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Abstract: Science writing skills depend on a student’s ability to co-ordinate conceptual 
understanding of science with the ability to articulate ideas independently, and to distinguish 
between gradations of importance in ideas. Real-time scaffolding of student writing during and 
immediately after the writing process could ease the cognitive burden of learning to co-ordinate 
these skills and enhance student learning of science. This paper presents a design process for 
automated support of real-time scaffolding of middle school students’ science explanations. We 
describe our adaptation of an existing tool for automatic content assessment to align more 
closely with a rubric, and our reliance on data mining of historical examples of middle school 
science writing. On a reserved test set of semi-synthetic examples of science explanations, the 
modified tool demonstrated high correlation with the manual rubric. We conclude the tool can 
support a wide range of design options for customized student feedback in real time.  
 

Introduction 
Constructing evidence-based scientific explanations is an integral part of science learning (Berland & Reiser, 
2009; Krajcik et al., 2014), as emphasized in the Next Generation Science Standards (NGSS; NGSS Lead States, 
2013). However, students often write incomplete, non-causal accounts of scientific phenomena (Seah, 2016), and 
find it difficult to use data appropriately (Sandoval & Millwood, 2005). With technological advances in Natural 
Language Processing (NLP), recent research has integrated automated scoring of and adaptive feedback on 
scientific explanations (Gerard et al., 2019; Liu et al., 2016; Riordan et al., 2020; Tansomboon et al., 2017), and 
on essays in other genres (Zhang et al., 2019), and across languages (Toma et al., 2021). Gerard, Kidron, and Linn 
(2019) used c-raterML to score 6th graders’ scientific explanations in their web-based inquiry science environment 
and provide feedback for their explanation revisions. They designed automated feedback as well as associated 
guidance from the teacher to encourage students to use evidence in describing relations among scientific ideas. 
This work exemplifies real-time feedback for students and teachers. Previous studies have developed tools to 
assess students' scientific writing based on the inclusion of concepts or terms (Liu et al., 2016). Summarization 
Integrated Development Environment (SIDE) combines NLP and machine learning algorithms to score students' 
explanations based on the identification of scientific concepts in the responses (Ha et al., 2011).  Similar tools 
include SPSS Text Analysis (SPSSTA) which identifies terms and patterns within students' writing. While these 
latter systems achieve high score correlations, and sometimes aim for general feedback, they do not provide real-
time feedback on specific content elements within science explanation.   

In the present study, we aim to create opportunities for students to develop scientific explanations while 
working on a roller coaster design challenge. We aim to provide real-time feedback that scaffolds students’ written 
explanations of science concepts and relationships (National Research Council, 2012, p. 52). 

 
An electronic notebook for classroom use  
Building on previous implementations of our middle school physics curriculum using paper notebooks (Martin et 
al., 2019), we have been developing a digital notebook to support students’ learning. A digital notebook has 
multiple advantages over a traditional paper version, such as the ability for students to submit their responses for 
immediate feedback, use of text mining to provide students with ongoing support, and allowing students to easily 
revisit previous work. A key feature of the notebook that we are developing is that it can pre-process students’ 
text. Because the digital notebook is accessible through a web browser, students will be able to utilize common 
features such as spell-checking and grammar-checking, which will make their writing more readable to the 
teacher, and ensure clean input to an NLP system to support real-time scaffolding. The digital notebook will allow 



 

students an effortless way to reference data, which in turn makes it trivial to remove data from their responses or 
mark the sentences as being too incomplete for automated feedback. 

Through the notebook, students will be given simple feedback based on a combination of data mining 
and NLP techniques. In our first iteration, data mining will support feedback to students to encourage uniform 
usage of equations, and to track frequency of key words in their writing. An adaptation of existing content-
assessment software (PyrEval) will support feedback on students’ written use of science ideas. 

 
Adaptation of PyrEval for real-time scaffolding  
PyrEval is a freely available software tool with source code originally designed to assess the content of paragraph-
length summaries of source texts, e.g., for reading comprehension (Gao et al., 2019). Characteristics of PyrEval 
that are a good fit for real-time scaffolding of students' writing of short passages to a prompt are: 

1. PyrEval is designed to assess each idea in a student passage for the importance of the idea. 
2. It is a lightweight NLP tool that can be used "off-the-shelf" (no domain-specific training is required). 
3. It produces quantitative scores about importance of ideas, and qualitative analyses of specific ideas. 

The original PyrEval creates a model of content importance from reference passages written by four to five 
experts, or by more advanced students. Importance emerges from the frequency of the idea across the references. 
Emergence, however, does not fit with our objective here, which aim for students to learn specific ideas defined 
in the curriculum. We modified PyrEval in two ways to address this objective. First, we developed a method to 
curate a predefined content model based on the curriculum. Second, we adapted the automated analysis to account 
for features of middle school writing, and to improve the accuracy of the qualitative results.  

One significant challenge we faced was to adapt the pre-existing software in the absence of reference 
texts or a set of examples of the range of inputs the software should handle. In the following subsection, we 
explain how we mined an existing dataset of passages from middle school students who had a different but related 
curriculum to synthesize examples like those we expect to see in our new curriculum. We also describe an essay 
rubric we developed for the new curriculum. The rubric was used both to guide the curation of a new type of 
PyrEval content model, and to serve as a benchmark against which to measure PyrEval results. Later we discuss 
the dilemma that arises when we shift PyrEval from reliance on an emergent "extensional" definition of content 
and content importance to also incorporate an "intensional" definition constituted by a rubric.  
 
A new rubric with interrater reliability on a semi-synthesized dataset  
For this study, we revised historical middle school students’ responses to curate data which aligns with our new 
roller coaster curriculum, by selecting or rephrasing observed statements. We developed a rubric to assess 
students’ writing in the curated essays in line with our expectations for the students. Each time an essay 
incorporated an explanation of a relevant science concept or relationship between concepts in their essay, it 
received one point (see examples in Table 1). A total score for each essay was calculated by adding up the total 
points received. A higher total score indicated that an essay included many important ideas, whereas a score of 
zero indicated an absence of relevant ideas. Two researchers independently coded a random sample of 13% of the 
entire sample of 76 essays and achieved a Cohen’s Kappa of 0.94, which is considered almost perfect agreement 
(Stemler, 2001). One of these researchers then coded the remainder of the data. 

 
Table 1 
Example of types of concepts and relationships that received one point based on the rubric.  

Example Concepts  Example Relationships 
• "Potential energy is the amount of stored energy an 
object has based on it’s position." 

• “...the Law of Conservation of Energy...states that 
energy can’t be created or destroyed in a system." 

 • "the higher the initial drop, the more KE 
(kinetic energy) you will have." 

• "The more mass you have, the more 
potential energy you will have." 

 
Challenges for modifications to PyrEval 
PyrEval automatically assesses content by uniquely matching ideas in a student passage to a pyramid model of 
weighted content units (CUs), and normalizing the summed weights of the matched CUs. PyrEval achieves this 
through a three-stage pipeline, where the input is a set of reference passages, and student passages (Gao et al., 
2019). A pre-processing module decomposes complex sentences into clauses using a rule-based parser and 
converts the output clauses into semantic vectors. In the second stage, EDUA, a restricted set partition algorithm, 
groups similar vectors from the reference passages into CUs. In this work, we use EDUA in a new way, to provide 
data for manual curation of a content model of pre-defined CUs that match a rubric. The third part of the pipeline 



 

applies WMIN, a greedy maximal independent set algorithm (Sakai et al., 2003), to match students’ ideas to CUs. 
For our present work, we investigated which WMIN configurations would perform best. 
 
Table 2 
Two distinct configurations of Modified PyrEval from the top 10% of the grid search with the baseline scores the 
original configuration, and the corresponding correlations. Here, APCS metric refers to the average pairwise 
cosine similarity, which is the average of the cosine similarity scores of each contributor to the CU with the clause 
being matched. StDev metric accounts for the standard deviation of the APCS while product metric also accounts 
for the weight of the CU being matched. These are more coarse grained than just the cosine similarity scores. 

PyrEval Configuration Set B Set C 
(Baseline) SCVP, MinSegLen=1, k=2, s=APCS, m=APCS 0.63 0.78 

                     SCVP, MinSegLen=5, k=2, s=StDev, m=APCS .. 0.72 0.85 
                    FDCP, MinSegLen=3, k=4, s=StDev, m=product 0.70 0.83 

 
Modifications of PyrEval 
Three objectives guided our initial experiments to modify PyrEval. The first was to curate a new type of pyramid 
to achieve a balance between the kind it was originally designed to use and the manual rubric. Our second 
objective was to investigate how much sentence decomposition would be appropriate for middle school writers. 
Our past work applied PyrEval to many samples of college writing, achieving high correlations with manual 
rubrics, but impressionistic comparison of college-level writing with our samples of middle school writing 
suggested that the latter had more repetition within sentences, and simpler structure. Our third objective was to 
improve the precision of the automated matching of student statements to pyramid CUs by changing the WMIN 
scoring parameters. These objectives are highly interdependent, therefore we investigated them in parallel. For 
example, if a repetitive sentence is decomposed into two segments, and an accurately matching CU is found for 
one of them,  the second segment is likely to get assigned to a CU it does not match as well.  

We divided our 76 semi-synthetic essays into three subsets. Subset A (N=10) was used for automatic 
creation of a variety of pyramid content models that we could mine to populate a manually curated 
pyramid. Subset B (N=46) was used for tuning PyrEval to middle school science writing, and for refining the 
curated pyramid. Subset C (N=20) was held in reserve for our final testing of the tuned parameters. 

Two features of an emergent pyramid were important to retain. In the original content models, CUs have 
a Zipfian distribution (Zipf, 1936), which leads to the so-called eighty-twenty rule where twenty percent of distinct 
item types (here, statements within CUs or essays) account for eighty percent of the observed frequency (i.e., of 
the same idea stated in different essays), along with a long-tailed distribution of items (i.e., simple clauses) that 
occur rarely. Pilot experiments indicated that preserving this Zipfian distribution of CUs was important for 
PyrEval’s scoring algorithm (WMIN) to accurately match student statements to the most similar CU, or to no CU. 
Instead of hard similarity thresholds, WMIN tries to optimize the overall quality of matches. The second important 
feature of our curated pyramid was to find n wordings for each important curriculum idea. 

By using subset A to automatically generate 10 pyramids, we had multiple data points for defining the 
distribution of CUs of each weight. We designed the curated pyramid to have the same general distribution. 
Manual curation of high weight CUs (weights 3-5) was fairly straightforward. We aimed for four weight 5 and 
four weight 4 CUs, corresponding to the most important relational components of the rubric. To create these, we 
mined the pyramids that were automatically generated from set A, selecting relevant paraphrases to achieve the 
desired weight. We found it was also very important to mine the student data for realistic low-weight ideas. 

We varied five PyrEval parameters and functions with a different range of values for 675 configurations. 
We aimed first for high correlation of the scores assigned to the 46 essays in Set B by PyrEval with those assigned 
by the raters using the rubric. We also inspected random samples of matches between student segments and model 
CUs to assess the overall quality of the matches as poor, moderate, or good. We identified two configurations 
representing fairly distinct hypotheses about how to adjust PyrEval for middle school writing, based on three 
WMIN parameters (top k matches, node sorting metric (s), and match weighting metric (m). The minimum 
number of words in a segment resulting from decomposition (MinSegLen) was also changed to account for the 
high proportion of short segments in middle school writing.  

 After choosing two WMIN configurations that performed well on Set B, and that represented different 
expectations about middle school writing, we tested these configurations on set C. Table 2 shows the two best 
configurations along with a baseline configuration applied in previous work. Correlations with the rubric are 
shown for subsets B (development set) and C (test set).  The large difference in correlation between sets B and C 
seems to be due to a few outliers in Set B where a repetitive sentence matched more distinct ideas in the model 



 

that it should have; dropping two outliers raises the Set B correlation to 0.78. Our future work to design custom 
feedback will investigate both WMIN configurations shown in Table 2. 

 
Conclusion 
As modified for a middle school roller coaster curriculum, PyrEval scores based on our curated pyramid model 
correlate well with manual scores from our highly reliable rubric. In addition, PyrEval provides a qualitative trace 
of how it computes its scores, which provides us with ratings on each sentence in a student’s passage. We have 
demonstrated that PyrEval can utilize a predefined content model based on the curriculum and have developed a 
methodology to construct the content models we will need for the curriculum under design. 
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