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Abstract. In principle, educators can use writing to scaffold students’
understanding of increasingly complex science ideas. In practice, forma-
tive assessment of students’ science writing is very labor intensive. We
present PyrEval+CR, an automated tool for formative assessment of
middle school students’ science essays. It identifies each idea in a stu-
dent’s science essay, and its importance in the curriculum.
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1 Introduction

Secondary school science teachers face multiple demands in scaffolding students’
learning of science ideas and science practices. Written explanation of science
ideas is an important science practice, as well as a mechanism to assess stu-
dents’ understanding. However, formative assessment of writing is time consum-
ing for teachers. This paper presents a natural language processing application
for formative assessment of middle school students’ physics essays on energy. It
identifies the ideas they express, and the relative importance of these ideas.
Here we first briefly describe current automated support to scaffold science
writing. Then we present PyrEval+CR, which extends PyrEval [3], an efficient
tool originally developed to assess the content of summaries of the main ideas of
source texts.? PyrEval+CR has a lightweight, modular design that can be easily
adapted to new assignments or writing characteristics. It identifies propositions
(statements) expressed in writing, and provides both quantitative and qualita-
tive outputs to support feedback to students and teachers. Section 4 explains
how we treat assessment as an optimization problem to match student proposi-
tions to propositions in a computable rubric (CR). To evaluate its performance
before testing it in the classroom, we constructed a dataset mined from histori-
cal essays written by middle school students who used a similar curriculum. An
experiment testing many configurations of PyrEval+CR on this data resulted in
many settings that correlate well with a highly reliable manual assessment.

3 PyrEval4-CR is available at https://github.com/psunlpgroup/PyrEvalv2.
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2 Automated Tools for Scaffolding Science Writing Skills

Previous work points to the potential for automated feedback on student science
writing through identification of specific concepts and rubric components. Good
agreement between human and automated output has been found in biology
explanations from different institutions [6], on middle school explanations of
why sugar dissolves in water [7], and on rubric elements for high school biology
essays in Hebrew [1]. Below, we present high agreement of our tool with manual
rubric scores for the modified middle school essays mentioned above.

Integration of formative assessment tools during science instruction is less
well-studied. Teachers who used automated guidance in the WISE environment
to help students revise science explanations found that teachers pursued a variety
of guidance strategies [10]. A later case study of one teacher’s use of automati-
cally generated guidance found the teacher used multiple strategies, and students
who revised made more substantial revisions [4]. We have begun a study to ap-
ply PyrEval+CR in nearly three dozen middle school classrooms to explore how
teachers and students will utilize feedback in classroom settings.

3 PyrEval4+CR Overview

PyrEval derives an assessment standard called a pyramid from several reference
summaries written by experts. All propositions from the reference summaries
are ranked for importance by the number of reference summaries each occurs in.
PyrEval4+CR relies on a computable rubric with the same form as a pyramid, but
derived from a manual rubric. Here we describe the pre-processing that converts
an essay to embeddings, and the computable rubric.

The first pre-processing step uses a special-purpose decomposition parser
(DP) to decompose complex sentences. DP output consists of alternative ways
to decompose the same sentence. For example, a complex sentence of two clauses
will have at least two alternatives, one with two clauses, and the original (unde-
composed) sentence. Decomposition supports more options for the optimization
approach to align student propositions to the CR, as we later illustrate.

The DP uses context-free-grammar parses to extract all tensed verb phrases
in a sentence, and dependency parses to identify the subjects of the main verbs.
This ensures propositionally complete output clauses. A small set of rules handles
traversal of the parses for different syntactic structures [3]. To adapt to middle
school writing, we tested subsets of DP rules. We also added a parameter to
constrain the minimum length in words of output clauses (MinSegLength).

The second preprocessing step converts DP output clauses to embeddings.
Matching a student clause to a CU relies on the average pairwise cosine similar-
ity (APCS) of the student’s embedding to sets of CU embeddings. In our earlier
work, we found WTMF [5] to give superior similarity results over other embed-
ding methods, but we had not controlled for all factors [3]. Given the widespread
use of GloVe [8], we decided to conduct a rigorous comparison between WTMF
and GloVe on a standard benchmark, the SemEval semantic textual similarity
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Table 1. Pearson correlations with human scores of WTMF and GloVe+SIF on three
STS benchmarks. Vocabulary size (V) and total words (S) appear in parentheses.

WTMF (V=_81.8K; S=4M) Gigaword Sub. (V=67.1K; S=18.9M)
Test WTMF GloVe + SIF WTMF GloVe + SIF
Data Sent Win Sent Win Sent Win Sent Win
STS12 | 0.7258 | 0.6851 | 0.6859 | 0.6812 | 0.6400 | 0.6482 | 0.6256 | 0.6256
STS13 | 0.7405 | 0.6901 | 0.6426 | 0.6311 | 0.5909 | 0.6224 | 0.6214 | 0.6214
STS14 | 0.7187 | 0.7012 | 0.6299 | 0.6149 | 0.6835 | 0.6835 | 0.6223 0.6223

(STS) tasks (cf. [2]). For STS, humans rated pairs of sentences on a 6-point scale
of semantic similarity. System predictions are compared to human ratings using
Pearson correlation. We used three years of STS tasks.

WTMEF applies weighted matrix factorization to a word-by-sentence matrix
of tf.idf scores to compute word embeddings [5]. Using matrix reconstruction,
phrase embeddings for unseen sentences can be constructed from the word em-
beddings. GloVe applies log-bilinear regression to co-occurrence data from a
small moving context window over a training corpus [8]. We created GloVe
phrase embeddings using a high-performing weighted average of a phrase’s word
embeddings (SIF) [2]. We trained WTMF and GloVe on a high-quality corpus
created by the WTMF developers, and on an extract of the Gigaword news cor-
pus, ensuring both methods used the same vocabulary list for a given corpus.
The WTMF corpus combines a high proportion of definitional sentences with a
small heterogeneous corpus (the Brown corpus). We sampled increasing amounts
of Gigaword, but were unable to achieve matched vocabulary sizes. At nearly
five times the size of the WTMF corpus, our Gigaword subset has only 82% of
the WTMF corpus vocabulary (see table header in Table 1).

Table 1 shows that WTMF outperforms GloVe+SIF on the benchmark se-
mantic similarity tasks, controlling for the same vocabulary list, corpus, context
span, and vector dimensionality (100D). WTMF performs best with the WTMF
corpus, using sentence contexts. GloVe results are more consistent across condi-
tions. Due to these results, we use WITMF embeddings from the WTMF corpus.

The original PyrEval creates a set of content units (CUs), called a pyramid,
extracted from four to five reference summaries written by experts. Each CU
corresponds roughly to a set of paraphrases of the same idea. The number of
reference summaries that express the same idea provides an importance weight
on the idea. For PyrEval+CR we aimed for an assessment that would more
closely resemble the application of an analytic rubric. As described elsewhere [9],
we created a very reliable analytic rubric to assess essays that explain students’
roller coaster designs with reference to energy concepts (e.g., potential vs. kinetic
energy). Here, we describe how we created our computable rubric (CR).

For the CR, we mined phrases corresponding to rubric elements from middle
school essays. Figure 1 illustrates a weight 4 CU for a rubric element that defines
kinetic energy. In the CR, CU weights range from 5 for important ideas to
1 for weak ideas. The weighted CUs in a PyrEval pyramid have a power law
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e |Kinetic energy is the energy of an object in motion

e2|The energy of an object due to its motion is called kinetic energy
e3|An object that is moving has kinetic energy

e4|Kinetic energy is the energy of a moving object

Fig. 1. A weight 4 (w4) CU. The CR has 62 CUs: 3 w5, 4 w4, 13 w3, 16 w2, 26 wl.

distribution, so we ensure that a CR also does (see Figure 1 caption). All phrases
7 in a CU are converted to embeddings, represented schematically in column one
of Figure 1, as are all decomposed clauses from a student essay.

4 Assessment of Ideas as an Optimization Problem

An independent set for an undirected graph G = (V, E) is defined as a subset
U C V such that no pair of vertices in U has an edge connecting them in E. A
maximal independent set (MIS) is an independent set where no additional vertex
from V can be added to U without violating the independent set constraint. The
MIS problem is a well-documented NP-complete problem.

PyrEval+CR aims for the optimal way to match student sentences to the
CR. Each essay sentence can have several decompositions, and each extracted
clause can be more or less similar to each CU. Only one decomposition of a
sentence can be used, and each CU can be matched at most once, to penalize
repetition. Thus, our assessment task is equivalent to the MIS problem.

WMIN is a greedy weighted MIS algorithm that iteratively adds vertices
with the next highest weights to the MIS. At each iteration, all neighbors of
a recently added vertex are pruned from the graph. The process repeats until
no remaining vertices can be selected. We extended WMIN to operate on a
hypergraph (WMIN ). Each hypernode corresponds to one way to decompose a
sentence, and its internal nodes are the extracted clauses and their candidate CU
matches. Pruning includes removing other occurrences of a matched CU from
the rest of the graph, and recalculating node weights, which use CU weights.

Figure 2 illustrates two sentences in italics, S1 and S2, two of the several
decompositions of S1, and the corresponding hypergraph. Hypergraph nodes
are labeled by the sentence and decomposition (e.g., S1.2 vs. S1.3), and internal
nodes by the clause indices (e.g., S1.2.1, S1.2.2). CU4 (weight 4) from Figure 2 is
shown inside the internal node for S1.2.2. Assume that CU5 (weight 2) is a vague
statement about kinetic energy and also a potential match for two propositions:
clauses S1.3.2 or S.2.1.1. The other internal nodes have anonymous weight 1 CUs
(CUX, CUY).

The hypergraph has two edge types. The solid edge between S1.2 and S1.3
constrains selection of at most one decomposition of S1. The dashed edge between
internal nodes S1.3.2 and S2.1.1 constrains selection of only one match to CU5.
S1.2.2 is a good match to CU4: both state the relation between motion and
kinetic energy. The weight of a hypernode is higher if the CU weights are higher,
so WMIN g selects S1.2 over S1.3, S1.3 is pruned, and CU5 only matches S2.1.1.
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S1. When the car leaves the top, it moves down because it has kinetic energy.

S1.2.1. When the car leaves the top,
S$1.2.2. it moves down because it has kinetic energy
S1.3.1. When the car leaves the top, it moves down
S$1.3.2. because it has kinetic energy.

S2. Kinetic energy is one type of energy.
S2.1.1. Kinetic energy is one type of energy

$1.2
S1.21 $1.22

Fig. 2. llustration of WMINy hypergraph nodes and edges.

WMINy output for an essay is a log showing the decomposition that was
selected for each sentence, and its matched CUs. The essay score is a normalized
sum of the weights of the matched CUs.

WMIN g has parameters to control the greediness of node selection: k for the
length of the ranked list of CUs matching each internal node, a sorting metric (s)
for ranking this list, and a weighting metric (w) for weighting each hypernode.
For both s and w, we tested APCS (see above), the standard deviation of APCS,
and the product of APCS and the CU weight (Product).

We tested PyrEval4+-CR on a curated set of historical essays from a similar
curriculum, modified to eliminate sentences that mention ideas not in our current
rubric. A set of 76 was subdivided into Set A (N=10) for mining phrases for the
CR, Set B (N=46) as a validation set for parameter tuning, and Set C (N=20)
for testing. Application of a manual rubric to all 76 is discussed in [9]. We
measured performance as the Pearson correlation of the PyrEval4+CR, score with
the manually assigned score. We also reviewed the quality of matches between
student’s essays and CUs.

We performed grid search on Set B for different subsets of DP rules, different
values of MinSegLen (see above), and the three WMIN g parameters (k, s and
w). The DP configurations were all rules (All), all but VP conjunction (-VP)
and no decomposition (None). Table 2 reports results for three parameter set-
tings on Sets B and C. DP-VP performed best, but DP-AIl often worked well.
Smaller values of k (k=2, 4) yielded best results, corresponding to a more greedy

Table 2. Example parameter configurations for WMIN g.

PyrEval Configuration Set B|Set C
-VP, MinSeglLen=5, k=4, s=StDev, w=APCS | 0.69 | 0.84
All, MinSegLen=3, k=4, s=StDev, w=Product| 0.70 | 0.83
-VP, MinSegLen=5, k=2, s=StDev, w=APCS | 0.72 | 0.85
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approach that considers fewer CUs per node. Both APCS and Product worked
well for w. The standard deviation of APCS usually worked best for s.

The quality of the matches between a randomly selected subset of clauses
from set C and CUs was rated by one of the co-authors as poor, moderate, or
good. About 93% of the matches were split evenly between moderate and good.

5 Conclusion

PyrEval+CR is intended to support formative assessment for middle school sci-
ence writing. On a semi-synthetic dataset, the scores correlate very well with
a manual rubric. PyrEval+CR produces log output to show which clauses in a
student essay match CUs from the computable rubric, along with the relative
importance of the CU. Our next steps continue our collaboration with middle
school teachers to study how to use PyrEval+CR in a classroom setting.
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