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Abstract. In this paper, we study the first eigenvalue of the Jacobi operator
on an integral n-varifold with constant mean curvature in the unit sphere Sn+1.

We found the optimal upper bound and prove a rigidity result characterizing

the case when it is attained. This gives a new characterization for certain
singular Clifford tori.

1. Introduction

Let M be an oriented smooth two-sided hypersurface immersed in the (n + 1)-
dimensional sphere. Let ψ :M → Sn+1 be the immersion and ν be a choice of a unit
normal vector field along M . We consider a compact variation of the hypersurface,
for any t ∈ (−ε, ε),

ψt :M → Sn+1, suppψt ⋐M,

is an immersion with ψ0 = ψ. The area of ψt is defined to be

A(t) =

∫
M

dAt

where dAt is the area element obtained via a pullback by the immersion ψt. The
first variation formula of the area functional A(t) is given by

dA(t)

dt

∣∣∣∣
t=0

= −
∫
M

nHfdA,

where f =
〈
∂ψt

∂t

∣∣
t=0

, ν
〉

and H denotes the mean curvature. Hence, a compact

hypersurface is minimal, namely, H ≡ 0, if and only if dA(t)
dt

∣∣∣
t=0

= 0. The second

variation formula is given by

d2A(t)

dt2

∣∣∣∣
t=0

= −
∫
M

fJfdA,

where J := ∆ + (|A|2 + n) = ∆ + (|Φ|2 + n(1 +H2)). J is conventionally referred
as the stability or Jacobi operator. Here A,Φ, H are the second fundamental form,
the traceless second fundamental form and the mean curvature of ψ, respectively,
and ∆ is the Laplace-Beltrami operator. Let λ1 be the the first eigenvalue of J ,
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Ju = −λ1u for some eigenfunction u. The variational characterization of λ1 implies
(see [Cha84])

λ1 = min

{∫
M
fJf∫

M
f2

; f ∈ C∞
0 (M)

}
.

The easiest minimal hypersurfaces to describe are the equators, i.e. the totally
geodesic (Sn)′s, and the Clifford tori defined by

Sk
(√

k

n

)
× Sℓ

(√
ℓ

n

)
⊂ Sn+1 ⊂ Rn+2

with k + ℓ = n. In his celebrated work [Sim68], Simons studied the first stability
eigenvalue of a minimal closed hypersurface Mn immersed in Sn+1. He proved that
if M is not a totally geodesic sphere then λ1 ≤ −2n. This result enabled him to
deduce that the only stable cones in Rn, n ≤ 7 are the ones that come from equators,
i.e. hyperplanes. Later on, Wu [Wu93] characterized the equality λ1 = −2n case
by showing that it holds only for the minimal Clifford torus. Shortly thereafter,
Perdomo [Per02] provides a new proof of this spectral characterization. Afterwards,
Aĺıas, Barros, and Brasil Jr. [ABB04] extended these results to the case of constant
mean curvature hypersurfaces in Sn+1. They also characterized Clifford tori via the
maximal value of λ1. Recently, Chen and Cheng [CC17] obtained an optimal upper
bound for λ1 on non-totally umbilical compact hypersurfaces with constant mean
curvature. The upper bound only depends on the mean curvature H and the
dimension n. Furthermore, Cunha, Lima, and Santos [CLS17a, CLS17b] extended
Chen and Cheng’s result for the context of closed submanifold Mn immersed with
nonzero parallel mean curvature vector field in the Euclidean unit sphere Sn+p, the
Euclidean space Rn+p or in the hyperbolic space Hn+p.

On the other hand, there are important reasons to consider non-smooth hy-
persurfaces in geometric variational problems. First, in higher dimension, an area
minimizing hypersurface spanning a given codimension-2 closed submanifold in Eu-
clidean space may have a singular set. Second, in reality, it normally arises the need
to model non-smooth physical objects.

Probably motivated by these considerations, F. Almgren [Alm66] introduced
varifolds to prove, for every intermediate dimension, the existence of a generalized
minimal surface (i.e., a surface with vanishing first variation of area) in a given com-
pact smooth Riemannian manifold. Then, in 1972, an important partial regularity
result for such varifolds was established by W. Allard [All72]. These pioneering
works still have a strong influence in geometric analysis as well as related fields.

Now, we review some recent results. In [Wick14], the author gives a necessary
and sufficient geometric structural condition for a stable co-dimension one inte-
gral varifold on a smooth Riemannian manifold to correspond to an embedded
smooth hypersurface away from a small set of generally unavoidable singularities.
He also derived regularity and compactness theorems and used them to show an
optimal strong maximum principle for stationary codimension 1 integral varifolds.
In [CM12], Colding and Minicozzi study the smoothness of a mean curvature flow
that starts at a generic smooth closed embedded surface in R3 until it arrives at
a singularity in a neighborhood of which the flow looks like concentric spheres or
cylinders. In particular, they investigate the regularity of F -stable self-shrinkers
and show that if the regular part of such an n-dimensional F -stationary integral
varifold is orientable and F -stable and the singular set has finite (n−2)-dimensional
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Hausdorff measure, then it is smooth. Recently, inspired by the study of Simons on
the first eigenvalue of the Jacobi operator and the work of Colding and Minicozzi,
Zhu extends the Simons’ estimate to singular minimal hypersurface in Sn+1, which
is non-totally geodesic.

Motivated by aforementioned works, in this paper, our contribution is to extend
Chen and Cheng’s results to the setting of singular hypersurface with constant
mean curvature in spheres. We consider n-varifolds satisfying the condition (IV)
(see Section 2 for the precise definition) and obtain the following result.

Theorem 1.1. Let V be an n≥5-varifold in Sn+1 satisfying the condition (IV) with
orientable regular part regV =M . Let singV be the singular part of M and assume
that M has constant mean curvature and Hn−4(singV ) = 0 and M is non-totally
umbilical.

(1) If (nH)2 < 16(n−1)
n2(n−2)2−16 then

λ1 ≤ −n(1 +H2)−
n
(√

4(n− 1) + n2H2 − (n− 2)|H|
)2

4(n− 1)

and the equality holds if and only if V is a Clifford torus S1(r)×Sn−1(
√
1− r2)

with
n

(n− 2)2
> r2 >

1

n

or M is a Clifford torus Sn−k
(√

n−k
n

)
× Sk

(√
k
n

)
with H = 0 for k =

1, 2, . . . , n− 1.

(2) If (nH)2 ≥ 16(n−1)
n2(n−2)2−16 then

λ1 ≤ −2(n− 1)(1 +H2) +
(n− 2)4

8(n− 1)
H2

and the equality holds if and only if V is the Clifford torus S1
( √

n
n−2

)
×

Sn−1

(√
(n−1)(n−4)

n−2

)
Remark 1.2. As M is non-complete and non-compact,a priori, λ1 might be −∞.

We also note that, the condition (IV ) is, in fact, a stationary condition with
volume constraints. It is pointed out in [BW18] that if the varifold satisfies (IV )
then its mean curvature is constant.

We would like to mention that to prove this theorem, we employ an approach in
[CC17] choosing fϵ = (ε+|Φ|2)α to be the test function for variational formula of λ1.
However, since we work on a singular setting, it is non-trivial that the integration
of fϵ converges. In fact, we have to choose the power α carefully leading to a
divergence from the argument in [CC17]. To be precise, here we choose 1

2 −
1√
2n
<

α ≤ 1
2 . In comparison, in [CC17], the range of α is

(
1
2 − 1√

2n
, 12 + 1√

2n

)
. Our main

tools of dealing with the integration of fϵ come form [Zhu18] and [CM12] with
significant modifications. They come from the fact that here we are dealing with
the traceless second fundamental form and its associated Simons-type formula on
a CMC hypersurface. In comparison, [Zhu18] is mostly concerned with the second
fundamental form on a minimal hypersurface.
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Here is the organization of our paper. In Section 2, we recall some basic back-
ground on hypersurfaces with constant mean curvature in both regular and singular
setting. In Section 3, we obtain several estimates regarding the integration of |Φ|
and fϵ. They are the key formulas in our proof of Theorem 1.1 in the last section.

2. Preliminaries

In this section, we recall basic notions about a varifold and discuss how we do
integration on it.

2.1. Brief Introduction to Varifolds. In the following presentations, we use the
approach in [BW18] (see also [Wick17])

To give a further discussion, let us recall some basic notations on varifolds (see
[Sim83]). Let N be a countably n-rectifiable, Hn-measurable subset of Rn+p, where
Hn is the n-dimensional Hausdorff measure in Rn+p. Let θ be a positive locally
Hn-integrable function on N . Corresponding to such a pair (N, θ), we define the

rectifiable n-varifold V to be simply the equivalence class of all pairs (Ñ , θ̃) where

Ñ is countably n-rectifiable with Hn((N \ Ñ) ∪ (Ñ \ N)) = 0 and θ = θ̃,Hn-a.e.

on N ∩ Ñ . θ is said to be the multiplicity function of V . Moreover, V is called an
integer multiplicity rectifiable n-varifold (more briefly, an integer n-varifold) if the
multiplicity function θ is integer-valued Hn-a.e.

Associated to a rectifiable n-varifold V with the representative (N, θ) (as de-
scribed above) there is a Radon measure (called the weight measure of V) defined
by µ = Hn⌊θ. Consequently, for Hn measurable A,

µV (A) =

∫
A∩N

θdHn.

As in [Sim83], given a rectifiable n-varifold V , for any q ∈ V , we define the
tangent space TqV to be the approximate tangent space of µV whenever this ex-
ists (the reader are referred to Theorem 11.8 in [Sim83] for a discussion about
the approximate tangent space). Note that TqV = TqM,Hn-a.e.. We also define
sptV := sptµV . Thus, we can define the divergence almost everywhere by

divVX(q) = divTpVX(q) =
n∑
i=1

〈
Ei,∇EiX

〉
(q)

where {Ei} is an orthonormal basic for TqV and ∇ is the ambient connection. We
have the following definition (see Definition 16.5 in [Sim83]).

Definition 2.1. Suppose H is a locally µV -integrable function on M ∩ U with
values in Rn+p we say that V has generalized mean curvature H in U (U is an open
set in Rn+p) if ∫

U

divMX = −
∫
U

X ·HdµV

whenever X is a C1 vector field on U with compact support in U .

We note that when V is stationary in U then∫
U

divMX = −
∫
U

X ·HdµV
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where H(q) is the mean curvature vector on the approximate tangent space at q.
This explains why H is said to be generalized mean curvature.

Definition 2.2 (Regular set regV and singular set singV ). A point x ∈ U is a
regular point of V if x ∈ spt∥V ∥ and if there exists σ > 0 such that spt∥V ∥∩Bn+1

σ (x)
is an embedded smooth hypersurface of Bn+1

σ (x). The regular set of V , denote by
regV , is the set of all regular points of V . The (interior) singular set of V , denote
by singV , is (spt∥V ∥ \ regV ). By definition, regV is relatively open in spt∥V ∥ and
singV is relative closed in spt∥V ∥. For convenience, we say that a varifold V is
orientable if and only if regV is orientable.

Definition 2.3 (C1-regular set reg1V ). We define reg1V to be the set of all points
x ∈ spt∥V ∥ with the property that there is σ > 0 such that spt∥V ∥ ∩ Bn+1

σ (x) is
an embedded hypersurface of Bn+1

σ (x) of class C1.

On a varifold V , we use a stationarity assumption as follows

: (IV): Whenever O ⊂ (U \ (spt∥V ∥ \ reg1V )) is such that reg1V ∩ O is
orientable, there exists an orientation ν̂ on reg1V ∩ O such that

d

dt

∣∣∣∣
t=0

∥(Ψt)♯V ∥ = 0

for any X ∈ C1
c (O) with

∫
reg1V ∩OX · ν̂d∥V ∥ = 0 and for any deformation

Ψt with
d
dt

∣∣
t=0

Ψt = X.

Remark 2.4. As discussed in [BW18], the assumption (IV) implies that there exists

a constant H such that H⃗ = Hν̂, moreover reg1V = regV , where H⃗ is the mean
curvature of regV .

Example 2.5. The following example is given in [BW18]. Consider the 1-dimension
integral varifold V (higher dimension examples follow by a trivial product with a
linear subspace) whose support is given by the set D ⊂ R2 defined by

D = {y ≥ −1, x2 + (y + 1)2 = 1} ∪ {y ≤ 1, x2 + (y − 1)2 = 1},

where (x, y) ∈ R2, with multiplicity 2 on the portions {(x, y) ∈ R2 : −1 ≤ y ≤
0, x ≤ 0, x2 + (y + 1)2 = 1} and {(x, y) ∈ R2 : 0 ≤ y ≤ 1, x ≥ 0, x2 + (y − 1)2 = 1},
and multiplicity 1 on the rest. Then V is a CMC curve. For further examples, we
refer the readers to Subsection 2.2 in [BW18].

2.2. Integration on a Singular Hypersurface. Throughout this paper, we will
use a cut-off function introduced in [Zhu18] to integrate around the singular set.
Consider an integral n-varifold V in Sn+1. The singular set is closed and hence
compact. So by definition of Hausdorff measure, if Hn−q(singV ) = 0, q > 0, then
for any ϵ > 0 we may cover the singular set by finitely many geodesic balls of

Sn+1, singV ⊂
m⋃
i=1

Bri(pi), where
∑m
i=1 r

n−q
i < ϵ and we may assume without loss

of generality that ri << 1 for each i.
Given such a covering we take smooth cutoff functions 0 ≤ φi,ϵ ≤ 1 on Sn+1 with

φi,ϵ = 1 outside B2ri(pi), φi,ϵ = 0 inside Bri(pi) and |∇φi,ϵ| ≤ 2
ri

in between. We
then set φϵ = infi φi,ϵ which is Lipschitz with compact support away from singV ,

and |∇φϵ| ≤ supi |∇φi,ϵ|. We now collect some properties of φϵ. To state the result,
let us recall a version of Theorem 17.6 in [Sim83].
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Theorem 2.6 ([Sim83]). Let U be an open subset in Rn+k, V be an n-varifold with
generalized mean curvature H in U . Given a fixed point p ∈ U, 0 < α ≤ 1,Λ ≥ 0, if

1

α

∫
Bs(p)

|H| ≤ Λ
( s
R

)α−1

µV (Bs(p)),

for all s ∈ (0, R), where BR(p) ⊂ U , then

eΛR
1−αrαr−nµV (Br(p)) ≤ eΛR

1−αsαs−nµV (Bs(p)),

whenever 0 < r < s ≤ R.

Now, for α = 1, s = R ≤ 1, and V is an n-varifold satisfying (IV), M = regV ,
we infer that H is constant. Hence, we can put Λ = |H| in this theorem to obtain
the following corollary.

Corollary 2.7. Let U be an open subset in Rn+k, V be an n-varifold satisfying
(IV). Given a fixed point p ∈ U,Br(p) ⊂ U , then there is a constant CV such that

µV (Br(p)) ≤ CV r
n.

This corollary says that an n-varifold V satisfying (IV) in Sn+1 has locally
Euclidean volume growth. Using this property, the following useful results are
proved in [Zhu18].

Proposition 2.8 ([Zhu18]). Suppose that V satisfies (IV) and Hn−q(singV ) = 0
for some q > 0. Then on M = regV , we have

(1) ∫
M

|∇φϵ|q ≤ 2n+qCV ϵ.

(2) If q ≥ 1 and f ∈ Lp(M), where p = q
q−1 , then

lim
ϵ→0

∫
M

|f ||∇φϵ| = 0.

(3) If q ≥ 2 and f ∈ Lp(M), where p = 2q
q−2 , then

lim
ϵ→0

∫
M

f2|∇φϵ|2 = 0.

Moreover, there is a version of integration by parts.

Lemma 2.9 ([Zhu18]). Suppose Hn−q(singV ) = 0 for some q ≥ 0. Assume that
u, v are C2 functions on M = regV such that |∇u|, |∇v|, |u∆v| is L1 and |u∇v| is
Lp, p = q

q−1 then ∫
M

u∆v = −
∫
M

⟨∇u,∇v⟩ .

2.3. Jacobi Operator and Its First Eigenvalue. Throughout this paper, we
assume that V is an n-varifold in Sn+1 satisfying (IV) and let M = regV . By the
above discussion, this assumption implies that M has constant mean curvature.
We choose a local orthonormal frame {e1, . . . , en+1} on Sn+1 and its dual coframe
{ω1, . . . , ωn+1} such that {e1, . . . , en} is a local orthonormal frame on M . By
Cartan’s lemma, we have

ωi(n+1) =
n∑
j=1

hijωj , hij = hji.
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The mean curvature H, the second fundamental form A, and the traceless second
fundamental form Φ are defined, respectively, by

H =
1

n

n∑
i=1

hii

A =
n∑

i,j=1

hijωi ⊗ ωjen+1

Φ =
n∑

i,j=1

Φijωi ⊗ ωjen+1,

where Φij = hij − Hδij . Let |A|2 be the square norm of the second fundamental
form, then |Φ|2 = |A|2 − nH2. On M , we consider the Jacobi operator

Jf = ∆f + (|A|2 + n)f = ∆f + |Φ|2 + n(1 +H2)f.

Similarly to [CC17, Zhu18], we define the first stability eigenvalue to be

λ1(M) = inf
Ω
λ1(Ω) = inf

f

∫
M

|∇f |2 − |A|2f2 − nf2∫
M
f2

= inf
f

∫
M

|∇f |2 − |Φ|2f2 − n(1 +H2)f2∫
M
f2

(2.1)

Here the infimum may be taken over Lipschitz functions f with compact support
in M .

Recall that, as in [CC17], since H is constant, we have the following Simons type
inequality on M .

1

2
∆|Φ|2 =

1

2
∆|A|2 =

n∑
i,j,k=1

h2ijk + n|A|2 − n2H2 + nHf3 − |A|4,

where f3 =
n∑
i=1

k3i and these ki, i = 1, . . . , n are the principal curvatures and hijk :=

∇ekhij . Moreover, f3 can be written as

f3 =

n∑
i=1

(ki −H)3 + 3H|Φ|2 + nH3 = B3 + 3H|Φ|2 + nH3,

and

|B3| ≤
n− 2√
n(n− 1)

|Φ|3.

Since H is constant, we have Φijk = hijk. By choosing the orientation, we may
assume H ≥ 0. The above discussion implies the following lemma.

Lemma 2.10.

|∇Φ|2 − |Φ|2PH(|Φ|) ≤ 1

2
∆|Φ|2 ≤ |∇Φ|2 − |Φ|2QH(|Φ|),

where

PH(x) = x2 +
n(n− 2)√
n(n− 1)

Hx− n(1 +H2),

QH(x) = x2 − n(n− 2)√
n(n− 1)

Hx− n(1 +H2).
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We recall the following Kato type inequality.

Lemma 2.11 ([CLS17a]-Lemma2).

|∇Φ|2 ≥ n+ 2

n
|∇|Φ||2.

3. Integral Estimates for |Φ|

Throughout this section Mn will denote the regular part of an orientable n-
varifold V in Sn+1 satisfying (IV). Moreover, by Lemma 2.7, we know that M has
constant mean curvature H and is of locally Euclidean volume growth µV (Br(p)) ≤
CV r

n, for r << 1.
For any a > 0, we have

n(n− 2)√
n(n− 1)

Hx ≤ ax2 +
(n(n− 2))2

4n(n− 1)a
H2.

This together with Lemma 2.10 and Lemma 2.11 implies

(3.1) |Φ|∆|Φ| ≥ 2

n
|∇|Φ||2 − (1 + a)|Φ|4 −

(
(n− 2)2

4n(n− 1)a
(nH)2 − n(1 +H2)

)
|Φ|2.

Define

c1 =
(n− 2)2

4n(n− 1)a
(nH)2 − n(1 +H2).

Then the equation (3.1) can be rewritten as follows

|Φ|∆|Φ| ≥ 2

n
|∇|Φ||2 − (1 + a)|Φ|4 − c1|Φ|2.

Next, we recall the variational characterization of λ1(M)

λ1 := λ1(M) = inf
f

∫
M

|∇f |2 − |Φ|2f2 − n(1 +H2)f2∫
M
f2

.

Hence, if λ1(M) > −∞ we have

(3.2)

∫
M

|Φ|2f2 ≤
∫
M

|∇f |2 − (λ1 + n(1 +H2))

∫
M

f2,

for any Lipschitz function f with compact support in M . First, we show that
|Φ| ∈ L2(M) as in the below lemma.

Lemma 3.1. Suppose that Hn−2(singV ) = 0 and let M = regV . If λ1 > −∞ then
|Φ| ∈ L2(M).

Proof. The proof follows by using the inequality (3.2). Let φϵ as in Section 2 then
plugging this function into (3.2), we conclude that the last term of the right hand
side is bounded by µV (M) since φ2

ϵ ≤ 1. The gradient term is controlled by Lemma
2.8. Letting ϵ→ 0, the conclusion is followed by Fatou’s lemma. □

Lemma 3.2. Let M = regV , assume that Hn−2(singV ) = 0 and λ1 > −∞. Then
there exists C = C(n, V, λ1) such that for any 0 < r << 1, p ∈ Sn+1,we have∫

M∩Br(p)

|Φ|2 ≤ Crn−2.
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Proof. The proof follows a similar argument in [Zhu18] by replacing ∥A∥ by |Φ|.
We choose a cutoff function 0 ≤ η ≤ 1 such that η = 1 inside Br(p), η = 0 outside

B2r(p) and ∇η ≤ 2
r in between. Then Note that Lemma 3.1 implies |Φ| ∈ L2(M),

therefore, we can use dominated convergence to approximate∫
M

|Φ|2η2 = lim
ϵ→0

∫
M

|Φ|2η2φ2
ϵ .

Using the stability inequality (3.2), for each fixed ϵ > 0, we obtain∫
M

|Φ|2η2φ2
ϵ ≤ 2

∫
M

η2|∇φϵ|2 + 2

∫
M

φ2
ϵ |∇η|2 + Cλ1,H

∫
M

η2φ2
ϵ ,

where Cλ1,H := |λ1+n(1+H2)|. Observe that η2 ≤ 1, the assumptionHn−2(singV ) =
0 together with Proposition 2.8 implies the first term of the right hand side tends
to zero as ϵ→ 0. Since φ2

ϵ ≤ 1, we have∫
M

ηφ2
ϵ ≤

∫
M

η2 ≤
∫
M∩B2r(p)

1 ≤ CV 2
nrn, and∫

M

φ2
ϵ |∇η|2 ≤

∫
M

|∇η|2 ≤
∫
M∩B2r(p)

4

r2
≤ CV 2

n+2rn−2,

thus, the proof is complete. □

Lemma 3.3. Suppose that Hn−4(singV ) = 0, n ≥ 5 and let M = regV . If λ1 >
−∞, then |Φ| ∈ L4(M) and |∇|Φ||, |∇Φ| ∈ L2(M).

Moreover, for any β ≤ 1 and η > 0, we have

(η + |Φ|)2β−2|∇|Φ||2 ∈ L1(M).

Proof. The proof follows by using a strategy as in [SSY75] (see also [CM12, Zhu18]).
As before, let C := Cλ1,H = |λ1 +n(1+H2)|. Suppose that f is a smooth function
with compact support in M . We apply the stability inequality (3.2) with the test
function |Φ|f and use the fundamental inequality 2xy ≤ ax2 + 1

ay
2 to obtain

(3.3)

∫
M

|Φ|4f2 ≤ (1 + a)

∫
M

|∇|Φ||2f2 +
∫
M

|Φ|2
((

1 +
1

a

)
|∇f |2 + Cf2

)
,

where a > 0 is an arbitrary positive number to be chosen later.
On the other hand, the Simons type inequality in the equality (3.1) says that

|Φ|∆|Φ| ≥ 2

n
|∇|Φ||2 − (1 + a)|Φ|4 − c1|Φ|2.

Multiplying both sides of this Simons type inequality by f2, then using integration
by parts and using the fundamental inequality 2xy ≤ ax2 + 1

ay
2, we obtain(

1 +
2

n
− a

)∫
M

|∇|Φ||2f2 ≤ (1 + a)

∫
M

|Φ|4f2 + 1

a

∫
M

|Φ|2|∇f |2 + c1

∫
M

|Φ|2f2.

Equivalently,
(3.4)∫
M

|∇|Φ||2f2 ≤ (1 + a)2

1 + 2
n − a

∫
M

|Φ|4f2+ 1

a
(
1 + 2

n − a
) ∫

M

|Φ|2|∇f |2+ c1

1 + 2
n − a

∫
M

|Φ|2f2.

Combining (3.3) and (3.4), we yield

(3.5)

∫
M

|Φ|4f2 ≤ 1 + a

1 + 2
n − a

∫
M

|Φ|4f2 + Ca,c1

∫
M

|Φ|2(|∇f |2 + (C + 1)f2).
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Choosing a < 1
3n then the first coefficient on the right hand side is less than 1. This

implies that there is a constant C1 = C(c1, n,H) such that

(3.6)

∫
M

|Φ|4f2 ≤ C1

∫
M

|Φ|2(f2 + |∇f |2).

Now, we apply this equality with f = φϵ and q = 4. When ϵ approaches 0, the first
term on the right hand side converges to

∫
M

|Φ|2, which is finite. We estimate the
second term as follows:∫

M

|Φ|2|∇φϵ|2 ≤
m∑
i

4

r2i

∫
M∩B2ri

(pi)\Bri
(pi)

|Φ|2.

Using Lemma 3.2, we have∫
M∩B2ri

(pi)\Bri
(pi)

|Φ|2 ≤ C ′rn−2
i ,

where C ′ depend on H and the volume bounds for M . Hence,∫
M

|Φ|2|∇φϵ|2 ≤ 4C ′
∑
i

rn−4
i < 4C ′ϵ.

Here we note that the ri << 1 were chosen so that
∑
i r
n−4
i < ϵ. Letting ϵ → 0,

we conclude that this term tends to zero. Hence, Lemma 3.1 together with this
observation imply |Φ| ∈ L4(M). As a consequence, the inequality (3.4) infers
|∇|Φ|| ∈ L2(M).

Finally, observe that Lemma 2.10 yields

|∇Φ|2 ≤ 1

2
∆|Φ|2 + |Φ|2QH(|Φ|),

where

QH(x) = x2 +
n(n− 2)√
n(n− 1)

Hx− n(1 +H2).

Multiplying both sides of the above inequality by φ2
ϵ and integrating by parts, we

obtain ∫
M

φ2
ϵ |∇Φ|2 ≤− 2

∫
M

φϵ|Φ| ⟨∇f,∇|Φ|⟩+
∫
M

φϵ|Φ|2QH(|Φ|)

≤
∫
M

(φ2
ϵ |∇|Φ||2 + |Φ|2|∇φϵ|2) +

∫
M

φϵ|Φ|2QH(|Φ|).

As the above discussion, since |Φ|2, |Φ|4 ∈ L1(M), it is easy to see that |Φ|2QH(|Φ|) ∈
L1(M). Moreover, since |∇|Φ|| ∈ L2(M), after letting ϵ→ 0, we can conclude that
|∇Φ| ∈ L2(M). Now, since β ≤ 1 and η > 0 is fixed, we obtain

(η + |Φ|)2β−2|∇|Φ||2 ≤ η2β−2|∇|Φ||2 ∈ L1(M),

where we used β − 1 ≤ 0. The proof is complete. □

We have the following corollary.

Corollary 3.4. Suppose that Hn−4(singV ) = 0 and V satisfies (IV). Let M =
regV , assume that λ1 > −∞. If ε > 0 and fε := (ε + |Φ|2)α for some 0 < α ≤ 1

2 ,

then we have fε ∈ L4(M), |fε|, |∇fε| ∈ L2(M).
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Proof. Since 0 < α ≤ 1
2 , we have

(fε)
4 ≤ max{1, (ε+ |Φ|2)2} ≤ max{1, 2ε4 + 2|Φ|4}.

Hence fε ∈ L4(M) since |Φ| ∈ L4(M) as in Lemma 3.3. Next, we estimate |∇fε|
as follows.

|∇fϵ|2 = 4α2(ε+ |Φ|2)2α−2|Φ|2|∇|Φ||2

≤ 4α2(ε+ |Φ|2)2α−1|∇|Φ||2 ≤ 4α2ε2α−1|∇|Φ||2,

where we used 2α − 1 ≤ 0 and ε + |Φ|2 ≥ ε in the last inequality. Therefore, by
Lemma 3.3 we obtain |∇fε| ∈ L2(M). □

Now we will show that we can apply the above integration by parts for u = v =
fε, where fϵ = (ϵ+ |Φ|2)α, 0 < α ≤ 1

2 as in the previous corollary. Indeed, it is easy
to show that

fε∆fε = α(α− 1)(ε+ |Φ|2)2α−2|∇|Φ|2|2 + α(ε+ |Φ|2)2α−1∆|Φ|2

≤ 4α−1(1− α)|∇fε|2 + αε2α−1|∆|Φ|2|,
where we used 2α − 1 ≤ 0. By Lemma 3.1 and Lemma 3.3, we have that |Φ| ∈
L2(M) ∩ L4(M). Moreover, Lemma 2.10 asserts that

1

2
∆|Φ|2 ≤ |∇Φ|2 − |Φ|2

(
|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ| − n(1 +H2)

)
.

Observe that as in Lemma 3.3, we have |∇Φ| ∈ L2(M), |Φ| ∈ L2(M) ∩ L4(M),
hence |∆|Φ|2| ∈ L1(M). This together with Corollary 3.4 implies fε∆fε ∈ L1(M).
Now, by Young’s inequality, we have

(fϵ|∇fϵ|)4/3 ≤ 1

3
f4ϵ +

2

3
|∇fϵ|2,

since fε is L4 and |∇fε| is L2, we conclude that |fε||∇fε| is Lp for p = 4
3 (hence

q = p
p−1 = 4). Using Lemma 2.9, we have verified the following result.

Lemma 3.5. Let V is an n-varifold satisfying (IV). Suppose Hn−4(singV ) = 0,
then for fε = (ε+ |Φ|2)α, where 0 < α ≤ 1

2 and any given ε > 0,we have∫
M

fε∆fε = −
∫
M

|∇fε|2.

4. First stability eigenvalue

First, we observe that the first stability eigenvalue can be obtained as follows.

Lemma 4.1. Let V be an n≥5-varifold in Sn+1 with orientable regular part M =
regV . Assume that M has constant mean curvature and Hn−4(singV ) = 0. Then,
we can get the same λ1 by taking the infimum over Lipschitz functions f on M
such that f ∈W 1,2 ∩ L4.

Proof. This proof follows a similar argument in [Zhu18] but we use Φ, the traceless
second fundamental form, instead of A.

Observe that if λ1(M) = −∞ then the definition (2.1) of λ implies that for any
large real number K > 0, there exists a Lipschitz function with compact support
on M such that ∫

M
|∇f |2 − |Φ|2f2 − n(1 +H2)f2∫

M
f2

< −K.
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Since f is Lipschitz, it must be almost everywhere differentiable. This together
with the fact that f has compact support implies f ∈W 1,2 ∩L4. Hence, the proof
is complete.

Now, we assume λ1 > −∞. Since f ∈ L4(M), Lemma 3.1 together with this
assumption implies |Φ|f is also L2. We use the functions gϵ = fφϵ which are
compactly supported away from the singular set, in the definition of λ1. Since f
and |Φ|f are in L2, dominated convergence gives that∫

M

g2ϵ →
∫
M

f2, and

∫
M

|Φ|2g2ϵ →
∫
M

|Φ|2f2

as ϵ→ 0. For the gradient term, we have∫
M

|∇gϵ|2 =

∫
M

(φ2
ϵ |∇f |2 + 2 ⟨∇f,∇φϵ⟩+ f2|∇φϵ|2).

Note that f ∈ L4(M), the properties of φϵ in Lemma 2.8 imply that the second and
third terms on the right hand side tend to zero when ϵ approaches 0. On the other
hand, the first term on the right hand side tends to

∫
M

|∇f |2 by the dominated

convergence theorem. In summary, we have verified that
∫
M

|∇gϵ|2 →
∫
M

|∇f |2.
Therefore, the proof of Lemma 4.1 is complete. □

We are now ready to provide the proof of the main theorem.

Proof of Theorem 1.1. For any ε > 0 and arbitrary number 1
2 −

1√
2n
< α ≤ 1

2 ,

let fε = (ε+ |Φ|2)α. By a direct computation, we obtain

(4.1) ∆fε = α(α− 1)(ε+ |Φ|2)α−2|∇|Φ|2|2 + α(ε+ |Φ|2)α−1∆|Φ|2.
By Corollary 3.4 and Lemma 4.1, we can use fε as a test function for λ1. Hence,
by a calculation as in [CLS17a] and Lemma 3.5, we arrive at

λ1

∫
M

f2ε ≤α
∫
M

(ε+ |Φ|2)2α−2
(
(1 + 2αβ − β − α)|∇|Φ|2|2 − 2(1− β)(ε+ |Φ|2)|∇Φ|2

)
+

∫ (
2α(1− β)

ε+ |Φ|2
|Φ|2PH(|Φ|)

)
f2ε −

∫
M

(
|Φ|2 + n(1 +H2)

)
f2ε .

Note that α > 1
2 − 1√

2n
≥ n−2

4n , for all n ∈ N, we now take β such that

(4.2) 1− β =
n+ 2

n
.

2nα

4nα− (n− 2)
>

2nα

4nα− (n− 2)

so we have

1 + 2αβ − β − α = (1− 2α)(1− β) + α

≥ (1− 2α)
2nα

4nα− (n− 2)
+ α =

(n+ 2)α

4nα− (n− 2)
> 0.

Using Kato inequality as in Lemma 2.11, we obtain

(1 + 2αβ − β − α)|∇|Φ||2 − 2(1− β)(ε+ |Φ|2)|∇Φ|2

≤ 4n(1 + 2αβ − β − α)

n+ 2
|Φ|2|∇Φ|2 − 2(1− β)(ε+ |Φ|2)|∇Φ|2

≤ 2

n+ 2
|Φ|2|∇Φ|2

(
2n(1 + 2αβ − β − α)− (n+ 2)(1− β)

)
=

2

n+ 2
|Φ|2|∇Φ|2

(
(n− 2)(1− β)− 4nα(1− β) + 2nα

)
≤ 0
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where in the last inequality we used 1− β > 2nα
4nα−(n−2) . Therefore, as in [CLS17a],

it turns out that

λ1

∫
M

f2ε ≤
∫
M

|Φ|2

ε+ |Φ|2
(
(2α(1− β)− 1)|Φ|2 + 2α(1− β)(n− 2)√

n(n− 1)
(nH)|Φ| − ε

)
f2ε

− 2nα(1− β)(1 +H2)

∫
M

|Φ|2

ε+ |Φ|2
f2ε − n(1 +H2)

∫
M

f2ε(4.3)

Assume that 2α(1− β) < 1, we have

2α(1− β)(n− 2)√
n(n− 1)

(nH)|Φ| ≤ (1− 2α(1− β))|Φ|2 + α2(1− β)2(n− 2)2

n(n− 1)(1− 2α(1− β))
(nH)2.

This implies

λ1

∫
M

f2ε ≤
∫
M

|Φ|2

ε+ |Φ|2

(
α2(1− β)2(n− 2)2

n(n− 1)(1− 2α(1− β))
(nH)2 − ε

)
f2ε

− 2nα(1− β)(1 +H2)

∫
M

|Φ|2

ε+ |Φ|2
f2ε − n(1 +H2)

∫
M

f2ε .(4.4)

Since M is non-totally umbilical, we have

lim
ε→0

∫
M

f2ε =

∫
M

|Φ|4α > 0.

Letting ε→ 0, this observation together with (4.4) infers

(4.5) λ1 ≤ −n(1 + 2α(1− β))(1 +H2) +
α2(1− β)2(n− 2)2

n(n− 1)(1− 2α(1− β))
(nH)2.

(1) Now, if n2H2 < 64(n−1)
n2(n−2)2−16 then a direct computation shows that

1

2
≥ 1

2

(
1− (n− 2)H√

n2H2 + 4n(n− 1)

)
>

1

2
− 2

n2
.

Defining

w(α) = α(1− β) =
2(n+ 2)α2

4nα− (n− 2)
,

so w(α) is an increasing function of α, for α > 1
2 − 1

n . Observe that

w

(
1

2
− 1

n

)
=

1

2
− 2

n2
, w

(
1

2

)
=

1

2
.

This implies that there exists an α ∈
(
1
2 − 1

n ,
1
2

]
such that

w(α) = α(1− β) =
1

2

(
1−

√
(n− 2)2H2

4(n− 1) + n2H2

)
.

For these α and β, we have

2α(1− β) = 1−

√
(n− 2)2H2

4(n− 1) + n2H2



14 NGUYEN THAC DUNG, JUNCHEOL PYO, AND HUNG TRAN

Plugging it into (4.5) and doing the same computation as in [CC17], we
arrive at

λ1 ≤ −n(1 +H2)−
n
(√

n2H2 + 4(n− 1) − (n− 2)|H|
)2

4(n− 1)
.

Now, suppose that the equality holds true, we can repeat the arguments as
in [CC17] to show that M (hence V ) is a Clifford torus.

(2) If n2H2 ≥ 64(n−1)
n2(n−2)2−16 , we first modify the equation (4.2) to choose β such

that

1− β =
2nα

4nα− (n− 2)

then we process s in [CC17] or [CLS17a] to obtain (4.5) again, namely, we
have

λ1 ≤ −n(1 + 2α(1− β))(1 +H2) +
α2(1− β)2(n− 2)2

n(n− 1)(1− 2α(1− β))
(nH)2.

Now, we choose

α(1− β) =
n− 2

2n
, saying α =

1

2
− 1

n
, and β = 0.

Therefore, we can conclude that

λ1 ≤ −2(n− 1)(1 +H2) +
(n− 2)4

8(n− 1)
H2.

Now the proof follows by applying the argument as in [CC17, CLS17a]. We omit
the detail here. □

Theorem 4.2. Let V be an n≥5-varifold in Sn with orientable regular part M =
regV . Assume that M has constant mean curvature and Hn−4(singV ) = 0 and M
is non-totally umbilical. Then, we have

λ1 ≤ −2n(1 +H2) +
n(n− 2)√
n(n− 1)

|H|
∫
M

|Φ|3∫
M

|Φ|2
.

If the equality holds then V is a Clifford torus.

Proof. We let α = 1
2 , and β = 0 in (4.3) then let ε tend to 0, we obtain the

conclusion of Theorem 4.2. Now, assume that the equality holds true, we can apply
the argument in the proof of Theorem 2.2 in [ABB04] to show that M (hence V )
is a Clifford torus. □
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[ABB04] L. A. Aĺıas, A. Barros, and A. Brasil, A spectral characterization of the H(r)-torus
by the first stability eigenvalue, Proc. Amer. Math. Soc., 133 (2004) 875 - 884. 2, 14

[All72] W. K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417-491.

[Alm66] F. J. Almgren, Some interior regularity theorems for minimal surfaces and an extension
of Bernstein’s theorem, Ann. of Math., 84 (1966), 277-292. 2

[BW18] C. Bellettini and N. Wickramasekera, Stable CMC integral varifolds of codimension

1: Regularity and compactness, arXiv: 1802.00377v1 2
[Cha84] I. Chavel, Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics.,

115 (1984) Academic Press. 3, 4, 5
[CC17] D. Q. Chen and Q. M. Cheng, Estimates for first eigenvalue of Jacobi operator on

hypersurfaces with constant mean curvature in spheres, Calc. Var. (2017) 56:50 2

2, 3, 7, 14
[CM12] T. H. Colding and W. P. Minicozzi II , Generic mean curvature flow I; generic sin-

gularities, Ann. Math., 175 (2012), 755-833. 2, 3, 9

[CLS17a] A. W. Cunha, H. F. Lima, and F. R. Santos, On the first strong stability eigenvalue
of closed submanifolds in the unit sphere, Jour. Geom. Anal., 27 (2017), 2557-2569. 2, 8, 12,

13, 14

[CLS17b] A. W. Cunha, H. F. Lima, and F. R. Santos, On the first stability eigenvalue of
closed submanifolds in the Euclidean and hyperbolic spaces, Diff. Geom. Appl., 52 (2017),

11-19. 2

[Per02] O. Perdomo, First stability eigenvalue characterization of Clifford hypersurfaces, Proc.
Amer. Math. Soc., 130 (2002), 3379-3384. 2

[SSY75] R. Schoen, L. Simon, and S. T. Yau, Curvature estimates for minimal hypersurfaces,
Acta Math., 134 (1975) 275-288. 9

[Sim68] J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math., 88 (1968), 62-105.

2
[Sim83] L. Simon, Lectures on geometric measure theory, volume 3 of Proceedings of the

Centre for Mathematical Analysis, Australian National University. Australian National Uni-

versity, Centre for Mathematical Analysis, Canberra, 1983. 4, 5, 6
[Wu93] C. Wu, New characterizations of the Clifford tori and the Veronese surface, Arch. Math.,

61 (1993), 277-284. 2

[Wick14] N. Wickramasekera, A general regularity theory for stable codimension 1 integral
varifolds, Ann. Math., 179 (2014) 843-1007. 2

[Wick17] N. Wickramasekera, Regularity and compactness for stable codimension 1 CMC var-

ifolds, Current Developments in Mathematics, 87 - 174 (2017) 4
[Zhu18] J. J. Zhu, First stability eigenvalue of singular hypersurfaces in spheres, Calc.Var. (2018)

57:130 3, 5, 6, 7, 9, 11

Department of Mathematics, Vietnam National University, University of Science,
Hanoi , Vietnam and

Thang Long Institute of Mathematics and Applied Sciences (TIMAS), Thang Long

University, Nghiem Xuan Yem, Hoang Mai, Hanoi, Vietnam
Email address: dungmath@gmail.com; or dungmath@vnu.edu.vn

Department of Mathematics, Pusan National University, Korea
Email address: jcpyo@pusan.ac.kr

Department of Mathematics and Statistics, Texas Tech University, USA
Email address: hungtran@ttu.edu.us


	1. Introduction
	2. Preliminaries
	2.1. Brief Introduction to Varifolds.
	2.2. Integration on a Singular Hypersurface
	2.3. Jacobi Operator and Its First Eigenvalue

	3. Integral Estimates for ||
	4. First stability eigenvalue
	3   References
	References

