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ABSTRACT

In partially observable reinforcement learning, offline training gives
access to latent information which is not available during online
training and/or execution, such as the system state. Asymmetric
actor-critic methods exploit such information by training a history-
based policy via a state-based critic. However, many asymmetric
methods lack theoretical foundation, and are only evaluated on
limited domains. We examine the theory of asymmetric actor-critic
methods which use state-based critics, and expose fundamental
issues which undermine the validity of a common variant, and
limit its ability to address partial observability. We propose an
unbiased asymmetric actor-critic variant which is able to exploit
state information while remaining theoretically sound, maintaining
the validity of the policy gradient theorem, and introducing no bias
and relatively low variance into the training process. An empirical
evaluation performed on domains which exhibit significant partial
observability confirms our analysis, demonstrating that unbiased
asymmetric actor-critic converges to better policies and/or faster
than symmetric and biased asymmetric baselines.
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1 INTRODUCTION

Partial observability is a key characteristic of many real-world re-
inforcement learning (RL) control problems where the agent lacks
access to the system state, and is restricted to operate based on
the observable past, a.k.a. the history. Such control problems are
commonly encoded as partially observable Markov decision pro-
cesses (POMDPs) [15], which are the focus of a significant amount
of research effort. Offline learning/online execution is a common
RL framework where an agent is trained in a simulated offline en-
vironment before operating online, which offers the possibility of
using latent information not generally available in online learning,
e.g., the simulated system state, or the state belief from the agent’s
perspective [6, 14, 16, 25, 26, 34].

Offline learning methods are in principle able to exploit this
privileged information during training to achieve better online

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

44

Christopher Amato
Northeastern University
Boston, Massachusetts, USA
c.amato@northeastern.edu

A®

(b) Observation.

(a) State.

Figure 1: Memory-Four-Rooms-9x9, a procedurally generated
navigation task which requires information-gathering and
memorization. The agent must avoid the bad exit and reach
the good exit, which is identifiable by the color of the beacon.

performance, so long as the resulting agent does not use the la-
tent information during online execution. Specifically, actor-critic
methods [17, 31] are able to adopt this approach via critic asym-
metry, where the policy and critic models receive different infor-
mation [9, 18, 20, 26, 32, 36, 37], e.g., the history and latent state,
respectively. This is possible because the critic is merely a training
construct, and is not required or used by the agent to operate on-
line. By the very nature of actor-critic methods, critic models which
are unable or slow to learn accurate values act as a performance
bottleneck on the policy. Consequently, critic asymmetry is a pow-
erful tool which, if carried out with rigor, may provide significant
benefits and bootstrap the agent’s learning performance.
Unfortunately, existing asymmetric methods use asymmetric in-
formation heuristically, and demonstrate their validity only via em-
pirical experimentation on selected environments [9, 18, 20, 21, 25—
28, 32, 36, 37]; the lack of a sound theoretical foundation leaves
uncertainties on whether these methods are truly able to general-
ize to other environments, particularly those wich feature higher
degrees of partial observability (see Figure 1). In this work, (a) we
analyze a standard variant of asymmetric actor-critic and expose
analytical issues associated with the use of a state critic, namely
that the state value function is generally ill-defined and/or causes
learning bias; (b) we prove an asymmetric policy gradient theorem
for partially observable control, an extension of the policy gradient
theorem which explicitly uses latent state information; (c) we pro-
pose a novel unbiased asymmetric actor-critic method, which lacks
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the analytical issues of its biased counterparts and is, to the best of
our knowledge, the first of its kind to be theoretically sound; (d) we
validate our theoretical findings through empirical evaluations on
environments which feature significant amounts of partial observ-
ability, and demonstrate the advantages of our unbiased variant
over the symmetric and biased asymmetric baselines.

This work sets the stage for other asymmetric critic-based policy
gradient methods to exploit asymmetry in a principled manner,
while learning under partial observability. Although we focus on
advantage actor-critic (A2C), our method is easily extended to other
critic-based learning methods such as off-policy actor-critic [8, 33],
(deep) deterministic policy gradient [19, 29], and asynchronous actor-
critic [22]. Offline training is also the dominant paradigm in multi-
agent RL, where many asymmetric actor-critic methods could be
similarly improved [9, 18, 20, 21, 27, 28, 32, 36, 37].

2 RELATED WORK

The use of latent information during offline training has been suc-
cessfully adopted in a variety of policy-based methods [7, 9, 18, 20,
26, 32, 34, 36, 37] and value-based methods [7, 21, 27, 28]. Among
the single-agent methods, asymmetric actor-critic for robot learn-
ing [26] uses a reactive variant of DDPG with a state-based critic to
help address partial observability; belief-grounded networks [25]
use a belief-reconstruction auxiliary task to train history represen-
tations; and Warrington et al. [34] and Chen et al. [6] use a fully
observable agent trained offline on latent state information to train
a partially observable agent via imitation.

Asymmetric learning has also become popular in the multi-agent
setting: COMA [9] uses reactive control and a shared asymmet-
ric critic which can receive either the joint observations of all
agents or the system state to solve cooperative tasks; MADDPG [20]
and M3DDPG [18] use the same form of asymmetry with individ-
ual asymmetric critics to solve cooperative-competitive tasks; R-
MADDPG [32] uses recurrent models to represent non-reactive con-
trol, and the centralized critic uses the entire histories of all agents;
CM3 [37] uses a state critic for reactive control; while ROLA [36]
trains centralized and local history/state critics to estimate indi-
vidual advantage values. Asymmetry is also used in multi-agent
value-based methods: QMIX [28], MAVEN [21], and WQMIX [27] all
train individual Q-models using a centralized but factored Q-model,
itself trained using state, joint histories, and joint actions.

3 BACKGROUND

In this section, we review background topics relevant to under-
stand our work, i.e., POMDPs, the RL graphical model, standard
(symmetric) actor-critic, and asymmetric actor-critic.

Notation. We denote sets with calligraphy X, set elements with
lowercase x € X, random variables (RVs) with uppercase X, and
the set of distributions over set X as AX. Occasionally, we will
need absolute and/or relative time indices; We use subscript x; to
indicate absolute time, and superscript x(K) to indicate the relative
time of variables, e.g., x() marks the beginning of a sequence hap-
pening at an undetermined absolute time, and x(K) is the variable
k steps later. We also use the bar notation to represent a sequence
of superscripted variables x = (x(()),x(l), x(z), co)
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Figure 2: The graphical model induced by the environment
dynamics and agent policy. RVs are shown as solid nodes,
observed RVs in gray, and latent RVs in white. The history
RVs, shown as dashed nodes, are aggregates of other RVs, i.e.,
the previous actions and observations.

3.1 POMDPs

A POMDP [15] is a discrete-time partially observable control prob-
lem determined by a tuple (S, A, O, T, O, R, y) consisting of: state,
action and observation spaces S, A, and O; transition function
T: S xA — AS; observation function O: S X A X S — AO;
reward function R: S X A — R; and discount factor y € [0, 1]. The
control goal is that of maximizing the expected discounted sum of
rewards E [Zt th(St,At)], a.k.a. the expected return.

In the partially observable setting, the agent lacks access to the
underlying state, and actions are selected based on the observable
history h, i.e., the sequences of past actions and observations. We
denote the space of realizable! histories as H C (A x 0)*, and
the space of realizable histories of length [ as H; € (A X o).
Generally, an agent operating under partial observability might
have to consider the entire history to achieve optimal behavior [30],
i.e., its policy should represent a mapping 7: H — AA. The belief-
state b: H — AS is the conditional distribution over states given
the observable history, i.e., b(h) = Pr(S | h), and a sufficient statistic
of the history for optimal control [15]. We define the history reward
function as R(h, a) = Eg), [R(s, a)]; from the agent’s perspective,
this is the reward function of the decision process. We denote the
last observation in a history h as oy, and say that an agent is reactive
ifits policy 7: O — AA only uses o, rather than the entire history.
A policy’s history value function V7 : H — R is the expected
return following a realizable history A,

VI () = Eg g0 [Z YR ™, a<k>>] , (1)
k=0
which supports an indirect recursive Bellman form,
V() = ) a(ah)Q" (ha), (2)
aeA
Q" (h,a) =R(h,a) +yEq|pq [V" (hao)] . ®)

3.2 The RL Graphical Model

Some of the theory and results developed in this document concerns
whether certain RVs of interest are well-defined; therefore, we
review the RVs defined by POMDPs. The environment dynamics
and the agent policy jointly induce a graphical model (see Figure 2)
over timed RVs S;, As, and Oy. Note that only timed RVs are defined

IRealizable histories and/or states have a non-zero probability.
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directly, and there are no intrinsically time-less RVs. Any other
RV must be defined in terms of the available ones, e.g. we can
define a joint RV for timed histories H; = (Ao, Oy, - . ., Ar—1, O¢-1).
Sometimes it is possible to define a limiting (stationary) state RV
S = limy 0 St, however it is never possible to define a limiting
(stationary) history RV H, since the sample space of each timed
RV H; is different, and lim;—,c, H; does not exist. In essence, H; is
inherently timed.

A probability is a numeric value associated with the assignment
of a value x from a sample space X to an RV X, e.g., Pr(X = x).
Although it is common to use simplified notation to informally omit
the RV assignment (e.g., Pr(x)), it must always be implicitly clear
which RV (X) is involved in the assignment. In the reinforcement
learning graphical model, a probability is well-defined if and only if
(a) it is grounded (implicitly or explicitly) to timed RVs (or functions
thereof); or (b) it is time-invariant (i.e., it can be impicitly grounded
to any time index). For example, Pr(s’ | s, a) is implicitly grounded
to the RVs of a state transition Pr(S;+1 = s” | S¢ = s, A = a), and
although the time-index t is not clear from context, the probability is
time-invariant and thus well defined. As another example, Pr(s | h)
is implicitly grounded to the RVs of a belief Pr(S; = s | Hy = h),
where the time-index ¢ is implicitly grounded to the history length
t = |h|, which makes the probability well defined.

3.3 (Symmetric) Actor-Critic for POMDPs

Policy gradient methods [31] for fully observable control can be
adapted to partial observable control by replacing occurrences of
the system state s with the history A (which is the Markov-state
of an equivalent history-MDP). In advantage actor-critic methods
(A2C) [17], a policy model 7: H — AA parameterized by 0 is
trained using gradients estimated from sample data, while a critic
model V : H — R parameterized by 9 is trained to predict history
values V” (h). Note that we annotate parametric critic models with
ahatV, to distinguish them from their analytical counterparts V7.
In A2C, the critic is used to bootstrap return estimates and as a
baseline, both of which are techniques for the reduction of esti-
mation variance [10]. The actor and critic models are respectively
trained on Lyolicy (0) + A Lneg-entropy (0) and Leritic (F).

Policy Loss. The policy loss Lpolicy(0) = —E [Zzo Y'R(sz, at)]
encodes the agent’s performance as the expected return. The policy
gradient theorem [17, 31] provides an analytical expression for the
policy loss gradient w.r.t. the policy parameters,

Z Y Q" (ht,ar)Vologm(as;he)| . (4)

t=0

VG-LZpolicy(e) =-E

Value Q” (hy, a;) is replaced by the temporal difference (TD) error
Oy to reduce variance (at the cost of introducing modeling bias),

VGLPOIicy(G) =-E

nyatvg 1ogn(at;h,)] , (5)
t=0

8t =R(st,ar) +yV (hest) = V (k). (6)

Critic Loss. The critic loss L itic(3) = E [Z‘;io 5?] is used to
minimize the total TD error, the gradient of which should propagate
through V (h;), but not through the bootstrapping V (hs41).
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Negative-Entropy Loss. Finally, the negative-entropy loss is com-
monly used, Lneg-entropy (0) = —E [X; H [7(A¢; At )]], in combina-
tion with a decaying weight A, to avoid premature convergence of
the policy model and to promote exploration [35].

3.4 Asymmetric Actor-Critic for POMDPs

While asymmetric actor-critic can be understood to be an entire
family of methods which use critic asymmetry, for the remainder
of this document we will be specifically referring to a non-reactive
and non-deterministic variant of the work by Pinto et al. [26], which
uses critic asymmetry to address image-based robot learning. Their
work uses a reactive variant of deep deterministic policy gradient
(DDPG) [19] trained in simulation, and replaces the reactive obser-
vation critic V (o) with a state critic V (s); the variant we will be
analyzing applies the same critic substitution to A2C. In practice,
this state-based asymmetry is obtained by replacing the TD error
of Equation (6) (used in both the policy and critic losses) with

8t = R(sz,ar) +yV (se41) =V (s1) - (7)

Although [26] claim that their work addresses partial observabil-
ity, their evaluation is based on reactive environments which are
effectively fully observable; while the agent only receives a single
image, each image provides a virtually complete and occlusion-free
view of the entire workspace. In practice, the images are merely
high-dimensional representations of a compact state.

4 THEORY OF ASYMMETRIC ACTOR-CRITIC

In this section, we analyze the theoretical implications of using a
state critic under partial observability, as described in Section 3.4,
and expose critical underlying issues. The primary result will be
that the time-invariant state value function V” (s) of a non-reactive
agent is generally ill-defined. Then, we show that the time-invariant
state value function V7 (s) of a reactive agent is well-defined under
mild assumptions, but generally introduces a bias into the training
process which may undermine learning. Finally, we show that
the time-invariant state value function V7 (s) of a reactive agent
under stronger assumptions can be both well-defined and unbiased.
Later, in Section 5, we provide a more general alternative which
guarantees well-defined and unbiased time-invariant state-based
value functions for arbitrary policies and control problems.
Informally, the issue with V7 (s) is that the state alone does
not contain sufficient information to determine the agent’s future
behavior—which generally depends on the history—and is thus un-
able to accurately represent expected future returns. Ironically, state
values suffer from a form of history aliasing, i.e., being unable to
infer the agent’s history from the system’s state. This is particularly
evident in control problems which require the agent to perform
forms of information gathering (a common occurrence in partially
observable control) which are not reflected in the system state, e.g.,
reach a certain spot to observe a piece of information which is
necessary to determine future optimal behavior and solve the con-
trol task. In such cases, the state alone does not generally indicate
whether the agent has collected the necessary information in the
past or not, and is therefore unable to represent adequately whether
the current state is a positive or negative occurrence. Formally, we
will show that V7 (s) is generally not a well-defined quantity and,
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even in special cases where it is well-defined, generally introduces
a bias in the learning process caused by the imperfect correlation
between histories and states; in essence, the average value of histo-
ries inferred from the current state is not an accurate estimate of
the current history’s value.

Methodology. We note that replacing the history critic is intrinsi-
cally questionable: the policy gradient theorem for POMDPs (Equa-
tion (4)) specifically requires history values, and replacing them
with other state-based values will generally result in biased gra-
dients and a general loss of theoretical guarantees. Therefore, we
analyze state values V7 (s) as stochastic estimators of history val-
ues V7 (h) and consider the corresponding estimation bias, i.e.,
the difference between the expected estimate Eg |, [V” (s)] and the
ground truth estimation target V7 (h) for any given history h.

4.1 General Policy under Partial Observability

A policy’s state value function V7 : & — R is tentatively defined
as the expected return following a realizable state s,

SRR W, a)
k=0

vZ (5(0)) = Es-ms(o) , (8)

which, if well-defined, supports an indirect recursive Bellman form,

Vi(s)= > Pr(a|$)Q" (s.0), )
aceA
Q7r (s,a) =R(s,a) + YES’|s,a [V” (S/)] . (10)

In Equation (9), we note the term Pr(a | s), which encodes the
likelihood of an action being taken from a given state. Because
the agent policy depends on histories (not states), this term is not
directly available, but must be derived indirectly by integrating over
possible histories. Further, because s is timeless, and no additional
context is available to narrow down time, there is no choice but to
integrate over histories of all possible lengths.

Pr(als) = Z Pr(h | s)(ash) .

heH

(11)

Equation (11) reveals the probability term Pr(h | s), which en-
codes the likelihood of a history having taken place in the past given
a current state. While Pr(h | s) may look harmless, it is the under-
lying cause of serious analytical issues. As discussed in Section 3.2,
a probability is only well-defined if associated with well-defined
RVs, and unfortunately such RVs do not exist for Pr(h | s). On
one hand, timed RVs Pr(H; = h | S; = s) cannot be used, because
Equation (11) integrates over the sample space of all histories, and
not just those of a given length ¢. On the other hand, time-less RVs
Pr(H = h | S = s) cannot be used, because such time-less RVs do
not exist in the RL graphical model. Ultimately, Pr(h | s) is mathe-
matically ill-defined, which consequently causes both Pr(a | s) and
V7 (s) to be ill-defined as well.

THEOREM 4.1. In partially observable control problems, a time-
invariant state value function V™ (s) is generally ill-defined.

The practical implications of an ill-defined value function are
not obvious; even though the analytical value function V” (s) is
ill-defined, the state critic’s V (s) training process is based on valid
calculations over sample data, which results in syntactically valid
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updates of the critic parameters. However, given that asymptotic
convergence is theoretically impossible when V7 (s) is ill-defined,
the critic’s target will continue shifting indefinitely based on the
recent batches of training data, even when unbiased Monte Carlo
return estimates are used to train the critic (without bootstrapping).
In practice, the effects are not necessarily catastrophic for all con-
trol problems, and likely vary depending on the amount of partial
observability, on the agent’s need to gather and remember infor-
mation, and on the specific state and observation representations.

In principle, timed value functions V/* (s) represent a straight-
forward solution to all these issues (see appendix [2]). However,
learning a timed critic model is likely to pose additional learning
challenges, due to the need to generalize well and accurately across
time-steps. Rather, we will demonstrate that there are special cases
of the general control problem which do guarantee well-defined
time-invariant value functions V” (s) (see Sections 4.2 and 4.3).
However, before that, we can already show that, even when V7’ (s)
is guaranteed to be well-defined, it is not guaranteed to be unbiased.

THEOREM 4.2. Even when well-defined, a time-invariant state
value function V™ (s) is generally a biased estimate of V™ (h), i.e., it
is not guaranteed that V" (h) = Eg);, [V™ (s)].

Proor. Consider two histories which are different, h’ # h’’,
and result in different action distributions, 7w (A;h’) # 7 (A;h"),
but are associated with the same belief, b(h’) = b(h"’)—a fairly
common occurrence in many POMDPs (see appendix [2]). On one
hand, because the two histories result in different behaviors, future
trajectories and rewards will differ, leading to different history
values, V7 (h’) # V™ (h’). On the other hand, because the two
beliefs are equal, the expected state values must also be equal,
Egip [V7 ()] = Egjpr [V7 (s)]. If equation V7 (h) = Egjp, [V7 (5)]
held for all histories, then it would hold for A’ and h”’ too, which
implies V™ (h") = Egpy [V7 (s)] = Egpr [V7(5)] = V7 (h") —a
simple contradiction. Therefore, either V* (h') # Eg ) [V” (s)] or
V7 (h") # Egpr [V™ (s)] (or both). O

4.2 Reactive Policy under Partial Observability

We show that V7 (s) is well-defined if we make two assumptions
about the agent and environment: (a) that the policy is reactive (a
common but inadequate assumption); and (b) that the POMDP ob-
servation function depends only on the current state, O: S — AO,
rather than the entire state transition (a mild assumption). Under
these assumptions, we can expand Pr(a | s) by integrating over the
space of all observations (rather than all histories),

Pr(a|s) = Z Pr(o | s)x(a;0).
oe0

In this case, Pr(o | s) is time-invariant, and can therefore be im-
plicitly grounded to RVs of any time index Pr(O; = o | S; = s).
This leads to a well-defined value V7 (s) which, however, generally
remains biased compared to V7 (h), per Theorem 4.2. In addition
to Theorem 4.2, which is applicable in a more general setting, see
appendix [2] for two additional proofs which also take into account
the specific assumptions made here. Broadly speaking, the bias
is caused by the fact that hidden in V7 (s) is an expectation over
observations o which are not necessarily consistent with the true
history h; each proof covers this issue from different angles.

(12)
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Although the value function is well-defined under reactive con-
trol, there are still two significant issues which preclude these as-
sumptions from representing a general solution: (a) reactive policies
are inadequate to solve many POMDPs; and (b) the value function
bias may prevent the agent from learning a satisfactory behavior.

4.3 Reactive Policy under Full Observability

We show that the state value function is both well-defined and
unbiased under two assumptions: (a) that the policy is reactive (a
common but inadequate assumption); and (b) that there is a bijec-
tive abstraction ¢: O — S between observations and states (an
unrealistic assumption). The abstraction ¢ encodes the fact that
the environment is not truly partially observable, but rather that
states and observations fundamentally contain the same informa-
tion, albeit at different levels of abstraction. For example, in the
control problems used by Pinto et al. [26], and an image displaying
a workspace without occlusions is a low-level abstraction (observa-
tion), while a concise vector representation of the object poses in
the workspace are a high-level abstraction (state).

In this case, the action probability term Pr(a | s) does not need
to be obtained indirectly by integrating other variables; rather,
bijection ¢ can be used to relate it to the policy model Pr(a | s) =
7(a;¢~1(s)). Contrary to the previous cases, the overall state value
function V7 (s) is not only well-defined, but also unbiased.

THEOREM 4.3. If the POMDP states and observations are related
by a bijection : O — S, and the policy is reactive, then V™ (s) is an
unbiased estimate of V™ (h), i.e, V7 (h) = Eq, [V (s)].

Proor. The bijection between oy and s not only implies a many-
to-one relationship between histories and states, but also fully
determines the agent’s state-conditioned action. In the following
derivation, we use these facts to determine the first action and
reward, a process which can be repeated indefinitely for future
actions and rewards.

IEslh [V” (S)] = Eslh

D Pral Q7 (s, a)]

aeA
=By | ) m(@o)Q" (s, a)]
acA
= )" m(aop) By [Q7 (5,0)]
aeA
= Z m(a;op) Eslh [R(S, a) +YEs’|s,a [V” (3/)”
aceA
= 3 w(aso) (R(h @) +yByppa [V ()] )
aceA
= Z 7(a;0p) (R(h’ a) +YEo|h,a [Es'\hao [V” (5/)”)
acA

(repeat process until end of episode)

= > n(aop) (R(h, @) + ¥ Eolha [V”(hao)])
acA

= ) m(@op)Q" (h.a)
acA

=V7(h). (13)
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[m]

The benefit of using a state critic under this scenario is that the
critic model can avoid learning a representation of the observations
before learning the values [26]. Naturally, the main disadvantage
of this scenario is that most POMDPs do not satisfy the bijective
abstraction assumption; if anything, this assumption is intrinsically
incompatible with partial observability, and any POMDP which
satisfies this assumption is really an MDP in disguise. Nonetheless,
if a control problem only deviates mildly from full observability, it
is likely that a state critic will benefit the learning agent despite
the theoretical issues.

5 UNBIASED ASYMMETRIC ACTOR-CRITIC

In this section, we introduce unbiased asymmetric actor-critic, an
actor-critic variant able to exploit asymmetric state information
during offline training while avoiding the issues of state value
functions exposed in Section 4. Consider the history-state value
function V7 (h, s) [5], defined as the expected return following a
realizable history-state pair h and s,

Z ykR(s(k), a(k))] R (14)

k=0

VT (h(O)’ S(O)) = Es‘,d|h(°),s(°)

which supports an indirect recursive Bellman form,

VT(hs)= ) n(ah)Q" (hs,a), (15)
aceA
Q" (h,s,a) =R(s,a) + Y Ey o|s 4 [V" (hao,s")] . (16)

Note that the history h and state s cover different and orthogonal
roles: the history h determines the future behavior of the agent,
while the state s determines the future behavior of the environment.
Compared to the history value V7 (h), the state information in
V7 (h, s) provides additional context to determine the agent’s true
underlying situation, its rewards, and its expected return. Compared
to the state value V” (s), the history information in V7 (h, s) pro-
vides additional context to determine the agent’s future behavior,
which guarantees that V” (h, s) is well-defined and unbiased.

THEOREM 5.1. For arbitrary control problems and policies, V™ (h, s)
is an unbiased estimate of V™ (h), i.e, V7 (h) = Eg)p, [V™ (h,5)].

Proor. Follows from Equations (1) and (14),

VT (h(())) — Eg’a‘h(o) Z )/kR(S(k)’ a(k))
k

= Es(o) |h(© Ei,d\h(o),s(ﬂ) [Z ),kR(s(k)’ a(k))}
k

= Ego o |77 (RO, O] (17)

O

As we have done for state values V7 (s), we are interested in
the properties of history-state values V7 (h, s) in relation to history
values V7 (h). Theorem 5.1 shows that history and history-state
values are related by V" (h) = Eg;, [V* (h,5)], ie., history-state
values are interpretable as Monte Carlo (MC) estimates of the respec-
tive history values. In expectation, history-state values provide the



Main Track

same information as the history values, therefore an asymmetric
variant of the policy gradient theorem can be formulated.

THEOREM 5.2 (ASYMMETRIC POLICY GRADIENT).
Vo Lpolicy(0) = —E | Y y* Q™ (hs,s1,a)Vologw(a;hy)| . (18)
t

Proor. Following Theorem 5.1, we have
0" (h.) = R(h.a) +y Eqppq [V (hao))
= R(h,a) + Y Eo|nq [Es hao [V” (hao,s")]]
=R(h,a) +YEg o|ha [V” (hao, s’)]
= Eqp [R(s, a)+yEy osa [V” (hao, s')]]
= Eqp [Q”(h, s, a)] . (19)

Therefore,
Vo Lpolicy (0)

=-E

Z v Q" (ht,ar)Vglog m(as; ht)}
t
== VtBha, [Q" (ht,ar)Vglog w(as; b))
t
=— Z Y En,a, [Esy i, [Q7 (hevse.ar)| Volog m(arshy)|
t

== > V' Bh s, [Q7 (he,st,ar) Vo log m(ars hy) |
t

=_E (20)

YO (hy st ) Vg log 7 (ar; ht)] :
t
]

As estimators, history-state values V” (h, s) can be described in
terms of their bias and variance w.r.t. history values V” (h). Beyond
providing the inspiration for the MC interpretation, Theorem 5.1
already proves that V7 (h, s) is unbiased, while its variance is dy-
namic and depends on the history h via the belief-state Pr(S | h);
in particular, low-uncertainty belief-states result in low variance,
and deterministic belief-states result in no variance. Given that
operating optimally in a partially observable environment gen-
erally involves information-gathering strategies associated with
low-uncertainty belief-states, the practical variance of the history-
state value is likely to be relatively low once the agent has learned
to solve the task to some degree of success.

Inspired by Theorem 5.2, we propose unbiased asymmetric A2C,
which uses a history-state critic V: H x S — R trained to model
history-state values V7 (h, s),

Vo Lpoliey () = —E| > y'8:Vologr(ash) |, (1)
t

8t = R(st,ar) + vV (hest, sex1) = V (e, se) - (22)

Because V (h, s) receives the history h as input, it can still predict
reasonable estimates of the agent’s expected future discounted
returns; and because it receives the state s as input, it is still able to
exploit state information while introducing no bias into the learning
process, e.g., for the purposes of bootstrapping the learning of critic
values and/or aiding the learning of history representations.
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5.1 Interpretations of State

Although the history-state value is analytically well-defined, it
remains worthwhile to question why the inclusion of the state in-
formation should help the actor-critic agent at all. We attempt to
address this open question, and consider two competing interpreta-
tions, which we call state-as-information and state-as-a-feature.

State as Information. Under this interpretation, state information
is valuable because it is latent information unavailable in the history,
which results in more informative values which help train the policy.
However, we argue that this interpretation is flawed for two reasons:
(a) The policy gradient theorem specifically requires V”* (h), which
contains precisely the correct information required to accurately
estimate policy gradients. In this context, history values already
contain the correct type and amount of information necessary to
train the policy, and there is no such thing as “more informative
values” than history values. (b) In theory, the history-state value
in Theorem 5.2 could use any other state sampled according to
§ ~ b(h), rather than the true system state, which would also result
in the same analytical bias and variance properties. In practice, we
only use the true system state due to it being directly available
during offline training; however, we believe that its identity as the
true system state is analytically irrelevant, which leads to the next
interpretation of state.

State as a Feature. We conjecture an alternative interpretation
according to which the state can be seen as a stochastic high-level
feature of the history. Consider a history critic V (h); to appropri-
ately model the value function V7 (h), V (h) must first learn an
adequate history representation, which is in and of itself a sig-
nificant learning challenge. The critic model would likely benefit
from receiving auxiliary high-level features of the history ¢ (h). The
resulting critic V (h, ¢(h)) remains fundamentally a history critic,
as the auxiliary features are exclusively a modeling/architecture
construct. Next, we consider what kind of high-level features ¢ (h)
would be useful for control. While the specifics of what makes
a good history representation depend strongly on the task, there
is a natural choice which is arguably useful in many cases: the
belief-state b(h). Because the belief-state is a sufficient statistic of
the history for control, providing it to the critic model V (h, b(h))
is likely to greatly improve its ability to generalize across histo-
ries. Finally, we conjecture that any state sampled according to the
belief-state s ~ b(h)—including the true system state—can be con-
sidered a stochastic realization of the belief-state feature, resulting
in the history-state critic V (b, s). According to this interpretation,
the importance of the state in the history-state critic is not in its
identity as the true system state, but as a stochastic realization of
hypothetical belief-state features, and presumably any other state
sampled from the belief-state § ~ b(h) could be equivalently used.

6 EVALUATION

We compare the learning performances of five actor-critic vari-
ants. A2C, A2C-asym-s, and A2C-asym-hs are respectively (sym-
metric) A2C with history critic V(h), asymmetric A2C with state
critic V (s), and asymmetric A2C with history-state critic V (b, s).
To demonstrate that the environments feature significant partial



Main Track AAMAS 2022, May 9-13, 2022, Online
= A2C-asym-hs A2C-asym-s — A2C = A2C-react-2 = A2C-react-4
1.0 0 0
0.8 0.8
0.6 0.6 —50 -0
0.4 0.4 ~100
0.2 0.2 —-100
| AN Lo o y —-150
0.0 ! : . -150
0 2M 4M 6M 8M 10M 0 2M 4M 6M 8M 10M 0 500k 1M 15M 2M 0 500k 1M 15M 2M
Timestep Timestep Timestep Timestep
(a) Heaven-Hell-3 (b) Heaven-Hell-4 (c) Shopping-5 (d) Shopping-6
2
60 0
0
40 (| -2 | '
2 |
20 4 -4
0 iM 2M 3M 4 M 0 iM 2M 3M 4 M 0 2M 4 M 6 M 0 2M 4M 6M
Timestep Timestep Timestep Timestep
(e) Car-Flag (f) Cleaner (g) Memory-Four-Rooms-7x7 (h) Memory-Four-Rooms-9x9

Figure 3: Learning performance curves of episodic returns averaged over the last 100 episodes, with statistics computed over 20
independent runs. Shaded areas are centered around the empirical mean and show one standard error of the mean.

Algorithm 1 All methods are trained using the same algorithmic
structure, just using different critics to compute the TD errors J;
(see Equations (6), (7) and (22)). Full episodes are iteratively sampled
and used for training. Values T and E vary by environment.

Input: max timestep T, episodes per gradient step E
while timestep < T do
episodes « sample_episodes(r, E)
log_returns(episodes)
A < negentropy_schedule(timestep)

update 0 and 9 via V (Lpolicy + ALneg-entropy) and V.Litic

observability, we include two “quasi-reactive” variants of (sym-
metric) A2C, meaning that they only receive a fixed number of
recent actions and observations. A2C-react-2 and A2C-react-4
respectively receive the latest 2 and 4 actions and observations.
We evaluate on 8 navigation tasks which require different forms
of information gathering and memorization: Heaven-Hell-3 and
Heaven-Hell-4 [1, 4], Shopping-5 and Shopping-6 [1], Car-
Flag [24], Cleaner [13], and Memory-Four-Rooms-7x7 and
Memory-Four-Rooms-9x9 [3]; for details, see appendix [2].
Each method is trained and evaluated using the same code? (see
Algorithm 1). Model architectures vary by environment; for more
details, see ??. For each method, we perform a grid-search over
hyper-parameters of interest and select the hyper-parameter com-
bination which leads to the best performance (prioritizing learning
stability over convergence speed if needed); for more details, see
appendix [2]. Each combination of hyper-parameters is evaluated
over 20 independent runs to guarantee statistical significance.

Zhttps://github.com/abaisero/asym-rlpo/

6.1 Results and Discussion

We show two relevant results from our evaluation: (a) in Figure 3,
the empirical learning curve statistics, and (b) in Figure 4, how critic
values change during training for important history-state pairs.

6.1.1 Learning Curves. We first note that the “quasi-reactive” base-
lines perform poorly in most domains, demonstrating that these
control problems feature non-trivial partial observability which re-
quires information gathering strategies and/or memorization of the
past. Even in Shopping-5, where A2C-react-4 eventually manages
to reach the performance of other successful methods, its conver-
gence speed is significantly slower (Figure 3c). On the other hand,
the non-reactive A2C either performs much better, indicating that
the additional memory is useful if not necessary (Figures 3c, 3d
and 3f to 3h), or it also fails, indicating that the task is still challeng-
ing even when the entire history is available, due to representation
learning difficulties (Figures 3a, 3b and 3e).

The A2C-asym-s baseline displays a variety of characteristics
depending on the environment, mostly problematic. While A2C-
asym-s managed to achieve competitive performance in Car-Flag
(Figure 3e), in all other cases it either completely fails to perform
the task (Figures 3a, 3b, 3g and 3h), or it slowly converges to a
sub-optimal behavior (Figures 3¢ and 3d). Cleaner in particular
demonstrates instability issues, causing the performance to collapse
after a certain point (Figure 3f). We argue that the poor convergence
performance and learning instability displayed by A2C-asym-s are
two facets of the theoretical issues discussed in Section 4. Poor final
performance may be easily explained by the history-aliasing issue
whereby the state critic model V (s) may not be able to correctly
evaluate a given history, while instability may be easily explained
by the lack of a well-defined state value function V7 (s) altogether.
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Figure 4: Critic value statistics for 4 key history-state pairs in
Heaven-Hell-4, evaluated throughout training, with statistics
computed over 20 independent runs. Full description in text.

In contrast, our proposed unbiased asymmetric variant A2C-
asym-hs displays some of the best learning characteristics across
all environments. In Cleaner, Memory-Four-Rooms-7x7, and
Memory-Four-Rooms-9x9, its performance matches that of A2C
(Figures 3f to 3h), while in Car-Flag it matches that of A2C-asym-
s (Figure 3e). In and of itself, this indicates that A2C-asym-hs is
able to exploit whichever source of information (history or state)
happens to be more suitable in practice to solve a given task. On
top of that, A2C-asym-hs demonstrates strictly better final perfor-
mance and/or convergence speed than both A2C and A2C-asym-s
in Shopping-5 and Shopping-6 (Figures 3c and 3d), demonstrating
that it is not only able to use the best source of information, but
also of combining both sources to achieve a higher best-of-both-
worlds performance. This ability is pushed one step further and
demonstrated in Heaven-Hell-3 and Heaven-Hell-4, where A2C-
asym-hs is the only method capable of learning to solve the task
at all (Figures 3a and 3b). These results strongly demonstrate the
importance of exploiting asymmetric information in ways which
are theoretically justified and sound, as done in our work.

6.1.2  Critic Values. To further inspect the behavior of each critic,
Figure 4 shows the evolution of critic values over the course of
training for important history-state pairs in Heaven-Hell-4. We
use 4 deliberately chosen history-state pairs which are particularly
important in this environment. In each case, the agent is located
at the fork between heaven and hell, and the cases differ by the
position of heaven (left or right) and whether the agent has pre-
viously performed the information-gathering sequence of actions
necessary to know the position of heaven (by visiting the priest).
Unsurprisingly, we first note that critic values are correlated with
the respective agent’s performance (Figure 3b). Beyond that, the

51

AAMAS 2022, May 9-13, 2022, Online

critics show certain individual characteristics: namely, the critics
which focus on a single aspect of the join history-state output the
exact same values for different history-states. Although hard to see,
the A2C critic V (h) outputs are identical in Figures 4a and 4b, as
those values are associated with the same histories (but not the same
states). Similarly, the A2C-asym-s critic V(s) outputs are identical
in Figures 4a and 4c and Figures 4b and 4d respectively, as those val-
ues are associated with the same states (but not the same histories).
This confirms a straightforward truth: that the state critic V(s)is
intrinsically unable to differentiave between values associated to
different histories if they happen to be associated with the same
state, which can be particularly detrimental in such information-
gathering and memory dependent tasks. On the other hand, the
A2C-asym-hs critic V (h, s) has the ability to output different val-
ues, as needed, for each of the four cases. Note, in particular, that
the A2C-asym-hs critic is able to associate a higher reward to the
agent if it has already performed the information-gathering actions
(Figures 4c and 4d), compared to when it has not (Figures 4a and 4b),
which helps the agent determine that the information-gathering
actions are important and should be performed.

7 CONCLUSIONS

In partially observable control problems, the offline training/online
execution framework offers the peculiar opportunity to access the
system’s state during training, which otherwise remains latent
during execution. Asymmetric methods trained offline can poten-
tially exploit such privileged information to help train the agents
to reach better performance and/or train more efficiently and using
less data than before. While this idea has great potential, current
state-of-the-art methods are motivated and driven by empirical
results rather than theoretical analysis. In this work, we exposed
fundamental theoretical issues with a standard variant of asymmet-
ric actor-critic which made use of state critics V” (s), and proposed
an unbiased asymmetric variant which makes use of history-state
critics V7 (h, s) and is the first of its kind to be analytically sound
and theoretically justified. Although this represents a relatively
simple change, its effects are profound, as demonstrated in both
theoretical analysis and empirical results. Our evaluations confirm
our analysis, and demonstrate both the issues with state-based crit-
ics and the benefits of history-state critics in environments which
exhibit significant partial observability.

Although our evaluation only concerns A2C, the same concepts
are easily extensible to other critic-based RL methods [8, 19, 22,
29]. The potential for future work is varied. One possibility is to
extend the theory of history-state value functions to optimal value
functions Q* (h, s, a), and develop theoretically sound asymmetric
variants of value-based deep RL methods such as DQN [23]. Another
possibility is to integrate asymmetric information with state-of-
the-art maximum entropy value/critic-based methods such as soft
Q-learning [11], and soft actor-critic [12]. Finally, another venue
for improvement is to extend our theory and approach to multi-
agent methods, potentially bringing theoretical rigor and improved
performance [9, 18, 20, 21, 27, 28, 32, 37].
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