FIRST STABILITY EIGENVALUE OF SINGULAR
HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN
SPHERES
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ABSTRACT. In this paper, we study the first eigenvalue of the Jacobi operator
on an integral n-varifold with constant mean curvature in the unit sphere S7+1.
We found the optimal upper bound and prove a rigidity result characterizing
the case when it is attained. This gives a new characterization for certain
singular Clifford tori.

1. INTRODUCTION

Let M be an oriented smooth two-sided hypersurface immersed in the (n 4 1)-
dimensional sphere. Let ¢ : M — S™*! be the immersion and v be a choice of a unit
normal vector field along M. We consider a compact variation of the hypersurface,
for any t € (—¢,¢),

Yy : M — S™TL suppyy € M,

is an immersion with 1y = 1. The area of v, is defined to be

A(t) = /M dA,

where dA; is the area element obtained via a pullback by the immersion ;. The
first variation formula of the area functional A(t) is given by

dA(t) = —/ nH fdA
t=0 M 7

dt
where f = <8awt‘ | tZO,I/> and H denotes the mean curvature. Hence, a compact

hypersurface is minimal, namely, H = 0, if and only if %}Et) .= 0. The second
t=
variation formula is given by
dA(t)
=— JfdA
| =) prraa

where J := A + (JA]2 +n) = A + (|®]? + n(1 + H?)). J is conventionally referred
as the stability or Jacobi operator. Here A, ®, H are the second fundamental form,
the traceless second fundamental form and the mean curvature of 1, respectively,
and A is the Laplace-Beltrami operator. Let A; be the the first eigenvalue of J,
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Ju = —Aju for some eigenfunction u. The variational characterization of A\; implies
(see [Cha&4])
J
A= min{fozf;f € CSO(M)} .
Jar f

The easiest minimal hypersurfaces to describe are the equators, i.e. the totally
geodesic (S™)’s, and the Clifford tori defined by

Sk( k>X8£<\/7>CSn+1CRn+2
n n

with k£ 4+ ¢ = n. In his celebrated work [Sim68], Simons studied the first stability
eigenvalue of a minimal closed hypersurface M™ immersed in S**!. He proved that
if M is not a totally geodesic sphere then A\; < —2n. This result enabled him to
deduce that the only stable cones in R™, n < 7 are the ones that come from equators,
i.e. hyperplanes. Later on, Wu [Wu93] characterized the equality \y = —2n case
by showing that it holds only for the minimal Clifford torus. Shortly thereafter,
Perdomo [Per02] provides a new proof of this spectral characterization. Afterwards,
Alias, Barros, and Brasil Jr. [ABB04] extended these results to the case of constant
mean curvature hypersurfaces in S**!. They also characterized Clifford tori via the
maximal value of \;. Recently, Chen and Cheng [CC17] obtained an optimal upper
bound for A; on non-totally umbilical compact hypersurfaces with constant mean
curvature. The upper bound only depends on the mean curvature H and the
dimension n. Furthermore, Cunha, Lima, and Santos [CLS17a, CLS17b] extended
Chen and Cheng’s result for the context of closed submanifold M"™ immersed with
nonzero parallel mean curvature vector field in the Euclidean unit sphere S**?, the
Euclidean space R**? or in the hyperbolic space H"*P.

On the other hand, there are important reasons to consider non-smooth hy-
persurfaces in geometric variational problems. First, in higher dimension, an area
minimizing hypersurface spanning a given codimension-2 closed submanifold in Eu-
clidean space may have a singular set. Second, in reality, it normally arises the need
to model non-smooth physical objects.

Probably motivated by these considerations, F. Almgren [Alm66] introduced
varifolds to prove, for every intermediate dimension, the existence of a generalized
minimal surface (i.e., a surface with vanishing first variation of area) in a given com-
pact smooth Riemannian manifold. Then, in 1972, an important partial regularity
result for such varifolds was established by W. Allard [All72]. These pioneering
works still have a strong influence in geometric analysis as well as related fields.

Now, we review some recent results. In [Wick14], the author gives a necessary
and sufficient geometric structural condition for a stable co-dimension one inte-
gral varifold on a smooth Riemannian manifold to correspond to an embedded
smooth hypersurface away from a small set of generally unavoidable singularities.
He also derived regularity and compactness theorems and used them to show an
optimal strong maximum principle for stationary codimension 1 integral varifolds.
In [CM12], Colding and Minicozzi study the smoothness of a mean curvature flow
that starts at a generic smooth closed embedded surface in R? until it arrives at
a singularity in a neighborhood of which the flow looks like concentric spheres or
cylinders. In particular, they investigate the regularity of F-stable self-shrinkers
and show that if the regular part of such an n-dimensional F-stationary integral
varifold is orientable and F-stable and the singular set has finite (n—2)-dimensional
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Hausdorff measure, then it is smooth. Recently, inspired by the study of Simons on
the first eigenvalue of the Jacobi operator and the work of Colding and Minicozzi,
Zhu extends the Simons’ estimate to singular minimal hypersurface in S"*!, which
is non-totally geodesic.

Motivated by aforementioned works, in this paper, our contribution is to extend
Chen and Cheng’s results to the setting of singular hypersurface with constant
mean curvature in spheres. We consider n-varifolds satisfying the condition (IV)
(see Section 2 for the precise definition) and obtain the following result.

Theorem 1.1. Let V be an n>s-varifold in S**1 satisfying the condition (IV) with
orientable reqular part regV = M. Let singV be the singular part of M and assume
that M has constant mean curvature and H"*(singV) = 0 and M is non-totally
umbilical.

(1) If (nH)? < % then

2
AL < —n(l+ H?) — n(VAa(n - 1) +n?H? —(n—2)|H|)

4(n—1)

and the equality holds if and only if V is a Clifford torus S*(r)xS"=1(v/1 — r2)
with

el

(n—2)? n
or M is a Clifford torus S~ (\/”n}“) x S¥ <\/E> with H = 0 for k =
1,2,...,n—1.

(2) If (nH)? > % then
_ 94
M < —=2(n—-1)(1+H?*)+ (n-2) H?

8(n—1)
and the equality holds if and only if V is the Clifford torus S! (%) X

n— (n—1)(n—4)
)

Remark 1.2. As M is non-complete and non-compact,a priori, Ay might be —co.

We also note that, the condition (IV) is, in fact, a stationary condition with
volume constraints. It is pointed out in [BW18] that if the varifold satisfies (I'V)
then its mean curvature is constant.

We would like to mention that to prove this theorem, we employ an approach in
[CC17] choosing f. = (¢+]|®|?)* to be the test function for variational formula of \;.
However, since we work on a singular setting, it is non-trivial that the integration
of fe converges. In fact, we have to choose the power « carefully leading to a
divergence from the argument in [CC17]. To be precise, here we choose % - \/% <
a < % In comparison, in [CC17], the range of « is (% — \/12—”, % + \/%—”) Our main
tools of dealing with the integration of f. come form [Zhul8] and [CM12] with
significant modifications. They come from the fact that here we are dealing with
the traceless second fundamental form and its associated Simons-type formula on
a CMC hypersurface. In comparison, [Zhul8] is mostly concerned with the second
fundamental form on a minimal hypersurface.
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Here is the organization of our paper. In Section 2, we recall some basic back-
ground on hypersurfaces with constant mean curvature in both regular and singular
setting. In Section 3, we obtain several estimates regarding the integration of |®|
and f.. They are the key formulas in our proof of Theorem 1.1 in the last section.

2. PRELIMINARIES

In this section, we recall basic notions about a varifold and discuss how we do
integration on it.

2.1. Brief Introduction to Varifolds. In the following presentations, we use the
approach in [BW18] (see also [Wick17])

To give a further discussion, let us recall some basic notations on varifolds (see
[Sim83]). Let N be a countably n-rectifiable, H"-measurable subset of R"P_ where
H™ is the n-dimensional Hausdorff measure in R"*™”. Let 6 be a positive locally
‘H"-integrable function on N. Corresponding to such a pair (N, ), we define the
rectifiable n-varifold V to be simply the equivalence class of all pairs (N, 5) where
N is countably n-rectifiable with #™((N \ N)U (N \ N)) = 0 and 6 = 0, H"-a.e.
on NN N. 6 is said to be the multiplicity function of V. Moreover, V is called an
integer multiplicity rectifiable n-varifold (more briefly, an integer n-varifold) if the
multiplicity function 6 is integer-valued H™-a.e.

Associated to a rectifiable n-varifold V' with the representative (N,0) (as de-
scribed above) there is a Radon measure (called the weight measure of V) defined
by = H"|6. Consequently, for H™ measurable A,

v (A) = / 0dH™.

As in [Sim83], given a rectifiable n-varifold V, for any ¢ € V, we define the
tangent space T,V to be the approximate tangent space of uy whenever this ex-
ists (the reader are referred to Theorem 11.8 in [Sim83] for a discussion about
the approximate tangent space). Note that T,V = T,M,H™-a.e.. We also define
spty := sptuy . Thus, we can define the divergence almost everywhere by

n

divy X (q) = divr,v X (q) = > _(Ei, Ve, X) (q)

i=1

where {E;} is an orthonormal basic for 7,V and V is the ambient connection. We
have the following definition (see Definition 16.5 in [Sim83]).

Definition 2.1. Suppose H is a locally py-integrable function on M N U with
values in R"*? we say that V has generalized mean curvature H in U (U is an open

set in R™*P) if
/ diVMX: —/ X-Hd,uv
U U

whenever X is a C! vector field on U with compact support in U.

We note that when V is stationary in U then

/diV]\/[X: —/ Xﬁd,u,v
U U
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where H(q) is the mean curvature vector on the approximate tangent space at q.
This explains why H is said to be generalized mean curvature.

Definition 2.2 (Regular set regV and singular set singV’). A point z € U is a
regular point of V if z € spt||V|| and if there exists o > 0 such that spt ||V ||NB2*!(z)
is an embedded smooth hypersurface of B?*!(z). The regular set of V, denote by
regV, is the set of all regular points of V. The (interior) singular set of V', denote
by singV, is (spt||V]| \ regV’). By definition, regV is relatively open in spt||V|| and
singV’ is relative closed in spt||V||. For convenience, we say that a varifold V is
orientable if and only if regV is orientable.

Definition 2.3 (C'-regular set reg; V). We define reg, V to be the set of all points
x € spt||V|| with the property that there is o > 0 such that spt||V| N B2*1(z) is
an embedded hypersurface of B?*1(z) of class C1.

On a varifold V', we use a stationarity assumption as follows

: (IV): Whenever O C (U \ (spt||V] \ reg,;V)) is such that reg;V N O is
orientable, there exists an orientation © on reg;V N O such that

d
— W yV| =0
ai|_ v
for any X € C}(0) with [,
U, with £, ¥ = X.

cg, VO X - 2d||V]| = 0 and for any deformation

Remark 2.4. As discussed in [BW18], the assumption (IV) implies that there exists
a constant H such that H = HD, moreover reg;V = regV, where H is the mean
curvature of regV.

Example 2.5. The following example is given in [BW18]. Consider the 1-dimension
integral varifold V' (higher dimension examples follow by a trivial product with a
linear subspace) whose support is given by the set D C R? defined by

D={y>-1,2"+(y+1)* =1} u{y < La* + (y — 1)* = 1},

where (z,y) € R?, with multiplicity 2 on the portions {(z,y) € R? : -1 < y <
0,r<0,22+ (y+1)2 =1} and {(z,y) eR?2: 0<y < 1,2 > 0,22 + (y — 1)% = 1},
and multiplicity 1 on the rest. Then V is a CMC curve. For further examples, we
refer the readers to Subsection 2.2 in [BW18].

2.2. Integration on a Singular Hypersurface. Throughout this paper, we will
use a cut-off function introduced in [Zhul8] to integrate around the singular set.
Consider an integral n-varifold V in S"*!. The singular set is closed and hence
compact. So by definition of Hausdorff measure, if H" ?(singV’) = 0, ¢ > 0, then
for any € > 0 we may cover the singular set by finitely many geodesic balls of

m
St singV € U By, (pi), where > ;" ri'” % < € and we may assume without loss

of generality thzaut1 r; << 1 for each i.

Given such a covering we take smooth cutoff functions 0 < ¢; . < 1 on S"*! with
©ic = 1 outside Ba,, (pi), pi,c = 0 inside By, (p;) and |§gpi7€| < % in between. We
then set ¢, = inf; ¢; . which is Lipschitz with compact support away from singV’,
and |V | < sup; Vi |. We now collect some properties of ¢.. To state the result,
let us recall a version of Theorem 17.6 in [Sim83].
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Theorem 2.6 ([Sim83]). Let U be an open subset in R"* 'V be an n-varifold with
generalized mean curvature H in U. Given a fixed pointp € U,0 < a < 1,A >0, if

oA (R) )

for all s € (0, R), where Br(p) C U, then
l—a .« l—a
M Ty (Br(p) < eMETs T uy (By(p),
whenever 0 <r < s < R.
Now, for « = 1,s = R < 1, and V is an n-varifold satisfying (IV), M = regV,

we infer that H is constant. Hence, we can put A = |H| in this theorem to obtain
the following corollary.

Corollary 2.7. Let U be an open subset in R"* V be an n-varifold satisfying
(IV). Given a fized point p € U, B,.(p) C U, then there is a constant Cy such that

pv (Br(p)) < Cyr™.

This corollary says that an n-varifold V satisfying (IV) in S"*! has locally
Euclidean volume growth. Using this property, the following useful results are
proved in [Zhulg.

Proposition 2.8 ([Zhul8]). Suppose that V' satisfies (IV) and H" 9(singV) =0
for some q¢ > 0. Then on M = regV, we have
(1)

|V |? < 2"T1Cye.
M

(2) If =1 and f € LP(M), where p = 25, then

lim / IV = 0.
e—0 M

2
(3) If > 2 and f € LP(M), where p = q_—qg, then

lim/ fAVe? = 0.
=0 Jar

Moreover, there is a version of integration by parts.

Lemma 2.9 ([Zhul8]). Suppose H" (singV) = 0 for some ¢ > 0. Assume that
u,v are C? functions on M = regV such that |Vul,|Vv|, |ulv| is L' and |uVv| is

LP,p= q%’l then
/ ulAv = —/ (Vu, Vv) .
M M

2.3. Jacobi Operator and Its First Eigenvalue. Throughout this paper, we
assume that V is an n-varifold in S"*! satisfying (IV) and let M = regV. By the
above discussion, this assumption implies that M has constant mean curvature.
We choose a local orthonormal frame {ey,...,e,+1} on S™*+1 and its dual coframe
{wi,...,wny1} such that {ey,...,e,} is a local orthonormal frame on M. By
Cartan’s lemma, we have

Wins1) = O hiwj,  hij = hj;.
=1
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The mean curvature H, the second fundamental form A, and the traceless second
fundamental form ® are defined, respectively, by

1 n
H:E;h“-

n
A= Z h,’jwi Q Wjent1

ij=1
n
¢ = g D iw; @wjenit,
ig=1

where ®;; = h;; — Hd;;. Let |AJ* be the square norm of the second fundamental
form, then |®|2 = |A|> — nH?2. On M, we consider the Jacobi operator

Jf=Af+ (AP +n)f = Af + @ +n(l+ H?)f.
Similarly to [CC17, Zhul8], we define the first stability eigenvalue to be

V2 |AI2F2 —nf?
/\1(M):inf)\1(Q):inffM| 1l | |2f nf

@ f Ju !

L VI 1P = a1 )

f Jor P2
Here the infimum may be taken over Lipschitz functions f with compact support
in M.

Recall that, as in [CC17], since H is constant, we have the following Simons type

inequality on M.

(2.1)

1 2 _ 1 2 _ - 2 2 271712 4
§A|‘b| —§A|A| = Z hiji +nlAl" —=nH” +nH f3 — |A[%

,5,k=1

n
where f3 = > kf’ and these k;,7 = 1,...,n are the principal curvatures and h;;; :=
i=1
Ve, hij. Moreover, f3 can be written as
n
fs=> (ki — H)* + 3H|®|* + nH® = Bs + 3H|®|* + nH®,
i=1
and 5
L@‘S.
nin —1)
Since H is constant, we have ®;;, = h;j,. By choosing the orientation, we may
assume H > 0. The above discussion implies the following lemma.

| B3| <

Lemma 2.10.
1
[VO|* — @ Py (|®]) < §A|‘1>|2 < VO — |9PQu(|®]),

where

n(n —2)
nn—1

n(n — 2)

nn—1

Hz —n(l+ H?),

i

Hz —n(l+ H?).

j
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We recall the following Kato type inequality.

Lemma 2.11 ([CLS17a]-Lemma?2).

n+2

Vo > —=|V|e|?.

3. INTEGRAL ESTIMATES FOR |®|

Throughout this section M™ will denote the regular part of an orientable n-
varifold V in S"*! satisfying (IV). Moreover, by Lemma 2.7, we know that M has
constant mean curvature H and is of locally Euclidean volume growth py (B, (p)) <
Cyr®, for r << 1.

For any a > 0, we have

n(n — 2) (n(n —2))?
mHI S (1582 -+ m[‘[z

This together with Lemma 2.10 and Lemma 2.11 implies
(n—2)

2 2 4
. > - - - dn(n —1a
(3.1) |®|A|D| > n|V|‘P|| (1+a)|®| (4n(n —1)a

(nH)?* —n(1+ H2)> |®|2.
Define

(n—2)°
dn(n —1)a

Then the equation (3.1) can be rewritten as follows

¢ = (nH)?* —n(1+4 H?).
2
[2[A]D] > = |VI@[ — (1 + a)|@[* - ca| @[

Next, we recall the variational characterization of A; (M)

VAP (R — (14 1)

A= M(M) = fM 72
Hence, if A\ (M) > —oco we have
(3.2) / |®|%f% < / IVf? = (A +n(l+ H?)) / 12,

for any Lipschitz function f with compact support in M. First, we show that
|®| € L?(M) as in the below lemma.

Lemma 3.1. Suppose that H"~2(singV) = 0 and let M = regV . If \y > —oo then
|®| € L2(M).

Proof. The proof follows by using the inequality (3.2). Let ¢, as in Section 2 then
plugging this function into (3.2), we conclude that the last term of the right hand
side is bounded by py (M) since p? < 1. The gradient term is controlled by Lemma
2.8. Letting € — 0, the conclusion is followed by Fatou’s lemma. ([

Lemma 3.2. Let M = regV, assume that H"*(singV) =0 and A\; > —occ. Then
there exists C = C(n,V, A1) such that for any 0 < r << 1,p € S"*! we have

/ o < G2,
MnNB,(p)
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Proof. The proof follows a similar argument in [Zhul8] by replacing || A|| by |®].

We choose a cutoff function 0 < 1 < 1 such that n = 1 inside B,.(p),n = 0 outside
Bsr(p) and Vp < 2 in between. Then Note that Lemma 3.1 implies |®| € L*(M),
therefore, we can use dominated convergence to approximate

/I‘Pl2n2=lim/ D072,
M e—0 M

Using the stability inequality (3.2), for each fixed € > 0, we obtain

/|<1>|2772<p§_ /nQ\V%IQH/ ¢3|V77|2+0A1,H/ n*¢2,
M M M M

where Cy, g = [A1+n(14+H?)|. Observe that n? < 1, the assumption H" 2 (singV) =
0 together with Proposition 2.8 implies the first term of the right hand side tends
to zero as € — 0. Since Lpg < 1, we have

/ ngag S/ 772 S/ 1< Cy2™r™, and
M M MNBa,(p)

4 n n—
/ @2Vl S/ [Vn|? S/ — < Cy2n 2,
M M MNBa,(p) T

thus, the proof is complete. ([
Lemma 3.3. Suppose that H" *(singV) = 0,n > 5 and let M = regV. If \; >
—o0, then |®| € LA(M) and |V|®||,|V®| € L*(M).

Moreover, for any B <1 andn > 0, we have

(n+|@)*2|V|@||* € L (M).

Proof. The proof follows by using a strategy as in [SSY75] (see also [CM12, Zhu18]).
As before, let C := Cy, g = |\ +n(1+ H?)|. Suppose that f is a smooth function
with compact support in M. We apply the stability inequality (3.2) with the test
function |®|f and use the fundamental inequality 2zy < az? + 1y to obtain

ey [1err<ava [ wee [ e (1) wreeer).

where a > 0 is an arbitrary positive number to be chosen later.
On the other hand, the Simons type inequality in the equality (3.1) says that

2
[2[A[R] >~V = (1+a)|®]" — 1|,

Multiplying both sides of this Simons type inequality by f2, then using integration
by parts and using the fundamental inequality 2zy < az? + %y2, we obtain

2 2 2 4 02 1 2 2 22
<1+n_a>/M|v|q>|| f §(1+a)/M\<I>| f +E/M|®‘ IV f] +cl/M|cI>| fe.

Equivalently,
(3.4)

[ vl < S50 [t [ et [ e

n

Combining (3.3) and (3.4), we yield
1+a

a5 [ el < ot [ el Cu / B (TS + (C+1F)
1++—a/u M
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Choosing a < ﬁ then the first coefficient on the right hand side is less than 1. This
implies that there is a constant C; = C(cq,n, H) such that

(3.6) /N 1ol < /M BI2(f2 + [V FP).

Now, we apply this equality with f = ¢, and ¢ = 4. When € approaches 0, the first
term on the right hand side converges to [ M |®|2, which is finite. We estimate the
second term as follows:

L]
BPTel <> [,
/M ; i MNBar, (pi)\Br, (pi)

Using Lemma 3.2, we have

/ o < o,
MnNBay, (pi)\Br, (pi)

where C’ depend on H and the volume bounds for M. Hence,
/ B2V ? <4C"S it < aCe.
M i

Here we note that the r; << 1 were chosen so that >, 77" * < e. Letting e — 0,
we conclude that this term tends to zero. Hence, Lemma 3.1 together with this
observation imply |®| € L*(M). As a consequence, the inequality (3.4) infers
|V|®|| € L2(M).

Finally, observe that Lemma 2.10 yields

1
VO] < SAIBP + [22Qu (),
where
n(n — 2)

—n 2.
n(nil)Hx (1+ H?)

Qu(x) =2+

Multiplying both sides of the above inequality by ¢? and integrating by parts, we
obtain

[ arvep <2 [ plelvivieh+ [ cloPQu(e)
M M M

< [ (@AVIIP +1oPTel) + [ clalQual)
M M

As the above discussion, since |®|?, |®|* € L*(M), it is easy to see that |®|2Qx (|®]) €
LY(M). Moreover, since |V|®|| € L?(M), after letting e — 0, we can conclude that
|V®| € L?(M). Now, since 3 < 1 and 7 > 0 is fixed, we obtain

(n+|@)*2|V|@|* < *72|V|@|]* € L'(M),

O

where we used § — 1 < 0. The proof is complete.

We have the following corollary.

Corollary 3.4. Suppose that H" *(singV) = 0 and V satisfies (IV). Let M
regV, assume that \; > —oo. If e > 0 and f- := (e + |®[*) for some 0 < a <
then we have f. € L*(M), |f-|,|Vf-| € L*(M).

)

N[ =
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Proof. Since 0 < o < %, we have
(fo)* < max{1, (¢ + |®*)?} < max{1,2¢* + 2|®[*}.

Hence f. € L*(M) since |®| € L*(M) as in Lemma 3.3. Next, we estimate |V f|
as follows.

Vel = 4a®(e + @) 7% |2 *| V| @] |*
< da?(e + @) V|P|? < da”e** V@[,

where we used 2a — 1 < 0 and ¢ + |®|? > ¢ in the last inequality. Therefore, by
Lemma 3.3 we obtain |V f.| € L2(M). O

Now we will show that we can apply the above integration by parts for u =v =
f=, where f, = (e+|®[*)*,0 < o < 1 as in the previous corollary. Indeed, it is easy
to show that

fAfe = ala = 1)(e + @) ?|VIQP + ale + @) AP
<da 11— a)|VI? + a7 AP,

where we used 2a — 1 < 0. By Lemma 3.1 and Lemma 3.3, we have that |®| €
L*(M) N L*(M). Moreover, Lemma 2.10 asserts that

nn—-2)
vn(n—1)
Observe that as in Lemma 3.3, we have |V®| € L*(M),|®| € L*(M) N L4(M),
hence |A|®|?| € L' (M). This together with Corollary 3.4 implies f-Af. € L'(M).
Now, by Young’s inequality, we have
1 2
(FIVLDY? < g f+ S IVEL,
since f. is L* and |V f.| is L?, we conclude that |f.||V f.| is L? for p = 3 (hence

q= pf ; = 4). Using Lemma 2.9, we have verified the following result.

Lemma 3.5. Let V is an n-varifold satisfying (IV). Suppose H"~*(singV) = 0,
then for f. = (e + |®|?)*, where 0 < o < 3 and any given € > 0,we have

/M fAf = */M VL

4. FIRST STABILITY EIGENVALUE

1
5A|<1>|2 < VO — |0 <|c1>|2— H|®| —n(1+H2)>.

First, we observe that the first stability eigenvalue can be obtained as follows.

Lemma 4.1. Let V be an nx>s-varifold in S*! with orientable regular part M =
regV. Assume that M has constant mean curvature and H" *(singV) = 0. Then,
we can get the same A1 by taking the infimum over Lipschitz functions f on M
such that f € Wh2 N L2,

Proof. This proof follows a similar argument in [Zhul8] but we use ®, the traceless
second fundamental form, instead of A.

Observe that if A;(M) = —oo then the definition (2.1) of A implies that for any
large real number K > 0, there exists a Lipschitz function with compact support
on M such that

Ju [VFI2 = [@Pf? —n(1+ H?)f?

e 17

< —-K.
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Since f is Lipschitz, it must be almost everywhere differentiable. This together
with the fact that f has compact support implies f € W12 N L*. Hence, the proof
is complete.

Now, we assume \; > —oo. Since f € L*(M), Lemma 3.1 together with this
assumption implies |®|f is also L?. We use the functions g. = fp. which are
compactly supported away from the singular set, in the definition of A;. Since f
and |®|f are in L?, dominated convergence gives that

/g?—>/ 12, and/ |¢>|2g3—>/ |<I>|2f2
M M M M

as € — 0. For the gradient term, we have

/ Vgl = / (GIVIP +2(V, Vo) + IVel?).
M M

Note that f € L*(M), the properties of ¢, in Lemma 2.8 imply that the second and
third terms on the right hand side tend to zero when ¢ approaches 0. On the other
hand, the first term on the right hand side tends to fM |Vf|? by the dominated
convergence theorem. In summary, we have verified that [, [Vg.|* — [, [V f]
Therefore, the proof of Lemma 4.1 is complete.

We are now ready to provide the proof of the main theorem.

Proor orF THEOREM 1.1. For any ¢ > 0 and arbitrary number % - \/% <a< %,
let f. = (¢ + |®]?)®. By a direct computation, we obtain

(4.1) Af. = ala —1)(e + |®2)*2|V|®|?|2 + ale + |®|?)*TA|D|%

By Corollary 3.4 and Lemma 4.1, we can use f. as a test function for A\;. Hence,
by a calculation as in [CLS17a] and Lemma 3.5, we arrive at

/\1/ f2 Sa/ (e +[2[)**72((1 + 208 — B — )| V[@*]* — 2(1 - B)(e + |@[*)[VE|*)
M M

+/ (204(1—»6’)@21:,{(@)) fg_/M(\q>|2+n(1+H2))f3.

€+ | P2

Note thata>%—ﬁ2%,for all n € N, we now take S such that
n+2 2no 2na

4.2 1—-38= .

(42) p n 4na—(n—2)>4na—(n—2)

so we have

14+2a—0—-—a=(1-2a)(1-5)+«
2na (n+2)a

>(1—-2a)———F =——>0.
= a)4na—(n—2)+a dno — (n — 2)

Using Kato inequality as in Lemma 2.11, we obtain
(1+208 = B —a)|V|@||* - 2(1 - B)(e + |2[*)|VO|*
< dn(l+4 206 -0 —a)
- n+2
2 2 2
m\nm [Ve|*(2n(1 + 208 — B — @) — (n+2)(1 — B))

[PPVE* —2(1 - B)(e + @) Ve[

= n%z\q’FIV@IQ((n —2)(1 - B) — 4na(l - ) + 2na) < 0
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where in the last inequality we used 1 — 8 > #@_2). Therefore, as in [CLS17a],

it turns out that

n e [ (et - g - e+ 220 D0 g ) 2

€—|—|‘I>|2 vn(n —1)
2
(4.3) —2na(1 — B)(1 + H?) /M 5 _|:I)||<I)|2 2 —n(l+ H? /M 12

Assume that 2a(1 — 8) < 1, we have

20(1 — B)(n — 2) o S ) R Ut
—— = [ < (1= 2a(1 = B + s )

This implies

B2 [ 20 A20-2" N\
Al/ff—/MsH@P( =0 —sai =7y ") E)fa

(4.4) —Qna(l—ﬁ)(1+H2)/ 2 —n(l+H?) [ f?
' M e+ [P Moo

Since M is non-totally umbilical, we have

: 2 4o
t 2= ], o >0

Letting £ — 0, this observation together with (4.4) infers

a*(1=p)*(n —2)? 5
n(n—1)(1—2a(1 - ) (nH)”

(1) Now, if n?H? < % then a direct computation shows that

(45) A <-n(l+2a(1-pB)(1+H?)+

LN Y O () S T S
272 Vn2H? 4+ 4n(n — 1) 2 n?
Defining
2(n + 2)a?
wla) = a1~ §) = 2

so w(a) is an increasing function of , for & >  — L. Observe that

1 1 1 2 1 1
wl=—-=]=z—-=%, wl|l=]=-=.
2 n 2 n? 2 2

This implies that there exists an a € (% — %, %} such that

1 n — 2)2H?2
w(a):a(l_B)ZZ<1_\/4(7”E—1)2HL2H2>'

For these a and 3, we have

B (n—2)2H?
2a(1 = f) =1~ \/4(n—1)+n2H2
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Plugging it into (4.5) and doing the same computation as in [CC17], we
arrive at

n(VPIZ A0~ 1) ~ (n - 2)|H])
4(n—1)

A < —n(l+ H?) -

Now, suppose that the equality holds true, we can repeat the arguments as
in [CC17] to show that M (hence V) is a Clifford torus.

(2) If n?H?% > 1122%(_77;21116, we first modify the equation (4.2) to choose 3 such

that
2na
1-p=—"*
b dna — (n — 2)
then we process s in [CC17] or [CLS17a] to obtain (4.5) again, namely, we
have

a®(1—p)*(n—2)?

-n al(l — 2
A1 < —n(1+2a(1 ﬁ))(lJrH)+n(n_1)(1—2a(1—ﬂ))

(nH)2.

Now, we choose

1 1
a(l-p) = L% , saying o = 5 and [ =0.
Therefore, we can conclude that
_ 2)4
No< o114 B+ T2 e
L

Now the proof follows by applying the argument as in [CC17, CLS17a]. We omit
the detail here. d

Theorem 4.2. Let V be an n>s5-varifold in S™ with orientable reqular part M =
regV . Assume that M has constant mean curvature and H" *(singV) = 0 and M
is non-totally umbilical. Then, we have

oy, n—=2) o [y [®f
A < =2n(1+ H?) + W'H‘fﬁw‘

If the equality holds then V is a Clifford torus.

Proof. We let a = 3, and 8 = 0 in (4.3) then let € tend to 0, we obtain the
conclusion of Theorem 4.2. Now, assume that the equality holds true, we can apply
the argument in the proof of Theorem 2.2 in [ABB04] to show that M (hence V)

is a Clifford torus. O
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