 1x4, respectively; 2x2
improves the QoE by 178% compared to 2x1. Second, un-
der the same point density, the upsampled version’s QoE is
usually lower than the original content’s QoE, in particular
when the SR ratio is large. This is caused by SR’s distortion.
However, the gap tends to reduce as the SR ratio decreases.
Third, SR’s gain diminishes as the distance increases, because
the rendered object becomes smaller in the view. Note that
the scores for different distances are not directly comparable.
Fourth, the four video segments exhibit similar trends (figure
not shown).

Converting User Ratings to Numerical Scores. For a
given tuple of (user, viewing distance, video segment), we
construct a weighted directed graph for the user based on
his/her ratings, where the nodes are the 8 schemes. Assume
a video clip contains schemes A (on the left) and B (on the
right). If the user thinks that the left (right) is much better,
better, or slightly better than the right (left), we add an edge
from B to A (A to B) with a weight of 3, 2, and 1, respec-
tively. If the user thinks that the left is similar to the right, we
add two edges between A and B, one from A to B and the
other from B to A, with both edges’” weights set to 0. We then
normalize the weights of all the edges to [0,1] and apply the
PageRank algorithm [20] to each graph to compute the weight
of every node. We then use the weights (multiplied by 10 for
easy interpretation) as the numerical scores of the 8 schemes
for the corresponding (user, viewing distance, video segment)

tuple. Finally, for each of the 8 schemes under a given view-
ing distance, we average the numerical scores across all the
tuples (of that viewing distance) to obtain the results shown
in Figure 15. Note that for each viewing distance, the weights
of all the schemes (in each of the graphs) addup to 1. As a
result, the numerical scores of the same scheme for different
viewing distances are not directly comparable.

B User Study for Collecting
6DoF Motion Traces

We conducted a separate IRB-approved user study for collect-
ing 6DoF motion traces of volumetric videos. Specifically, it
captured the viewport trajectories of 32 users who watched
the four video segments (Lab, Dress, Loot, Haggle) intro-
duced in §2 and §4.2 through either a mixed reality headset
(Magic Leap One [7]) or an Android smartphone. We devel-
oped custom volumetric video players for both device types.
The 6DoF motion data (yaw, pitch, roll, X, Y, Z) was captured
at the granularity of 30 Hz. The participants are diverse in
terms of their education level (from freshman to Ph.D.), gen-
der (16 females), and age (from 22 to 57). We determine the
viewing distances used in §4.2 by analyzing the above traces.
As shown in Figure 16, about 70% of the viewing distances
are less than 4m. Therefore, we set the maximum viewing
distance to be 4m for our user studies, and select the other
three distances by evenly dividing this maximum distance
into four ranges (i.e., at 1, 2, and 3m).

C Colorization Algorithm of YuZu and
its Evaluation

Recall from §5.4 that YuZu takes a lightweight approach to
color the SR results: it approximates each upsampled point’s
color using the color of the nearest point in the low-density
point cloud (i.e., the input to the SR model).

YuZu employs two mechanisms to speed up the nearest
point search. First, the search is performed on an octree [14],
which recursively divides a point cloud (as the root node) into
eight octants, each associated with a child node. The levels
of detail of the point cloud are controlled by the height of the
tree. Performing nearest point search on an octree has a low
complexity of O(logN) where N is the number of nodes in
the tree.

Second, YuZu caches and reuses the results of previously
searched points. The cache is indexed by a point’s discretized
coordinates, and the cached value is the color looked up from
the octree. When coloring an upsampled point, YuZu first
performs cache lookup in O(1); upon a hit, the cached color
will be directly used as the color of the point; otherwise, YuZu
performs a full octree search and adds the search result to the
cache. The discretization granularity incurs a tradeoff between
colorization performance and quality. We empirically observe
that a discretization granularity of 1cm? can yield good visual
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Figure 16: Distribution of viewing distance in our motion traces.

quality under typical viewing distances (> 1m).

We also notice opportunities for further improving the col-
orization quality. For example, the nearest point approach can
be generalized into interpolating the nearest k points’ colors;
it can also be used in conjunction with DNN-based coloriza-
tion, which may be more suitable for patches with complex,
heterogeneous colors. Nevertheless, these enhancements in-
evitably increase the runtime overhead. We will explore them
in future work.

Evaluation of Quality of Colorization. To evaluate the
quality of the colorization step alone, we employ the approach
in §7.2 where we use PSNR to objectively assess the image
quality of rendered viewports. Specifically, we calculate the
PSNR values by comparing {177’} (defined below) with
{I4x1} (defined in §7.2), using the Dress and Loot videos and
the real users’ motion traces (Appendix B). The viewport
images of {IAIYXPI_C”I‘”} are obtained as follows: (1) remove
the color from the original (4x1) video; (2) apply the above
nearest-point (NP) colorization method to the video generated
in Step (1), using the 1x1 video as the low-resolution point
cloud stream from which the colors are picked; (3) replay
the same motion traces to render the viewport images for the
video colored in Step (2). The PSNR values of {7}/,7°°"} are
38.09+2.44 and 44.15+2.59 for Dress and Loot, respectively,
indicating the high fidelity of colors produced by our method.
The above numbers are much higher than the PSNR values
in Figure 8 (which also includes the colorization step) due
to the following reason. PSNR and many other 2D image
metrics such as SSIM [62] perform a pixel-wise comparison
between two images. In the case of Figure 8, a tiny position
shift of a 3D point may result in an also tiny position shift of
its projected 2D pixel, leading to a pixel mismatch and thus a
decreased PSNR score. This problem does not appear in the
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Figure 17: Impact of hardware and computation-aware adaptation.

colorization step.

D Additional Micro Benchmarks

The following micro benchmark results are generated using
the PU-GAN model. The results for the MPU model are
qualitatively similar.

Impact of Computation-aware Adaptation. 3D SR de-
mands considerable compute resources. Figure 17 demon-
strates the impact of hardware and computation-aware adap-
tation, using the Lab video. Figure 17 considers two GPUs:
a more powerful 2080Ti GPU and a less powerful 1060Ti
GPU. It also considers two adaptation schemes: the full net-
work/compute adaptation scheme described in §5.3 (“Full”)
and a computation-agnostic scheme that only adapts accord-
ing to the network bandwidth (“Basic”). The Basic scheme
works as follows. (1) It assumes that SR takes no time to com-
plete; (2) it disables 2x2 and 1x4 (otherwise the QoE will
degrade too much due to excessive stalls). Under the above
setup, each bandwidth setting in Figure 17 has four schemes:
{2080Ti, 1660Ti} x {Full, Basic}. As shown, when there is
sufficient bandwidth, the QoE differences among the four
schemes are small, because the player is more likely to fetch
3x1 and 4x1 blocks that do not require SR. However, when
the bandwidth becomes low, the difference between 2080Ti
and 1060Ti becomes noticeable, and the gap between Full
and Basic is even larger. The Basic scheme yields much lower
QoE scores because it ignores SR’s computation overhead,
leading to excessive stalls.

Memory Usage. We measure the client-side memory us-
age when streaming the Lab video over SOMbps bandwidth
(which leads to extensive invocations of SR). On the 2080Ti
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(1660Ti) desktop, the peak main memory usage is 5.03GB
(5.33 GB); the peak GPU memory usage is 1.97 GB (1.83
GB). YuZu’s GPU memory usage on 2080Ti is higher than
the numbers reported in Figure 6 because YuZu loads multi-
ple SR models at runtime. When the available bandwidth is
higher, the CPU/GPU memory will reduce because of fewer
SR operations.

Offline Training Time and Model Size. YuZu incurs
non-trivial model training time. For example, on the 2080Ti

desktop, it takes about 88 minutes to train the 1x2, 1x3, and
1x4 models altogether for the Lab video consisting of 3,622
frames. However, note that (1) this is a one-time overhead; (2)
we did not conduct any performance optimization for train-
ing; for a large-scale deployment, the training overhead could
potentially be reduced by training one generic model and fine-
tuning it for each specific video [68] (left as future work). The
SR model size is negligible (< 0.2%) compared to the video
size.
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