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Figure 1: Trained on synthetic shapes, NKF can reconstruct objects in and out of the training distribution, and scanned scenes.

Abstract

We present Neural Kernel Fields: a novel method for

reconstructing implicit 3D shapes based on a learned kernel

ridge regression. Our technique achieves state-of-the-art

results when reconstructing 3D objects and large scenes from

sparse oriented points, and can reconstruct shape categories

outside the training set with almost no drop in accuracy.

The core insight of our approach is that kernel methods

are extremely effective for reconstructing shapes when the

chosen kernel has an appropriate inductive bias. We thus

factor the problem of shape reconstruction into two parts: (1)

a backbone neural network which learns kernel parameters

from data, and (2) a kernel ridge regression that fits the

input points on-the-fly by solving a simple positive definite

linear system using the learned kernel. As a result of this

factorization, our reconstruction gains the benefits of data-

driven methods under sparse point density while maintaining

interpolatory behavior, which converges to the ground truth

shape as input sampling density increases. Our experiments

demonstrate a strong generalization capability to objects

outside the train-set category and scanned scenes. Source

code and pretrained models are available at https://

nv-tlabs.github.io/nkf.

1. Introduction

The goal of 3D reconstruction is to recover geometry from

partial measurements of a shape. In this work, we aim to

map a sparse set of oriented points sampled from the surface

of a shape to a 3D implicit surface for that shape. Surface

reconstruction from point clouds is a well studied topic in

computer vision and graphics, with applications in robotics,

entertainment, and manufacturing. Techniques for surface

reconstruction broadly fall into two types: implicit meth-

ods which aim to recover a volumetric function whose zero

level-set encodes the surface, and explicit methods which

directly recover a triangle mesh from the input points. While

implicit approaches can adapt to arbitrary topologies, the

requirement to store a dense volumetric field led many past

works to favor explicit approaches [44, 19]. More recently,

implicit approaches have regained popularity due to a num-

ber of works demonstrating that neural networks are com-

pact and effective at encoding signed-distance [45, 57] and

occupancy fields [41, 48]. These works pair neural field1 rep-

resentations with modern advances in point cloud processing

architectures to produce powerful reconstruction techniques.

Current state-of-the-art shape reconstructions methods can

be categorized along three axes (Fig. 3):

(1) Feed-forward vs. test-time optimization: Feed-forward

methods leverage shape priors to directly predict a surface

from input points. While these methods are fast, they are

not strictly constrained by their input and thus may perform

a task more akin to retrieval than reconstruction (see [59]

1A neural field refers to the parameterization of a continuous function

of spatial coordinates using a neural network. In this work we focus on

scalar functions mapping coordinates to real numbers.
*Denotes equal contribution.
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and Fig. 2, top). This results in decreased generalization

performance on out-of-distribution shapes and input point

densities. In contrast, test-time optimization via latent space

traversal allows adaptation to the input, but is slow and can

converge to poor local minima (See e.g. [16] and Fig. 2,

bottom).

(2) Whether or not to leverage data priors: Data-free meth-

ods recover the surface by minimizing the residuals between

the reconstructed surface and input points, leveraging a pre-

determined prior to control the behavior away from the input

points (e.g. a smooth space of functions [35, 64] or, emergent

regularization arising from neural architectures [63, 25]).

Such fixed priors are, however, difficult to tailor to specific

tasks, like completion of partial shapes (Fig. 2, middle).

Data-driven approaches, on the other hand, can learn task-

specific priors to predict shapes that resemble a given dataset.

(3) Which scale to process and represent data. Local-scale

methods [33, 4] use the idea that complex structures can

be reduced to a collection of simpler geometric primitives.

These methods learn local models which are used to recon-

struct a surface in patches. While this approach can general-

ize better, patch-size plays a critical role and must be care-

fully tuned per object (Fig. 2, bottom). Furthermore, without

any notion of global context, these methods are unable to

complete larger missing regions, leaving a fundamental gap

in their generalization performance.

Based on these axes and the motivating examples in Fig. 2,

we identify the need for a method that can learn good priors

from a simple collection of shapes to drive 3D reconstruc-

tion of both in-distribution and out-of distribution shapes

and scenes. In particular, the priors learned by this method

should respect the input points, performing reconstruction

rather than retrieval.

We thus propose a method using a novel representation of

neural fields based on learned kernels, which we call Neural

Kernel Fields (NKFs). In brief, NKFs work by learning a pos-

itive definite kernel conditioned on an input point cloud, and

then using that kernel to predict an implicit shape by solv-

ing a simple linear system (Fig. 4). Our approach provides

several key benefits: First, since predicted kernels are con-

ditioned on the input and learned from data, they enjoy the

versatility of learning-based methods. Second, since NKFs

leverage a kernel for shape prediction, any reconstructed

surfaces respect the input points by construction. Third,

unlike gradient descent-based latent space optimization, at

test-time NKF kernel weights are solved in closed form via

a simple convex least-squares problem, guaranteeing good

minima. Finally, our kernel acts as a global aggregator of

spatially local features, allowing our method to work at a

wide variety of sampling densities without tuning any scale

parameters. The result is a generalizable method that can be

trained only on synthetic shapes to seamlessly reconstruct

out of distribution shapes and large scale scenes, while being

SPSR [35] NS [64] Ours

C-OccNet [48]OccNet [41] Ours

LIG [33] (0.3)LIG [33] (0.1) Ours

Figure 2: Comparison of our approach with methods along

three Axes in Sec. 1. Top Row: Data free methods [35, 64]

respect the input points but their simple fixed priors cannot

complete the partial shape. Middle Row: Feed-forward

methods [48, 48] learn from data, but miss the slats on the

slightly out of distribution canoe. Bottom Row: LIG [33], a

local method which performs test-time optimization, is very

sensitive to the choice of patch size (0.3 left vs 0.1 middle),

and gets stuck in bad local minima (bumpy artefacts).

robust to changes in input point density. Compared with the

baselines, our method achieves a marked improvement re-

construction detail on both in and out-of distribution shapes.

We summarize our contributions as follows:

• We introduce Neural Kernel Fields, a novel represen-

tation of neural fields for 3D reconstruction, which

outputs highly detailed surfaces that respect the input

points.

• Our NKF representation achieves state of the art perfor-

mance on ShapeNet reconstruction (Section 4.1).

• We show state-of-the-art generalization performance

on out-of-distribution shapes (Section 4.3), scenes (Sec-

tion 4.4) and point densities (Section 4.5)

2. Related Work

Figure 3 visualizes existing implicit 3D shape reconstruc-

tion methods along the three axes defined in Section 1. Our

Neural Kernel Field approach lies at the center of the dia-

gram since it (1) uses a simple convex test time optimization,

(2) leverages priors learned from data, and (3) learns lo-

cal features on a spatial grid, but aggregates these globally

during fitting.

We now highlight several works that are particularly rel-

evant to our approach: Learned kernels were investigated

in [66, 32, 46] and used for tasks such as few-shot transfer
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IF-Net [9]
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Figure 3: Taxonomy of design choices for methods which

reconstruct implicit shapes from point clouds. The x and

y axes correspond to axes 1 and 3 discussed in Section 1

respectively. Color corresponds to axis 2: blue methods use

learned priors, and orange methods do not.

learning and classification of images. Neural Splines [64]

used a kernel method derived from infinitely wide ReLU

networks to reconstruct 3D surfaces from points. Convolu-

tional Occupancy Networks [48] proposes a convolutional

architecture that maps 3D points to features. We use a simi-

lar feature network for our Neural Kernel Field architecture.

LIG [21] addresses the need for reconstruction methods that

can generalize. MetaSDF [54] meta-learns a network which

can be rapidly trained to predict SDFs. Neural Kernel Fields

can also be viewed as a form of meta-learning since they

predict a kernel machine from data. Shape as Points [47] is

a concurrent work relevant to our method. It solves a linear

system to reconstruct a surface after a learned upsampling

phase. Unlike our method, however, Shape as Points relies

on the inductive bias of Poisson reconstruction to output a

surface rather than learning an inductive bias from data.

Beyond methods based on implicit surfaces, other shape

reconstruction techniques exist which leverage different out-

put representations. These representations include dense

point clouds [51, 40, 73, 49, 50, 72, 56, 69, 70, 17, 36],

polygonal meshes [30, 6, 19, 29, 24, 62, 12, 38, 27, 53],

manifold atlases [63, 15, 26, 18, 3], and voxel grids

[10, 60, 28, 67, 61, 23]. While our method focuses on

shape reconstruction from points, past work has used neural

fields to perform a variety of 3D tasks such as shape com-

pression [57, 64], shape prediction from images [41, 37],

voxel grid upsampling [48, 41], reconstruction from rotated

inputs [14] and articulated poses [13, 71], and video to

3D [68, 39].

3. Method

Our approach predicts an implicit surface from an ori-

ented point cloud using a learned kernel. Neural Splines [64]

also solves a 3D reconstruction problem using a fixed kernel

(not learned from data), and is thus related to our approach.

To introduce the reader to kernel methods for 3D reconstruc-

tion, we begin by giving an overview of Neural Splines. We

then show how these kernel methods can be extended into

Neural Kernel Fields capable of leveraging priors from data.

3.1. Review of Neural Splines

Given a point set X = {xi ∈ R
3}Si=1 with corresponding

normals N = {ni ∈ R
3}Si=1, [64] seeks an implicit field

f : R3 → R which represents the underlying surface from

which X and N were sampled. Namely, it should zero out

on the set of input points and its gradient should equal the

normal direction. More formally, the implicit field should

minimize

L(f) =

S
∑

i=1

|f(xi)|
2 + ‖∇f(xi)− ni‖

2 (1)

The gradient part of (1) can be

approximated with a finite difference

method, by augmenting the points X

with X+ = {x+
i = xi + ǫni}

S
i=1

and X− = {x−
i = xi − ǫni}

S
i=1

(see inset figure) and minimizing the

simpler loss:

L(f) =

S
∑

i=1

|f(xi)|
2 + |f(x+

i )− ǫ|2 + |f(x−
i ) + ǫ|2 (2)

Let X ′ = X ∪ X+ ∪ X− denote the union of the

augmented points. To minimize (2), we represent f as a

weighted sum of kernel basis functions centered at the points

X ′:

f(x) =
∑

x
′∈X′

αiKNS(x,x
′) (3)

which is linear in the coefficients α =
[

α1 . . . α3S

]T
.

These coefficients can thus be recovered by solving the linear

system

(G+ λI)α = y (4)

where G ∈ R
3S×3S is the augmented Gram matrix over the

points X ′ (i.e. Gij = KNS(x
′
i,x

′
j) ∀x

′
i,x

′
j ∈ X ′), λ > 0 is

an optional regularizer which can be used to filter noise, and

y is a vector such that

yj =











0 if x′
j ∈ X

+ǫ if x′
j ∈ X+

−ǫ if x′
j ∈ X−

(5)

The kernel function KNS is the closed form expression for

an infinitely wide shallow ReLU network. It depends on the

inner product between the inputs expressed in homogeneous

coordinates. i.e. KNS(x, y) = KNS(〈x, y〉 + 1). See the

appendix for the exact equation and more details.



Figure 4: Our method works in two stages: (1) prediction (Top row) where we predict an implicit function from an input point

cloud, and (2) evaluation (Bottom row) where we evaluate the implicit function. Our predicted implicit consists of a feature

function φ which lifts points in the volume to features in R
d, and a set of coefficients α, which are used to encode the function

as a linear combination of basis functions centered at the input points.

3.2. Inductive Bias of Neural Splines

The kernel formulation in Neural Splines makes explicit

the notion of inductive bias, i.e. the behavior of solutions

away from the input points. To see this, we observe that so-

lutions to the linear system (4) are solutions to the following

constrained optimization problem:

minimize ‖f‖K = αTGα (6)

subject to f(x′
j) = yj x′

j ∈ X ′ (7)

Here the norm ‖f‖K being minimized defines the inductive

bias of the kernel method, i.e. it governs the behavior of the

function away from the constraints. The constraints f(xj) =
yj guarantee that any solution to the above optimization

problem interpolates the input data up to a bound defined by

the regularizer λ.

For Neural Splines, the kernel norm favors smooth func-

tions: It is proportional to curvature (‖f‖K ≈ ‖f ′′‖) for

1D curves [65] and to the Radon transform of the Laplacian

(‖f‖K ≈ ‖R{∆2f}‖) for 3D implicit surfaces [43, 64].

While an inductive bias favoring smoothness is good for re-

constructing shapes with dense samples, it is too weak a prior

in more challenging cases such as when the input points are

very sparse or only cover part of a shape. For example, Fig. 2

(top) shows that Neural Splines is incapable of completing a

partial point cloud of a truck. To this end, NKFs use a data

dependent kernel, which learns an appropriate inductive bias

conditioned on the input. By solving a linear system such as

(4) using this kernel, we guarantee that output shapes respect

their input points. We now describe NKFs in detail.

3.3. Neural Kernel Fields

Our model accepts the same inputs as Neural Splines

described above in Section 3.1: i.e. We are given a set

of points X and normals N sampled from the surface of

an unknown shape, which we subsequently expand into an

augmented point cloud X ′ with 2S points and corresponding

labels y ∈ R
2S . We remark that our method only uses the

inside and outside augmented points, i.e. X ′ = X+ ∪X−.

For brevity, we denote the inputs to our model as X =
(X ′,y). We now describe our architecture in four steps: (1)

how to define our data dependent kernel, (2) how to use that

kernel to predict an implicit function, (3) how to train our

model, and (4) how to add filtering for noisy inputs. Figure 4

shows our NKF architecture pictorially.

Data Dependent Kernel To learn a kernel from data,

we first augment input points x′
i ∈ X ′ with a feature

φ(x′
i|X , θ) ∈ R

d where φ is a neural network with param-

eters θ conditioned on the inputs X . Using these learned

per-point features, we the define data-dependent kernel as:

K(X ,θ)(x, z) = KNS([x : φ(x|X , θ)], [z : φ(z|X , θ)])
(8)

where [a : b] is the concatenation of the vectors a and b, and

KNS is the Neural Spline kernel function. The architecture

of the network φ follows an approach similar to Convolu-

tional Occupancy Networks [48]: We discretize the volume

around the input point cloud into a M ×M ×M grid, and

use a PointNet within each grid cell containing input points

to extract a feature in that cell (empty cells have a zero fea-



ture). We then feed these features into a fully convolutional

3D U-Net, which produces an M × M × M × d grid of

output features. To extract features per point, we trilinearly

interpolate the output grid using the sampled points.

Predicting an Implicit Function To predict an implicit

function, we find coefficients αj for each input point x′
j ∈

X ′ by solving the 2S × 2S positive definite linear system

α = [αj ]
2S
j=1 = (G(X , θ) + λI)−1y (9)

where G(X , θ) is the gram matrix G(X , θ)ij =
K(X ,θ)(xi,xj), and λ is a user supplied regularization pa-

rameter. To evaluate the predicted function at a new point x,

we compute the following equation using the coefficients α:

f(x) =
∑

x
′

j
∈X′

αjK(X ,θ)(x,x
′
j). (10)

Training the Model To supervise our model during train-

ing, we use a dataset of shapes. Each shape consists of the

augmented input points and labels X = (X ′,y), a dense set

of points and occupancy labels (Xvol = {xvol
i ∈ R

3}, Yvol =
{yvol

i ∈ R}) in the volume surrounding the shape, and a

dense set of points Xsurf = {xsurf
i ∈ R

3} on the surface of

the shape. We remark that the dense points on the surface and

in the volume are only needed as supervision during training.

The occupancy labels Yvol denote whether a volume point

lies inside or outside a shape and are defined as:

yvol
i =

{

1 if xvol
i is inside the shape

0 otherwise
(11)

We then train the network φ used to define the kernel (8) by

first predicting an implicit function using the inputs X and

then evaluating it at the dense volume Xvol and surface Xsurf

points to compute the loss:

L(f) =

|Xvol|
∑

i=1

BCE(f(xvol
i ), yvol

i ) + λL1

|Xsurf|
∑

i=1

|f(xsurf
i )|

(12)

The first term in (12) encourages the predicted function

to have the correct occupancy, while the second term en-

courages the surface to agree with the ground truth shape.

We backpropagate gradients through this loss to update the

weights of the network φ, and thus learn the data dependent

kernel.

Learning to Denoise We can optionally predict per-input

point weights to make our solutions more robust to noise.

We predict these via a fully connected network wj =
ρ(φ(xj ;X , θ); θw) ∈ R mapping per-point input features

to weights. Instead of Eq. 9, we then solve the weighted

ridge regression problem:

α = (WGW + λI)−1Wy (13)

Figure 5: Unweighted (left) versus weighted (right) kernel

ridge regression. Both reconstructions use the same noisy

input points and regularization value. The right reconstruc-

tion, which uses per-point weights (visualized as the size of

the points) can filter out the contribution of noisy points and

produce a more accurate reconstruction.

where W = diag(w1, . . . ws) is a diagonal matrix of per-

input-point weights. Figure 5 shows the effect of weighted

versus unweighted ridge regression in the presence of noise

on a toy example.

4. Experiments

We first evaluate the effectiveness of Neural Kernel

Fields on the tasks of single object reconstruction (Sec-

tion 4.1) and partial object completion (Section 4.2) using

the ShapeNet [5] dataset. Next, we highlight NKF’s ability

to generalize by evaluating the tasks of out-of-category shape

generlization (Section 4.3), generlization to full scenes (Sec-

tion 4.4), and generlization to different sampling densities

(Section 4.5). Finally, in Section 4.6, we ablate the design

choices for our backbone architecture.

Baselines: For ShapeNet reconstruction, we compare our

method to OccNet [41], Conv-OccNet [48], SPSR [35],

and Neural Splines [64]. On the task of completion, we

compare against Conv-OccNet [48]. For out-of-distribution

shape reconstruction, we compare with OccNet [41], Conv-

OccNet [48], LIG [33], and Neural Splines [64], while on the

task of full scene reconstruction we use Conv-OccNet [48],

SPSR [35], and NS [64] as baselines. Combined, these

methods cover a broad spectrum of 3D shape reconstruction

approaches and represent SoTA in their respective categories

depicted in Fig. 3.

Metrics: We use 3 metrics for quantitative evaluation: In-

tersection over Union (IoU) is computed by sampling a set

of 100k points in the volume around a watertight shape and

computing the IoU of the set of inside points for the pre-

dicted and ground truth shapes. IoU indicates how well the

predicted shape agrees with the ground truth both near and

away from the surface. L2 Chamfer Distance is evaluated

by sampling 100k points on the predicted and ground truth

surfaces (extracted as meshes using marching cubes), then

computing the average shortest distance between all pairs



SPSR [35] NS [64] OccNet [41] C-OccNet [48] Ours Ground truth

Figure 6: Single object reconstruction on ShapeNet [5]. NKF recovers fine details like the lamp’s cord and car’s side mirror.

Noise free Noise std. = 0.0025 Noise std. = 0.005

IoU ↑ Chamfer ↓ Normal C. ↑ IoU ↑ Chamfer ↓ Normal C. ↑ IoU ↑ Chamfer ↓ Normal C. ↑

mean std. mean std. mean std. mean std. mean std. mean std. mean std. mean std. mean std.

SPSR [35] 0.772 0.162 0.122 0.069 0.847 0.061 0.759 0.163 0.125 0.066 0.847 0.060 0.735 0.169 0.133 0.067 0.843 0.060

OccNet [41] 0.773 0.162 0.068 0.048 0.902 0.073 0.771 0.164 0.069 0.051 0.903 0.072 0.699 0.172 0.192 0.137 0.888 0.074

C-OccNet [48] 0.810 0.116 0.051 0.018 0.922 0.052 0.820 0.112 0.049 0.019 0.924 0.051 0.866 0.089 0.080 0.040 0.937 0.044

C-OccNet* [48] 0.823 0.105 0.048 0.016 0.928 0.048 0.847 0.094 0.043 0.015 0.932 0.046 0.863 0.088 0.078 0.031 0.937 0.045

NS [64] 0.864 0.151 0.051 0.071 0.926 0.059 0.831 0.147 0.054 0.064 0.919 0.057 0.791 0.155 0.121 0.167 0.900 0.055

Ours 0.949 0.053 0.024 0.010 0.954 0.042 0.914 0.061 0.028 0.010 0.947 0.043 0.883 0.074 0.066 0.018 0.939 0.041

Table 1: Single object reconstruction on ShapeNet [5]. NKF consistently outperforms strong baselines on standard metrics:

IoU, Chamfer distance, and Normal Consistency, across all 13 categories.

of points. Chamfer distance measures how accurately each

method reconstructs the surface of the input shape. Normal

Correlation is computed as the average dot product between

the normals at pairs of nearest points on the ground truth and

predicted shapes and evaluates how well each method does

at preserving the surface direction. We use the same 100k

samples as for Chamfer distance to compute this metric.

4.1. Single Object Reconstruction on ShapeNet

We evaluate NKF’s performance against strong baselines

in reconstructing objects from 13 categories of the ShapeNet

dataset. As input to all methods we use 1000 randomly sam-

pled surface points to which we add Gaussian noise of differ-

ent magnitudes. For learning based methods (Conv-Occnet,

OccNet, Ours), we train a single model across all 13 cate-

gories per noise level. Since both NKF and Neural Splines

utilize pairs of points spread along the normals, we train

a version of Conv-OccNet with (C-OccNet*) and without

(C-OccNet) these points. Table 1 shows that NKF achieves

large improvements across all metrics, reaching near 95%

IoU on noise-free reconstruction. Figure 6, which shows re-

constructions at the middle noise level, clearly demonstrates

how NKF recovers fine details like the cars’ side-view mirror,

the cord on the lamp, and the bulges on the chair legs. In the

supplemental, we provide per-category results, additional

figures, and ablations on different numbers of input points.

4.2. Shape Completion on ShapeNet

Albeit using input points as anchors, thanks to the global

support of the kernel, NKF can learn to recover an entire

shape from partial input. To demonstrate that, we sample a

point cloud from up to 50 % of a shape surface along one

of the principal axes, and supervise NKF to predict the full

shape. We train a separate model per shape category for each

of 13 ShapeNet categories. Table 2 presents quantitative re-

sults across all categories for this task. NKF achieves on-par

Chamfer and Normal correlation as C-OccNet with substan-

tially better IoU. The top row of Fig. 2 shows an example

of completing a truck shape from very partial input. Note

how NKF learned to leverage shape symmetry to faithfully

recover unobserved regions like the wheels. The appendix

shows per-category quantitative and qualitative results.



IoU ↑ Chamfer ↓ Normal C. ↑

mean std. mean std. mean std.

C-OccNet [48] 0.770 0.152 0.075 0.068 0.909 0.059

Ours 0.819 0.171 0.077 0.091 0.907 0.067

Table 2: Object completion from partial point clouds.

OccNet [41] C-OccNet [48] Ours Ground truth

Figure 7: Out-of-category generalization. Reconstructed

object from categories unseen during training.

4.3. Out of Category Generalization

Generalization to categories beyond the train set is key

to making learnable methods useful in the wild. To evaluate

NKF on this task we train all methods on 6 of the ShapeNet

categories (airplane, lamp, display, rifle, chair, cabinet) and

evaluate on the other 7 (bench, car, loudspeaker, sofa, table,

telephone, watercraft). Table 3 presents quantitative statis-

tics for this task using the standard metrics. NKF greatly

outperforms both learned and non-learned baselines. Fur-

thermore, we note in brackets the decrease in performance

compared to the model trained on all categories. NKF, with

a minimal 1.1% drop in IoU, aligns with data-free methods

thanks to its test-time adaptation ability. We point out that

LIG only provides models pretrained on all categories, which

sets an upper bound on its generalization performance. The

distinct differences between NKF and baselines are readily

apparent in Figure 7.

4.4. Scene Reconstruction on ScanNet

Next, we extend beyond single objects and evaluate NKFs

on ScanNet scenes. For this experiment, we followed the

setup in [48] and trained our model on synthetic scenes con-

sisting of random ShapeNet object placements. We found the

synthetic floors and walls, added by [48] to the training set,

harmed performance and, hence, trained our method with-

out them. We report C-OccNet’s results with and without

walls for completeness. According to Table 4, for 10K input

IoU ↑ Chamfer ↓ Normal C. ↑

OccNet [41] 0.603 (-20.4%) 0.134 (0.070) 0.829 (-8.3%)

C-OccNet [48] 0.734 (-9.5%) 0.074 (0.023) 0.895 (-2.9%)

C-OccNet* [48] 0.785 (-4.9%) 0.064 (0.013) 0.911 (-1.7%)

LIG [33] 0.518 (N.A.) 0.112 (N.A.) 0.536 (N.A.)

NS [64] 0.869 (0.0%) 0.049 (0.000) 0.924 (0.0%)

Ours 0.938 (-1.1%) 0.028 (0.003) 0.939 (-1.0%)

Table 3: Generalization capacity of object-level 3D recon-

struction from sparse points clouds. We train all models

using 6 ShapeNet categories (airplane, lamp, display, rifle,

chair, cabinet) and evaluate them on the remaining 7 (bench,

car, loudspeaker, sofa, table, telephone, watercraft). The

numbers in the brackets denote the difference in performance

with the model trained on all categories.

Chamfer ↓ Normal C. ↑

C-OccNet (w. walls) [48] 0.133 0.779

C-OccNet (w.o. walls) [48] 0.074 0.843

SPSR [35] 0.060 0.871

NS [64] 0.060 0.876

Ours 0.032 0.873

Table 4: Scene-level 3D reconstruction from sparse point

clouds on ScanNet [11]. All methods use 10 000 input

points for each scene.

points, NKF achieves an average Chamfer distance of about

half of the next best method. Figure 8 shows a comparison

to baselines on 2 reconstructed rooms. Now how our method

better captures small details such as the stepladder and shelf.

4.5. Point Density Generalization

In real-world applications, point density may differ be-

tween train and test times. A good data-driven prior should

compensate for lack of data (i.e. sparse inputs) without hin-

dering data-rich settings (i.e. dense inputs). Therefore, we

evaluate the response of NKF and various baseline meth-

ods to changes in input sampling density. We trained each

method on 1000 input points and evaluated it on varying

numbers of input samples (between 250 and 3000). To re-

port the upper-bound performance of each method, we train

additional models on each density value. Figure 9 shows the

mean IoU of each method versus the number of input points.

Curves with labels ending in ”-1k” were trained on 1000

points, and otherwise, were trained and tested on the same

number of points. OccNet shows no response to increased

sampling density (even at train time). Although C-OccNet

marginally improves when trained on denser data, it does

not improve when evaluated with more points than it was

trained on. The performance of Neural Splines improves for

denser inputs, but is poor on sparse inputs as expected from



SPSR [35] NS [64] C-OccNet [48] Ours

Figure 8: ScanNet reconstruction. Trained on ShapeNet objects, NKF gracefully scales to real world scanned scenes.

Figure 9: ShapeNet IoU vs. number of input points.

Curves ending in ”-1k” correspond to methods trained on

1000 points, and other methods were trained and evaluated

on the same number of points. Our method performs well

in the sparse and dense regimes and does not decay when

trained and tested on different point densities.

data-free methods. Finally, our method works well in sparse

settings and improves with increasing density. Moreover, it

does not degrade if trained and tested on different sampling

densities (the gray and green curves are nearly identical).

4.6. Ablations

We conduct an ablation study of our design choices on

the task of shape reconstruction on ShapeNet. We experi-

ment with using different per-point feature dimensions and

whether to include the surface L1 loss, L(f)L1. Table 5

summarizes the results.

feature dimension

8 16 32 64

without L(f)L1 0.939 0.941 0.942 0.942

with L(f)L1 0.945 0.947 0.949 0.949

Table 5: Ablation study (Section 4.1). NKFs benefits from

the L1 surface loss and work well even with small feature

dimensions. Values in the table are mean IoU on the test set.

5. Conclusion and Limitations

We presented a novel method for reconstructing and com-

pleting 3D shapes from sparse point clouds. Our method

outperforms the state-of-the-art on object reconstruction and

completion as well as scene reconstruction, while demon-

strating strong generalization capability (both with respect

to shape categories and input sampling density). While our

method pushes the boundary on many fronts, it still has sev-

eral limitations which we plan to address in future work:

First, our current kernel implementation requires a dense

linear solve, which limits the number of evaluation points to

around 12k on a V100 GPU. State-of-the-art Kernel solvers

in the literature (e.g. [52]) have scaled up to millions of

points by leveraging techniques such as Nyström sampling.

We plan to investigate how to leverage these approaches to

handle larger inputs. Furthermore, we would like to investi-

gate kernels with spatial decay to sparsify our linear system

and scale our method to very large inputs. A second limita-

tion is the requirement of oriented points. While these are

usually available from sensors, they can be noisy. Thus, in

the future we would like to incorporate normal prediction

into our method so it can operate on unoriented point clouds.
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Pretrain on Chairs Pretrain on All

IoU ↑ Chamfer ↓ Normal C. ↑ IoU ↑ Chamfer ↓ Normal C. ↑

airplane 0.922 0.021 0.945 0.951 0.016 0.962

bench 0.898 0.024 0.936 0.908 0.022 0.940

cabinet 0.938 0.043 0.947 0.968 0.028 0.962

car 0.913 0.037 0.882 0.937 0.030 0.913

chair 0.946 0.026 0.962 0.943 0.027 0.960

display 0.967 0.028 0.971 0.976 0.023 0.978

lamp 0.895 0.040 0.928 0.920 0.024 0.940

loudspeaker 0.931 0.059 0.935 0.965 0.033 0.952

rifle 0.889 0.115 0.937 0.957 0.012 0.970

sofa 0.971 0.025 0.967 0.974 0.024 0.969

table 0.939 0.028 0.964 0.951 0.025 0.969

telephone 0.985 0.018 0.986 0.988 0.017 0.988

watercraft 0.936 0.039 0.934 0.955 0.019 0.950

mean 0.929 0.036 0.939 0.949 0.024 0.954

Table 6: Comparison between model trained only on chairs (left column) to model trained on all categories.

A. Neural Spline Kernel Equation

The Neural Spline [64] kernel is defined as the limiting kernel for an infinitely wide ReLU network with either Gaussian or

Uniform initialization (using Kaiming-He [31] initialization). In our implementation we use the Gaussian initialized version

which has the following closed form solution:

KNS(x,x
′) =

‖x̃‖‖x̃′‖

π

(

sin θ + 2(π − θ) cos θ
)

θ = ∡(x,x′) (14)

where x̃ = (x, 1), x̃′ = (x′, 1) are the vectors x and x′ expressed in homogeneous coordinates and θ = ∡(x̃, x̃′) is the angle

between the input vectors in homogeneous coordinates. In practice we compute the angle using the formula from Kahan [34]:

θ = 2arctan(

∥

∥ ‖x̃′‖x̃− ‖x̃‖x̃′
∥

∥

∥

∥ ‖x̃′‖x̃+ ‖x̃‖x̃′
∥

∥

), (15)

which is numerically stable, especially with small angles.

B. The Effect of Noise Filtering in 3D

Figure 10 shows the effect of weighting (Section 3.3) to filter noise in the input points. The left column shows our

reconstruction without these learned weights, the middle column shows the effect of adding weighting, while the right column

shows the ground truth surface. Notice how the weighted model is smoother and does not interpolate the input noise.

C. More Extreme Generalization

Table 6 and Figure 11 compare our reconstruction results using a model trained only on chairs to reconstruct the other 12

ShapeNet categories (airplane, bench, cabinet, car, display, lamp, loudspeaker, rifle, sofa, table, telephone, watercraft) against

a model trained on all categories. The experimental setup is identical to Section 4.3 (1000 input points) except the model is

trained only on chairs. Note how the performance of model trained only on chairs only drops slightly compared to the model

trained on all categories.

D. Inference Timings

Our method uses a convex test-time optimization to perform inference of 3D shapes. We report the timing of each part of

our method for the ShapeNet reconstruction (Section 4.1) and ScanNet reconstruction (Section 4.4) experiments in Table 7.



Ours (w/o weights) Ours (weighted) Ground truth

Figure 10: The effect of noise filtering versus regularization. The left column shows reconstructions using our method

without any noise filtering and 0.1 regularization in the kernel ridge regression. The middle column shows these same models

reconstructed with additional noise filtering (Section 3.3). Note how the regularized model still has bumps caused by the noisy

input points while these are smoothed out by the filtering module.

ShapeNet ScanNet

Encoder 12.9ms 229.8ms

Decoder 0.3ms 0.42ms

Solve 30.3ms 3142ms

Eval 193.5ms 13254ms

Table 7: Timings on ShapeNet (1k input points and 2.1 million evaluation points) and ScanNet (10k input points and 16.9

million eval points).

With 1000 input points for ShapeNet, we evaluated on a grid of size 1283 (2.1M points), and with 8000 input points for

ScanNet, we evaluated on a grid of size 2563 (16.78M points. We implemented the kernel evaluation as a single monolithic

CUDA kernel and report the timings on a Quadro GV100 GPU.

E. Additional ShapeNet Reconstruction Figures

Figure 12 shows additional reconstruction comparisons (with 0.0025) noise as described in Section 4.1.

F. Additional ShapeNet Generalization Figures

Figure 13 shows additional reconstructions for the out-of-category reconstruction experiment described in Section 4.3.



Ours (chairs) Ours (all) Ground truth

Figure 11: Out of category generalization on ShapeNet [5]. Our model trained only on chairs (left) can seamlessly

generalize to other 12 ShapeNet categories, achiving only sligthly worse performance than the model trained on all categories

(middle).

G. Additional Completion Figures

Figure 13 shows additional completion comparisons for the experiment described in Section 4.2.

H. Per-Category ShapeNet Results

Tables 8 and 9 report the per-category reconstruction and completion results respectively for the experiments described in

Sections 4.1 and 4.2.



SPSR [35] NS [64] OccNet [41] C-OccNet [48] Ours Ground truth

Figure 12: ShapeNet [5] Reconstruction. Reconstructions of models from the ShapeNet test set given 1000 input points and

normals with Gaussian noise.



C-OccNet [48] Ours C-OccNet [48] Ours

Figure 13: Shape completion on ShapeNet [5].



Noise-Free

IoU ↑ Chamfer ↓ Normal C. ↑

OccNet C-OccNet* NS Ours OccNet C-OccNet* NS Ours OccNet C-OccNet* NS Ours

airplane 0.752 0.811 0.775 0.951 0.054 0.036 0.103 0.016 0.900 0.927 0.898 0.962

bench 0.713 0.723 0.768 0.908 0.052 0.045 0.065 0.022 0.889 0.900 0.901 0.940

cabinet 0.869 0.898 0.921 0.968 0.060 0.049 0.041 0.028 0.931 0.950 0.939 0.962

car 0.841 0.873 0.911 0.937 0.069 0.051 0.037 0.030 0.896 0.898 0.903 0.913

chair 0.740 0.811 0.858 0.943 0.076 0.051 0.045 0.027 0.896 0.933 0.933 0.960

display 0.825 0.854 0.938 0.976 0.062 0.048 0.030 0.023 0.932 0.960 0.964 0.978

lamp 0.550 0.751 0.834 0.920 0.144 0.058 0.047 0.024 0.819 0.902 0.915 0.940

loudspeaker 0.833 0.892 0.938 0.965 0.090 0.059 0.041 0.033 0.910 0.938 0.945 0.952

rifle 0.678 0.757 0.936 0.957 0.057 0.038 0.021 0.012 0.860 0.915 0.960 0.970

sofa 0.876 0.893 0.927 0.974 0.055 0.047 0.041 0.024 0.939 0.952 0.949 0.969

table 0.768 0.785 0.801 0.951 0.059 0.048 0.065 0.025 0.923 0.948 0.926 0.969

telephone 0.915 0.904 0.969 0.988 0.035 0.035 0.021 0.017 0.973 0.979 0.983 0.988

watercraft 0.737 0.825 0.894 0.955 0.083 0.046 0.044 0.019 0.870 0.909 0.930 0.950

mean 0.773 0.823 0.864 0.949 0.068 0.048 0.051 0.024 0.902 0.928 0.926 0.954

0.0025 Noise

IoU ↑ Chamfer ↓ Normal C. ↑

OccNet C-OccNet* NS Ours OccNet C-OccNet* NS Ours OccNet C-OccNet* NS Ours

airplane 0.739 0.825 0.729 0.905 0.057 0.034 0.103 0.020 0.904 0.928 0.888 0.953

bench 0.713 0.758 0.723 0.867 0.053 0.040 0.068 0.025 0.889 0.906 0.892 0.935

cabinet 0.871 0.916 0.905 0.952 0.061 0.044 0.045 0.031 0.933 0.953 0.934 0.959

car 0.839 0.877 0.892 0.921 0.068 0.052 0.041 0.033 0.895 0.902 0.896 0.911

chair 0.740 0.837 0.825 0.912 0.077 0.045 0.050 0.030 0.896 0.937 0.926 0.956

display 0.818 0.890 0.902 0.953 0.063 0.039 0.036 0.026 0.932 0.963 0.958 0.975

lamp 0.547 0.774 0.784 0.880 0.153 0.050 0.053 0.026 0.824 0.907 0.906 0.936

loudspeaker 0.829 0.910 0.922 0.952 0.091 0.052 0.046 0.035 0.912 0.943 0.940 0.952

rifle 0.678 0.783 0.860 0.904 0.058 0.033 0.023 0.016 0.865 0.919 0.947 0.960

sofa 0.879 0.913 0.905 0.956 0.055 0.041 0.047 0.028 0.937 0.956 0.942 0.966

table 0.768 0.832 0.772 0.917 0.059 0.040 0.065 0.028 0.924 0.953 0.922 0.966

telephone 0.909 0.931 0.932 0.969 0.036 0.029 0.027 0.020 0.973 0.980 0.975 0.986

watercraft 0.732 0.843 0.857 0.926 0.086 0.041 0.050 0.022 0.874 0.913 0.918 0.945

mean 0.771 0.847 0.831 0.919 0.069 0.043 0.054 0.027 0.903 0.932 0.919 0.945

0.005 Noise

IoU ↑ Chamfer ↓ Normal C. ↑

OccNet C-OccNet* NS Ours OccNet C-OccNet* NS Ours OccNet C-OccNet* NS Ours

airplane 0.675 0.839 0.758 0.852 0.155 0.062 0.098 0.053 0.890 0.933 0.886 0.937

bench 0.589 0.779 0.673 0.813 0.160 0.073 0.161 0.062 0.860 0.911 0.876 0.922

cabinet 0.802 0.928 0.881 0.936 0.181 0.078 0.105 0.070 0.914 0.958 0.920 0.952

car 0.804 0.888 0.869 0.899 0.182 0.095 0.095 0.077 0.891 0.905 0.879 0.902

chair 0.652 0.859 0.779 0.876 0.217 0.081 0.119 0.071 0.884 0.944 0.910 0.946

display 0.742 0.914 0.858 0.924 0.170 0.067 0.091 0.061 0.922 0.968 0.940 0.967

lamp 0.478 0.796 0.701 0.827 0.421 0.099 0.171 0.065 0.802 0.914 0.868 0.921

loudspeaker 0.785 0.924 0.900 0.937 0.236 0.091 0.108 0.080 0.899 0.947 0.925 0.946

rifle 0.600 0.807 0.774 0.850 0.151 0.060 0.068 0.045 0.832 0.925 0.906 0.943

sofa 0.818 0.929 0.889 0.936 0.159 0.072 0.095 0.065 0.925 0.961 0.931 0.957

table 0.663 0.859 0.704 0.873 0.168 0.072 0.167 0.066 0.906 0.957 0.898 0.956

telephone 0.847 0.944 0.892 0.945 0.107 0.050 0.072 0.049 0.966 0.982 0.958 0.980

watercraft 0.695 0.863 0.808 0.890 0.216 0.074 0.147 0.056 0.861 0.921 0.890 0.931

mean 0.699 0.863 0.791 0.883 0.192 0.078 0.121 0.066 0.888 0.937 0.900 0.939

Table 8: Per-category ShapeNet reconstruction results corresponding to the experiment described in Section 4.1.



IoU ↑ Chamfer ↓ Normal C. ↑ F-Score ↑

C-OccNet* Ours C-OccNet* Ours C-OccNet Ours C-OccNet* Ours

airplane 0.800 0.844 0.048 0.054 0.926 0.919 0.921 0.916

bench 0.615 0.705 0.082 0.086 0.868 0.872 0.808 0.853

cabinet 0.834 0.881 0.079 0.067 0.924 0.918 0.784 0.872

car 0.862 0.891 0.059 0.047 0.899 0.899 0.859 0.912

chair 0.731 0.790 0.092 0.091 0.906 0.910 0.805 0.854

display 0.768 0.850 0.088 0.079 0.921 0.925 0.774 0.876

lamp 0.620 0.685 0.138 0.159 0.864 0.866 0.751 0.797

loudspeaker 0.808 0.851 0.101 0.105 0.904 0.902 0.701 0.814

rifle 0.746 0.809 0.045 0.051 0.899 0.904 0.915 0.907

sofa 0.837 0.864 0.073 0.075 0.923 0.916 0.823 0.866

table 0.730 0.777 0.075 0.089 0.925 0.911 0.851 0.863

telephone 0.886 0.906 0.046 0.048 0.964 0.958 0.920 0.922

watercraft 0.761 0.830 0.067 0.061 0.887 0.912 0.829 0.884

mean 0.770 0.819 0.075 0.077 0.909 0.907 0.837 0.875

Table 9: Per category completion results corresponding to the experiment described in Section 4.2.


