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ABSTRACT

Graph Convolutional Networks (GCNs) is the state-of-the-art method for learning
graph-structured data, and training large-scale GCNs requires distributed training
across multiple accelerators such that each accelerator is able to hold a partitioned
subgraph. However, distributed GCN training incurs prohibitive overhead of com-
municating node features and feature gradients among partitions for every GCN
layer during each training iteration, limiting the achievable training efficiency and
model scalability. To this end, we propose PipeGCN, a simple yet effective scheme
that hides the communication overhead by pipelining inter-partition communi-
cation with intra-partition computation. It is non-trivial to pipeline for efficient
GCN training, as communicated node features/gradients will become stale and
thus can harm the convergence, negating the pipeline benefit. Notably, little is
known regarding the convergence rate of GCN training with both stale features
and stale feature gradients. This work not only provides a theoretical convergence
analysis but also finds the convergence rate of PipeGCN to be close to that of the
vanilla distributed GCN training without any staleness. Furthermore, we develop a
smoothing method to further improve PipeGCN’s convergence. Extensive experi-
ments show that PipeGCN can largely boost the training throughput (1.7×∼28.5×)
while achieving the same accuracy as its vanilla counterpart and existing full-graph
training methods. The code is available at https://github.com/RICE-EIC/PipeGCN.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) (Kipf & Welling, 2016) have gained great popularity recently
as they demonstrated the state-of-the-art (SOTA) performance in learning graph-structured data
(Zhang & Chen, 2018; Xu et al., 2018; Ying et al., 2018). Their promising performance is resulting
from their ability to capture diverse neighborhood connectivity. In particular, a GCN aggregates
all features from the neighbor node set for a given node, the feature of which is then updated via a
multi-layer perceptron. Such a two-step process (neighbor aggregation and node update) empowers
GCNs to better learn graph structures. Despite their promising performance, training GCNs at scale
is still a challenging problem, as a prohibitive amount of compute and memory resources are required
to train a real-world large-scale graph, let alone exploring deeper and more advanced models. To
overcome this challenge, various sampling-based methods have been proposed to reduce the resource
requirement at a cost of incurring feature approximation errors. A straightforward instance is to
create mini-batches by sampling neighbors (e.g., GraphSAGE (Hamilton et al., 2017) and VR-GCN
(Chen et al., 2018)) or to extract subgraphs as training samples (e.g., Cluster-GCN (Chiang et al.,
2019) and GraphSAINT (Zeng et al., 2020)).

In addition to sampling-based methods, distributed GCN training has emerged as a promising
alternative, as it enables large full-graph training of GCNs across multiple accelerators such as GPUs.
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This approach first partitions a giant graph into multiple small subgraps, each of which is able to
fit into a single GPU, and then train these partitioned subgraphs locally on GPUs together with
indispensable communication across partitions. Following this direction, several recent works (Ma
et al., 2019; Jia et al., 2020; Tripathy et al., 2020; Thorpe et al., 2021; Wan et al., 2022) have been
proposed and verified the great potential of distributed GCN training. P 3 (Gandhi & Iyer, 2021)
follows another direction that splits the data along the feature dimension and leverages intra-layer
model parallelism for training, which shows superior performance on small models.

In this work, we propose a new method for distributed GCN training, PipeGCN, which targets
achieving a full-graph accuracy with boosted training efficiency. Our main contributions are following:

• We first analyze two efficiency bottlenecks in distributed GCN training: the required significant
communication overhead and frequent synchronization, and then propose a simple yet effective
technique called PipeGCN to address both aforementioned bottlenecks by pipelining inter-partition
communication with intra-partition computation to hide the communication overhead.

• We address the challenge raised by PipeGCN, i.e., the resulting staleness in communicated features
and feature gradients (neither weights nor weight gradients), by providing a theoretical convergence

analysis and showing that PipeGCN’s convergence rate is O(T− 2
3 ), i.e., close to vanilla distributed

GCN training without staleness. To the best of our knowledge, we are the first to provide a
theoretical convergence proof of GCN training with both stale feature and stale feature gradients.

• We further propose a low-overhead smoothing method to further improve PipeGCN’s convergence
by reducing the error incurred by the staleness.

• Extensive empirical and ablation studies consistently validate the advantages of PipeGCN over
both vanilla distributed GCN training and those SOTA full-graph training methods (e.g., boosting
the training throughput by 1.7×∼28.5× while achieving the same or a better accuracy).

2 BACKGROUND AND RELATED WORKS

Graph Convolutional Networks. GCNs represent each node in a graph as a feature (embedding)
vector and learn the feature vector via a two-step process (neighbor aggregation and then node
update) for each layer, which can be mathematically described as:

z(`)v = ζ(`)
({

h(`−1)
u | u ∈ N (v)

})
(1)

h(`)
v = φ(`)

(
z(`)v , h(`−1)

v

)
(2)

where N (v) is the neighbor set of node v in the graph, h
(`)
v represents the learned embedding vector

of node v at the `-th layer, z
(`)
v is an intermediate aggregated feature calculated by an aggregation

function ζ(`), and φ(`) is the function for updating the feature of node v. The original GCN (Kipf

& Welling, 2016) uses a weighted average aggregator for ζ(`) and the update function φ(`) is a

single-layer perceptron σ(W (`)z
(`)
v ) where σ(·) is a non-linear activation function and W (`) is a

weight matrix. Another famous GCN instance is GraphSAGE (Hamilton et al., 2017) in which φ(`) is

σ
(
W (`) · CONCAT

(
z
(`)
v , h

(`−1)
v

))
.

Distributed Training for GCNs. A real-world graph can contain millions of nodes and billions of
edges (Hu et al., 2020), for which a feasible training approach is to partition it into small subgraphs
(to fit into each GPU’s resource), and train them in parallel, during which necessary communication is
performed to exchange boundary node features and gradients to satisfy GCNs’s neighbor aggregation
(Equ. 1). Such an approach is called vanilla partition-parallel training and is illustrated in Fig. 1
(a). Following this approach, several works have been proposed recently. NeuGraph (Ma et al.,
2019), AliGraph (Zhu et al., 2019), and ROC (Jia et al., 2020) perform such partition-parallel
training but rely on CPUs for storage for all partitions and repeated swapping of a partial partition
to GPUs. Inevitably, prohibitive CPU-GPU swaps are incurred, plaguing the achievable training
efficiency. CAGNET (Tripathy et al., 2020) is different in that it splits each node feature vector into
tiny sub-vectors which are then broadcasted and computed sequentially, thus requiring redundant
communication and frequent synchronization. Furthermore, P 3 (Gandhi & Iyer, 2021) proposes to
split both the feature and the GCN layer for mitigating the communication overhead, but it makes a
strong assumption that the hidden dimensions of a GCN should be considerably smaller than that of
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Figure 1: An illustrative comparison between vanilla partition-parallel training and PipeGCN.

input features, which restricts the model size. A concurrent work Dorylus (Thorpe et al., 2021) adopts
a fine-grained pipeline along each compute operation in GCN training and supports asynchronous
usage of stale features. Nevertheless, the resulting staleness of feature gradients is neither analyzed
nor considered for convergence proof, let alone error reduction methods for the incurred staleness.

Table 1: Differences between conventional asyn-
chronous distributed training and PipeGCN.

Method
Hogwild!, SSP,

MXNet, Pipe-SGD,
PipeDream, PipeMare

PipeGCN

Target
Large Model,
Small Feature

Large Feature

Staleness Weight Gradients
Features and

Feature Gradients

Asynchronous Distributed Training. Many
prior works have been proposed for asyn-
chronous distributed training of DNNs. Most
works (e.g., Hogwild! (Niu et al., 2011), SSP
(Ho et al., 2013), and MXNet (Li et al., 2014))
rely on a parameter server with multiple work-
ers running asynchronously to hide commu-
nication overhead of weights/(weight gradi-
ents) among each other, at a cost of using
stale weight gradients from previous itera-
tions. Other works like Pipe-SGD (Li et al.,
2018b) pipeline such communication with local computation of each worker. Another direction is to
partition a large model along its layers across multiple GPUs and then stream in small data batches
through the layer pipeline, e.g., PipeDream (Harlap et al., 2018) and PipeMare (Yang et al., 2021).
Nonetheless, all these works aim at large models with small data, where communication overhead
of model weights/weight gradients are substantial but data feature communications are marginal (if
not none), thus not well suited for GCNs. More importantly, they focus on convergence with stale
weight gradients of models, rather than stale features/feature gradients incurred in GCN training.
Tab. 1 summarizes the differences. In a nutshell, little effort has been made to study asynchronous or
pipelined distributed training of GCNs, where feature communication plays the major role, let alone
the corresponding theoretical convergence proofs.

GCNs with Stale Features/Feature Gradients. Several recent works have been proposed to adopt
either stale features (Chen et al., 2018; Cong et al., 2020) or feature gradients (Cong et al., 2021) in
single-GPU training of GCNs. Nevertheless, their convergence analysis considers only one of two

kinds of staleness and derives a convergence rate of O(T− 1
2 ) for pure sampling-based methods. This

is, however, limited in distributed GCN training as its convergence is simultaneously affected by both
kinds of staleness. PipeGCN proves such convergence with both stale features and feature gradients

and offers a better rate of O(T− 2
3 ). Furthermore, none of previous works has studied the errors

incurred by staleness which harms the convergence speed, while PipeGCN develops a low-overhead
smoothing method to reduce such errors.

3 THE PROPOSED PIPEGCN FRAMEWORK

Overview. To enable efficient distributed GCN training, we first identify the two bottlenecks
associated with vanilla partition-parallel training: substantial communication overhead and frequently
synchronized communication (see Fig. 1(b)), and then address them directly by proposing a novel
strategy, PipeGCN, which pipelines the communication and computation stages across two adjacent
iterations in each partition of distributed GCN training for breaking the synchrony and then hiding
the communication latency (see Fig. 1(c)). It is non-trivial to achieve efficient GCN training with
such a pipeline method, as staleness is incurred in communicated features/feature gradients and
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Algorithm 1: Training a GCN with PipeGCN (per-partition view).

Input: partition id i, partition count n, graph partition Gi, propagation matrix Pi, node feature
Xi, label Yi, boundary node set Bi, layer count L, learning rate η, initial model W0

Output: trained model WT after T iterations
1 Vi ← {node v ∈ Gi : v /∈ Bi} . create inner node set
2 Broadcast Bi and Receive [B1, · · · ,Bn]
3 [Si,1, · · · ,Si,n]← [B1 ∩ Vi, · · · ,Bn ∩ Vi]
4 Broadcast Vi and Receive [V1, · · · ,Vn]
5 [S1,i, · · · ,Sn,i]← [Bi ∩ V1, · · · ,Bi ∩ Vn]

6 H(0) ←

[

Xi

0

]

. initialize node feature, set boundary feature as 0

7 for t := 1→ T do
8 for ` := 1→ L do . forward pass
9 if t > 1 then

10 wait until thread
(`)
f completes

11 [H
(`−1)
S1,i

, · · · , H
(`−1)
Sn,i

]← [B
(`)
1 , · · · , B

(`)
n ] . update boundary feature

12 end

13 with thread
(`)
f . communicate boundary features in parallel

14 Send [H
(`−1)
Si,1

, · · · , H
(`−1)
Si,n

] to partition [1, · · · , n] and Receive [B
(`)
1 , · · · , B

(`)
n ]

15 H
(`)
Vi
← σ(PiH

(`−1)W
(`)
t−1) . update inner nodes feature

16 end

17 J
(L)
Vi
←

∂Loss(H
(L)
Vi

,Yi)

∂H
(L)
Vi

18 for ` := L→ 1 do . backward pass

19 G
(`)
i ←

[

PiH
(`−1)

]> (

J
(`)
Vi
◦ σ′(PiH

(`−1)W
(`)
t−1)

)

. calculate weight gradient

20 if ` > 1 then

21 J(`−1) ← P>
i

(

J
(`)
Vi
◦ σ′(PiH

(`−1)W
(`)
t−1)

)

[W
(`)
t−1]

> . calculate feature gradient

22 if t > 1 then

23 wait until thread
(`)
b completes

24 for j := 1→ n do

25 J
(`−1)
Si,j

← J
(`−1)
Si,j

+ C
(`)
j . accumulate feature gradient

26 end

27 end

28 with thread
(`)
b . communicate boundary feature gradient in parallel

29 Send [J
(`−1)
S1,i

, · · · , J
(`−1)
Sn,i

] to partition [1, · · · , n] and Receive [C
(`)
1 , · · · , C

(`)
n ]

30 end

31 end
32 G← AllReduce(Gi) . synchronize model gradient
33 Wt ←Wt−1 − η ·G . update model

34 end
35 return WT

parallel. Inevitably, staleness is introduced in the deferred communication and results in a mixture
usage of fresh inner features/gradients and staled boundary features/gradients.

Analytically, PipeGCN is achieved by modifying Equ. 1. For instance, when using a mean aggregator,
Equ. 1 and its corresponding backward formulation in PipeGCN become:

z(t,`)v = MEAN
(
{h(t,`−1)

u | u ∈ N (v) \ B(v)} ∪ {h(t−1,`−1)
u | u ∈ B(v)}

)
(3)

δ
(t,`)
hu

=
∑

v:u∈N (v)\B(v)

1

dv
· δ(t,`+1)

zv +
∑

v:u∈B(v)

1

dv
· δ(t−1,`+1)

zv (4)

where B(v) is node v’s boundary node set, dv denotes node v’s degree, and δ
(t,`)
hu

and δ
(t,`)
zv rep-

resent the gradient approximation of hu and zv at layer ` and iteration t, respectively. Lastly, the
implementation of PipeGCN are outlined in Alg. 1.
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3.3 PIPEGCN’S CONVERGENCE GUARANTEE

As PipeGCN adopts a mixture usage of fresh inner features/gradients and staled boundary fea-
tures/gradients, its convergence rate is still unknown. We have proved the convergence of PipeGCN
and present the convergence property in the following theorem.

Theorem 3.1 (Convergence of PipeGCN, informal version). There exists a constant E such that for

any arbitrarily small constant ε > 0, we can choose a learning rate η =
√
ε

E and number of training

iterations T = (L(θ(1))− L(θ∗))Eε−
3
2 such that:

1

T

T∑

t=1

‖∇L(θ(t))‖2 ≤ O(ε)

where L(·) is the loss function, θ(t) and θ∗ represent the parameter vector at iteration t and the
optimal parameter respectively.

Therefore, the convergence rate of PipeGCN is O(T− 2
3 ), which is better than sampling-based

method (O(T− 1
2 )) (Chen et al., 2018; Cong et al., 2021) and close to full-graph training (O(T−1)).

The formal version of the theorem and our detailed proof can be founded in Appendix A.

3.4 THE PROPOSED SMOOTHING METHOD

To further improve the convergence of PipeGCN, we propose a smoothing method to reduce errors
incurred by stale features/feature gradients at a minimal overhead. Here we present the smoothing
of feature gradients, and the same formulation also applies to features. To improve the approximate
gradients for each feature, fluctuations in feature gradients between adjacent iterations should be
reduced. Therefore, we apply a light-weight moving average to the feature gradients of each boundary
node v as follow:

δ̂(t,`)zv = γδ̂(t−1,`)
zv + (1− γ)δ(t,`)zv

where δ̂
(t,`)
zv is the smoothed feature gradient at layer ` and iteration t, and γ is the decay rate. When

integrating this smoothed feature gradient method into the backward pass, Equ. 4 can be rewritten as:

δ̂
(t,`)
hu

=
∑

v:u∈N (v)\B(v)

1

dv
· δ(t,`+1)

zv +
∑

v:u∈B(v)

1

dv
· δ̂(t−1,`+1)

zv

Note that the smoothing of stale features and gradients can be independently applied to PipeGCN.

4 EXPERIMENT RESULTS

We evaluate PipeGCN on four large-scale datasets, Reddit (Hamilton et al., 2017), ogbn-products (Hu
et al., 2020), Yelp (Zeng et al., 2020), and ogbn-papers100M (Hu et al., 2020). More details are
provided in Tab. 3. To ensure robustness and reproducibility, we fix (i.e., do not tune) the hyper-
parameters and settings for PipeGCN and its variants throughout all experiments. To implement
partition parallelism (for both vanilla distributed GCN training and PipeGCN), the widely used
METIS (Karypis & Kumar, 1998) partition algorithm is adopted for graph partition with its objective
set to minimize the communication volume. We implement PipeGCN in PyTorch (Paszke et al., 2019)
and DGL (Wang et al., 2019). Experiments are conducted on a machine with 10 RTX-2080Ti (11GB),
Xeon 6230R@2.10GHz (187GB), and PCIe3x16 connecting CPU-GPU and GPU-GPU. Only for
ogbn-papers100M, we use 4 compute nodes (each contains 8 MI60 GPUs, an AMD EPYC 7642
CPU, and 48 lane PCI 3.0 connecting CPU-GPU and GPU-GPU) networked with 10Gbps Ethernet.
To support full-graph GCN training with the model sizes in Tab. 3, the minimum required partition
numbers are 2, 3, 5, 32 for Reddit, ogbn-products, Yelp, and ogbn-papers100M, respectively.

For convenience, we here name all methods: vanilla partition-parallel training of GCNs (GCN),
PipeGCN with feature gradient smoothing (PipeGCN-G), PipeGCN with feature smoothing
(PipeGCN-F), and PipeGCN with both smoothing (PipeGCN-GF). The default decay rate γ for all
smoothing methods is set to 0.95.
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A CONVERGENCE PROOF

In this section, we prove the convergence of PipeGCN. Specifically, we first figure out that when the
model is updated via gradient descent, the change of intermediate features and their gradients are
bounded by a constant which is proportional to learning rate η under standard assumptions. Based
on this, we further demonstrate that the error occurred by the staleness is proportional to η, which
guarantees that the gradient error is bounded by ηE where E is defined in Corollary A.10, and thus

PipeGCN converges in O(ε−
3
2 ) iterations.

A.1 NOTATIONS AND ASSUMPTIONS

For a given graph G = (V, E) with an adjacency matrix A, feature matrix X , we define the propagation

matrix P as P := D̃−1/2ÃD̃−1/2, where Ã = A+ I, D̃u,u =
∑

v Ãu,v. One GCN layer performs
one step of feature propagation (Kipf & Welling, 2016) as formulated below

H(0) = X

Z(`) = PH(`−1)W (`)

H(`) = σ(Z(`))

where H(`), W (`), and Z(`) denote the embedding matrix, the trainable weight matrix, and
the intermediate embedding matrix in the `-th layer, respectively, and σ denotes a non-linear
activation function. For an L-layer GCN, the loss function is denoted by L(θ) where θ =
vec[W (1),W (2), · · · ,W (L)]. We define the `-th layer as a function f (`)(·, ·).

f (`)(H(`−1),W (`)) := σ(PH(`−1)W (`))

Its gradient w.r.t. the input embedding matrix can be represented as

J (`−1) = ∇Hf (`)(J (`), H(`−1),W (`)) := P>M (`)[W (`)]>

and its gradient w.r.t. the weight can be represented as

G(`) = ∇W f (`)(J (`), H(`−1),W (`)) := [PH(`−1)]>M (`)

where M (`) = J (`) ◦ σ′(PH(`−1)W (`)) and ◦ denotes Hadamard product.

For partition-parallel training, we can split P into two parts P = Pin+Pbd where Pin represents intra-
partition propagation and Pbd denotes inter-partition propagation. For PipeGCN, we can represent
one GCN layer as below

H̃(t,0) = X

Z̃(t,`) = PinH̃
(t,`−1)W̃ (t,`) + PbdH̃

(t−1,`−1)W̃ (t,`)

H̃(t,`) = σ(Z̃(t,`))

where t is the epoch number and W̃ (t,`) is the weight at epoch t layer `. We define the loss function

for this setting as L̃(θ̃(t)) where θ̃(t) = vec[W̃ (t,1), W̃ (t,2), · · · , W̃ (t,L)]. We can also summarize the

layer as a function f̃ (t,`)(·, ·)

f̃ (t,`)(H̃(t,`−1), W̃ (t,`)) := σ(PinH̃
(t,`−1)W̃ (t,`) + PbdH̃

(t−1,`−1)W̃ (t,`))

Note that H̃(t−1,`−1) is not a part of the input of f̃ (t,`)(·, ·) because it is a constant for the t-th epoch.
The corresponding backward propagation follows the following computation

J̃ (t,`−1) = ∇H f̃ (t,`)(J̃ (t,`), H̃(t,`−1), W̃ (t,`))

G̃(t,`) = ∇W f̃ (t,`)(J̃ (t,`), H̃(t,`−1), W̃ (t,`))

where
M̃ (t,`) = J̃ (t,`) ◦ σ′(PinH̃

(t,`−1)W̃ (t,`) + PbdH̃
(t−1,`−1)W̃ (t,`))

13
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∇H f̃ (t,`)(J̃ (t,`), H̃(t,`−1), W̃ (t,`)) := P>
inM̃

(t,`)[W̃ (t,`)]> + P>
bdM̃

(t−1,`)[W̃ (t−1,`)]>

∇W f̃ (t,`)(J̃ (t,`), H̃(t,`−1), W̃ (t,`)) := [PinH̃
(t,`−1) + PbdH̃

(t−1,`−1)]>M̃ (t,`)

Again, J̃ (t−1,`) is not a part of the input of ∇H f̃ (t,`)(·, ·, ·) or ∇W f̃ (t,`)(·, ·, ·) because it is a constant

for epoch t. Finally, we define ∇L̃(θ̃(t)) = vec[G̃(t,1), G̃(t,2), · · · , G̃(t,L)]. It should be highlighted

that the ‘gradient’ ∇H f̃ (t,`)(·, ·, ·), ∇W f̃ (t,`)(·, ·, ·) and ∇L̃(θ̃(t)) are not the standard gradient for
the corresponding forward process due to the stale communication. Properties of gradient cannot be
directly applied to these variables.

Before proceeding our proof, we make the following standard assumptions about the adopted GCN
architecture and input graph.

Assumption A.1. The loss function Loss(·, ·) is Closs-Lipschitz continuous and Lloss-smooth w.r.t. to

the input node embedding vector, i.e., |Loss(h(L), y)− Loss(h′(L), y)| ≤ Closs‖h
(L) − h′(L)‖2 and

‖∇Loss(h(L), y)−∇Loss(h′(L), y)‖2 ≤ Lloss‖h
(L) − h′(L)‖2 where h is the predicted label and y

is the correct label vector.

Assumption A.2. The activation function σ(·) is Cσ-Lipschitz continuous and Lσ-smooth, i.e.,

‖σ(z(`))− σ(z′(`))‖2 ≤ Cσ‖z
(`) − z′(`)‖2 and ‖σ′(z(`))− σ′(z′(`))‖2 ≤ Lσ‖z

(`) − z′(`)‖2.

Assumption A.3. For any ` ∈ [L], the norm of weight matrices, the propagation matrix, and the

input feature matrix are bounded: ‖W (`)‖F ≤ BW , ‖P‖F ≤ BP , ‖X‖F ≤ BX . (This generic
assumption is also used in (Chen et al., 2018; Liao et al., 2020; Garg et al., 2020; Cong et al., 2021).)

A.2 BOUNDED MATRICES AND CHANGES

Lemma A.1. For any ` ∈ [L], the Frobenius norm of node embedding matrices, gradient passing
from the `-th layer node embeddings to the (`− 1)-th, gradient matrices are bounded, i.e.,

‖H(`)‖F , ‖H̃
(t,`)‖F ≤ BH ,

‖J (`)‖F , ‖J̃
(t,`)‖F ≤ BJ ,

‖M (`)‖F , ‖M̃
(t,`)‖F ≤ BM ,

‖G(`)‖F , ‖G̃
(t,`)‖F ≤ BG

where
BH = max

1≤`≤L
(CσBPBW )`BX

BJ = max
2≤`≤L

(CσBPBW )L−`Closs

BM = CσBJ

BG = BPBHBM

Proof. The proof of ‖H(`)‖F ≤ BH and ‖J (`)‖F ≤ BJ can be found in Proposition 1 in (Cong
et al., 2021). By induction,

‖H̃(t,`)‖F = ‖σ(PinH̃
(t,`−1)W̃ (t,`) + PbdH̃

(t−1,`−1)W̃ (t,`))‖F

≤ CσBW ‖Pin + Pbd‖F (CσBPBW )`−1BX

≤ (CσBPBW )`BX

‖J̃ (t,`−1)‖F =
∥∥∥P>

in

(
J̃ (t,`) ◦ σ′(Z̃(t,`))

)
[W̃ (t,`)]> + P>

bd

(
J̃ (t−1,`) ◦ σ′(Z̃(t−1,`))

)
[W̃ (t−1,`)]>

∥∥∥
F

≤ CσBW ‖Pin + Pbd‖F (CσBPBW )L−`Closs

≤ (CσBPBW )L−`+1Closs

‖M (`)‖F = ‖J (`) ◦ σ′(Z(`))‖F ≤ CσBJ

‖M̃ (t,`)‖F = ‖J̃ (t,`) ◦ σ′(Z̃(t,`))‖F ≤ CσBJ

14
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G(`) = [PH(`−1)]>M (`)

≤ BPBHBM

G̃(t,`) = [PinH̃
(t,`−1) + PbdH̃

(t−1,`−1)]>M̃ (t,`)

≤ BPBHBM

Because the gradient matrices are bounded, the weight change is bounded.

Corollary A.2. For any t, `, ‖W̃ (t,`) − W̃ (t−1,`)‖F ≤ B∆W = ηBG where η is the learning rate.

Now we can analyze the changes of intermediate variables.

Lemma A.3. For any t, `, we have ‖Z̃(t,`) − Z̃(t−1,`)‖F ≤ B∆Z , ‖H̃(t,`) − H̃(t−1,`)‖F ≤ B∆H ,

where B∆Z =
L−1∑
i=0

Ci
σB

i+1
P Bi

WBHB∆W and B∆H = CσB∆Z .

Proof. When ` = 0, ‖H̃(t,0)− H̃(t−1,0)‖F = ‖X−X‖F = 0. Now we consider ` > 0 by induction.

‖Z̃(t,`) − Z̃(t−1,`)‖F =‖(PinH̃
(t,`−1)W̃ (t,`) + PbdH̃

(t−1,`−1)W̃ (t,`))

− (PinH̃
(t−1,`−1)W̃ (t−1,`) + PbdH̃

(t−2,`−1)W̃ (t−1,`))‖F

=‖Pin(H̃
(t,`−1)W̃ (t,`) − H̃(t−1,`−1)W̃ (t−1,`))

+ Pbd(H̃
(t−1,`−1)W̃ (t,`) − H̃(t−2,`−1)W̃ (t−1,`))‖F

Then we analyze the bound of ‖H̃(t,`−1)W̃ (t,`) − H̃(t−1,`−1)W̃ (t−1,`)‖F which is denoted by s(t,`).

s(t,`) ≤ ‖H̃(t,`−1)W̃ (t,`) − H̃(t,`−1)W̃ (t−1,`)‖F + ‖H̃(t,`−1)W̃ (t−1,`) − H̃(t−1,`−1)W̃ (t−1,`)‖F

≤ BH‖W̃ (t,`) − W̃ (t−1,`)‖F +BW ‖H̃(t,`−1) − H̃(t−1,`−1)‖F

According to Corollary A.2, ‖W̃ (t,`) − W̃ (t−1,`)‖F ≤ B∆W . By induction, ‖H̃(t,`−1) −

H̃(t−1,`−1)‖F ≤
`−2∑
i=0

Ci+1
σ Bi+1

P Bi
WBHB∆W . Combining these inequalities,

s(t,`) ≤ BHB∆W +

`−1∑

i=1

Ci
σB

i
PB

i
WBHB∆W

Plugging it back, we have

‖Z̃(t,`) − Z̃(t−1,`)‖F ≤‖Pin(H̃
(t,`−1)W̃ (t,`) − H̃(t−1,`−1)W̃ (t−1,`))

+ Pbd(H̃
(t−1,`−1)W̃ (t,`) − H̃(t−2,`−1)W̃ (t−1,`))‖F

≤BP

(
BHB∆W +

`−1∑

i=1

Ci
σB

i
PB

i
WBHB∆W

)

=

`−1∑

i=0

Ci
σB

i+1
P Bi

WBHB∆W

‖H̃(t,`) − H̃(t−1,`)‖F =‖σ(Z̃(t,`))− σ(Z̃(t−1,`))‖F

≤Cσ‖Z̃
(t,`) − Z̃(t−1,`)‖F

≤CσB∆Z
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Lemma A.4. ‖J̃ (t,`) − J̃ (t−1,`)‖F ≤ B∆J where

B∆J = max
2≤`≤L

(BPBWCσ)
L−`B∆HLloss + (BMB∆W + LσBJB∆ZBW )

L−3∑

i=0

Bi+1
P Bi

WCi
σ

Proof. For the last layer (` = L), ‖J̃ (t,L)− J̃ (t−1,L)‖F ≤ Lloss‖H̃
(t,L)− H̃(t−1,L)‖F ≤ LlossB∆H .

For the case of ` < L, we prove the lemma by using induction.

‖J̃ (t,`−1) − J̃ (t−1,`−1)‖F =
∥∥∥
(
P>
inM̃

(t,`)[W̃ (t,`)]> + P>
bdM̃

(t−1,`)[W̃ (t−1,`)]>
)

−
(
P>
inM̃

(t−1,`)[W̃ (t−1,`)]> + P>
bdM̃

(t−2,`)[W̃ (t−2,`)]>
)∥∥∥

F

≤
∥∥∥P>

in

(
M̃ (t,`)[W̃ (t,`)]> − M̃ (t−1,`)[W̃ (t−1,`)]>

)∥∥∥
F

+
∥∥∥P>

bd

(
M̃ (t−1,`)[W̃ (t−1,`)]> − M̃ (t−2,`)[W̃ (t−2,`)]>

)∥∥∥
F

We denote

∥∥∥M̃ (t,`)[W̃ (t,`)]> − M̃ (t−1,`)[W̃ (t−1,`)]>
∥∥∥
F

by s(t,`) and analyze its bound.

s(t,`) ≤
∥∥∥M̃ (t,`)[W̃ (t,`)]> − M̃ (t,`)[W̃ (t−1,`)]>

∥∥∥
F

+
∥∥∥M̃ (t,`)[W̃ (t−1,`)]> − M̃ (t−1,`)[W̃ (t−1,`)]>

∥∥∥
F

≤BM

∥∥∥[W̃ (t,`)]> − [W̃ (t−1,`)]>
∥∥∥
F
+BW

∥∥∥M̃ (t,`) − M̃ (t−1,`)
∥∥∥
F

According to Corollary A.2,

∥∥∥[W̃ (t,`)]> − [W̃ (t−1,`)]>
∥∥∥
F
≤ B∆W . For the second term,

‖M̃ (t,`) − M̃ (t−1,`)‖F

=‖J̃ (t,`) ◦ σ′(Z̃(t,`))− J̃ (t−1,`) ◦ σ′(Z̃(t−1,`))‖F

≤‖J̃ (t,`) ◦ σ′(Z̃(t,`))− J̃ (t,`) ◦ σ′(Z̃(t−1,`))‖F + ‖J̃ (t,`) ◦ σ′(Z̃(t−1,`))− J̃ (t−1,`) ◦ σ′(Z̃(t−1,`))‖F

≤BJ‖σ
′(Z̃(t,`))− σ′(Z̃(t−1,`))‖F + Cσ‖J̃

(t,`) − J̃ (t−1,`)‖F (5)

According to the smoothness of σ and Lemma A.3, ‖σ′(Z̃(t,`)) − σ′(Z̃(t−1,`))‖F ≤ LσB∆Z . By
induction,

‖J̃ (t,`) − J̃ (t−1,`)‖F

≤ (BPBWCσ)
(L−`)B∆HLloss + (BMB∆W + LσBJB∆ZBW )

L−`−1∑

i=0

Bi+1
P Bi

WCi
σ

As a result,

s(t,`) ≤BMB∆W +BWBJLσB∆Z +BWCσ‖J̃
(t,`) − J̃ (t−1,`)‖F

=(BMB∆W +BWBJLσB∆Z) +B
(L−`)
P B

(L−`+1)
W C(L−`+1)

σ B∆HLloss

+ (BMB∆W + LσBJB∆ZBW )
L−∑̀

i=1

Bi
PB

i
WCi

σ

≤B
(L−`)
P B

(L−`+1)
W C(L−`+1)

σ B∆HLloss

+ (BMB∆W + LσBJB∆ZBW )

L−∑̀

i=0

Bi
PB

i
WCi

σ
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‖J̃ (t,`−1) − J̃ (t−1,`−1)‖F =
∥∥∥P>

in

(
M̃ (t,`)[W̃ (t,`)]> − M̃ (t−1,`)[W̃ (t−1,`)]>

)∥∥∥
F

+
∥∥∥P>

bd

(
M̃ (t−1,`)[W̃ (t−1,`)]> − M̃ (t−2,`)[W̃ (t−2,`)]>

)∥∥∥
F

≤BP s
(t,`)

≤(BPBWCσ)
(L−`+1)B∆HLloss

+ (BMB∆W + LσBJB∆ZBW )

L−∑̀

i=0

Bi+1
P Bi

WCi
σ

From Equation 5, we can also conclude that

Corollary A.5. ‖M̃ (t,`) − M̃ (t−1,`)‖F ≤ B∆M with B∆M = BJLσB∆Z + CσB∆J .

A.3 BOUNDED FEATURE ERROR AND GRADIENT ERROR

In this subsection, we compare the difference between generic GCN and PipeGCN with the same

parameter set, i.e., θ = θ̃(t).

Lemma A.6. ‖Z̃(t,`)−Z(`)‖F ≤ EZ ,‖H̃(t,`)−H(`)‖F ≤ EH where EZ = B∆H

L∑
i=1

Ci−1
σ Bi

WBi
P

and EH = B∆H

L∑
i=1

(CσBWBP )
i.

Proof.

‖Z̃(t,`) − Z(`)‖F = ‖(PinH̃
(t,`−1)W̃ (t,`) + PbdH̃

(t−1,`−1)W̃ (t,`))− (PH(`−1)W (`))‖F

≤ ‖(PinH̃
(t,`−1) + PbdH̃

(t−1,`−1) − PH(`−1))W (`)‖F

= BW ‖P (H̃(t,`−1) −H(`−1)) + Pbd(H̃
(t−1,`−1) − H̃(t,`−1))‖F

≤ BWBP

(
‖H̃(t,`−1) −H(`−1)‖F +B∆H

)

By induction, we assume that ‖H̃(t,`−1) −H(`−1)‖F ≤ B∆H

`−1∑
i=1

(CσBWBP )
i. Therefore,

‖Z̃(t,`) − Z(`)‖F ≤ BWBPB∆H

`−1∑

i=0

(CσBWBP )
i

= B∆H

∑̀

i=1

Ci−1
σ Bi

WBi
P

‖H̃(t,`) −H(`)‖F = ‖σ(Z̃(t,`))− σ(Z(`))‖F

≤ Cσ‖Z̃
(t,`) − Z(`)‖F

≤ B∆H

∑̀

i=1

(CσBWBP )
i

Lemma A.7. ‖J̃ (t,`) − J (`)‖F ≤ EJ and ‖M̃ (t,`) −M (`)‖F ≤ EM with

EJ = max
2≤`≤L

(BPBWCσ)
L−`LlossEH+BP (BW (BJEZLσ+B∆M )+B∆WBM )

L−3∑

i=0

(BPBWCσ)
i

EM = CσEJ + LσBJEZ
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Proof. When ` = L, ‖J̃ (t,L) − J (L)‖F ≤ LlossEH . For any `, we assume that

‖J̃ (t,`) − J (`)‖F ≤ (BPBWCσ)
L−`LlossEH + U

L−`−1∑

i=0

(BPBWCσ)
i (6)

‖M̃ (t,`) −M (`)‖F ≤ (BPBWCσ)
L−`CσLlossEH + UCσ

L−`−1∑

i=0

(BPBWCσ)
i + LσBJEZ (7)

where U = BP (BWBJEZLσ +B∆WBM +BWB∆M ). We prove them by induction as follows.

‖M̃ (t,`) −M (`)‖F

= ‖J̃ (t,`) ◦ σ′(Z̃(t,`))− J (`) ◦ σ′(Z(`))‖F

≤ ‖J̃ (t,`) ◦ σ′(Z̃(t,`))− J̃ (t,`) ◦ σ′(Z(`))‖F + ‖J̃ (t,`) ◦ σ′(Z(`))− J (`) ◦ σ′(Z(`))‖F

≤ BJ‖σ
′(Z̃(t,`))− σ′(Z(`))‖F + Cσ‖J̃

(t,`) − J (`)‖F

Here ‖σ′(Z̃(t,`))− σ′(Z(`))‖F ≤ LσEZ . With Equation 6,

‖M̃ (t,`) −M (`)‖F ≤ (BPBWCσ)
L−`CσLlossEH + UCσ

L−`−1∑

i=0

(BPBWCσ)
i + LσBJEZ

On the other hand,

‖J̃ (t,`−1) − J (`−1)‖F

= ‖P>
inM̃

(t,`)[W̃ (t,`)]> + P>
bdM̃

(t−1,`)[W̃ (t−1,`)]> − P>M (`)[W (`)]>‖F

= ‖P>(M̃ (t,`) −M (`))[W (`)]> + P>
bd(M̃

(t−1,`)[W̃ (t−1,`)]> − M̃ (t,`)[W̃ (t,`)]>)‖F

≤ ‖P>(M̃ (t,`) −M (`))[W (`)]>‖F + ‖P>
bd(M̃

(t−1,`)[W̃ (t−1,`)]> − M̃ (t,`)[W̃ (t,`)]>)‖F

≤ BPBW ‖M̃ (t,`) −M (`)‖F +BP ‖M̃
(t−1,`)[W̃ (t−1,`)]> − M̃ (t,`)[W̃ (t,`)]>‖F

The first part is bounded by Equation 7. For the second part,

‖M̃ (t−1,`)[W̃ (t−1,`)]> − M̃ (t,`)[W̃ (t,`)]>‖F

≤ ‖M̃ (t−1,`)[W̃ (t−1,`)]> − M̃ (t−1,`)[W̃ (t,`)]>‖F + ‖M̃ (t−1,`)[W̃ (t,`)]> − M̃ (t,`)[W̃ (t,`)]>‖F
≤ B∆WBM +BWB∆M

Therefore,

‖J̃ (t,`−1) − J (`−1)‖F

≤ BPBW ‖M̃ (t,`) −M (`)‖F +BP ‖M̃
(t−1,`)[W̃ (t−1,`)]> − M̃ (t,`)[W̃ (t,`)]>‖F

≤ (BPBWCσ)
L−`+1LlossEH + U

L−∑̀

i=1

(BPBWCσ)
i + U

= (BPBWCσ)
L−`+1LlossEH + U

L−∑̀

i=0

(BPBWCσ)
i

Lemma A.8. ‖G̃(t,`) −G(`)‖F ≤ EG where EG = BP (BHEM +BMEH)

Proof.

‖G̃(t,`) −G(`)‖F

=
∥∥∥[PinH̃

(t,`−1) + PbdH̃
(t−1,`−1)]>M̃ (t,`) − [PH(`)]>M (`)

∥∥∥
F

≤
∥∥∥[PinH̃

(t,`−1) + PbdH̃
(t−1,`−1)]>M̃ (t,`) − [PH(`−1)]>M̃ (t,`)

∥∥∥
F

+
∥∥∥[PH(`−1)]>M̃ (t,`) − [PH(`−1)]>M (`)

∥∥∥
F

≤BM (‖P (H̃(t,`−1) −H(`−1)) + Pbd(H̃
(t−1,`−1) − H̃(t,`−1))‖F ) +BPBHEM

≤BMBP (EH +B∆H) +BPBHEM
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By summing up from ` = 1 to ` = L to both sides, we have

Corollary A.9. ‖∇L̃(θ)−∇L(θ)‖2 ≤ Eloss where Eloss = LEG.

According to the derivation of Eloss, we observe that Eloss contains a factor η. To simplify the expres-
sion of Eloss, we assume that BPBWCσ ≤ 1

2 without loss of generality, and rewrite Corollary A.9 as
the following.

Corollary A.10. ‖∇L̃(θ)−∇L(θ)‖2 ≤ ηE where

E =
1

8
LB3

PB
2
XClossCσ

(
3BXC2

σLloss + 6BXClossLσ + 10ClossC
2
σ

)

A.4 PROOF OF THE MAIN THEOREM

We first introduce a lemma before the proof of our main theorem.

Lemma A.11 (Lemma 1 in (Cong et al., 2021)). An L-layer GCN is Lf -Lipschitz smoothness, i.e.,
‖∇L(θ1)−∇L(θ2)‖2 ≤ Lf‖θ1 − θ2‖2.

Now we prove the main theorem.

Theorem A.12 (Convergence of PipeGCN, formal). Under Assumptions A.1, A.2, and A.3, we

can derive the following by choosing a learning rate η =
√
ε

E and number of training iterations

T = (L(θ(1))− L(θ∗))Eε−
3
2 :

1

T

T∑

t=1

‖∇L(θ(t))‖2 ≤ 3ε

where E is defined in Corollary A.10, ε > 0 is an arbitrarily small constant, L(·) is the loss function,

θ(t) and θ∗ represent the parameter vector at iteration t and the optimal parameter respectively.

Proof. With the smoothness of the model,

L(θ(t+1)) ≤ L(θ(t)) +
〈
∇L(θ(t)), θ(t+1) − θ(t)

〉
+

Lf

2
‖θ(t+1) − θ(t)‖22

= L(θ(t))− η
〈
∇L(θ(t)),∇L̃(θ(t))

〉
+

η2Lf

2
‖∇L̃(θ(t))‖22

Let δ(t) = ∇L̃(θ(t))−∇L(θ(t)) and η ≤ 1/Lf , we have

L(θ(t+1)) ≤ L(θ(t))− η
〈
∇L(θ(t)),∇L(θ(t)) + δ(t)

〉
+

η

2
‖∇L(θ(t)) + δ(t)‖22

≤ L(θ(t))−
η

2
‖∇L(θ(t))‖22 +

η

2
‖δ(t)‖22

From Corollary A.10 we know that ‖δ(t)‖2 < ηE. After rearranging the terms,

‖∇L(θ(t))‖22 ≤
2

η
(L(θ(t))− L(θ(t+1))) + η2E2

Summing up from t = 1 to T and taking the average,

1

T

T∑

t=1

‖∇L(θ(t))‖22 ≤
2

ηT
(L(θ(1))− L(θ(T+1))) + η2E2

≤
2

ηT
(L(θ(1))− L(θ∗)) + η2E2

where θ∗ is the minimum point of L(·). By taking η =
√
ε

E and T = (L(θ(1))− L(θ∗))Eε−
3
2 with

an arbitrarily small constant ε > 0, we have

1

T

T∑

t=1

‖∇L(θ(t))‖2 ≤ 3ε
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B TRAINING TIME BREAKDOWN OF FULL-GRAPH TRAINING METHODS

To understand why PipeGCN significantly boosts the training throughput over full-graph training
methods, we provide the detailed time breakdown in Tab. 6 using the same model as Tab. 3 (4-layer
GraphSAGE, 256 hidden units), in which “GCN” denotes the vanilla partition-parallel training
illustrated in Fig. 1(a). We observe that PipeGCN greatly saves communication time.

Table 6: Epoch time breakdown of full-graph training methods on the Reddit dataset.

Method Total time (s) Compute (s) Communication (s) Reduce (s)

ROC (2 GPUs) 3.63 0.5 3.13 0.00
CAGNET (c=1, 2 GPUs) 2.74 1.91 0.65 0.18
CAGNET (c=2, 2 GPUs) 5.41 4.36 0.09 0.96

GCN (2 GPUs) 0.52 0.17 0.34 0.01
PipeGCN (2 GPUs) 0.27 0.25 0.00 0.02

ROC (4 GPUs) 3.34 0.42 2.92 0.00
CAGNET (c=1, 4 GPUs) 2.31 0.97 1.23 0.11
CAGNET (c=2, 4 GPUs) 2.26 1.03 0.55 0.68

GCN (4 GPUs) 0.48 0.07 0.40 0.01
PipeGCN (4 GPUs) 0.23 0.10 0.10 0.03
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E SCALING GCN TRAINING OVER MULTIPLE GPU SERVERS

We also scale up PipeGCN training over multiple GPU servers (each contains AMD Radeon Instinct
MI60 GPUs, an AMD EPYC 7642 CPU, and 48 lane PCI 3.0 connecting CPU-GPU and GPU-GPU)
networked with 10Gbps Ethernet.

The accuracy results of PipeGCN and its variants are summarized in Tab. 7:

Table 7: The accuracy of PipeGCN and its variants on Reddit.

#partitions (#node×#gpus) PipeGCN PipeGCN-F PipeGCN-G PipeGCN-GF

2 (1×2) 97.12% 97.09% 97.14% 97.12%
3 (1×3) 97.01% 97.15% 97.17% 97.14%
4 (1×4) 97.04% 97.10% 97.09% 97.10%
6 (2×3) 97.09% 97.12% 97.08% 97.10%
8 (2×4) 97.02% 97.06% 97.15% 97.03%
9 (3×3) 97.03% 97.08% 97.11% 97.08%

12 (3×4) 97.05% 97.05% 97.12% 97.10%
16 (4×4) 96.99% 97.02% 97.14% 97.12%

Furthermore, we provide PipeGCN’s speedup against vanilla partition-parallel training in Tab. 8:

Table 8: The speedup of PipeGCN and its vatiants against vanilla partition-parallel training on
Reddit.

#nodes×#gpus GCN PipeGCN PipeGCN-G PipeGCN-F PipeGCN-GF

1×2 1.00× 1.16× 1.16× 1.16× 1.16×
1×3 1.00× 1.22× 1.22× 1.22× 1.22×
1×4 1.00× 1.29× 1.28× 1.29× 1.28×
2×2 1.00× 1.61× 1.60× 1.61× 1.60×
2×3 1.00× 1.64× 1.64× 1.64× 1.64×
2×4 1.00× 1.41× 1.42× 1.41× 1.37×
3×2 1.00× 1.65× 1.65× 1.65× 1.65×
3×3 1.00× 1.48× 1.49× 1.50× 1.48×
3×4 1.00× 1.35× 1.36× 1.35× 1.34×
4×2 1.00× 1.64× 1.63× 1.63× 1.62×
4×3 1.00× 1.38× 1.38× 1.38× 1.38×
4×4 1.00× 1.30× 1.29× 1.29× 1.29×

From the two tables above, we can observe that our PipeGCN family consistently maintains the
accuracy of the full-graph training, while improving the throughput by 15%∼66% regardless of
the machine settings and number of partitions.
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F IMPLEMENTATION DETAILS

We discuss the details of the effective and efficient implementation of PipeGCN in this section.

First, for parallel communication and computation, a second cudaStream is required for communica-
tion besides the default cudaStream for computation. To also save memory buffers for communication,
we batch all communication (e.g., from different layers) into this second cudaStream. When the
popular communication backend, Gloo, is used, we parallelize the CPU-GPU transfer with CPU-CPU
transfer.

Second, when Dropout layer is used in GCN model, it should be applied after communication. The
implementation of the dropout layer for PipeGCN should be considered carefully so that the dropout
mask remains consistent for the input tensor and corresponding gradient. If the input feature passes
through the dropout layer before being communicated, during the backward phase, the dropout mask
is changed and the gradient of masked values is involved in the computation, which introduces noise
to the calculation of followup gradients. As a result, the dropout layer can only be applied after
receiving boundary features.
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