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Abstract 

We study the problem of learning sequential 
decision-making policies in settings with mul-
tiple state-action representations. Such set-
tings naturally arise in many domains, such 
as planning (e.g., multiple integer program-
ming formulations) and various combinato-
rial optimization problems (e.g., those with 
both integer programming and graph-based 
formulations). Inspired by the classical co-
training framework for classification, we study 
the problem of co-training for policy learn-
ing. We present sufficient conditions under 
which learning from two views can improve 
upon learning from a single view alone. Moti-
vated by these theoretical insights, we present 
a meta-algorithm for co-training for sequen-
tial decision making. Our framework is com-
patible with both reinforcement learning and 
imitation learning. We validate the effec-
tiveness of our approach across a wide range 
of tasks, including discrete/continuous control 
and combinatorial optimization. 

1 INTRODUCTION 

Conventional wisdom in problem-solving suggests that 
there is more than one way to look at a problem. For 
sequential decision making problems, such as those in 
reinforcement learning and imitation learning, one can 
often utilize multiple different state-action representa-
tions to characterize the same problem. A canonical 
application example is learning solvers for hard opti-
mization problems such as combinatorial optimization 
[23, 41, 15, 56, 4]. It is well-known in the operations 
research community that many combinatorial optimiza-
tion problems have multiple formulations. For exam-
ple, the maximum cut problem admits a quadratic integer  

program as well as a linear integer program formulation 
[7, 18]. Another example is the traveling salesman prob-
lem, which admits multiple integer programming formu-
lations [47, 45]. One can also formulate many problems 
using a graph-based representation (see Figure 1). Be-
yond learning combinatorial optimization solvers, other 
examples with multiple state-action representations in-
clude robotic applications with multiple sensing modal-
ities such as third-person view demonstrations [57] and 
multilingual machine translation [27]. 

In the context of policy learning, one natural question 
is how different state-action formulations impact learn-
ing and, more importantly, how learning can make use 
of multiple formulations. This is related to the co-
training problem [6], where different feature representa-
tions of the same problem enable more effective learning 
than using only a single representation [64, 33]. While 
co-training has received much attention in classification 
tasks, little effort has been made to apply it to sequen-
tial decision making problems. One issue that arises 
in the sequential case is that some settings have com-
pletely separate state-action representations while others 
can share the action space. 

In this paper, we propose CoPiEr (co-training for policy 
learning), a meta-framework for policy co-training that 
can incorporate both reinforcement learning and imita-
tion learning as subroutines. Our approach is based on 
a novel theoretical result that integrates and extends re-
sults from PAC analysis for co-training [16] and general 
policy learning with demonstrations [29]. To the best of 
our knowledge, we are the first to formally extend the 
co-training framework to policy learning. 

Our contributions can be summarized as: 

• We present a formal theoretical framework for pol-
icy co-training. Our results include: 1) a general 
theoretical characterization of policy improvement, 
and 2) a specialized analysis in the shared-action 
setting to explicitly quantify the performance gap 



X 5 1 max − 
i=1 

xi , 

subject to: 

x1 + x2 ≥ 1, 
x2 + x3 ≥ 1, 
x3 + x4 ≥ 1, 
x3 + x5 ≥ 1, 

4 x4 + x5 ≥ 1, 
xi  {0, 1}, i  {1, ··· , 5} 

Figure 1: Two ways to encode minimum vertex cover 
(MVC) problems. Left: policies learn to operate directly 
on the graph view to find the minimal cover set [30]. 
Right: we express MVC as an integer linear program, 
then polices learn to traverse the resulting combinatorial 
search space, i.e., learn to branch-and-bound [23, 56]. 

(i.e., regret) versus the optimal policy. These theo-
retical characterizations shed light on rigorous algo-
rithm design for policy learning that can appropri-
ately exploit multiple state-action representations. 

• We present CoPiEr (co-training for policy learn-
ing), a meta-framework for policy co-training. We 
specialize CoPiEr in two ways: 1) a general mech-
anism for policies operating on different represen-
tations to provide demonstrations to each other, and 
2) a more granular approach to sharing demonstra-
tions in the shared-action setting. 

• We empirically evaluate on problems in combi-
natorial optimization and discrete/continuous con-
trol. We validate our theoretical characterizations 
to identify when co-training can improve on single-
view policy learning. We further showcase the prac-
ticality of our approach for the combinatorial opti-
mization setting, by demonstrating superior perfor-
mance compared to a wide range of strong learning-
based benchmarks as well as commercial solvers 
such as Gurobi. 

2 RELATED WORK 

Co-training Our work is inspired by the classical co-
training framework for classification [6], which utilizes 
two different feature representations, or views, to effec-
tively use unlabeled data to improve the classification 
accuracy. Subsequent extensions of co-training includes 
co-EM [44] and co-regularization [55]. Co-training has 
been widely used in natural language processing [64, 31], 
clustering [33, 40], domain adaptation [11] and game  

playing [34]. For policy learning, some related ideas 
have been explored where multiple estimators of the 
value or critic function are trained together [67, 63]. 

In addition to the empirical successes, several previous 
works also establish theoretical properties of co-training 
[6, 3, 16, 65]. Common assumptions in these analyses 
include: 1) each view is sufficient for learning a good 
classifier on its own, and 2) conditional independence of 
the features given the labels. Recently, there are works 
considering weakened assumptions, such as allowing for 
weak dependencies between the two views [5], or relax-
ing the sufficiency condition [66]. 

Policy Learning for Sequential Decision Making Se-
quential decision making pertains to tasks where the pol-
icy performs a series of actions in a stateful environment. 
A popular framework to characterize the interaction be-
tween the agent and the environment is a Markov Deci-
sion Process (MDP). There are two main approaches for 
policy learning in MDPs: reinforcement learning and im-
itation learning. For both reinforcement learning and im-
itation learning, we show that co-training on two views 
can provide improved exploration in the former and sur-
rogate demonstrations in the latter, in both cases leading 
to superior performance. 

Reinforcement learning uses the observed environmen-
tal rewards to perform policy optimization. Recent works 
include Q-Learning approaches such as deep Q-networks 
[42], as well as policy gradient approaches such as 
DDPG [38], TRPO [52] and PPO [53]. Despite its suc-
cessful applications to a wide variety of tasks including 
playing games [42, 54], robotics [37, 32] and combina-
torial optimization [15, 41], high sample complexity and 
unstable learning pose significant challenges in practice 
[24], often causing learning to be unreliable. 

Imitation learning uses demonstrations (from an expert) 
as the primary learning signal. One popular class of algo-
rithms is reduction-based [17, 49, 51, 50, 10], which gen-
erates cost-sensitive supervised examples from demon-
strations. Other approaches include estimating the ex-
pert’s cost-to go [58], inverse reinforcement learning 
[1, 26, 68], and behavioral cloning [61]. One major lim-
itation of imitation learning is the reliance on demon-
strations. One solution is to combine imitation and rein-
forcement learning [36, 29, 12, 43] to learn from fewer 
or coarser demonstrations. 

3 BACKGROUND & PRELIMINARIES 

Markov Decision Process with Two State Representa-
tions. A Markov decision process (MDP) is defined by 
a tuple (S, A, P, r, γ, ST ). Let S denote the state space, 
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A the action space, P(s
0
|s, a) the (probabilistic) state 

dynamics, r(s, a) the reward function, γ the discount 
factor and (optinal) ST a set of terminal states where 
the decision process ends. We consider both stochas-
tic and deterministic MDPs. An MDP with two views 
can be written as M

A
 = (S

A
, A

A
, P

A
, r

A
, γ

A
, ST

A
 ) and 

MB = (S
B

, A
B

, P
B

, r
B

, γ 
B

, S
T

B
). To connect the two 

views, we make the following assumption about the abil-
ity to translate trajectories between the two views. 

Assumption 1. For a (complete) trajectory in M
A

, 
τA = (s

A

0
 , a

A

0
 , s

A

1
 , a

A

1
 , · · · , s

A

n  ), there is a function 
f A→B that maps τ

A
 to its corresponding (complete) tra-

jectory τ
B

 in the other view M
B

: f A→B (τ
A

) = τ
B

 = 
(s

B

0
 , a

B

0
 , s

B

1
 , a

B

1
 , · · · , s

B

m
). The rewards for τ

A
 and τB 

are the same under their respective reward functions, 
i.e., 

I n−1 
i=0 r

A
(s

A

i
 , a

A

i
 ) = 

I m−1 
j=0 r

B
(s

B

j
 , a

B

j  ). Simi-
larly, there is a function fB→A that maps trajectories 
in M

B
 to M

A
 which preserves the total rewards. 

Note that in Assumption 1, the length of τ
A

 and τ
B

 can 
be different because of different state and action spaces. 

Combinatorial Optimization Example. Minimum 
vertex cover (MVC) is a combinatorial optimization 
problem defined over a graph G = (V, E). A cover set is 
a subset U  V such that every edge e  E is incident to 
at least one v  U. The objective is to find a U with the 
minimal cardinality. For the graph in Figure 1, a minimal 
cover set is {2, 3, 4}. 

There are two natural ways to represent an MVC problem 
as an MDP. The first is graph-based [15] with the action 
space as V and the state space as sequences of vertices in 
V representing partial solutions. The deterministic tran-
sition function is the obvious choice of adding a vertex to 
the current partial solution. The rewards are -1 for each 
selected vertex. A terminal state is reached if the selected 
vertices form a cover. 

The second way is to formulate an integer linear program 
(ILP) that encodes an MVC problem: 

Xmax − 
v V 

xv , 

subject to : 

xu  + xv  ≥ 1, e = (u, v)  E, 

xv  {0, 1}, v  V. 

We can then use branch-and-bound [35] to solve this ILP, 
which represents the optimization problem as a search 
tree, and explores different areas of a search tree through 
a sequence of branching operations. The MDP states 
then represent current search tree, and the actions corre-
spond to which node to explore next. The deterministic 
transition function is the obvious choice of adding a new  

node into the search tree. The reward is 0 if an action 
does not lead to a feasible solution and is the objective 
value of the feasible solution minus the best incumbent 
objective if an action leads to a node with a better feasible 
solution. A terminal state is a search tree which contains 
an optimal solution or reaches a limit on the number of 
nodes to explore. 

The relationship between solutions in the two formula-
tions are clear. For a graph G = (V, E), a feasible solu-
tion to the ILP corresponds to a vertex cover by select-
ing all the vertices v  V with xv  = 1 in the solution. 
This correspondence ensures the existence of mappings 
between two representations that satisfy Assumption 1. 

Note that, despite the deterministic dynamics, solving 
MVC and other combinatorial optimization problems 
can be extremely challenging due to the very large state 
space. Indeed, policy learning for combinatorial opti-
mization is a topic of active research [30, 23, 56, 41, 4]. 

Policy Learning. We consider policy learning over a 
distribution of MDPs. For instance, there can be a distri-
bution of MVC problems. Formally, we have a distribu-
tion D of MDPs that we can sample from (i.e., M  D). 
For a policy π, we define the following terms: 

~ n−1 
η(π, M) = Eτ π[ 

i=0 
γ

i
r(si , ai )], 

J(π) = EM D[η(π, M)], 
n−1 

Qπ(s, a) = Eτ π[
i=0 

γ
i
r(si , ai )|s0 = s, a0 = a], 

~ n−1 
Vπ(s) = E τ  π[

i=0 
γ

i
r(si , ai )|s0 = s], 

Aπ  (s, a) = Qπ  (s, a) − Vπ(s), 

with η being the expected cumulative reward of an indi-
vidual MDP M, J the overall objective, Q the Q func-
tion, V the value function and A the advantage function. 
The performance of two policies can be related via the 
advantage function [52, 28]: η(π

0
, M) = η(π, M) + 

Eτ π' [
I n−1 

i=0 γi Aπ(si , ai )]. Based on Theorem 1 below, 
we can rewrite the final term with the occupancy mea-
sure, ρπ(s, a) = P(π(s) = a) 

I ∞
i=0 γ 

i
P(si = s|π). 

Theorem 1. (Theorem 2 of [60]). For any policy π, 
it is the only policy that has its corresponding occu-
pancy measure ρπ, i.e., there is a one-to-one mapping 
between policies and occupancy measures. Specifically, 
P(π(s) = a)= P 

a0 

ρπ

ρπ

(s,a) 
(s,a0 ) . 

With slight notation abuse, define ρπ(s) = I ∞
i=0 γ

i
P(si = s|π) to be the state visitation dis-

 



J( π 
A

) > JπA ( π
FA

) − 
2γA(4βB

D2
B
D2 + α

A

D

A

D ) 
+ δ2, 

(1 − γ
A

)
2

 

J( π~B

) > JπB ( π
rB

 ) − 
2γB(4βA

D1
A
D1 +αB

D
B
D ) 

+ δ1. 
(1 − γ

B
)
2

 

tribution. In policy iteration, we aim to maximize: 

~ n−1 
Eτ π ' [

i=0 
γ

i
Aπ  (si , ai )], 

X n−1 
=

i =0 
Esi ρ

π ' (s) [Eai π' (si ) [γi Aπ(si , ai )]], 

Esi ρπ (s) [Eai π' (si ) [γ
i
Aπ(si , ai )]]. 

i =0 

This is done instead of taking an expectation over ρπ' (s) 
which has a complicated dependency on a yet unknown 
policy π

0
. Policy gradient methods tend to use the ap-

proximation by using ρπ  which depends on the current 
policy. We define the approximate objective as: 

ηπ(π
0
, M ) 

X n−1 
= η(π, M) +

i =0 
Esi ρπ (s) [Eai π' (si ) [γ

i
Aπ (si , ai )]], 

and its associated expectation over D as Jπ (π
0
) = 

EM D[ηπ(π0, M )]. 

4 A THEORY OF POLICY 
CO-TRAINING 

In this section, we provide two theoretical characteriza-
tions of policy co-training. These characterizations high-
light a trade-off in sharing information between different 
views, and motivates the design of our CoPiEr algorithm 
presented in Section 5. 

We restrict our analysis to infinite horizon MDPs, and 
thus require a strict discount factor γ < 1. We show 
in our experiments that our CoPiEr algorithm performs 
well even in finite horizon MDPs with γ = 1. Due to 
space constraints, we defer all proofs to the appendix. 

We present two theoretical analyses with different types 
of guarantees: 

• Section 4.1 quantifies the policy improvement in 
terms of policy advantages and differences, and 
caters to policy gradient approaches. 

• Section 4.2 quantifies the performance gap with 
respect to an optimal policy in terms of policy dis-
agreements, which is a stronger guarantee than pol-
icy improvement. This analysis is restricted to the 
shared action space setting, and caters to learning 
reduction approaches. 

4.1 GENERAL CASE: POLICY IMPROVEMENT 
WITH DEMONSTRATIONS 

For an MDP M  D, consider the rewards of 
two policies with different views η

A
(π

A
, M

A
) and 

η
B

(π
B

, M
B

). If η
A

(π
A

, M
A

) > η
B

(π
B

, M B), πA  

performs better than π
B

 on this instance , and we could 
use the translated trajectory of π

A
 as a demonstration for 

π
B
. Even when J (π

A
) > J(π

B
), because J is com-

puted in expectation over D,π
B

 can still outperform πA 

on some MDPs. Thus it is possible for the exchange of 
demonstrations to go in both directions. 

Formally, we can partition the distribution D into two 
(unnormalized) parts D1 and D2 such that the sup-
port of D, supp(D) = supp(D1)  supp(D2) and 
supp(D1) ∩ supp(D2) = , where for an MDP M  
supp(D1), η(π

A
, M

A
) ≥ η (π 

B
, M

B
) and for an MDP 

M  supp(D2), η(π
B

, M
B

) > η(π
A

, M
A

). By con-
struction, we can quantify the performance gap as: 
Definition 1. 

δ1 = EM D1 [η(πA , M
A
) − η(π

B
, M

B
)] ≥ 0, 

δ2 = EM D2 [η (π
B

, M
B

) − η (π
A

, M
A

)] > 0. 

We can now state our first result on policy improvement. 
Theorem 2. (Extension of Theorem 1 in [29]) Define: 

α
A

D
 = EM D[maxs DKL(π

A
(s)kπ

0A
(s))], 

β
B

D2 
= EM D2 [maxsDJS(πB(s)kπ 

A
(s))], 

αB 
D = EM D[maxs DKL(π

B
(s)kπ

0B
(s))], 

βA 
D1 

= EM D1 [maxsDJS(πA (s)kπB(s))], 
B
D2 

= maxM supp(D2) maxs,a |AπB (s, a)|, 
A 
D = maxM supp(D) maxs,a |AπA (s, a)|, 
A
D1 

= maxM supp(D1 ) maxs,a |AπA (s, a)|, 
B 
D = maxM supp(D) maxs,a |AπB (s, a)|. 

Here DKL & DJS denote the Kullback-Leibler and 
Jensen-Shannon divergence respectively. Then we have: 

Compared to conventional analyses on policy improve-
ment, the new key terms that determine how much the 
policy improves are the β’s and δ’s. The β’s, which quan-
tify the maximal divergence between π

A
 and π

B
, hinders 

improvement, while the δ’s contribute positively. If the 
net contribution is positive, then the policy improvement 
bound is larger than that of conventional single view pol-
icy gradient. This insight motivates co-training algo-
rithms that explicitly aim to minimize the β’s. 

One technicality is how to compute DJS(π
A

(s)kπ
B

(s)) 
given that the state and action spaces for the two repre-
sentations might be different. Proposition 1 ensures that 
we can measure the Jensen-Shannon divergence between 
two policies with different MDP representations. 

n−1 

X≈ 



a
A

s
A

s
B

a
B 

a
 

Figure 2: Co-training with shared action space. 

Proposition 1. For representations M
A

 and 
MB of an MDP satisfying Assumption 1, 
the quantities maxs  DJS(π

B
( s ) IIπ

A
( s )) and 

maxs  DJS(π
A

( s )~π
B

( s )) are well-defined. 

Minimizing β
B

D2
 and β

A

D1
 is not straightforward since the 

trajectory mappings between the views can be very com-
plicated. We present practical algorithms in Section 5. 

4.2 SPECIAL CASE: PERFORMANCE GAP 
FROM OPTIMAL POLICY IN SHARED 
ACTION SETTING 

We now analyze the special case where the action spaces 
of the two views are the same, i.e., A

A
 = A

B
. Figure 

2 depicts the learning interaction between π
A

 and π
B
. 

For each state s, we can directly compare actions chosen 
by the two policies since the action space is the same. 
This insight leads to a stronger analysis result where we 
can bound the gap between a co-trained policy with an 
optimal policy. The approach we take resembles learning 
reduction analyses for interactive imitation learning. 

For this analysis we focus on discrete action spaces with 
k actions, deterministic learned policies, and a determin-
istic optimal policy (which is guaranteed to exist [48]). 
We reduce policy learning to classification: for a given 
state s, the task of identifying the optimal action π

*
( s ) is 

a classification problem. We build upon the PAC gener-
alization bound results in [16] and show that under As-
sumption 2, optimizing a measure of disagreements be-
tween the two policies leads to effective learning of π

*
. 

Assumption 2. For a state s, its two representations sA 

and s
B

 are conditionally independent given the optimal 
actionπ

*
( s ). 

This assumption is common in analyses of co-training for 
classification [6, 16]. Although this assumption is typi-
cally violated in practice [44], our empirical evaluation 
still demonstrates strong performance. 

Assumption 2 corresponds to a graphical model describ-
ing the relationship between optimal actions and the state 
representations (Figure 3). The intuition is that, when we 
do not know a

*
 = π

*
( s ), we should maximize the agree-  

Figure 3: Graphical model encodes the conditional inde-
pendence model. 

ment between a
A

 = π
A

( s
A

) and a
B

 = π
B

( s
B

). By the 
data-processing inequality in information theory [13], we 
know that I (a

A
; a

*
) ≥ I( a

A
; a

B
). In practice, this means 

that if a
A

 and a
B

 agree a lot, they must reveal substantial 
information about what a

*
 is. We formalize this intuition 

and obtain an upper bound on the classification error rate, 
which enables quantifying the performance gap. Notice 
that if we do not have any information from π

*
, the best 

we can hope for is to learn a mapping that matches π* 

up to some permutation of the action labels [16]. Thus 
we assume we have enough state-action pairs from π

*
 so 

that we can recover the permutation. In practice this is 
satisfied as we demonstrate in Section 6.1. 

Formally, we connect the performance gap between a 
learned policy and an optimal policy with an empirical 
estimation on the disagreement in action choices among 
two co-trained policies. Let {τiA }m

i=1 be sampled trajec-
tories from π

A
 and { f A→B( τiA )}m

i=1 be the mapped tra-
jectories in M

B
. In {f A→B( τiA )}m 

i=1, let N (a
A

 = i ) 
be the number of times action i is chosen by π

A
 and 

N = 
~ k

i=1 N (a
A

 = i ) be the total number of actions 
in one trajectory set. Let N (a

B
 = i ) be the number 

of times action i is chosen by π
B

 when going through 
the states in {f A→B( τiA )}m 

i=1 and N (a
A

 = i,a
B

 = i ) 
record when both actions agree on i . 

We also require a measure of model complexity, as is 
common in PAC style analysis. We use |π | to denote the 
number of bits needed to represent π. We can now state 
our second main result quantifying the performance gap 
with respect to an optimal policy: 

Theorem 3. If Assumption 2 holds for M  D and a 
deterministic optimal policy π

*
. Let π

A
 and π

B
 be two 

deterministic policies for the two representations. 
Define: 

P
ˆ

(a
A

 = i | a
B

 = i ) = 
N (a

A
 = i, a

B
 = i ) 

N (a
B

= i )
, 

P
ˆ

(a
A

 =6 i | a
B

 = i ) = 
N (a

A
 =6 i, a

B
 = i ) 

N (a
B

= i )
, 

~  
ln 2(|π

A
| + |π

B
| ) + ln (2k/σ ) 

i (π
A

, π
B

, σ ) = 
2N (a

B
 = i ) 

ζi (π
A

, π
B

, σ ) = P
ˆ

(a
A

 = i | a
B

 = i ) 

− P
ˆ

(a
A

 =6 i | a
B

 = i ) − 2 i (π
A

, π
B

, σ ), 

π
A 

π
A 

s
A 
0 

s0 

a
A 
0 s

A

1 

s1 

a
A

1 

π
B 

π
B 

a1 

a
B 
1 

a0 

a
B 
0 s

B

1 s
B 
0 

, 



bi (π
A

, π
B

, σ) = ζ
i (π

A
, πB , δ)(

P̂(aA =6 i | a
B

 = i) 
1 

+ i (π
A

, π
B

, σ)), 
`(s, π) = 1(π(s)=6 π (s)), 

A = Es ρ
π

A [`(s, π
A

)]. 

Then with probability 1 − σ: 

A ≤ maxj {1,···,k} bj (π
A

, π
B

, σ), 

η(π
A
, M

A
) ≥ η(π , M) − uT A, 

where T is the time horizon and u is the largest one-step 
deviation loss compared with π . 

To obtain a small performance gap compared to π , one 
must minimize A, which measures the disagreement be-
tween π

A
 and π . However, we cannot directly esti-

mate this quantity since we only have limited sample 
trajectories from π . Alternatively, we can minimize an 
upper bound, maxj {1,··· ,k} bj (π

A
, π

B
, δ) , which mea-

sures the maximum disagreement on actions between 
πA 

and  π
B

 and, importantly, can be estimated via sam-
ples. In Section 5.2, we design an algorithm that ap-
proximately minimizes this bound. The advantage of two 
views over a single view enables us to establish an upper 
bound on A, which is otherwise unmeasureable. 

5 THE CoPiEr ALGORITHM 

We now present practical algorithms motivated by the 
theoretical insights from Section 4. We start with a meta-
algorithm named CoPiEr (Algorithm 1), whose impor-
tant subroutines are EXCHANGE and UPDATE. We 
provide two concrete instantiations for the general case 
and the special case with a shared action space. 

Algorithm 1 CoPiEr (Co-training for Policy Learning) 

1: Input: A distribution D of MDPs, two policies 
π

A
, π

B
, mapping functions f A→B , fB →A 

2: repeat 
3: Sample M  D, form MA, MB 

4: Run π
A

 on M
A

 to generate trajectories {τiA}m 
i =1 

5: Run π
B

 on M
B

 to generate trajectories {τjB}n 
j =1 

6: {τ
0  A

}, {τ0 
B

} ← EXCHANGE({τ
A

 
i j i }, {τj

B
}) 

7: π
A

 ← UPDATE(π
A
, {τi

A
}, {τ

0A
}) j 

8: π
B

← UPDATE(π
B

, {τi
B

}, {τ
0B

}) j 

9: until Convergence 

5.1 GENERAL CASE 

Algorithm 2 covers the general case for exchanging tra-
jectories generated by the two policies. First we estimate  

Algorithm 2 EXCHANGE: General Case 

1: Input: Trajectories {τiA}m
i=1 

and  {τjB̀
m

}n
j =1 

2: Compute estimate ηˆ(π
A
, M

A
) = 1

m P n  
i =1 r(τiA) 

3: Compute estimate ηˆ(π
B
, M

B
) = 1

n j=1
 r(τjB) 

4: if ηˆ(π
A
, M

A
) > ηˆ(π

B
, M

B
) then 

5: {τ
A→B

 
i } ←{fA→B (τiA)}m

i =1 
6: {τ

B→A
 

j } ←  
7: else 
8: {τ

A→B
 

i } ←  
9: {τ

B→A
 

j } ←{fB →A(τjB)}n
j =1 

10: end if 
11: return {τi

A→B
}, {τ

B→A
 

j } 

Algorithm 3 UPDATE 

1: Input: Current policy π, sampled trajectories from 
π, {τi }m 

i=1
 and demonstrations {τj

0}n 
j =1 

2: Form a loss function L(π) ( = 
− 

Pm
i=1r(τi ) + λC(π, {τj

0}n
j =1

), RL with IL loss 
λC(π, {τj

0 }n
j =1), IL loss only 

3: Update π ← π − α L(π) 

the relative quality of the two policies from sampled tra-
jectories (Lines 2-4 in Algorithm 2). Then we use the 
trajectories from the better policy as demonstrations for 
the worse policy on this MDP. This mirrors the theoreti-
cal insight presented in Section 4, where based on which 
sub-distribution an MDP is sampled from, the relative 
quality of the two policies is different. 

For UPDATE, we can form a loss function that is derived 
from either imitation learning or reinforcement learning. 
Recall that we aim to optimize the β terms in Theorem 2, 
however it is infeasible to directly optimize them. So we 
consider a surrogate loss C (Line 2 of Algorithm 3) that 
measures the policy difference. In practice, we typically 
use behavior cloning loss as the surrogate. 

5.2 SPECIAL CASE: SHARED ACTION SPACE 

For the special case with a shared action space, we can 
collect more informative feedback beyond the trajectory 
level. Instead, we collect interactive state-level feedback, 
as is popular in imitation learning algorithms such as 
DAgger [51] and related approaches [58, 17, 49, 56, 23]. 
Specifically, we can use Algorithms 4 & 5 to exchange 
actions in a state-coupled manner. This process is de-
picted in Figure 2, where π

A
’s visited states, s

A

0  and s
A

1  , 
are mapped to s

B

0  and s
B

1  , resulting in receiving π
B

’s 
actions, a

B

0  and a
B

1  , in the exchange. 

Unlike the general case where information exchange is 
asymmetric, as Theorem 3 indicates, we aim to minimize 



Algorithm 4 EXCHANGE: Special Case 

1: Input: Trajectories { τiA }m 
i =1

 and { τ jB }n
j=1 

2: D
AR B

 = INTERACTIVE( { f B~ A( τ jB ) }n
j=1, π

A
) 

3: D
B

~ A

 = INTERACTIVE( { f A~ B ( τiA ) }m
i=1 , π

B
) 

4: return DAR B , DB~ A 

Algorithm 5 INTERACTIVE 

1: Input: Trajectories { τi }m
i=1, query policy π 

2: D =  
3: for i ← 1 to m do 
4: for each state s  τi do 
5: D ← D  { ( s, π ( s )) } 
6: end for 
7: end for 
8: return D 

policy disagreement. Both policies are simultaneously 
optimizing this objective, which requires both directions 
of information exchange (Lines 2-3 in Algorithm 4). The 
update step (Algorithm 3) is the same as the general case. 

6 EXPERIMENTS 

We now present empirical results on both the special and 
general cases of CoPiEr. We demonstrate the gener-
ality of our approach by applying three distinct combi-
nations of policy co-training: reinforcement learning on 
both views (Section 6.1), reinforcement learning on one 
view and imitation learning on the other (Section 6.2), 
and imitation learning on both views (Section 6.3). Fur-
thermore, our experiments on combinatorial optimiza-
tion (Sections 6.2 & 6.3) demonstrate significant im-
provements over strong learning-based baselines as well 
as commercial solvers, and thus showcase the practical-
ity of our approach. More details about the experiment 
setup can be found in the appendix. 

6.1 DISCRETE & CONTINUOUS CONTROL: 
SPECIAL CASE WITH RL+RL 

Setup. We conduct experiments on discrete and contin-
uous control tasks with OpenAI Gym [8] and Mujoco 
physical engine [62]. We use the garage repository [19] 
to run reinforcement learning for both views. 

Two Views and Features. For each environment, states 
are represented by feature vectors, typically capturing lo-
cation, velocity and acceleration. We create two views by 
removing different subsets of features from the complete 
feature set. Note that both views have the same underly-
ing action space as the original MDP, so it is the special 
case covered in Section 5.2. We use interactive feedback  

for policy optimization. 

Policy Class. We use a feed-forward neural network with 
two hidden layers (64 & 32 units) and tanh activations as 
the policy class. For discrete actions, π ( s ) outputs a soft-
max distribution. For continuous actions, π ( s ) outputs a 
(multivariate) Gaussian. For policy update, we use Pol-
icy Gradient [59] with a linear baseline function [21] and 
define the loss function C in Algorithm 3 to be the KL-
divergence between output action distributions. 

Methods Compared. We compare with single view pol-
icy gradient, labelled as “A (PG)” and “B (PG)”, and 
with a policy trained on the union of the two views 
but test on two views separately, labelled as “A (All)” 
and “B (All)”. We also establish an upper bound on 
performance by training a model without view splitting 
(“A+B”). Each method uses the same total number of 
samples (i.e., CoPiEr uses half per view). 

Results. Figure 4 shows the results. CoPiEr is able 
to converge to better or comparable solutions in almost 
all cases except for view A in Hopper. The poor per-
formance in Hopper could be due to the disagreement 
between the two policies not shrinking enough to make 
Theorem 3 meaningful. As a comparison, at end of the 
training, the average KL-divergence for the two policies 
is about 2 for Hopper, compared with 0.23 for Swimmer 
and 0.008 for Acrobot. One possible cause for such large 
disagreement is that the two views have significance dif-
ferences in difficulty for learning, which is the case for 
Hopper by noticing A (PG) and B (PG) have a difference 
in returns of about 190. 

6.2 MINIMUM VERTEX COVER: GENERAL 
CASE WITH RL+IL 

Setup. We now consider the challenging combinatorial 
optimization problem of minimum vertex cover (MVC). 
We use 150 randomly generated Erdös-Re´nyi [20] graph 
instances for each scale, with scales ranging { 100-200, 
200-300, 300-400, 400-500 } vertices. For training, we 
use 75 instances, which we partition into 15 labeled and 
60 unlabeled instances. We use the best solution found 
by Gurobi within 1 hour as the expert solution for the la-
beled set to bootstrap imitation learning. For each scale, 
we use 30 held-out graph instances for validation, and 
we report the performance on 45 test graph instances. 

Views and Features. The two views are the graphs 
themselves and integer linear programs constructed from 
the graphs. For the graph view, we use DQN-based re-
inforcement learning [15] to learn a sequential vertex se-
lection policy. We use structure2vec [14] to com-
pute graph embeddings to use as state representations. 
For the ILP, we use imitation learning [23] to learn node 
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(a) Acrobot Swing-up. A denotes re-
moving the first coordinate in the state 
vector and B removing the second co-
ordinate. 

(b) Swimmer. A denotes removing 
all even index coordinates in the state 
vector and B removing all odd index 
ones. 

(c) Hopper. A denotes removing all 
even index coordinates in the state 
vector and B removing all odd index 
ones. 

Figure 4: Discrete & continuous control tasks. Experiment results are across 5 random seeded runs. Shaded area 
indicates ±1 standard deviation. 

Figure 5: Comparison of CoPiEr with other learning-
based baselines and a commercial solver, Gurobi. The 
y-axis measure relative gaps of various methods com-
pared with CoPiEr Final. CoPiEr Final outperforms all 
the baselines. Notably, the gaps are significant because 
getting optimizing over large graphs is very challenging. 

selection policy for branch-and-bound search. A node 
selection policy determines which node to explore next 
in the current branch-and-bound search tree. We use 
node-specific features (e.g., LP relaxation lower bound 
and objective value) and tree-specific features (e.g., in-
tegrality gap, and global lower and upper bounds) as our 
state representations. Vertex selection in graphs and node 
selection in branch-and-bound are different. So we use 
the general case algorithm in Section 5.1. 

Policy Class. For the graph view, our policy class is sim-
ilar to [15]. In order to perform end-to-end learning of 
the parameters with labeled data exchanged between the  

two views, we use DQN [42] with supervised losses [25] 
to learn to imitate better demonstrations from the ILP 
view. For all our experiments, we determined the reg-
ularizer for the supervised losses and other parameters 
through cross-validation on the smallest scale (100-200 
vertices). The graph view models are pre-trained with 
the labeled set using behavior cloning. We use the same 
number of training iterations for all the methods. 

For the ILP view, our policy class consists of a node 
ranking model that prioritizes which node to visit next. 
We use RankNet [9] as the ranking model, instantiated 
using a 2-layer neural network with ReLU as activation 
functions. We implement our approach for the ILP view 
within the SCIP [2] integer programming framework. 

Methods Compared. At test time, when a new graph 
is given, we run both policies and return the better so-
lution. We term this practical version “CoPiEr Final” 
and measure other policies’ performance against it. We 
compare with single view learning baselines. For the 
graph view, we compare with RL-based policy learning 
over graphs [15], labelled as “Graph (RL)”. And for 
the ILP view, we compare with imitation learning [23] 
“ILP (DAgger)”, retrospective imitation [56] “ILP (Ret-
rospective Imitation)” and a commercial solver Gurobi 
[22]. We combine “Graph (RL)” and “ILP (DAgger)” as 
non-CoPiEr (Final) by returning the better solution of the 
two. We also show the performance of the two policies 
in CoPiEr as standalone policies instead of combining 
them, labelled “Graph (CoPiEr)” and “ILP (CoPiEr)”. 
ILP methods are limited by the same node budget in 
branch-and-bound trees. 

Results. Figure 5 shows the results. We see that 
CoPiEr Final outperforms all baselines as well as 



Gurobi. Interestingly, it also performs much better than 
either standalone CoPiEr policies, which suggests that 
Graph (CoPiEr) is better for some instances while ILP 
(CoPiEr) is better on others. This finding validates com-
bining the two views to maximize the benefits from both. 
For the exact numbers on the final performance, please 
refer to Appendix 8.4. 

6.3 RISK-AWARE PATH PLANNING: GENERAL 
CASE WITH IL+IL 

Setup. We finally consider a practical application of risk-
aware path planning [46]. Given a start point, a goal 
point, a set of polygonal obstacles, and an upper bound 
of the probability of failure (risk bound), we must find a 
path, represented by a sequence of way points, that min-
imizes cost while limiting the probability of collision to 
within the risk bound. Details on the data generation can 
be found in the Appendix 8.3. We report the perfor-
mance evaluations on 50 test instances. 

Views and Features. This problem can be formulated 
into a mixed integer linear program (MILP) as well as 
a quadratically constrained quadratic program (QCQP), 
both of which can be solved using branch-and-bound 
[35, 39]. For each view, we learn a node selection pol-
icy for branch-and-bound via imitation learning. Feature 
representations are similar to ILP view in MVC experi-
ment (Section 6.2). For the QCQP view, we use the state 
variables bounds along the trace for each node from the 
root in the branch and bound tree as an additional feature. 
Although the search framework is the same, because of 
the different nature of the optimization problem formu-
lations, the state and action space are incompatible, and 
so we use the general case of CoPiEr. A pictorial repre-
sentation of the two views is presented in Appendix 8.2. 

Policy Class. The policy class for both MILP and QCQP 
views is similar to that of ILP view in MVC (Section 
6.2), and we learn node ranking models. 

Methods Compared. Similar to MVC experiment, we 
compare other methods with “CoPiEr Final” which re-
turns the better solution of the two. We use single view 
learning baselines, specifically those based on imitation 
learning [23], “QCQP (DAgger)” and “MILP(DAgger)”, 
and on retrospective imitation [56], “QCQP (Retrospec-
tive Imitation)” and “MILP (Retrospective Imitation)”. 
Two versions of non-CoPiEr Final are presented, based 
on DAgger and Retrospective Imitation, respectively. 
Gurobi is also used to solve MILPs but it is not able to 
solve the QCQPs because they are non-convex. 

Results. Figure 6 shows the results. Like in MVC, 
we again see that CoPiEr Final outperforms baselines 
as well as Gurobi. We also observe a similar benefit of 

Figure 6: Comparison of CoPiEr with other learning-
based baselines and a commercial solver, Gurobi. The y-
axis measure relative gaps of various methods compared 
with CoPiEr Final. CoPiEr Final outperforms all the 
baselines. Notably, the scale of problems as measured 
by the number of integer variables far exceed previous 
state-of-the-art method [56]. 

aggregating both policies. The effectiveness of CoPiEr 
enables solving much larger problems than considered in 
previous work [56] (560 vs 1512 binary variables). 

7 CONCLUSION & FUTURE WORK 

We have presented CoPiEr (Co-training for Policy 
Learning), a general framework for policy learning for 
sequential decision making tasks with two representa-
tions. Our theoretical analyses and algorithm design 
cover both the general case as well as a special case 
with shared action spaces. Our approach is compatible 
with both reinforcement learning and imitation learning 
as subroutines. We evaluated on a variety of settings, 
including control and combinatorial optimization. Our 
results on showcase the generality of our framework and 
significant improvements over numerous baselines. 

There are many interesting directions for future work. 
On the theory front, directions include weakening as-
sumptions such as conditional independence, or extend-
ing to more than two views. On the application front, al-
gorithms such as CoPiEr can potentially improve perfor-
mance in a wide range of robotic and other autonomous 
systems that utilize different sensors and image data. 
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8 APPENDIX 

8.1 PROOFS 

Proof for Proposition 1: 

Proof. We show that maxs  DJS(π
B

(s)kπ
A

(s)) is well-
defined for an MDP M with two representations M A 

and M
B

. From Theorem 1, we know the distribution 
π(s) can be written with respect to its occupancy mea-
sure ρπ. It is sufficient to show that we can map occu-
pancy measures of π

A
 and π

B
 to a common MDP. By 

the definition of an occupancy measure,  

Theorem 4. Assume for an MDP M , an expert policy 
πE have a higer advantage of over a policy π with a 
margin, i.e., η(πE, M) − η(π, M) ≥ δ Define 

α = maxs  DKL(π
0
 (s)kπ(s)) 

β = maxs  DJS(π
0
 (s)kπE (s)) 

πE = maxs,a |AπE (s, a)| 

π  = maxs,a |Aπ(s, a)| 

then η(π
0
, M) ≥ ηπ (π

0
, M) − 2γ(4β πE +α π) 

(1−γ)
2 + δ 

~∞ 
ρπ (s, a) = P(π(s) = a)

i=0 
γ

i
P(si = s|π) 

~n 
= Eτ=(s0 ,a0 ,···,sn ) π [

i=0 
γ 

i
1((si , ai ) = (s, a))] 

that is to say, the occupancy measure is the expected dis-
counted count of a state-action pair to appear in all pos-
sible trajectories. Since we have trajectory mappings be-
tween M

A
 and M

B
, we can convert an occupancy mea-

sure in M
A

 to one in M
B

 by mapping each trajectory 
and perform the count in the new MDP representation. 
Formally, the occupancy measure ρ

B

πB of π
B

 in M
B

 can 
be mapped to an occupancy measure in M

A
 by 

ρ
A

πB (s, a) 

Proof. The only difference from the original theorem is 
that the original assumes EaE πE(s),a π(s) [Aπ(s,  aE) − 
Aπ(s, a)] ≥ δ

0
 > 0 for every state s. It is a stronger 

assumption which is not needed in their analysis. No-
tice that the advantage of a policy over itself is zero, i.e., 
Ea π(s) [Aπ (s, a)] = 0 for every s, so the margin as-
sumption simplifies to EaE πE (s) [Aπ  (s, aE)] ≥ δ

0
. 

By the policy advantage formula, 

= E τ 
B

π
B

, 
f B→A (τB)=(s0 ,a0 ,··· ,sn ) 

~n 
[

i=0  γ
i
1 ((si , ai ) = (s, a))] X ∞ 

η(πE, M) − η(π, M) = Eτ πE [ 
i =0  γ

i Aπ(si , ai )] 
~∞ 

= Esi ρπ
E  Eai πE(si ) [

i=0 
γi Aπ(si , ai )] 

≥ Esi ρπE 
[δ0 ∞

i=0 
γi ] 

Following from this, we can compute 
DJS(π

B
(s)kπ

A
(s)) using any s in M

A
. And the 

maximum is defined. In the definition, there is a choice 
whether to map π

A
’s occupancy measure to M

B
 or 

π
B

’s to M
A
. Though both approaches lead to a valid 

definition, we use the definition that for DJS(·k·) , we 
always map the representation in the first argument to 
that of the second argument. It is preferable to the other 
one because in Theorem 2, we want to optimize 

by optimizing 

βB 
D2 

=EM D2 [maxs DJS(πB(s)kπA (s))] 

usually via computing the gradient of β
B

D2
 w.r.t. π

A
. If 

we use f A→B to map from M
A

 to M
B

, the gradient will 
involve a complex composition of f A→B and π

A
, which 

is undesirable. 

To prove Theorem 2, we need to use a policy improve-
ment result for a single MDP (a modified version of The-
orem 1 in [29]). 

δ0 
= 

1 − γ 

So an assumption on per-state advantage translates to a 
overall advantage. Thus we can make this weaker as-
sumption which is also more intuitive and the original 
statement still holds with a different δ term. 

Proof of Theorem 2: 

Proof. Theorem 2 is a distributional extension to the the-
orem above. For M  D2, let δM = η(π

B
, M

B
) − 



η(π
A
, M

A
) . 

J(π
0A

) 

= EM D[η (π 
0A

, M
A

)] 

= EM D1 [η (π 
0A

, M
A

)] + EM D2 [η  (π 
0A

, M
A

)] 

≥ EM D1
[η(π0A, M

A
)]+ 

EM D2 [ηπA (π0A, M
A
) − 2γ

A
(4β πB + α π A)

 + δM] 
(1 − γ

A
)

2
 

≥ EM D1
[ηπ A ( (π

0A
, M

A
) − 2γ

Aα πA

(1 − γA)2 
]+ 

EM D2 [ηπA (π0A, M
A
) − 2γ

A
(4β πB + α π A) 

+ δM] 
(1 − γ

A
)

2
 

= EM D[ηπA (π0A, M
A

)] − EM D
[2γAα πA

 (1 − γA)2 
]− 

EM D2 [  
(1 − γ 

2γ
A

 · 4β π 
A)2 ] + EM D2 [δM] 

B 

2γA (4βB 
D2

B
 

D2 
+α

A
 

D

A
 

≥ JπA (π
0A

) − D) 
+ δ2 (1 − γ

A
)

2
 

The derivation for J(π
0B

) is the same. 

Finally, we provide the proof for Theorem 3. We first 
quantify the performance gap between a policy π and an 
optimal policy π . For a policy that is able to achieve  
0 − 1 loss, ̀ (s, π) = 1 (π(s) =6 π (s)), measured against 
π ’s action choices under its own state distributions, then 
we can bound the performance gap. Let Qπ~ 

t (s, π) denote 
the t-step cost of executing π in initial state s and then 
following policy π0 

Theorem 5. (Theorem 2.2 from [51], adpated to our 
notations) Let π be such taht Es ρπ

 [`(s, π)] = , and 
QπT−t+1(s, π  ) − QπT−t+1(s, a) ≤ u for all action a, t  
{1, 2, · · ·, T}, then η(π, M) ≥ η(π , M) − uT . 

Thus the important quantity to measure is , and by mea-
suring the disagreements between two policies in two 
views, we can upper bound . The result is originally 
stated in the context of classification, and the above theo-
rem justifies the learning reduction approach of reducing 
policy learning to classification. 

Theorem 6. (Corollary 5 in [16] applied to full clas-
sifiers) Using the definitions in Theorem 3, with prob-
ability 1 − σ over the choice of a sample set N, for 
all pairs of classifiers h1, h2 such that for all i we have 
ζi (h1, h2, σ ) > 0 and bi (h1, h2, σ) ≤ 1. 

 ≤ maxj {1,··· ,k} bj (h1, h2, σ) 

Proof. The only change from the original proof is that 
instead of a partial classifier which can output , we 
consider a full classifier. Then we could eliminate the 

Figure 7: Two views for Risk-Aware Path Planning. On 
the left, the obstacle is enclosed by a polytope (MILP 
view) and on the right the obstacle is enclosed by an el-
lipse (QCQP view). 

estimates for P(h1 =6 ) and the error introduced by 
converting a partial classifier to a full classifier via ran-
dom labelling when the output is . 

Proof of Theorem 3: 

Proof. For the bound for π
A

, we are measuring A on its 
sampled paths. Then directly apply Theorem 6 gives an 
upper bound on A. Apply Theorem 5 gives the result of 
Theorem 3. 

8.2 PICTORIAL REPRESENTATION OF THE 
TWO-VIEWS IN RISK-AWARE PATH 
PLANNING: 

We present a pictorial representation of the two differ-
ent views used in the experiments in Fig 7. In the MILP 
view, the constraint space is represented using additional 
auxiliary binary variables to choose the active side of 
the polytope, whereas in the QCQP view, the constraint 
space can be encoded in a quadratic constraint. 

8.3 RISK-AWARE PLANNING DATASET 
GENERATION: 

We generate 150 obstacle maps. Each map contains 10 
rectangle obstacles, with the center of each obstacle cho-
sen from a uniform random distribution over the space 
0 ≤ y ≤ 1, 0 ≤ x ≤ 1. The side length of each ob-
stacle was chosen from a uniform distribution in range 
[0.01, 0.02] and the orientation was chosen from a uni-
form distribution between 0

◦
 and 360

◦
. In order to avoid 

trivial infeasible maps, any obstacles centered close to 
the destination are removed. For MILP view, we directly 
use the randomly generated rectangles for defining the 
constraint space. However, for the QCQP view, we en-
close the rectangle obstacles with a circle for defining the 
quadratic constraint. 



8.4 DISCRETE/CONTINUOUS CONTROL 
RESULTS IN TABULAR FORM 

 

Acrobot Swimmer Hopper 
A (CoPiEr) −86.44 ± 10.80 106.35 ± 23.11 217.83 ± 30.03 

A (PG) −169.57 ± 10.48 109.09 ± 21.58 278.66 ± 32.87 
A (All) −252.42 ± 8.73 100.36 ± 22.37 49.39 ± 10.35 

B (CoPiEr) −88.48 ± 15.13 104.16 ± 19.32 168.88 ± 18.21 
B (PG) −257.16 ± 10.93 103.48 ± 21.89 89.34 ± 4.89 
B (All) −251.74 ± 9.65 96.74 ± 19.57 22.59 ± 5.55 
A + B −86.42 ± 3.48 108.71 ± 5.03 346.53 ± 5.91 
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