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Abstract

The data drawn from biological, economic,
and social systems are often confounded
due to the presence of unmeasured vari-
ables. Prior work in causal discovery has fo-
cused on discrete search procedures for se-
lecting acyclic directed mixed graphs (AD-
MGs), specifically ancestral ADMGs, that
encode ordinary conditional independence
constraints among the observed variables of
the system. However, confounded systems
also exhibit more general equality restrictions
that cannot be represented via these graphs,
placing a limit on the kinds of structures that
can be learned using ancestral ADMGs. In
this work, we derive differentiable algebraic
constraints that fully characterize the space
of ancestral ADMGs, as well as more gen-
eral classes of ADMGs, arid ADMGs and
bow-free ADMGs, that capture all equality
restrictions on the observed variables. We
use these constraints to cast causal discov-
ery as a continuous optimization problem
and design differentiable procedures to find
the best fitting ADMG when the data comes
from a confounded linear system of equa-
tions with correlated errors. We demonstrate
the efficacy of our method through simula-
tions and application to a protein expression
dataset. Code implementing our methods is
open-source and publicly available at https:
//gitlab.com/rbhatta8/dcd and will be in-
corporated into the Ananke package.
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1 INTRODUCTION

Biological, economic, and social systems are often af-
fected by unmeasured (latent) variables. In such sce-
narios, statistical and causal models of a directed
acyclic graph (DAG) over the observed variables do
not faithfully capture the underlying causal process.
The most popular graphical structures used to sum-
marize constraints on the observed data distribution
are a special class of acyclic directed mixed graphs
(ADMGs) with directed and bidirected edges, known
as ancestral ADMGs (Richardson and Spirtes, 2002).

Ancestral ADMGs capture all ordinary conditional in-
dependence constraints on the observed margin, but
they do not capture more general non-parametric
equality restrictions, commonly referred to as Verma
constraints (Verma and Pearl, 1990; Tian and Pearl,
2002; Robins, 1986). While ADMGs without the an-
cestral restriction are capable of capturing all such
equality constraints (Evans, 2018a), the associated
parametric models are not guaranteed to form smooth
curved exponential families with globally identifiable
parameters — an important pre-condition for score-
based model selection. A smooth parameterization
for arbitrary ADMGs is known only when all ob-
served variables are either binary or discrete (Evans
and Richardson, 2014). For the common scenario when
the data comes from a linear Gaussian system of struc-
tural equations, the statistical model of an ADMG
is almost-everywhere identified if the ADMG is bow-
free (Brito and Pearl, 2002), and is globally identified
and forms a smooth curved exponential family if and
only if the ADMG is arid (Drton et al., 2011; Shpitser
et al., 2018). From a causal perspective, arid and bow-
free ADMGs, like ancestral ADMGs, have the desir-
able property of preserving ancestral relationships in
the underlying latent variable DAG, while also cap-
turing all non-parametric equality restrictions on the
observed margin (Shpitser et al., 2018).
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We introduce a structure learning procedure for se-
lecting arid, bow-free, or ancestral ADMGs from ob-
servational data. Our learning approach is based on
reformulating the usual discrete combinatorial search
problem into a more tractable constrained continuous
optimization program. Such a reformulation was first
proposed by Zheng et al. (2018) for the special case
when the search space is restricted to DAGs. Sub-
sequent extensions such as Yu et al. (2019), Zhang
et al. (2019), and Zheng et al. (2020) also restrict the
search space in a similar fashion. In this work, we
derive differentiable algebraic constraints on the adja-
cency matrices of the directed and bidirected portions
of an ADMG that fully characterize the space of arid
ADMGs. We also derive similar algebraic constraints
that characterize the space of ancestral and bow-free
ADMGs that are quite useful in practice and connect
our work to prior methods. Having derived these dif-
ferentiable constraints, we select the best fitting graph
in the class by optimizing a penalized likelihood-based
score. While the constraints we derive in this paper are
non-parametric, we focus our causal discovery meth-
ods on distributions that arise from linear Gaussian
systems of equations.

Causal discovery methods for learning ancestral AD-
MGs from data are well developed (Spirtes et al., 2000;
Colombo et al., 2012; Ogarrio et al., 2016), but pro-
cedures for more general ADMGs are understudied.
Hyttinen et al. (2014) propose a constraint-based sat-
isfiability solver approach for mixed graphs with cy-
cles. However, their proposal relies on an indepen-
dence oracle that does not address how to perform
valid statistical tests for arbitrarily complex equality
restrictions and their procedure may lead to models
where the corresponding statistical parameters are not
identified (so goodness-of-fit cannot be evaluated). A
score-based approach to discovery for linear Gaussian
bow-free ADMGs was proposed in Nowzohour et al.
(2017). Their method relies on heuristics that may
lead to local optima and is not guaranteed to be consis-
tent. Similar issues are faced by the method in Wang
and Drton (2020), which makes a linear non-Gaussian
assumption. Currently, there does not exist any con-
sistent fully score-based procedure for learning gen-
eral ADMGs (besides exhaustive enumeration which
is intractable); there are greedy algorithms (Bernstein
et al.,, 2020) and hybrid greedy algorithms (Ogarrio
et al., 2016) for ancestral ADMGs, but these are com-
putationally intensive due to the large discrete search
space and extending these to arid or bow-free ADMGs
would be non-trivial. The procedure we propose has
the benefit of being easy to adapt to either ancestral,
arid, or bow-free ADMGs while avoiding the need to
solve a complicated discrete search problem, instead
exploiting state-of-the-art advances in continuous op-

timization.

Our structure learning procedure for arid and ancestral
graphs is consistent in the following sense: asymptoti-
cally, convergence to the global optimum implies that
the corresponding ADMG is either the true model or
one that belongs to the same equivalence class. That
is, if the optimization procedure succeeds in finding
the global optimum, the resulting graph is either the
true underlying structure or one that implies the same
set of equality constraints on the observed data. While
the Lg-regularized objective we propose is non-convex
and so our optimization scheme may result in local
optima, we show via experiments and application to
protein expression data that our proposal works quite
well in practice. We believe the algebraic constraints
on their own are also valuable for further research at
the intersection of non-convex optimization techniques
for Ly-regularization and causal discovery.

We begin with a motivating example and back-
ground on the structure learning problem for partially-
observed systems in Sections 2 and 3. In Section 4 we
derive differentiable algebraic constraints that charac-
terize arid, bow-free, and ancestral ADMGs. In Sec-
tion 5 we use these to formulate the first (to our knowl-
edge) tractable method for learning arid ADMGs from
observational data, by extending the continuous opti-
mization scheme of causal discovery. Simply by modi-
fying the constraint in the optimization program, the
same procedure may also be leveraged to learn bow-
free or ancestral graphs. Finally we evaluate the per-
formance of our algorithms in simulation experiments
and on protein expression data in Section 6.

2 MOTIVATING EXAMPLE

To motivate our work, we present an example of how
our method may be used to reconstruct complex inter-
actions in a network of genes, which is related to the
data application we present in Section 6.

Consider a scenario in which an analyst has access
to gene expression data on four genes: A, B,C, and
D. Assume that the analyst is confident (due to prior
analysis or background knowledge) about the structure
corresponding to non-dashed edges shown in Fig. 1(a),
i.e., that A regulates C' and B regulates D but A and B
are independent. This leaves an important ambiguity
regarding regulatory explanations of co-expression of
genes C and D.

An observed correlation between C and D may be ex-
plained in different ways that provide very different
mechanistic interpretations. If the hypothesis class is
restricted to DAGs, the only explanations available to
the analyst are that C' is a cause of D or vice-versa as
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Figure 1: (a) A DAG if C — D or D — C exists but not both. (b) An ADMG that posits an unmeasured
confounder between C and D. (¢) An (arid) ADMG encoding a Verma constraint between C' and B. (d) The
ancestral version of (¢). (e) A non-arid bow-free ADMG that is a super model of (c).

shown in Fig. 1(a). If the analyst proceeds with either
of these explanations and performs a gene-knockout
experiment where C' (or D) is removed but sees no
change in D (respectively C), then the causal DAG
fails to be a faithful representation of the true under-
lying mechanism. The correlation may instead be ex-
plained by an ADMG as in Fig. 1(b) where C < D
indicates that C' and D are dependent due to the pres-
ence of at least one unmeasured confounding gene that
regulates both of them. That is, if we had data on
these unmeasured genes U the corresponding DAG
would have contained a structure C' < U — D. How-
ever, given observations only on A, B,C, D, Fig. 1(b)
provides a faithful representation of this underlying
mechanism on the observed variables. It correctly en-
codes that intervention on C' or D has no downstream
effects on the other.

Importantly, each of these different explanations are
not just different from a mechanistic point of view but
also imply different independence restrictions on the
observed data. The two DAGs in Fig. 1(a) imply that
A U D | Cor B U C| D respectively, whereas
Fig. 1(b) implies A 1L D and B 1L C. Hence, a causal
discovery procedure that seeks the best fitting struc-
ture from the hypothesis class of ADMGs, will be able
to distinguish between these different explanations and
choose the correct one.

Some mechanisms, such as the one shown in Fig. 1(c),
are not distinguishable using ordinary conditional in-
dependence statements alone. In this graph, the only
pair of genes with no edge between them is B and C.
The absence of this edge implies that C' does not di-
rectly regulate the expression of B and only does so
through D. This missing edge does not correspond
to any ordinary conditional independence (there are
no independence constraints implied by the model at
all), but does encode a Verma constraint, namely that
B 1L C| D in a re-weighed distribution derived from
the joint, p(A, B,C, D)/p(C|A).

The following ADMG classes will be important in this
work. An ADMG G = (V, E) is said to be ancestral
if for any pair of vertices V;,V; € V, a directed path

Vi — --- = V; and bidirected edge V; <+ V; do not
both appear in G. An ADMG @ is said to be arid if
it does not contain any c-trees. A c-tree is a subgraph
of G whose directed edges form an arborescence (the
directed graph analogue of a tree) and bidirected edges
form a single bidirected connected component within
the subgraph. It is easy to confirm that the ADMG in
Fig. 1(b) is ancestral while the one in Fig. 1(c) is arid
but not ancestral. An ADMG is called bow-free if for
any pair of vertices, V; = V; and V; <+ V; do not both
appear in G. A graph that is bow-free but neither arid
nor ancestral is displayed in Fig. 1(e). The relation
between these graph classes is the following:

Ancestral C Arid C Bow-free

Ancestral graphs can “hide” certain important infor-
mation because they encode only ordinary conditional
independence constraints. An ancestral graph that en-
codes the same ordinary independence constraints as
the arid graph in Fig. 1(c) is shown in Fig. 1(d). It is
a complete graph since there are no conditional inde-
pendence constraints in Fig. 1(c). That is, the absence
of any C — B edge in Fig. 1(c) is “masked” to pre-
serve the ancestrality property. We can potentially
learn a more informative structure if we do not limit
our search space to the class of ancestral graphs.

3 GRAPHICAL INTERPRETATION
OF LINEAR SEMs

In this section, we review linear SEMs and their graph-
ical representations. We use capital letters (e.g. V) to
denote sets of variables and nodes on a graph inter-
changeably and capital letters with an index (e.g. V;)
to refer to a specific variable or node in V. We also
make use of the following standard matrix notation:
A;; refers to the element in the i** row and j** col-
umn of a matrix A, indexing A_; _; refers to the sub
matrix obtained by excluding the i** row and j* col-
umn of A, and A.; refers to the i'" column of A.
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3.1 Linear SEMs and DAGs

Consider a linear SEM on d variables parameterized by
a weight matrix § € R4*¢. For each variable V; € V,
we have a structural equation V; < Zvjev 0;:V; + €,
where the noise terms ¢; are mutually independent.
That is, €; 1L €; for all i # j. Let G(#) and D(0) €
{0,1}9%4 be the induced directed graph and corre-
sponding binary adjacency matrix obtained as follows:
Vi = V; exists in G(0) and D(#);; = 1 if and only if
0;; # 0. The induced graph G has no directed cycles
if and only if # can be made upper-triangular via a
permutation of vertex labelings (McKay et al., 2004).
Such an SEM is said to be recursive or acyclic and the
corresponding probability distribution p(V) is said to
be Markov with respect to the DAG G(6). This means
that conditional independence statements in p(V') can
be read off from G via the well-known d-separation
criterion (Pearl, 2009).

3.2 Systems with Unmeasured Confounding

A set of observed variables is called causally insuffi-
cient if there exist unobserved variables, commonly re-
ferred to as latent confounders, that cause two or more
observed variables in the system. In the linear SEM
setting, unmeasured variables manifest as correlated
errors (Pearl, 2009). Such an SEM on d variables can
be parameterized by two real-valued matrices 6,5 €
R¥*4 a5 follows. For each V; € V, we have a structural
equation V; < Zvjev 0;:Vj + €, and the dependence
between the noise terms € = (e, ..., €4) is summarized
via their covariance matrix 3 = E[ee?]. In the case
when each noise term ¢; is normally distributed the
induced distribution p(V) is jointly normal with mean
zero and covariance matrix ¥ = (I — §)~T3(1 — &)L
The induced graph G is a mixed graph consisting of di-
rected (—) and bidirected (+) edges and can be repre-
sented via two adjacency matrices D and B. V; — V;
exists in G and D;; = 1 if and only if §;; # 0. V; & V;
exists in G and B;; = Bj; = 1 if and only if §;; # 0.
That is, the adjacency matrix B corresponding to bidi-
rected edges in G is symmetric as the covariance matrix
B itself is symmetric (and positive definite).

We consider three classes of mixed graphs to represent
causally insufficient linear SEMs: ancestral, arid, and
bow-free ADMGs. All of these have no directed cycles
and lack specific substructures as defined in the pre-
vious section. A distribution p(V') induced by a linear
Gaussian SEM is said to be Markov with respect to
an ADMG G if absence of an edge between V; and V;
implies 6;; = 0j; = Bij = Bj = 0 which in turn implies
equality restrictions on the support of all possible co-
variance matrices X(G) by forcing certain polynomial
functions of entries in the covariance matrix to evalu-

ate to 0 (Yao and Evans, 2019). To facilitate causal
discovery, we assume a generalized version of faithful-
ness, similar to the one in Ghassami et al. (2020), stat-
ing that if a distribution p(V') is induced by a linear
Gaussian SEM where §;; = 0;; = Bi; = B = 0 then
there is no edge present between V; and V; in G. In
other words, we define p(V') to be Markov and faithful
with respect to G if absence of edges in G occurs if and
only if the corresponding entries in ¢ and g are 0.

As a concrete example, let ¥ denote the covari-
ance matrix of standardized normal random variables
A, B,C,D drawn from a linear SEM that is Markov
with respect to the ADMG in Fig. 1(c), and let § and 8
denote the corresponding normalized coefficient matri-
ces. By standard rules of path analysis (Wright, 1921,
1934), the Verma constraint due to the missing edge
in Fig. 1(c) corresponds to the equality constraint:

Yec —0¢cpdpB — dacBap —dacBapdps = 0.

Since entries in the covariance matrix are rational
functions of é and 3, the above constraint can be re-
expressed solely in terms of entries in 3. Our faith-
fulness assumption is used to ensure that such poly-
nomial functions of the covariance matrix do not “ac-
cidentally” evaluate to zero, and only do so due to a
missing edge in the underlying ADMG.

As mentioned earlier, ancestral ADMGs cannot en-
code such generalized equality restrictions but arid and
bow-free ADMGs can. For any ADMG G, an arid
ADMG that shares all non-parametric equality con-
straints with G may be constructed by an operation
called maximal arid projection (Shpitser et al., 2018).
We also consider bow-free ADMGs because the alge-
braic constraint characterizing the bow-free property is
simpler than the one characterizing the arid property.
Though the lack of global identifiability in bow-free
ADMG models (only almost everywhere identifiable)
can pose problems for model convergence, we confirm
in our experiments that enforcing only the weaker bow-
free property is often sufficient for accurate causal dis-
covery in practice.

4 DIFFERENTIABLE ALGEBRAIC
CONSTRAINTS

We now introduce differentiable algebraic constraints
that precisely characterize when the parameters of a
linear SEM induce a graph that belongs to any one
of the ADMG classes described in the previous sec-
tion. Our results are summarized in Table 1 in terms
of the binary adjacency matrices but as we explain be-
low, the results extend in a straightforward manner to
real-valued matrices that parameterize a linear SEM.
In Table 1, Ao B denotes the Hadamard (elementwise)
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Algorithm 1 GREENERY (D, B)
1: greenery <— 0 and [ < d x d identity matrix

2: for ¢ in (1,...,d) do

3: Dy, B+ D,B

4 for jin (1,...,d—1) do

5 t < row sums of erODf > 1 x d vector
6: f < tanh(t + I;) > 1 x d vector
7 F«[ff.. 7T > d X d matrix
8 Df<—DfoFandBf<—BfoFoFT

9 C + ePs o eBs

10:  greenery + =sum(C.;) © sum of i*" column

11: return greenery — d

ADMG Algebraic Constraint

Ancestral trace(e?’) — d + sum(e? o B) = 0
Arid trace(e”) — d + GREENERY (D, B) = 0

Bow-free trace(e”) —d +sum(Do B) =0

Table 1: Differentiable algebraic constraints that char-
acterize the space of binary adjacency matrices that
fall within each ADMG class. The GREENERY algo-
rithm to penalize c-trees is described in Algorithm 1.

matrix product between A and B and e denotes the
exponential of a square matrix A defined as the infi-
nite Taylor series, e = 377 | 4 A*. We formalize the
properties of our constraints in the following theorem.

Theorem 1. The constraints shown in Table 1 are
satisfied if and only if the adjacency matrices satisfy
the relevant property of ancestrality, aridity, and bow-
freeness respectively.

We defer formal proofs to the Appendix but briefly
provide intuition for our results. For a binary square
matrix A, corresponding to a directed/bidirected ad-
jacency matrix, the entry Afj counts the number of
directed/bidirected walks of length k from V; to Vj;
see for example Butler (2008). For k = 0, D* is the
identity matrix by definition and for k > 1, each diag-
onal entry of the matrix D appearing in the infinite
series e thus corresponds to the number of directed
walks of length k& from a vertex back to itself, i.e., the
number of directed cycles of length k. The quantity
trace(e”) —d is therefore a weighted count of the num-
ber of directed cycles in the induced graph and is zero
precisely when no such cycles exist. Hence, this term
appears in all algebraic constraints presented in Ta-
ble 1 as requiring trace(e”) — d = 0 enforces acylicity.

Similar reasoning can be used to show that requiring
sum(e? o B) = 0 enforces ancestrality. An entry i, j
of the matrix D* o B appearing in the infinite series

counts the number of violations of ancestrality due to a
directed path from V; to V; of length k and a bidirected
edge V; <+ V;. The sum of all such terms is then pre-
cisely zero when the induced graph is ancestral. The
bow-free constraint sum(D o B) = 0 is simply a special
case of the ancestral constraint where directed paths
of length > 2 need not be considered.

C-trees are known to be linked to the identification
of causal parameters, specifically, the effect of each
variable’s parents on the variable itself (Shpitser and
Pearl, 2006; Huang and Valtorta, 2006). The outer
loop of Algorithm 1 iterates over each vertex V; to de-
termine if there is a V;-rooted c-tree. The inner loop
performs the following recursive simplification at most
d — 1 times. At each step, the sum of the j** row of
the matrix e® o Dy is zero if and only if there are
no bidirected paths from V; to any of its direct chil-
dren. If this criterion — called primal fixability — is
met, the effect of V; on its children is identified and
the post-intervention distribution can be summarized
by a new graph with all incoming edges into V; re-
moved (Bhattacharya et al., 2020). Lines 6-8 are the
algebraic operations that correspond to deletion of in-
coming directed and bidirected edges into primal fix-
able vertices, except V; itself as it is the root node of
interest. The hyperbolic tangent function is used to
ensure that recursive applications of the operation do
not result in large values. At the end of the recur-
sion, the co-existence of directed and bidirected paths
to V; imply the existence of a c-tree. Hence, the quan-
tity sum(C. ;) is non-negative and is zero if and only
if there is no Vj-rooted c-tree. Concrete examples of
applying Algorithm 1, and its connections to primal
fixing are provided in Appendix A.

It is easy to see that the above results and intu-
itions can be applied to arbitrary non-negative real-
valued matrices D and B. Theorem 1 then extends
in a straightforward manner to parameters of a linear
SEM by noting that for any real-valued matrix A, the
matrix A o A is real-valued and non-negative.

Corollary 1.1. The result in Theorem 1 and the con-
straints in Table 1 can be applied to linear SEMs by
plugging in D =006 and B = ' o', where ﬁz’»j = fi;
for i # j and 0 otherwise.

Finally, while the matrix exponential makes theoreti-
cal arguments simple, the resulting constraints are not
numerically stable as pointed out in Yu et al. (2019).
The following corollary provides a more stable alter-
native that we use in our implementations.

Corollary 1.2. The results in Theorem 1 and Corol-
lary 1.1 hold if every occurrence of a matriz exponen-
tial e is replaced with the matriz power (I + cA)® for
any ¢ > 0, where I is the identity matriz.
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5 DIFFERENTIABLE SCORE
BASED CAUSAL DISCOVERY

Let 6 be the parameters of a linear SEM. We use 6
here to refer to a generic parameter vector that can be
reshaped into the appropriate parameter matrices 9,
and f as discussed in Section 3. Let G(6) be the cor-
responding induced graph. Given a dataset X € R"*¢
drawn from the linear SEM and a hypothesis class G
that corresponds to one of ancestral, arid, or bow-free
ADMGs, the combinatorial problem of finding an op-
timal set of parameters §* € © that minimizes some
score f(X;0) such that G(0) € G can be rephrased as

a more tractable continous program.

min f(X;6) min f(X;0)

st. GO) eG s.t. h(9) =0.

The results in the previous section in Theorem 1, its
Corollaries and Table 1 tell us how to pick the appro-
priate function h(f) for each hypothesis class G. We
now discuss choices of score function f(X;#6) and pro-
cedures to minimize it for different hypothesis classes.

5.1 Choice of Score Function

Given a dataset X € R"*? the Bayesian Informa-
tion Criterion (BIC) is given by —2In(L(X;6)) +
In(n) X5 1(8; # 0), where £(-) is the likelihood
function and dim(#) is the dimensionality of 6. The
BIC is consistent for model selection in curved expo-
nential families (Schwarz, 1978; Haughton, 1988), i.e

as n — oo the BIC attains its minimum at the true
model (or one that is observationally equivalent to it).
This results in the following desirable theoretical prop-
erty when the BIC is used as our objective function.

Theorem 2. Let p(V;0*) be a distribution in the
curved exponential family that is Markov and faithful
with respect to an arid ADMG G*. Finding the global
optimum of the continuous program in display (1) with
f = BIC yields an ADMG G(6) that implies the same
equality restrictions as G*.

However, the presence of the indicator function makes
the BIC non-differentiable and optimization of L ob-
jectives like the BIC is known to be NP-hard (Natara-
jan, 1995). While L, regularization is a popular al-
ternative, it often leads to inconsistent model selec-
tion and overshrinkage of coefficients (Fan and Li,
2001). Several procedures have been devised in or-
der to provide approximations of the BIC score; see
Huang et al. (2018) for an overview. In this work, we
consider the approximate BIC (ABIC) obtained via
replacement of the indicator function with the hyper-
bolic tangent function as outlined in Su et al. (2016)

Algorithm 2 REGULARIZED RICF

1: Inputs: (X, tol, max iterations, h, p, v, \)
2: Initialize estimates ¢ and 8t and set ¢ = In(n)
3: Define LS(6) as o Z?:l || X.; — X0.; — ZDB..1|3

4: for ¢ in (1,...,max iterations) do
5. Vie(l,...,d) compute ¢ < X.; — 6f7iX
6: Vi€ (1,...,d) compute Z() € R"*4 4

Z( V=0and 2, e, (53%_1)4
7. 8ttt B“‘l — argmmae@ {LS(0) + 5|n(6)?
+ ah(0) + A tann(el6;])}
..,d) compute ¢; + X.; — 5f{1X
d) set AL« var(e;)
5t + B+ — Bt|| < tol then break

Vie (1,.

: Vie(1,..

0. if |6ttt —
11: return &%, 8

Algorithm 3 DIFFERENTIABLE DISCOVERY

Inputs: (X, tol, max iterations, s, h, A, 7 € (0,1))
Initialize 0%, af, mt < 1
while ¢ < max iterations and h(#*) > tol do
0!+ + 0* from REGULARIZED RICF with
inputs (X, 107%,m?, h, p, at, \)
where p is such that h(6*) < rh(6")
altl ol + ph(6F) and mit! < m! + s
6: return G(6")

o

and Nabi and Su (2017). That is, we seek to optimize
—2In(L£(X;0)) + A5 tanh(c|6;]), where ¢ > 0 is
a constant that controls the sharpness of the approx-
imation of the indicator function and A controls the
strength of regularization. As highlighted in Su et al.
(2016), the ABIC is relatively insensitive to the choice
of ¢. The main hyperparameter is the regularization
strength A. In our experiments we set ¢ = In(n) and
report results for different choices of A. In the next
section we discuss our strategy to optimize the ABIC
subject to the constraint that 6 induces a valid ADMG
within a hypothesis class G.

5.2 Solving the Continuous Program

We formulate the optimization objective as minimiz-
ing the ABIC subject to one of the algebraic equality
constraints in Table 1. We use the augmented La-
grangian formulation (Bertsekas, 1997) to convert the
problem into an unconstrained optimization problem
with a quadratic penalty term, which can be solved
using a dual ascent approach. Specifically, in each it-
eration we first solve the primal equation:

. . B 2
min ABIC,\(X;0) + 2|h(9)| + ah(9),

where p is the penalty weight and « is the Lagrange
multiplier. Then we solve the dual equation o <«
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a + ph(6*). Intuitively, optimizing the primal objec-
tive with a large value of p would force h(f) to be very
close to zero thus satisfying the equality constraint.

However, unlike DAG models, maximum likelihood es-
timation of parameters under the restrictions of an
ADMG does not correspond to a simple least squares
regression that can be solved in one step. Drton
et al. (2009) proposed an iterative procedure known
as Residual Iterative Conditional Fitting (RICF) that
produces a sequence of maximum likelihood estimates
for § and 8 under the constraints implied by a fixed
ADMG G. Each RICF step is guaranteed to produce
better estimates than the previous step and the over-
all procedure is guaranteed to converge to a local opti-
mum or saddle point when G(#) is arid/ancestral, i.e.,
globally identified (Drton et al., 2011).

In Algorithm 2 we describe a modification of RICF
that directly inherits the aforementioned properties
with respect to the regularized maximum likelihood
objective, and can be used to solve the primal equa-
tion of our procedure. Briefly, for Gaussian ADMG
models, maximization of the likelihood corresponds
to minimization of a least squares regression problem
where each variable ¢ is regressed on its direct par-
ents V; — V; and pseudo-variables Z formed from the
residual noise terms and bidirected coefficients of its
siblings V; < V;. At each RICF step, we compute
Z with respect to the current parameter estimates,
and then solve the primal equation in line 7 of the
algorithm. We repeat this until convergence or a pre-
specified maximum number of iterations. As RICF is
not expected to converge during initial iterations of the
augmented Lagrangian procedure when the penalty
applied to h(f) is quite small (resulting in non-arid
graphs), we start with a small number of maximum
RICF iterations and at each dual step increment this
number. The penalty p applied to h(0) is increased ac-
cording to a fixed schedule where p is multiplied by a
factor of 10 (up to a maximum value of 1016) each time
the inequality in line 4 of the algorithm is not satisfied.
Our simulations show this works quite well in practice
with convergence of the algorithm obtained typically
within 10-15 steps of the augmented Lagrangian pro-
cedure.

We summarize our structure learning algorithm in Al-
gorithm 3. Though optimization of the objective in
display (1) is non-convex, standard properties of dual
ascent procedures as well as the RICF algorithm guar-
antee that at each step in the process we recover pa-
rameter estimates that do not increase the objective
we are trying to minimize. Further, per Theorem 2, if
optimization of the ABIC objective for a given level of
A provides a good enough approximation of the BIC,
the global minimizer (if found by our optimization pro-

cedure) yields a graph that implies the same equality
restrictions as the true graph.

5.3 Reporting Equivalent Structures

Our procedure only reports a single ADMG but there
may exist multiple ADMGs that imply the same equal-
ity restrictions on the observed data. In the linear
Gaussian setting, exact recovery of the skeleton of the
ADMG (i.e., adjacencies without any orientations) is
possible, but complete determination of all edge orien-
tations is not. Reporting the uncertainty in edge ori-
entations is important for downstream causal inference
tasks. When limiting our hypothesis class G to ances-
tral ADMGs, the non-parametric equivalence class can
be represented via a Partial Ancestral Graph (PAG).
After obtaining a single ADMG using our procedure,
we can easily reconstruct its equivalence class using
rules in Zhang (2008) to create the summary PAG.
For arid and bow-free ADMGs, a full theory of equiv-
alence that captures Verma constraints is still an open
problem. Thus, while we are able to recover the ex-
act skeleton, we coarsen reporting of edge orientations
by converting the estimated ADMG into an ancestral
ADMG and reporting the PAG. Connections in this
PAG may be pruned using sound rules from Nowzo-
hour et al. (2017) and Zhang et al. (2020) though we
do not pursue this approach here. Deriving a summary
structure that captures the class of all ADMGs that
are equivalent up to equality restrictions is an impor-
tant problem but outside the scope of this work.

6 EXPERIMENTS

For a given ADMG, we generate data as follows. For
each V; — V; we uniformly sample §;; from +[0.5, 2.0],
for V; < Vj, we sample §3;; = f;; from +[0.4,0.7],
and for each §;; we sample from +[0.7,1.2] and add
sum(|B;,—;|) to ensure positive definiteness of 5.

Since randomly generated ADMGs are unlikely to ex-
hibit Verma constraints, we first consider recovery of
the ADMG shown in Fig. 1(c) and two other ADMGs
A— B — C — D,B <+ D and a Markov equivalent
ADMG obtained by replacing A — B with A < B
which have Verma constraints established in the prior
literature. Exact recovery of Fig. 1(c) is possible while
the latter ADMGs can be recovered up to ambiguity in
the adjacency between A and B as A — Bor A < B.
We compare our arid and bow-free algorithms to the
greedyBAP method proposed in (Nowzohour et al.,
2017) (the only other method available for recover-
ing such constraints). Since greedyBAP is designed to
perform random restarts, we allow all methods 5 uni-
formly random restarts and pick the final best fitting
ADMG. As mentioned earlier, our main hyperparam-
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Figure 2: Left: Rate of recovery of the true equivalence class of an ADMG with a Verma constraint as a function
of sample size. Right: Application of the ABIC bow-free method to the Sachs et al. (2005) dataset.

SKELETON | ARROWHEAD TAIL

Method tpr 1 fdr ] | tpr T fdrl tpr 1 fdr |

gBAP (Nowzohour et al., 2017) | 0.80  0.30 | 0.41  0.58 0.11  0.65
ABIC (bow-free) 0.89 0.17 | 0.72

0.29 | 0.30 0.45

SKELETON | ARROWHEAD TAIL
Method tpr t fdr | | tpr T fdrl tpr + fdr |
FCI (Spirtes et al., 2000) 0.51  0.12 | 041 0.53 0.10 0.73
gSPo (Bernstein et al., 2020) | 0.88 0.27 | 0.46 0.59 | 0.32 0.81
ABIC (ancestral) 0.85 0.11 | 0.72 0.23 | 0.66 0.47

Table 2: Comparison of our method to greedyBAP (left) and FCI/greedySPo (right) for recovering 10 variable
bow-free and ancestral ADMGs, respectively. We report true positive rate (tpr) and false discovery rate (fdr) —
the fraction of predicted edges that are present in the target structure or the fraction that are absent from the
target structure respectively — for skeleton, arrowhead and tail recovery. (1/] indicates higher/lower is better.)

eter is the regularization strength A, which we set to
0.05 for all experiments. Choice of other hyperparam-
eters and additional experiments with varying A are
provided in Appendix D, E. We generate 100 datasets
for each sample size of [500,1000,1500,2000] from a
uniform sample of the 3 aforementioned ADMGs. The
results are summarized via barplots in Fig. 2.

The ABIC arid and bow-free procedures both outper-
form the greedyBAP procedure in recovering the true
equivalence class. The highest recovery rate is shown
by the bow-free procedure with 39% at n = 1000.
Though this seems low, these results are quite promis-
ing in light of geometric arguments in Evans (2018b)
that show reliable recovery of Verma constraints may
require very large sample sizes. In examining the
modes of failure of each algorithm, our ABIC proce-
dures often fail to recover the true ADMG by returning
a super model of the true equivalence class while the
greedyBAP procedure often returns an incorrect inde-
pendence model; see Fig. C in Appendix E. The former
kind of mistake does not yield bias in downstream in-
ference tasks while the latter does. Our bow-free pro-
cedure yields more accurate results than the arid one
most likely due to posing an easier optimization prob-
lem. In the 400 runs used to generate plots in Fig. 2,
the bow-free procedure failed to converge only 3 times

and the arid one never failed to converge, which is con-
sistent with established theoretical results on almost-
everywhere and global identifiability of these models.

For larger randomly generated arid ADMGs, to save
computation time, we only compare our bow-free pro-
cedure with greedyBAP, and for ancestral ADMGs,
we compare our ancestral procedure with FCI (Spirtes
et al., 2000) and greedySPo (Bernstein et al., 2020).
We also obtained results for GFCI (Ogarrio et al.,
2016) and M3HC (Tsirlis et al., 2018). These were
slightly worse than the results for FCI and greedySPo
so we only report the latter results. Runs of the M3HC
algorithm typically ended with convergence warnings.!
Random arid/ancestral ADMGs on 10 and 15 variables
were generated by first producing a random bow-free
ADMG with directed and bidirected edge probabilities
of 0.4 and 0.3 respectively, and then applying the max-
imal arid /ancestral projection. We report true positive
and false discovery rates for exact skeleton recovery of
the true ADMG as well as recovery of tails and arrow-
heads in the true PAG for 100 datasets of 1000 sam-
ples each. For FCI, we used a significance level of 0.15
which gave the most competitive results. Our method
performs favorably in recovery of both arid and ances-
tral ADMGs. Results for 10 variables, which roughly

!Code from https://github.com/mensxmachina/M3HC.
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matches the dimensionality of our data application,
are summarized in Table 2. Results for 15 variables
showing the same trends are in Appendix E.

Finally we apply our ABIC bow-free method to a
cleaned version of the protein expression dataset in
Sachs et al. (2005) from Ramsey and Andrews (2018).
The result is shown in the right panel of Fig. 2. The
precision and recall of our procedure with respect to
the true adjacencies provided in Ramsey and Andrews
(2018) are 0.77 and 0.61 respectively. We do not pro-
vide evaluation of orientations as there is no consensus
regarding many of them. However, we briefly highlight
the importance of a Verma restriction in producing a
model that is consistent with an intervention experi-
ment performed by Sachs et al. (2005). The authors
found that manipulation of Erk produced no down-
stream effect on PKA though they are correlated. The
ADMG in Fig. 2 has an edge Erk <> PKA that is con-
sistent with this finding. Moreover, this edge cannot
be oriented in either direction without producing dif-
ferent independence models than the one implied by
Fig. 2. This is due to a Verma restriction between
Akt and PKC; we provide more details in Appendix B.
We confirm that orienting the edge as Erk < PKA or
Erk — PKA leads to an increase in the BIC score, indi-
cating that the Verma restriction capturing the ground
truth is preferred over these other explanations.

7 CONCLUSION

We have extended the continuous optimization scheme
of causal discovery to include models that capture all
equality constraints on the observed margin of hidden
variable linear SEMs with Gaussian errors. The dif-
ferentiable algebraic constraints we provided are non-
parametric and may thus enable future development
of non-parametric causal discovery methods. Our
method may also help explore questions regarding dis-
tributional equivalence and Markov equivalence with
respect to all equality restrictions in ADMG models.
The authors in Shpitser et al. (2014) made progress
on equivalence theory for 4-variable ADMGs by enu-
merating all possible 4-variable ADMGs and evaluat-
ing the BIC score for each one, grouping graphs with
equal scores to form an “empirical equivalence class.”
A similar approach could be pursued for larger graphs
using our proposed causal discovery procedure. If rel-
evant patterns in larger empirical equivalence classes
become apparent, this may result in progress towards
a characterization for nested Markov equivalence.
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