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Abstract—In machine learning and statistical data analysis, we
often run into objective function that is a summation: the number
of terms in the summation possibly is equal to the sample size,
which can be enormous. In such a setting, the stochastic mirror
descent (SMD) algorithm is a numerically efficient method—each
iteration involving a very small subset of the data. The variance
reduction version of SMD (VRSMD) can further improve SMD
by inducing faster convergence. On the other hand, algorithms
such as gradient descent and stochastic gradient descent have the
implicit regularization property that leads to better performance
in terms of the generalization errors. Little is known on whether
such a property holds for VRSMD. We prove here that the
discrete VRSMD estimator sequence converges to the minimum
mirror interpolant in the linear regression. This establishes the
implicit regularization property for VRSMD. As an application
of the above result, we derive a model estimation accuracy result
in the setting when the true model is sparse. We use numerical
examples to illustrate the empirical power of VRSMD.

Index Terms—implicit regularization, variance reduction,
stochastic mirror descent, overparameterization.

I. INTRODUCTION

In statistics and machine learning, it is common to optimize
an objective function that is a finite-sum. SMD efficiently
optimizes such an objective by using a subset of data to do
one step update of the variable/parameter. Further adopting
the variance reduction technique to SMD, we get the VRSMD
algorithm that enjoys fast convergence [13, 3].

The implicit regularization is a relatively new concept [7]
that explains why a result of an algorithm generalizes well
in some overparameterized models [7, 9]. It refers to the fact
that an algorithm can automatically select a minimum norm
solution, which is not explicitly induced by the objective func-
tion. There are works on implicit regularization for Gradient
Descent [18, 21, 10, 4], Stochastic Gradient Descent [1, 6,
17, 8], and SMD [5]. Given the computational advantage of
VRSMD compared to the algorithms above, it would be better
if VRSMD also has the useful implicit regularization property.

From technical point of view, our paper contains two results:

o In linear regression (including underfitting and overfit-

ting), we show that the solution sequence of VRSMD
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converges to the minimum mirror interpolant, which is
the implicit regularization property of VRSMD, and we
also specify the convergence rate.

« In sparse regression, by choosing a proper mirror map,
we show that the implicit regularization estimator finds
the sparse true parameter with a small error. Moreover,
compared with the deterministic algorithms in [18, 21],
our algorithm is equally good in estimating a sparse truth
while being computationally faster, as supported by our
experiments.

From the application point of view, our result shows that
the Mirror Descent and its variants are useful to explore the
low dimensional geometric structure from high dimensional
data, which leads to nice generalization properties.

Notation. The following notations are used throughout this
paper. For a matrix X € R™*P, we denote by col(X) :=
{u € R" : 3v € R?,u = Xv} the column space of X,
and we denote by N'(X) := {v € RP : Xv = 0} the null
space of X. For a vector v € R, we use the definition of
¢, norm of v that ||v|, = (3, |v;[P)1/P for p > 1 and we
denote the number of non-zero elements in v as ||v||o. For a
subset of indexes I C {1,...,p}, we define v; := (v;)icr,
and denote the cardinality of I as |I|. For a set X C R?, we
define Pyv = argmin,cy [|u — v||2. For two non-negative-
valued functions a(z) and b(x), we denote a(z) ~ O(b(z)) if
there exists an absolute constant C' such that a(z) < Cb(z);
and we denote a(x) ~ O(b(x)) if there are absolute constants
¢, C such that cb(z) < a < Cb(z).

Paper Organization. The rest of the paper is organized as
follows. In Section II, we describe our problem formulation
and algorithm. Section III states the main theory on the
implicit regularization. Section IV develops insight into the
implicit regularization and establishes the sparse recovery
property. Section V supports the theory on implicit regular-
ization by simulations and experiments. In Section VI, we
discuss the finding of our work and some future directions.
Due to page limit, we only include necessary description
of experiment and proof sketch. Full proofs and experiment
details can be found in our arXiv paper [14].

II. FORMULATION AND ALGORITHM

To better present the material, we split this section into two
subsections. In Subsection II-A we formulate the optimization
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problem motivated from linear regression. In Subsection II-B,
we present the Variance Reduction Stochastic Mirror Descent
(VRSMD) algorithm for solving such an optimization prob-
lem.

A. Formulation

Assume we observe data pairs {(x;,y;) € RP x R},
the goal is to predict the response y based on x. Under
the empirical risk minimization framework, we consider the
general optimization problem of the form

Zfz

and we shorten f;(3; (x;,v:)) as f;(3) to simplify the nota-
tion.

As a concrete example, for the linear regression model, the
classical least squares method is to find coefficient 3 that
minimizes the objective function
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where we denote X = ,Xp]T € R™P, and y =
[yla tee 7yn]T e R™

When problem (2) has non-unique solutions, it is important
yet nontrivial to find a solution that has nice generalization
property. It is well known that when running Gradient Descent
algorithm with initialization By = 0 on (2), the corresponding
solution is the minimal /5 norm solution among all solutions
of (2), see [20]. Also, the properties of SMD are studied in [5].
It is unknown what happens to the solution if we run variants
of SMD, for example, variance reduced SMD.

[Xh...

B. VRSMD Algorithm

Let us now present the main idea of the variance reduced
stochastic mirror descent (VRSMD) algorithm as follows.

To understand why we need variance reduction, consider
the Stochastic Mirror Descent(SMD) algorithm using a strictly
convex and differentiable mirror map #(-). At step ¢, the SMD
updates 3,1 such that

Vi (Biy1) = VY(Be) — eV fi, (Br),

where i; is randomly sampled from {1,...,n}. Now the term
Vfi,(8e) has E[V f;,(8)] = VF(B;), so SMD has unbiased
update compared to Mirror Descent, where the update is
Vu(Bir1) = Vu(B:) — m:VF(B;). However, in general
Var[V fi,(8:)] # 0 for any B, so we need 7 — 0, which
may lead to slow convergence.

Variance reduction addresses the issues above by replacing
V fi,(B;) with term A; such that

o E[A] = E[V/;,(B:)] to keep unbiased update;

e Var[A4;] < Var[V f;,(8:)] to control variance.
One choice of A; is Ay = Vf;,(8:) — By + E[B;], where
B, and Vf;,(B;) are positively correlated with correla-
tion coefficient » > 0.5 and Var[B:] =~ Var[Vf;, (8:)]-
For this A: one can check that E[A;] = E[Vf;,(8:)]

and Var[4,] = Var[V/f,(8:) — B = Var[Vf, (8] —
2r\/Var[V fi,(B:)] Var[B;]+ Var[B,] < Var[V f;, (8;)]. For a
proper B; such that Var(A;) 2% 0, the algorithm converges
for a fixed n.

For illustration purpose, we use the variance reduction
technique in [12] to get the VRSMD Algorithm 1. However,
one should note that this framework applies to other variance
reduction methods such as SARAH [15] and SPIDER [11].

Algorithm 1: Variance Reduced Stochastic Mirror
Descent (VRSMD)

Input: An objective function F(-) = 23" | fi(-), and
a strictly convex and differentiable mirror map (-);

Initialization: Initialize 3°. Choose the step-size 7,
outer iteration number S, inner iteration number m.

Denote the estimator at ¢th inner iteration of sth outer

iteration as ;. Set 8] = 3%, = B
for Outer iteration s = 1,...,S do
Calculate VF(3°~1);
for Inner iteration t = 1,...,m do

Randomly sample i; from {1,...,n}, calculate

vi = Vi, (B)) = Vi, (B + VF(B ),
3
and update 3{, ; such that

Vip(Biy1) = Vip(B7) —nvi. “4)

Set 3% to be a uniform random sample from
{Bi,.... B}

Option I: Set ﬁ‘”’l =0Br11s

Option II: Set B! = 3%;

Optlon I: Output 3, chosen uniformly random from
{8 s -

Option II: Output 3, = 3°.

Remark 1. We note the complexity of VRSMD as follows:
The total number of stochastic-first-order calls (i.e. SFO
complexity) of Algorithm 1 is O(nS+mS). A popular choice
of the inner loop number m is ©(n), which leads to O(1)
SFO complexity per inner loop.

The variance reduction component of VRSMD is v{ in (3).
Note that it is equivalent to the variance reduction scheme we
discussed above by taking B, = V f;, (8°!). The conditions
we list there on B; hold when 3; and BSil are close, which
happens by taking moderate values of the inner iteration
number m and the step-size 7).

We show that the VRSMD algorithm is a generalization
of the SVRG algorithm in [12, 16]: For the special case of

U(-) = 2|| 2, we have V)(3) = 3, then (3) updates B
as:

/3?+1 = ﬁf
which is the SVRG update, and VRSMD reduces to SVRG.

s
— NV,



III. IMPLICIT REGULARIZATION

In this section, we present the implicit regularization prop-
erty of the VRSMD solution. To do so, it is necessary to first
show that the VRSMD converges.

To begin with, we introduce some definitions that will be
useful in our theory.

Definition 1 (L-smoothness). f is L-smooth with respect to
| - || norm if there exists a constant L > O such that

IV f() = Vf(w)[« < Llu—wl,Vu,w,
where || - ||« := maxy.,=1(y, ) is the dual norm of || - ||.

Definition 2 (a-strongly convex). f is a-strongly convex with
respect to || - || norm if there exists a constant o > 0 such that

f(u) > f(w) +Viw) (u—w)+ %Hu —w|? Vu, w.

Definition 3 (Quadratic growth (QG)). Let X be the set of all

minimizers of f. f satisfies QG condition w.rt. || - || if
Slu—Prul? < f(u) - f(Pyu).va. ()

Definition 4 (e-solution). For the optimization problem
Opt = min{f(z) : g;(z) < 0,1 < i <m}. (6)

Ze € B is called an e-solution to (6) if
f(xe) —Opt <,
gi(ze) <e1<i<m.

Definition 5 (Restricted eigenvalue (RE)). X satisfies (s,)-
RE condition if for any (3 such that ||3||o < s we have

L) xBl3
e 2
18113
Definition 6 (s-good). A matrix X,,x, is s-good if x < %

is such that Yu € N(X) C R? and VI C {1,...,p} with
|I| <'s, we have

arlly < &llulf.
Next, let us present the convergence result of VRSMD:

Proposition 1. Assume F(-) = 13" | fi() has every f;(-)
convex and L-smooth w.r.t. an arbitrary norm || - ||, and (")
is a-strongly convex w.rt. || - ||. Denote 3* = arg min F'(-).

(a) Run Option I of Algorithm I on F with n < 577, then
we have

E[F(/Ga) - F(/G*)] < mx
* 20 12L772m 20 * (7)
Dy %) + ZEL () - P8

where T = m - S, and Dy(8*,8°) = (8*) — ¢(8°) —
<V¢(BO), B — BO> is the Bregman divergence.

(b) If we further assume that F(-) satisfies the QG condition
in (5) with constant u, and that 1 (-) is {-smooth, all w.rt. ||-

>

and also suppose that we run Option II of Algorithm 1 with
a large enough m such that

_120n* /a4 €/ (mp)
 n—120n2/a
then the VRSMD has a stronger linear convergence rate:
E[F(8.) — F(87)] < 7°[F(8°) — F(8")]. ©)

Remark 2. We analyze the computational complexity implied

<1, (®)

by Proposition 1: In (a), let m = n and take 1 = 157, then
we have
96L
E[F(8.) — F(B8Y)] < ﬁx
* 20 an 20\ *
Dy (8" 8°) + 137 (F(B") = F(8")]

In this case, the number of gradient computations for achiev-

ing an e-solution is O(% + 2.

Remark 3. The assumption in (b) is moderate. Take m =
%LZ and 1 = 357, we have 7 < 1. This choice of m does
not violate the O(1) SFO comlexity per iteration — take a
good mirror map so that £/a = O(1), and consider the most
indicative case [12] where the condition number L/u = n,
we have m = O(n).

Our results in Proposition 1 are consistent with those for
SVRG. In part (a), the O(1/T') convergence rate matches the
rate in [16]; in part (b), the linear rate matches the rate in
[12], while we reduce their strong convexity assumption to
quadratic growth.

Finally, we are ready to present our main result on im-
plicit regularization. In the following theorem, we show that
VRSMD finds an e-solution of the minimum mirror interpo-
lation problem.

Theorem 1. For the objective function in (2), assume 1 (3) is
a-strongly convex w.rt. || - ||2, denote L = max; ||x;||3 and let
Sm be the smallest nonzero singular value of X. The VRSMD
algorithm converges to the minimum mirror map interpolant

BY := argming ()
st. F(B) = I%i,nF(,B’).

We describe the convergence by the following e-solution:
(a) Run Option I of Algorithm I with choice n < 537 and
initialization 3° such that Vi)(3°) € col(XT), assume that
the output 3% satisfies ||V (B%)||2 < B, then we will have
B o
E ay _ O <« — =

Sm

(10)

) ' ) Loan
200, (%, 8%) + 22U (£ - (%))

which describes how far is the objective value at 3% away
from the optimal solution to (10). Moreover, we have

E[F(8) — F(B8Y)] < WX

[Dw(/ﬂ,éo) . F(ﬁw))] -



which characterizes how much does (3% violates the constraints
of (10). They together show that the VRSMD algorithm finds
an e-solution to (10) for T = O(1 + %).

(b) Further assume that 1(-) is {-smooth w.rt. || - |2 and
12Ln*/a + ¢n/(ms?,)
"= e < 1. 13
g n—12Ln%/a < (13)

Run Option II of Algorithm 1, we can show that:

)5/2y/2n -
Efu(e") - v(8")) < ZEV2 i) gy
E[F(8") - F(8")] < ()° (F(8") - F(8Y)). (4

Remark 4. We need to point out that the assumptions in
Theorem 1 are moderate. For instance, for the assumption
that Vp(3°) € col(XT), we can take 3° = (V)= (XTa)
for any a. One feasible choice is a = 0, resulting in
By = arg mingegr Y(B). Since v is strongly convex, this
minimizer is not hard to calculate, for example: we have

() = |- |2 or () = |- |2 for g > 1 = argmin () =

4(B) = BT HP for a positive definite H = argmin)(-) =
0;
$(B) = >20_, Bilog(B:) — Bi = argminy(-) =

Remark 5. As for the assumption in (b), we can take m =
UL and = 52 1o get 7' = (1 + 108/110)/2 < 1.
Take a good mirror map such that (/o = O(1) and assume
L/s2, = O(1), we further have m = ©(n), so the algorithm
can be implemented efficiently.

It is useful to provide a high level understanding of Theorem
1. It implies that the discrete update of the VRSMD Algorithm
on the unregularized objective (2) is an e-solution of the
regularized optimization problem (10), so it is an implicit
regularization result. Furthermore, since (10) minimizes a
strictly convex function over a convex set, the solution will be
unique, thus the estimator from VRSMD must converge to this
unique solution. The finding in Theorem 1 can be extended to
other variants of SMD, which we omit here due to page limit.

IV. FURTHER UNDERSTANDING OF IMPLICIT
REGULARIZATION

In this section, we provide a deeper understanding of our
theoretical results in the previous section by analyzing two
special mirror maps for linear regression model: one is 1 (3) =
1B3|2/2, the other is (3) = ||ﬂHﬂg for small § > 0.

Let us first consider ¢ (-) = ||-||3/2, where VRSMD reduces
to SVRG algorithm in [12]. In this case, we further show that
|3%—B%||3 linearly converges to 0, where 3 is the minimum
{5 norm solution 8% = (XTX)*XTy = Xty:

Corollary 1. Denote L = max; [|x; 2 take Y(-) = | - |13/2,
let 3°=p3% =0, n, =n < 1/(24L), and assume
12Ln? +n/(ms?))
"= e < 1. 15
’ n — 12Ln? (15)
Run Option II of Algorithm 1 on (2), we have
1m\S
Blg - xty13 < Tl 1 Pacoyll a6

Next, let us consider the mirror map ¥ (3) = Hﬁ||ﬁ§ for

a small 6 > 0 in VRSMD, which leads to a sparse solution.
Assume that ||37]|oc < K for a large enough K throughout
the updates, we then have ¢(3;) is Kf‘s)‘;—strongly convex
and ||V (8)|2 < \/p(146)K°. By Theorem 1 we have the
estimator sequence converges to the penalized solution

B = argming {||8]}13 : X3 =
1+6 _

This choice of mirror map has lims o [|3;75 = [|8]l1 and
the solution 30 := argming{[|B]l; : XB = Peoix)y} 1s
sparse. Thus we expect that for small §, 3% is close to ()
and recovers a sparse true parameter.

We now provide a rigorous argument for the sparse recovery.
Assume that the data is generated by y = X3° for a sparse
3°. In the following theorem we have 3(%) accurately recovers
(3° when the design matrix X satisfies some proper conditions.

Peoix)y}- (17)

Theorem 2 (Sparse Recovery). Under the sparse setting
defined above, denote s = ||3°||o. Assume that the design
matrix X satisfies (s,v)-RE condition and is s-good with
constant Kk < % For any € > 0, if we choose

log (1 i 5)

0 < (18)
log p — log (1 + 1\/%‘&‘”?6)
we have
18— B°|l < &. (19)

By Theorem 2, the estimator 3(°) estimates the sparse truth
with a small error . In this way, VRSMD algorithm 1 achieves
near sparse recovery via implicit regularization.

V. NUMERICAL EXPERIMENT

Simulation. We generate data by a sparse model as follows:
Set n = 1000, p = 5000 > n for the design matrix X. Simulate
X = SY2W where the entries of W are i.i.d. N(0,1) and
¥ = 0.5«diag(1,)+0.5% 1, x,. The true parameter 3° € RP
has its first 30 entries sampled from i.i.d. N(0,1) and the rest
entries set to 0. Compute responses y = X 3°.

We then run VRSMD on objective function (2) for this
simulated X and y. For a range of §, set the mirror map as
¥(-) = || - [[}15, and run VRSMD with initialization 3° = 0,
step-size = 0.0002, outer iteration number 50 and inner
iteration number 1000 = n. The result is in Fig. 1.

Experiment on RNA dataset. We use the gene expression
cancer RNA-Seq data set! for experiment. The data consists
of 801 observations, each of dimension 20,531. Randomly
split the data into 600 training data and 201 testing data. Run
VRSMD algorithm on training data using mirror function ¢ =
-]} where initialization 3% = 0, step-size 17 = 0.015, inner
iteration number 400 and outer iteration number determined by
5-fold cross validation (i.e. early stopping). We also compare
VRSMD with the Hadamard GD [21, 18], which also has
implicit regularization for sparsity. The result is in Fig. 2.

Thttps://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq
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Fig. 1: Run VRSMD Algorithm on simulated noiseless data.
(a) the squared error objective function converges quickly to
0. In (b), the ¢; estimation error converges to smaller value for
smaller §, indicating the nearly exact recovery of the sparse
signal, which supports Theorem 2. In (c), for ¢(-) = || - |[1:92,
the VRSMD estimator converges to the true parameter values.
In (d), for a smaller J, the convergence value of VRSMD

estimator is closer to ground truth.

VI. CONCLUSIONS AND FUTURE RESEARCH

Our work analyzes the implicit regularization property of
VRSMD, which covers both underfitting and overfitting cases
in linear regression. In particular, our theorem shows that the
implicit regularization property can help VRSMD find a sparse
ground truth with a small error. Our experiments illustrate
that the VRSMD is computationally efficient compared to the
Hadamard GD algorithm that has implicit regularization for
sparsity [21], thanks to the stochastic nature of VRSMD.

We discuss some future directions of our research. First,
it is useful to study the implicit regularization properties of
the VRSMD in the nonEuclidean setup. For example, one
can consider the generalized linear model (GLM) where the
data lies in a Riemannian manifold and mirror descent and/or
natural gradient descent are efficient. Our analysis can be
extended from the linear regression model to the GLM case.

Second, it is interesting to investigate the minimax property
of the VRSMD estimator. We see from our experiment that
VRSMD with early stopping has comparable prediction per-
formance to Hadamard GD that is minimax optimal for sparse
regression [21, 18]. This leads to the open question of how
to select a good mirror map and an optimal stopping time
in VRSMD (or variants of VRSMD) such that the resulting
estimator is minimax optimal and thus generalizes well.

Third, one can explore the implicit regularization properties
of other variants of SMD. For example, one can consider the
accelerated version of VRSMD as the Katyusha algorithm

(a) Solution path of B1.100 for 6 = 0.1

0.002

0.001 — B
0.000| m— s — -
—0.001 Early stopping time
—0.002
-0.003
-0.004
-0.005

0 10 20 30 40 50 60

# outer loop

Prediction error
0055 (c) Prediction erro

(b) Training time

220
200 F

.0050

")
2180 .0045
]
o
&
160 .0040
140 .0035
GD SMD GD SMD

Fig. 2: Run VRSMD Algorithm on RNA dataset. In (a), we
plot the solution path of the first 100 entries of 3, and it
shows that the early stopped estimator is sparse. In (b) and
(c), we compare the performance of VRSMD with Hadamard
GD. Plot (b) shows that VRSMD trains faster than Hadamard
GD, which is tested significant by one-sided Wilcoxon signed-
rank test (p-value = 9.77 x 10™%). Plot (c) shows that the two
algorithms have same prediction error on testing data, which
we test by two-sided Wilcoxon signed-rank test (p-value =
0.56).

in [2]. Such an algorithm is well studies in optimization
literature, and it has a better convergence rate that can match
the theoretical optimum. We hypothesize that it also enjoys
the implicit regularization property, but the proof is out of the
scope of this paper.

Finally, our results might provide a better understanding of
deep neural networks. By [19], Gradient Descent on Hadamard
reparameterized linear regression, which is related to a neural
network with multiple layers, can be approximated by Mirror
Descent on original parameters. This point of view allows
us to study a neural network from the VRSMD perspective
and helps to explain why the Gradient Descent gives a sparse
estimator in some deep learning models.

APPENDIX: PROOF SKETCH FOR THEOREM 1

It is easy to check that v§ € col (X7'). Then by V¢(3°) €
col(XT), we immediately have Vi (3%) € col (X*). Com-
bine this key observation with the fact that

(B — H(BY) < (Vu(8°), 8" - BY),
we have
E[w(8%) — v(8")] < E(Ve(8°), ° - B¥)
<BE|[Pxr) (8" ~ 8%z < 1 \/EIXB" — X573

_ B fanE(F(8) - F(8Y)).

Sm

(20)

Applying Proposition 1 to (20), we have the desired inequal-
ities.
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