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Abstract—We study the multi-stream quickest detection prob-
lem under the active learning setup, It is assumed that there are
p local streams in a system and s < p unknown local streams are
affected by an undesired event at some unknown time, but one
is only able to take observations from r of these p local streams
at each time instant. The objective is how to adaptively sample
from these p local streams and how to use the observed data
to raise a correct global alarm as quickly as possible. In this
paper, we develop the first asymptotic optimality theory in the
active quickest detection literature for the case when s = r = 2.
To be more concrete, we propose to combine three ideas to
develop efficient active quickest detection algorithms: (1) win-
stay, lose-switch sampling strategy; (2) local CUSUM statistics
for local monitoring; and (3) the SUM-Shrinkage technique to
fuse local statistics into a global decision. We show that our
proposed algorithms are asymptotically optimal in the sense of
minimizing detection delay up to the second order subject to
the false alarm constraint. Numerical studies are conducted to
validate our theoretical results.

Index Terms—Asymptotic optimality, quickest detection, active
learning, win-stay lose-switch, CUSUM.

I. INTRODUCTION

Active learning has received extensive attentions in modern
big data age, partly due to the resource constraints either at
the data acquisition level or at the communication level. Often
it is required that the decision maker actively selects partial
samples from the underlying raw data so as to make right
decision with as few attempts as possible. Some examples of
active learning include compressed sensing (see Donoho [1]
and Candes, Romberg and Tao [2]), distributed sensor net-
works (see Li and Jin [3] and Laszka, Abbas and Koutsoukos
[4]), information extraction (see Barrio and Gravano [5] and
Boicea, Truica, Radulescu and Buse [6]), etc.

One important active learning problem when monitoring
streaming data is active quickest detection problem, which
has a wide range of real-world applications in industrial
quality control, biosurveillance, network security, etc. Under
a general setting, there are p local streams in a system, and
at some unknown time 7, an occurring event impacts s of the
available streams by changing the distribution of their samples.
However, under the sampling control constraint, one is allowed
to sample from only r of the p local streams at each time
instant. The objective of active quickest detection is to decide
how to adaptively sample from these p local streams and how
to use the observed data to raise a correct global alarm as
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quickly as possible once the change occurs subject to both the
false alarm and sampling control constraints.

It is useful to point out that the quickest detection problem
has been extensively studied under the classical passive learn-
ing setup where one has fully access to all the available data
to make decisions on when to raise an alarm, see Basseville
and Nikiforov [7], Poor and Hadjiliadis [8] and Tartakovsky,
Nikiforov and Basseville [9]. For more recent references, see
Mei [10], Xie and Siegmund [11] and Chan [12]. However,
theoretical research on active quickest detection problem is
limited, despite that the simplest version of s = r = 1 was
formulated as early as 1963 by Shiryaev [13].

Indeed, so far the asymptotic optimality theory has only
been developed for active quickest detection in the simplest
case of r = s = 1, see Xu, Mei and Moustakides [14]
and Xu and Mei [15]. Intuitively, such asymptotic optimality
theory heavily depend on the structure of the simplest case
of r = s = 1 where there are not many reasonable options
available for sampling or decision policies. This is the reason
why one can develop asymptotically optimal algorithm for
r = s = 1 case by simply adopting the greedy sampling
policy and the naive decision policy that raises a global alarm
if any local stream raises a local alarm. However, when the
true number of local affected streams s > 2, such algorithm
will lose statistical efficiency and thus new ideas are needed
to develop asymptotically optimal algorithms.

In this article, we establish the asymptotic optimality theory
for the active quickest detection problem with s = 2 local
affected streams when monitoring a fixed number p of local
streams under the sampling control r = 2, as the average run
length to false alarm constraint goes to oco. Our asymptotic
optimality result is the first of its kind in the literature of active
quickest change for s > 2, and our idea for s = r = 2 can
also be extended to a more general case of s = r > 2. Our key
idea is to develop efficient active quickest detection algorithm
for s > 2 by combining three ideas together: (i) win-stay, lose-
switch sampling strategy which was first proposed by Robbins
[16] for the multi-armed bandit problems (MAB); (2) local
CUSUM statistics for local monitoring one-dimensional data;
and (3) the SUM-Shrinkage technique in Liu, Zhang, and Mei
[17] to fuse local statistics into a global decision. We show that
our proposed algorithm holds a second-order asymptotically
optimal property in the quickest detection framework. This
means that even with the sampling rate of 2/p each time
instant as compared to the optimal passive quickest detection
algorithm with full data, our proposed algorithm has the same
detection delay performance up to second-order subject to the



false alarm constraint.

Finally, we need to note that the sampling control has been
combined with sequential data under different settings, see
Banerjee, Taposh and Veeravalli [18], Heydari, Tajer, and Poor
[19]), etc. Moreover, sampling control has been extensively
studied in two other related well-known problems: multi-
armed bandit problems and sequential hypothesis testing. For
a limited list of references, see Lai and Robbins [20], Li,
Li, Wang and Liu [21], Tsopelakos, Fellouris, and Veeravalli
[22], etc. In those contexts, all observations provide some
information for decision making. Here we should emphasize
that quickest detection problems under sampling control are
much more challenging, because observations from the af-
fected stream will not provide any information to the change-
point if it is taken before the change occurs, but the change-
point itself is unknown and is the focus of quickest detection.

The remainder of the paper is organized as follows. In
Section II, we state the mathematical formulation of our
problem. In Section III, we present our proposed algorithm
and provide its theoretical properties in Section IV. Numerical
studies are presented in Section V to illustrate the performance
properties of our proposed algorithm. The high-sketch of the
proofs are presented in Appendix.

II. PROBLEM FORMULATION

Suppose there are p statistically independent local streams
in a system, and denote with Xti the observation from the i-th
stream at time ¢, where ¢ = 1,...,pand ¢t = 1,2,.... Initially,
the system is in the in-control state and the data stream { X} }
from the i-th stream produces i.i.d. samples following the
density f;(X). At some unknown time 7, a triggering event
occurs to the system and affects two out of p data streams in
the sense that if the ¢-th stream is affected, the density function
of its local samples X/ changes from f; to g; at time t > 7.
Specifically, denote the index set of the affected streams as
O¢ = {i1,i2}. Then if index ¢ € O¢,

t gi(X), ift>r,
whereas X ~ fi(X) for i ¢ O¢ and all t > 0.

Under the sampling control constraint, we are only able to
observe 7 = 2 out of p local streams at each time instant t.
To be rigorous, define the Sample set Oy = {i1 4,12} which
points to the pair of two streams that will be sampled during
time instant ¢, and the sampling constraint can be expressed
as

6]

O: C {1,2,--- ,p} and |Oy] = 2, 2)

where |A| denotes the cardinality of set A.

In the active quickest detection problem under sampling
control, an algorithm consists two elements: one is the sam-
pling policies, e.g., choose the sample set O; for all time ¢
subject to (2), and the other is the decision policy that is
defined as the stopping time T with respect to the observed
data sequence.

Denote by pliLi2) and EU2) the probability measure and
expectation when change occurs at time 7 with the index set

of affected streams O¢ = {i1,42}. Denote by P, and E.
the same when there are no changes, or equivalently, when
the change occurs at time oo. Following the performance
measures for quickest detection proposed by Pollak [23], we
are interested in finding a procedure ({O;}¢=1,... 0, T) that
minimizes the worst average detection delay conditioned on
the event that we stop after the change time ¢,

DE)(T) = sup E{ ™) [T — 4T > ¢]. 3)
t>0

for any combinations of affected streams O¢ = {i1,i2} C
{1,2,---,p}, subject to the sampling control constraint in (2)
and the average run length (ARL) to false-alarm constraint

EL[T] >~ > 1. 4)
where +y is a pre-specified constant.

III. OUR PROPOSED ALGORITHM

In this section, we develop our algorithm, denoted by
TwsLs, based on the win-stay, lose-switch sampling policy.
At a high level, we propose to sample a subset of two streams
until we are confident to decide whether a change has occurred
or not. If we detect a change, then we stop and raise a global
alarm. If we decide there is no change or we have sampled
from these two streams for a long time, then we switch to
sample from another pair of two streams. We repeat these
steps until we raise an alarm.

For better presentation, the current section is divided into
three subsections: in Section III-A we define local statistics,
which will be the cornerstone of our algorithm. We propose
the win-stay, lose-switch sampling policy in Section III-B, and
the decision policy in Section III-C.

A. Local Statistics

For the sake qfv clarity, we define two sets of local moni-
toring statistics, W, and W} for the i-th local stream at time
t. The former is used to update the observed data, and the
latter also takes into account of possible switch of sampling
different data streams. .

Let us first define the local statistics W;. When the i-
th local stream is observed, we can simply update it based
on the well-known CUSUM statistics. When the ¢-th local
stream is not observed, then we treat it as missing data and
the corresponding log-likelihood-ratio of missing data as 0.

Mathematically, at each time instant ¢ = 1,2,---, the local
statistics W} can be defined recursively as
i T 9i(X})
Wi =W 1y, 1 ,
t t—1 1t L{ico,y 108 F.(X0) 5
max{W; 0}, - ifigo, O
| max{Wi,, 0} +log 435, ifi €Oy,

with the initial values Wi = 0 for all i = 1,--- , p. Here O,
is the set of local streamed that will be sampled at time ¢, and
will be defined later in subsection III-B.

Next, we define the local statistics W/ that is a modification
of W} by taking into account of possible switch of sampling



different data streams. Assume we are sampling the i ;-th
and 72 -th local streams at time ¢ and consider the values
of local statistics W,;"* and W,>*. In general, we reset all
local statistics back to 0 if we switch to different pair of two
streams (ie: Oyy1 # Oy). The only exception is when one
of VVZ1 * and Wf * is zero and the other is positive. While
it is reasonable to continue to sample the local stream with
positive W/ value and switch only the local stream with zero
value, it is highly non-trivial to mathematically analyze such
case. To get around the mathematical challenges, we propose
to take in advantage of the renewal properties of the local
CUSUM statistics by resetting the positive local statistics to
a constant § > 0. That will allow us to use the independent
structure of data to prove that the corresponding algorithm is
asymptotically optimal. Mathematically, we define

M:{

fori=1,2,---,p, where 0 > 0 is a pre-specificed constant.
In addition, at each time step, we will further re-set W, = W}
after updating its value from W;_; in (5) and before updating
the values in the time ¢ + 1.

min(ﬁg’, 9),
Wi,

if Opp1 2 Oy

6
if Opy1 = Oy ©

B. Win-Stay, Lose-Switch Sampling Policy

Here we adopt the win-stay, lose-switch sampling policy
with a twist of avoiding of sampling a local stream for too
long. On the one hand, if the local statistics VVtZ of two sampled
data streams are positive, then we should continue to sample
the same two local streams, and if one of them become zero,
then we should switch to sample new local streams. On the
other hand, if we sample two local streams for a very long time
but the corresponding local statistics are positive but small
values, then it might suggest that there are no strong evidences
for these two local streams involving changes, and we might
want to explore new local streams.

For that purpose, we propose to introduce a new variable
B(t) that indicates the accumulated time we have stayed in the
current pair of two streams {714,142} being sampled at time
instant ¢. The variable 3(¢) is updated as:

_Bt-1+1, ifOr=04
At) = { 1, otherwise

with the initial values 5(0) = 0.

Next, we introduce a new controlling parameter ¢, which
can be thought of as the maximum consecutive time we can
tolerate to stay in the same pair of two streams. In our results
below, we set ¢ = g(A) = Ce for some constant C' €
(0,00) and € € (0, 1).

Now we are ready to define our sampling policy. If if
W/ > 0,W;>" > 0 and B(t) < q(A), then we adopt the
win-stay, lose-switch sampling policy by continuing sampling
the same two local streams, e.g., O;y1 = O;. Otherwise, the
sample set O will be different from O;, as we need to avoid
sampling those local streams whose local statistic value is zero
or stays for too long. Mathematically, we randomly pick two

(7

streams {71 ¢, j2¢} from the unobservable set {1,--- ,p}\ O,
and define Oy41 as
Oy 1fo” Wf“ > 0 and B(t) < q(A)

{Jltajzt}lfVV“f W”'<00rﬁ() q(4),
{’th,jgt}lth > 0, WZ“ <0 and B(t) < q(4)
{Jres iz} IE WM < 0,1, > 0 and B(t) < g(A)
®)
C. Decision Policy
Our proposed decision policy is inspired by the SUM-
Shrinkage technique in Liu, Zhang, and Mei [17], and one
efficient way to fuse local statistics into a global decision by
considering the sum of the s-largest values of local statistics
when s out of p local streams are affected by the change.
Under our context when we are only allowed to sample
from r = 2 out of p data streams, in our algorithm, there
are at most two local statistics W' for observed local streams
whose value might be positive, as all other W} values are zero
for unobserved local streams. Hence, we propose to raise an
alarm at the stopping time

Tw$ﬁ(A)zinf{t>():w¢“w+m4*t2‘4}, )

where Oy = {i1,4,12,} points to the pair of two streams that
is sampled during time ¢.

In summary, our proposed algorithm defined by the stopping
time Twsrs(A) in (9) can be summarized as follows:

Algorithm 1 Our Proposed Algorithm Twsrs
1: Initialize O; = {1,2},5(0) = 0 and W} = 0 for i =

17 Y 22
2: for each time ¢ do
3: Sample the streams in the sample set O = {i1,¢, 92, }-
4: Update the local summary statistics W, for i =

1,---,pasin (5).
Update the accumulated time ((t) as in (7).
Update the sample set Oy at time ¢ + 1 according
to the rule in (8).
7: U@ate the local summary statistics W; as in (6) and
reset W/ =W/ fori=1,---,p
if W, + W/>" > A then
: Raise an alarm at Twgps(A4) = ¢.
10: end if
11: end for

fori=1,---,p

IV. ASYMPTOTIC OPTIMALITY

In this section, we will investigate the theoretical properties
of our proposed algorithm T = Twsrs in (9).

First, let us make some standard assumptions in the quickest
detection literature. We assume that Kullback-Leibler informa-
tion numbers are positive and finite for all : = 1,2, --- ,p:

Iheg) = [0 gg iﬂ( JdX € (0, 00),




g f) = / log fZEX 3

Moreover, we assume that the second order moments of log
likelihood ratios are bounded away from oco.

Juoe L2 x

[0 f:§X§> 2g,(X

Now we are ready to present the theoretical properties of
our proposed algorithm. The following theorem summarizes
the non-asymptotic properties of Twsrs on the ARL to false
alarm and detection delay for any threshold A > 0.

9:(X)dX € (0,00). (10)

))dX € (0, 00),

)dX € (0,00).  (11)

Theorem 1 For our proposed algorithm Tywsrs in (9), we
have

Eoo[TwsLs] > . (12)

Moreover, for any combinations of affected streams O¢ =
{i1,i2} € {1,2,--- ,p}, its detection delay satisfies

A
+C -1+,
I(giufil) + I(gi2’ flz) Op(p ) (113)

where Cy,Cy are constants depending only on the distribu-
tions, not on A.

D(il;i2)(T) <

The high-level sketch of the proof of Theorem 1 will be
postponed in the Appendix. By Theorem 1, the following
corollary establishes the second-order asymptotic optimality
properties of our proposed algorithm Twgsps in (9) in the
quickest detection framework when the average run length to
false alarm constraint v in (4) go to co.

Corollary 1 Let A = log~, then our proposed algorithm
TwsLs in (9) satisfies both the false alarm constraint in
(4) and the sampling control constraint in (2). Moreover,
Sor any combinations of affected streams Oc = {i1,i2} €
{1,2,--- ,p}, its detection delay satisfies

0 < D) (Twses) — DS < Cop(p — 1) + Ce

orc

(14)

where the parameters Cy and Cy are constants depending
only on the distributions, not on ~y. Here D(() ot i2) is the oracle
detection delay achieved by the classical CUSUM procedure
for monitoring changes in distribution of the i1-th stream and

io-th stream subject to the false alarm constraint in (4).

It is useful to add a couple of remarks to better our results.
First, while the second-order asymptotic optimality property
is proved under the scenario that the number p of local
streams is fixed, our results also hold under the scenario when
p — oo in such a way that p?> = o(logy) as v — oo,
since the relationship (14) hold for any given p. Of course,
when p? > log~, our techniques will break down, and it
remains an open problem to develop asymptotic optimality
theory. Second, our proposed algorithm can be easily extended
to the general case of s = r > 2 case, where the second-order
asymptotic optimality still holds.

V. NUMERICAL STUDIES

In this section, we report the results of Monte Carlo simu-
lations to illustrate the usefulness of our proposed algorithm
Twsws in (9). For the purpose of comparisons, we consider
the following baseline algorithm:

e The random sampling algorithm under the sampling
constraint, denoted as Trnp, Where at each time we
randomly pick up two streams, update the corresponding
local statistics as in the standard CUSUM statistics and
raise an alarm when the sum of top two local statistics is
large. Mathematically, Tgnp raise an alarm at

Trnp(A4) = inf{t : t >0, W + WP > A} (15)
where W(l) W( ) is_the top two local statistics of

{W},--- WP} with W} being defined as in (5).

In our simulations, we assume that f; = f ~ N(0,1) and
gi =g ~ N(1,1). We consider the number of streams p = 3
and a wide range of false alarm constraint v € [103,10%].
We set the controlling parameter g4 = 140, and the reset
value § = 1 for local statistics. To illustrate our asymptotic
results, for the low bounds, we report the oracle detection
delay achieved by the standard CUSUM procedure. The cor-
responding results are summarized in Figure 1.

1o

=
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=
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Average Detection Delay
=
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103 1
ARL to False-Alarm {p=3)

Fig. 1. Average detection delay as a function of ARL to false-alarm for
proposed Tyysrs(blue), Trnp(dotted black), and oracle CUSUM proce-
dure(solid black).

From Figure 1 we observe that the gap between the blue line
and the solid black line remains as a constant as the ARL to
false alarm increases from v = 103 to 10*. This is consistent
with our theoretical result that the proposed algorithm Tyysrs
is second-order asymptotically optimal when the dimension
p is fixed and v — oo. We can also observe that the gap
between the blue line and the dotted black line grows larger
as vy increases, and this shows that our proposed algorithm is
quite efficient.



APPENDIX: PROOF OF THEOREM 1

In this section we provide a high level sketch of the proof
of Theorem 1. The proof of Corollary 1 follows directly from
Theorem 1 and the classical result on the oracle detection
delay of the classical CUSUM procedures, and thus its proof
is omitted due to page limit. To highlight our main ideas,
below we focus on the homogeneous case (f; = f,g; = g for
i =1,---,p) and the constant 6 = 0, as the proof for the
non-homogeneous case and the positive 6 > 0 is similar.

In the proof of Theorem 1, the key idea is to decompose
our proposed algorithm Tywspg in (9) for the quickest change
problem into a series of sequential tests for the sequential
hypothesis testing problem, which is the reason why we
introduce the reset concept to take advantage of the renewal
properties of the local statistics. Mathematically, TwsrLs can
be written as the sum,

Twss =T1 +Ta+ -+ Ty, (16)

where each T; is a sequential test and k is a random integer-
valued variable to be defined in a moment.

First, all sequential tests T,’s are independent copies of the
following sequential test 7

T =min{71, 72,94},

where 77 indicates that a change has occurred and 75 indicates
that local statistics at some observed stream is zero. They are
defined rigorously by

T =inf{t: ¢ > 0,5} +SZ > A},
T2 = min(T2q, T2p),

Toa = inf{t:t > 0,5} <0},

Top = inf{t : t > 0,57 <0},

with S} = 37)_, log(g(X{)/f(X])(i = 1,2).

The sequential tests T,;’s are essentially applications of T
in (17) to different blocks of data over time when we are
sampling the same two streams. The random variable %k in
(16) is then defined as the first time when the sum of two log
likelihoods in the sequential test hits the upper threshold A.

Second, we need to investigate the statistical properties of T
in (17) under various probability measures. When monitoring
two local streams, there are three possible scenarios: both
are in pre-change, both are in post-change, and exactly one
is pre-change. Thus we need to investigate the properties of
the sequential test 7 under three kinds of distributions of
{X7, X712,

o {X}, X2}, ~ f, denote as Ey ; and Py ;.

o {X},X}}32, ~ g, denote as E; , and Py .

o X032~ FAXTIEL ~ g oor (X3, ~

9, {X}?}32, ~ f, denote as Ef ; and Py .

Third, we are ready to prove Theorem 1 by exploring
the relation (16) and the properties of 7 under the above-
mentioned three possible probability measures.

a7

1) False alarm property (12) in Theorem 1: note that when
there are no changes, all the sequential test T;(i =

2)

1,2,---) have the same distribution of 7" under Py ;.
By (16), we have

Eoo[Twsrs] = Ef ¢ [T] 4+ (1 — a)Ef, ¢ [T]
+(1—a)’Bpy[T]+ -

1
s
5 7.£T]

where o = Py (S% + S% > A). Since E; ¢[T] > 1, it
suffices to show that o < exp(—A). To do so, in parallel
to 71 and 73 in (17),we now consider another 75 :

Tz = inf{t: t > 0,8} + S? < 0}. (19)

Clearly 75 < 75. Also note that min(77,73) is the
standard SPRT based on the log-likelihood ratio S} +S?
of two-dimensional data (X}, X?). It is clear that
Pss(Th < T3) is the Type-I error probability of this
SPRT and we have Py (71 < T3) < exp(—A) by
the standard tool of changing measure, see Page 10 of
Siegmund [26]. Hence

a=P; (T <T2,Th < qa)

(18)

< Prp(Ti £7T2)
< Ppp(Ti <7T5)
< exp(—A),

which complete the proof of (12).

Detection delay property (13) in Theorem 1: assume that
the change occurs to the ¢;-th and i5-th streams at time
7 > 0. In this case, it is important for us to investigate
the impact of change time 7 to the detection delay.
Mathematically, besides the stopping time % in (16) that
indicates when our algorithm raises a global alarm, we
also need to define another stopping time which SPRT
block our algorithm stays when the change occurs at
time 7. That is, as in (16), we define another stopping
time v(7) via the sequential tests T;’s:

o(r)=inf{i >0, Ty +---+T; >7}. (20)

Then conditional on Tywgps > 7, the detection delay of
our proposed algorithm can be written as

TwsLs —7 = <T1+"'+Tu(7)—7)

+(Tv(7)+1 + -+ Tk) .

It remains to analyze the expectations of M; = T +
<+ Ty —7and Mz = Ty ()41 +- - -+ Ty conditional
on {TwsLs > 7}. The analysis for the conditional
expectation of My is tedious but straightforward, while
it is highly non-trivial to investigate the conditional
expectation of M, as it is possible that we are observing
two unaffected data streams but the local statistics for
these two observed unaffected local streams might be
large (though smaller than A) at time 7. Here we bypass
this difficulty through the controlling parameter ¢ = g4
which makes sure that the local statistics for these two
observed unaffected local streams cannot be too large.
The detailed arguments will be presented elsewhere due
to page limits.
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