Offline RL Without Off-Policy Evaluation

David Brandfonbrener William F. Whitney Rajesh Ranganath Joan Bruna
Department of Computer Science, Center for Data Science
New York University
david.brandfonbrener@nyu.edu

Abstract

Most prior approaches to offline reinforcement learning (RL) have taken an iterative
actor-critic approach involving off-policy evaluation. In this paper we show that
simply doing one step of constrained/regularized policy improvement using an
on-policy Q estimate of the behavior policy performs surprisingly well. This one-
step algorithm beats the previously reported results of iterative algorithms on a
large portion of the DARL benchmark. The one-step baseline achieves this strong
performance while being notably simpler and more robust to hyperparameters
than previously proposed iterative algorithms. We argue that the relatively poor
performance of iterative approaches is a result of the high variance inherent in
doing off-policy evaluation and magnified by the repeated optimization of policies
against those estimates. In addition, we hypothesize that the strong performance
of the one-step algorithm is due to a combination of favorable structure in the
environment and behavior policy.

1 Introduction

An important step towards effective real-world RL is to improve sample efficiency. One avenue
towards this goal is offline RL (also known as batch RL) where we attempt to learn a new policy from
data collected by some other behavior policy without interacting with the environment. Recent work
in offline RL is well summarized by Levine et al. [2020].

In this paper, we challenge the dominant paradigm in the deep offline RL literature that primarily
relies on actor-critic style algorithms that alternate between policy evaluation and policy improvement
[Fujimoto et al., 2018a, 2019, Peng et al., 2019, Kumar et al., 2019, 2020, Wang et al., 2020b, Wu
et al., 2019, Kostrikov et al., 2021, Jaques et al., 2019, Siegel et al., 2020, Nachum et al., 2019].
All these algorithms rely heavily on off-policy evaluation to learn the critic. Instead, we find that a
simple baseline which only performs one step of policy improvement using the behavior Q function
often outperforms the more complicated iterative algorithms. Explicitly, we find that our one-step
algorithm beats prior results of iterative algorithms on most of the gym-mujoco [Brockman et al.,
2016] and Adroit [Rajeswaran et al., 2017] tasks in the the DARL benchmark suite [Fu et al., 2020].

We then dive deeper to understand why such a simple baseline is effective. First, we examine what
goes wrong for the iterative algorithms. When these algorithms struggle, it is often due to poor
off-policy evaluation leading to inaccurate Q values. We attribute this to two causes: (1) distribution
shift between the behavior policy and the policy to be evaluated, and (2) iterative error exploitation
whereby policy optimization introduces bias and dynamic programming propagates this bias across
the state space. We show that empirically both issues exist in the benchmark tasks and that one way
to avoid these issues is to simply avoid off-policy evaluation entirely.

Finally, we recognize that while the the one-step algorithm is a strong baseline, it is not always
the best choice. In the final section we provide some guidance about when iterative algorithms can
perform better than the simple one-step baseline. Namely, when the dataset is large and behavior
policy has good coverage of the state-action space, then off-policy evaluation can succeed and iterative

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

[] Safe policies
[Unsafe policies

Figure 1: A cartoon illustration of the difference between one-step and multi-step methods. All
algorithms constrain themselves to a neighborhood of “safe” policies around /3. A one-step approach

(left) only uses the on-policy @5 , while a multi-step approach (right) repeatedly uses off-policy Q7.

algorithms can be effective. In contrast, if the behavior policy is already fairly good, but as a result
does not have full coverage, then one-step algorithms are often preferable.

Our main contributions are:

* A demonstration that a simple baseline of one step of policy improvement outperforms more
complicated iterative algorithms on a broad set of offline RL problems.

* An examination of failure modes of off-policy evaluation in iterative offline RL algorithms.

* A description of when one-step algorithms are likely to outperform iterative approaches.

2 Setting and notation

We will consider an offline RL setup as follows. Let M = {S, A, p, P, R, v} be a discounted infinite-
horizon MDP. In this work we focus on applications in continuous control, so we will generally assume
that both S and A are continuous and bounded. We consider the offline setting where rather than inter-
acting with M, we only have access to a dataset Dy of N tuples of (s;, a;, ;) collected by some be-
havior policy 3 with initial state distribution p. Let (s, a) = E,|s 4[] be the expected reward. Define
the state-action value function for any policy 7 by Q™ (s, a) 1= Ep x|so=s, ap=alP 0 V' T(5¢t, at)].
The objective is to maximize the expected return .J of the learned policy:

J(m):= E

p, P

thr(st,at)] = E Q7 (s,a)]. (1)

t=0

a~m|s

Following Fu et al. [2020] and others in this line of work, we allow access to the environment to tune
a small (< 10) set of hyperparameters. See Paine et al. [2020] for a discussion of the active area of
research on hyperparameter tuning for offline RL. We also discuss this further in Appendix C.

3 Related work

Iterative algorithms. Most prior work on deep offline RL consists of iterative actor-critic algo-
rithms. The primary innovation of each paper is to propose a different mechanism to ensure that the
learned policy does not stray too far from the data generated by the behavior policy. Broadly, we
group these methods into three camps: policy constraints/regularization, modifications of imitation
learning, and Q regularization:

1. The majority of prior work acts directly on the policy. Some authors have proposed explicit
constraints on the learned policy to only select actions where (s, a) has sufficient support under
the data generating distribution [Fujimoto et al., 2018a, 2019, Laroche et al., 2019]. Another
proposal is to regularize the learned policy towards the behavior policy [Wu et al., 2019] usually
either with a KL divergence [Jaques et al., 2019] or MMD [Kumar et al., 2019]. This is a very
straighforward way to stay close to the behavior with a hyperparameter that determines just how
close. All of these algorithms are iterative and rely on off-policy evaluation.

2. Siegel et al. [2020], Wang et al. [2020b], Chen et al. [2020] all use algorithms that filter out
datapoints with low Q values and then perform imitation learning. Wang et al. [2018], Peng
et al. [2019] use a weighted imitation learning algorithm where the weights are determined by
exponentiated Q values. These algorithms are iterative.

3. Another way to prevent the learned policy from choosing unknown actions is to incorporate some
form of regularization to encourage staying near the behavior and being pessimistic about unknown
state, action pairs [Wu et al., 2019, Nachum et al., 2019, Kumar et al., 2020, Kostrikov et al., 2021,
Gulcehre et al., 2021]. However, being able to properly quantify uncertainty about unknown states
is notoriously difficult when dealing with neural network value functions [Buckman et al., 2020].

One-step algorithms. Some recent work has also noted that optimizing policies based on the
behavior value function can perform surprisingly well. As we do, Goo and Niekum [2020] studies
the continuous control tasks from the D4RL benchmark, but they examine a complicated algorithm
involving ensembles, distributional Q functions, and a novel regularization technique. In contrast,
we analyze a substantially simpler algorithm and get better performance on the D4RL tasks. We
also focus more of our contribution on understanding and explaining this performance. Gulcehre
et al. [2021] studies the discrete action setting and finds that a one-step algorithm (which they call
“behavior value estimation”) outperforms prior work on Atari games and other discrete action tasks
from the RL Unplugged benchmark [Gulcehre et al., 2020]. They also introduce a novel regularizer
for the evaluation step. In contrast, we consider the continuous control setting. This is a substantial
difference in setting since continuous control requires actor-critic algorithms with parametric policies
while in the discrete setting the policy improvement step can be computed exactly from the Q function.
Moreover, while Gulcehre et al. [2021] attribute the poor performance of iterative algorithms to
“overestimation”, we define and separate the issues of distribution shift and iterative error exploitation
which can combine to cause overestimation. This separation helps to expose the difference between
the fundamental limits of off-policy evaluation from the specific problems induced by iterative
algorithms, and will hopefully be a useful distinction to inspire future work. Finally, a one-step
variant is also briefly discussed in Nadjahi et al. [2019], but is not the focus of that work.

There are also important connections between the one-step algorithm and the literature on conservative
policy improvement [Kakade and Langford, 2002, Schulman et al., 2015, Achiam et al., 2017], which
we discuss in more detail in Appendix B.

4 Defining the algorithms

In this section we provide a unified algorithmic template for model-free offline RL algorithms as
offline approximate modified policy iteration. We show how this template captures our one-step
algorithm as well as a multi-step policy iteration algorithm and an iterative actor-critic algorithm.
Then any choice of policy evaluation and policy improvement operators can be used to define one-step,
multi-step, and iterative algorithms.

4.1 Algorithmic template

We consider a generic offline ap- Algorithm 1: OAMPI
?6%5&%6 gﬁggg d srl)l(())lxjfg ;ltlergtlg)g input : K ,Adataset Dy, Aestimated behavior B

rithm 1 (and based off of Puter- Setmo = f. Initialize Q™' randomly.

man and Shin [1978], Scherrer et al. fork=1,...,Kdo R
[2012]). Essentially the algorithm Policy evaluation: Q™ -1 = &(mp—_1, Dy, Q™*2)
alternates between two steps. First, Policy improvement: 7, = I(@mc_17 B’ Dy, 1)
there is a policy evaluation step where end

we estimate the Q funAction of the cur-
rent policy m;_1 by Q™+~ using only the dataset D . Implementations also often use the prior Q
estimate @”’C*Z to warm-start the approximation process. Second, there is a policy improvement step.
This step takes in the estimated Q function Q™+, the estimated behavior B, and the dataset D
and produces a new policy ;. Again an algorithm may use 7, to warm-start the optimization.
Moreover, we expect this improvement step to be regularized or constrained to ensure that 7 remains
in the support of 8 and D . Choices for this step are discussed below. Now we discuss a few ways
to instantiate the template.

One-step. The simplest algorithm sets the number of iterations K = 1. We learn /3 by maximum
likelihood and train the policy evaluation step to estimate Q°. Then we use any one of the policy
improvement operators discussed below to learn ;. Importantly, this algorithm completely avoids
oft-policy evaluation.

Multi-step. The multi-step algorithm now sets K > 1. The evaluation operator must evaluate
off-policy since Dy is collected by 3, but evaluation steps for K > 2 require evaluating policies
m,—1 7 (. Bach iteration is trained to convergence in both the estimation and improvement steps.

Iterative actor-critic. An actor critic approach looks somewhat like the multi-step algorithm, but
does not attempt to train to convergence at each iteration and uses a much larger K. Here each
iteration consists of one gradient step to update the Q estimate and one gradient step to improve the
policy. Since all of the evaluation and improvement operators that we consider are gradient-based,
this algorithm can adapt the same evaluation and improvement operators used by the multi-step
algorithm. Most algorithms from the literature fall into this category [Fujimoto et al., 2018a, Kumar
etal., 2019, 2020, Wu et al., 2019, Wang et al., 2020b, Siegel et al., 2020].

4.2 Policy evaluation operator

Following prior work on continuous state and action problems, we always evaluate by simple fitted Q
evaluation [Fujimoto et al., 2018a, Kumar et al., 2019, Siegel et al., 2020, Wang et al., 2020b, Paine
et al., 2020, Wang et al., 2021]. In practice this is optimized by TD-style learning with the use of a
target network [Mnih et al., 2015] as in DDPG [Lillicrap et al., 2015]. We do not use any double
Q learning or Q ensembles [Fujimoto et al., 2018b]. For the one-step and multi-step algorithms we
train the evaluation procedure to convergence on each iteration and for the iterative algorithm each
iteration takes a single stochastic gradient step. See Voloshin et al. [2019], Wang et al. [2021] for
more comprehensive examinations of policy evaluation and some evidence that this simple fitted
Q iteration approach is reasonable. It is an interesting direction for future work to consider other
operators that use things like importance weighting [Munos et al., 2016] or pessimism [Kumar et al.,
2020, Buckman et al., 2020].

4.3 Policy improvement operators

To instantiate the template, we also need to choose a specific policy improvement operator Z. We
consider the following improvement operators selected from those discussed in the related work
section. Each operator has a hyperparameter controlling deviation from the behavior policy.

Behavior cloning. The simplest baseline worth including is to just return B as the new policy 7.
Any policy improvement operator ought to perform at least as well as this baseline.

Constrained policy updates. Algorithms like BCQ [Fujimoto et al., 2018a] and SPIBB [Laroche
et al., 2019] constrain the policy updates to be within the support of the data/behavior. In favor of
simplicity, we implement a simplified version of the BCQ algorithm that removes the “perturbation

network” which we call Easy BCQ. We define a new policy 7 by drawing M samples from /3 and
then executing the one with the highest value according to Q°. Explicitly:

#(als) = Lla = argmax{Q™ (s,a;) : a; ~ me_1(]s), 1 < j < M}]. @)

Regularized policy updates. Another common idea proposed in the literature is to regularize
towards the behavior policy [Wu et al., 2019, Jaques et al., 2019, Kumar et al., 2019]. For a general
divergence D we can define an algorithm that maximizes a regularized objective:

70 = arg mj}XZ E [Q™(si,a)] — aD(B(-|s:), 7(|si)) 3)

— a~ls

A comprehensive review of different variants of this method can be found in Wu et al. [2019] which
does not find dramatic differences across regularization techniques. In practice, we will use reverse

KL divergence, i.e. K L(m(-|s;)||3(-|s:)). To compute the reverse KL, we draw samples from 7 (-s;)

and use the density estimate /3 to compute the divergence. Intuitively, this regularization forces 7 to
remain within the support of 3 rather than incentivizing 7 to cover 3.

Variants of imitation learning. Another idea, proposed by [Wang et al., 2018, Siegel et al., 2020,
Wang et al., 2020b, Chen et al., 2020] is to modify an imitation learning algorithm either by filtering
or weighting the observed actions to incentivize policy improvement. The weighted version that we
implement uses exponentiated advantage estimates to weight the observed actions:

T = arg mngexp(T(@”k—l(si, a;) — V(s:)))log m(ails;). “4)

With these definitions, we can now move on to testing various combinations of algorithmic template
(one-step, multi-step, or iterative) and improvement operator (Easy BCQ, reverse KL regularization,
or exponentially weighted imitation).

5 Benchmark Results

Our main empirical finding is that one step of policy improvement is sufficient to beat state of the
art results on much of the D4RL benchmark suite [Fu et al., 2020]. This is striking since prior work
focuses on iteratively estimating the Q function of the current policy iterate, but we only use one step
derived from @3 . Results are shown in Table 1. Full experimental details are in Appendix C and
code can be found at https://github.com/davidbrandfonbrener/onestep-rl.

Table 1: Results of one-step algorithms on the D4RL benchmark. The first column gives the best
results across several iterative algorithms considered in Fu et al. [2020]. Each algorithm is tuned over
6 values of their respective hyperparameter. We report the mean and standard error over 10 seeds
of the training process and using 100 evaluation episodes per seed. We bold the best result on each
dataset and blue any result where a one-step algorithm beat the best reported iterative result from Fu
et al. [2020]. We use m for medium, m-e for medium-expert, m-re for medium-replay, r for random,
and c for cloned.

Iterative One-step

Fu et al. [2020] BC Easy BCQ Rev. KL Reg Exp. Weight
halfcheetah-m 46.3 42.1+0.1 526 +£0.1 55.6 + 0.2 48.6 £ 0.0
walker2d-m 81.1 702+ 13 869+ 04 85.6 £ 0.4 80.3 £ 1.1
hopper-m 58.8 498+06 69.7+2.1 833+t14 56.7£0.8
halfcheetah-m-e 64.7 60.1 08 77.0+0.9 935+ 0.1 91.7+ 0.9
walker2d-m-e 111.0 93.6+56 111.84+02 1109+0.1 1129+ 0.2
hopper-m-e 1119 48115 814419 1021+ 1.3 83.1+7.0
halfcheetah-m-re 47.7 3494+03 384+03 424+ 0.1 38.6 £0.5
walker2d-m-re 26.7 239+£1.6 664+20 71.6 = 3.1 493 +35
hopper-m-re 48.6 2124+£13 773+27 71.0 £ 8.1 94.1 +2.4
halfcheetah-r 354 2240.0 54+0.1 69+1.0 37£02
walker2d-r 7.3 0.7+0.1 42402 6.1 £0.3 52+£02
hopper-r 12.2 26+04 6.7+0.1 7.8+0.3 56£0.6
pen-c 56.9 493+22 67.0+£1.1 553+19 547+£23
hammer-c 2.1 0.5+0.1 28+ 0.5 0.2+0.0 1.24+0.2
relocate-c -0.1 0.0+0.0 0.3+ 0.0 0.1 £0.0 0.1 £0.0
door-c 04 0.0+ 0.0 0.4 +0.2 0.0+ 0.1 0.1 £0.1

As we can see in the table, all of the one-step algorithms usually outperform the best iterative
algorithms tested by Fu et al. [2020]. The one notable exception is the case of random data (especially
on halfcheetah), where iterative algorithms have a clear advantage. We will discuss potential causes
of this further in Section 7.

To give a more direct comparison that controls for any potential implementation details, we use our
implementation of reverse KL regularization to create multi-step and iterative algorithms. We are
not using algorithmic modifications like Q ensembles, regularized Q values, or early stopping that
have been used in prior work. But, our iterative algorithm recovers similar performance to prior
regularized actor-critic approaches. These results are shown in Table 2.

Table 2: Results of reverse KL regularization on the D4RL benchmark across one-step, multi-step,
and iterative algorithms. Again we run 6 hyperparameters and report the mean and standard error
across 10 seeds using 100 evaluation episodes.

One-step Multi-step Iterative
halfcheetah-m 55.6 = 0.2 408 86 474+35
walker2d-m 85.6 £ 0.4 759 +£0.5 754 £0.8
hopper-m 833+ 14 53.0£1.0 542+ 0.6

halfcheetah-m-e 93.5 + 0.1 93.6 + 0.3 93.6 + 0.2
walker2d-m-e 1109 £ 0.1 763 +159 1082403

hopper-m-e 1021 +£13 101.3+39 827+74
halfcheetah-r 69+ 1.0 137+ 1.7 16.3 £ 1.6
walker2d-r 6.1 +0.3 5.0+0.3 51403
hopper-r 7.8+0.3 154 £29 9.7+0.1

Put together, these results immediately suggest some guidance to the practitioner: it is worthwhile
to run the one-step algorithm as a baseline before trying something more elaborate. The one-step
algorithm is substantially simpler than prior work, but frequently achieves better performance.

6 What goes wrong for iterative algorithms?

The benchmark experiments show that one step of policy improvement often beats iterative and
multi-step algorithms. In this section we dive deeper to understand why this happens. First, by
examining the learning curves of each of the algorithms we note that iterative algorithms require
stronger regularization to avoid instability. Then we identify two causes of this instability: distribution
shift and iterative error exploitation.

Distribution shift causes evaluation error by reducing the effective sample size in the fixed dataset for
evaluating the current policy and has been extensively considered in prior work as discussed below.
Iterative error exploitation occurs when we repeatedly optimize policies against our Q estimates and
exploit their errors. This introduces a bias towards overestimation at each step (much like the training
error in supervised learning is biased to be lower than the test error). Moreover, by iteratively re-using
the data and using prior Q estimates to warmstart training at each step, the errors from one step are
amplified at the next. This type of error is particular to multi-step and iterative algorithms.

6.1 Learning curves and hyperparameter sensitivity

To begin to understand why iterative and multi-step algorithms can fail it is instructive to look at the
learning curves. As shown in Figure 2, we often observe that the iterative algorithm will begin to
learn and then crash. Regularization can help to prevent this crash since strong enough regularization
towards the behavior policy ensures that the evaluation is nearly on-policy.

Iterative Multi-step One-step Final Performance

Normalized Return
g

10 101 — 10 10 Iterative
— 30 —— Multi-step
0 04 — 10.0 0 —— One-step

0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 107 10° 10
Train step Train step Train step alpha

Figure 2: Learning curves and final performance on halfcheetah-medium across different algorithms
and regularization hyperparameters (all using the reverse KL regularized improvement operator).
Error bars show min and max over 3 seeds. Similar figures for other datasets from D4RL can be
found in Appendix D.

In contrast, the one-step algorithm is more robust to the regularization hyperparameter. The rightmost
panel of the figure shows this clearly. While iterative and multi-step algorithms can have their
performance degrade very rapidly with the wrong setting of the hyperparameter, the one-step approach
is more stable. Moreover, we usually find that the optimal setting of the regularization hyperparameter
is lower for the one-step algorithm than the iterative or multi-step approaches.

6.2 Distribution shift

Any algorithm that relies on off-policy evaluation will struggle with distribution shift in the evaluation
step. Trying to evaluate a policy that is substantially different from the behavior reduces the effective
sample size and increases the variance of the estimates. Explicitly, by distribution shift we mean the
shift between the behavior distribution (the distribution over state-action pairs in the dataset) and the
evaluation distribution (the distribution that would be induced by the policy = we want to evaluate).

Prior work. There is a substantial body of prior theoretical work that suggests that off-policy
evaluation can be difficult and this difficulty scales with some measure of distribution shift. Wang
et al. [2020a], Amortila et al. [2020], Zanette [2021] give exponential (in horizon) lower bounds on
sample complexity in the linear setting even with good feature representations that can represent the
desired Q function and assuming good data coverage. Upper bounds generally require very strong
assumptions on both the representation and limits on the distribution shift [Wang et al., 2021, Duan
et al., 2020, Chen and Jiang, 2019]. Moreover, the assumed bounds on distribution shift can be
exponential in horizon in the worst case. On the empirical side, Wang et al. [2021] demonstrates
issues with distribution shift when learning from pre-trained features and provides a nice discussion
of why distribution shift causes error amplification. Fujimoto et al. [2018a] raises a similar issue
under the name “extrapolation error”. Regularization and constraints are meant to reduce issues
stemming from distribution shift, but also reduce the potential for improvement over the behavior.

Empirical evidence. Both the multi-step and iterative algorithms in our experiments rely on oft-
policy evaluation as a key subroutine. We examine how easy it is to evaluate the policies encountered
along the learning trajectory. To control for issues of iterative error exploitation (discussed in the next
subsection), we train Q estimators from scratch on a heldout evaluation dataset sampled from the
behavior policy. We then evaluate these trained Q function on rollouts from 1000 datapoints sampled
from the replay buffer. Results are shown in Figure 3.

The results show a correlation betweed KL and MSE. Moreover, we see that the MSE generally
increases over training. One way to mitigate this, as seen in the figure, is to use a large value of a.
We just cannot take a very large step before running into problems with distribution shift. But, when
we take such a small step, the information from the on-policy @ﬁ is about as useful as the newly
estimated Q™. This is seen, for example, in Figure 2 where we get very similar performance across
algorithms at high levels of regularization.

10° 1084 alpha alpha
0.1 50 0.1
— 03 — 03

— 10 — 10
40

30

20
104 104
- “e 10
10° @ 10°
«

10° 10! 102 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
KL Training step Training step

"
<
Ki

Figure 3: Results of running the iterative algorithm on halfcheetah-medium. Each checkpointed policy
is evaluated by a Q function trained from scratch on heldout data. MSE refers to s .3 KQ” (s,a)—
Q™ (s,a))?] and KL refers to Es~s[K L(7(-|s)||3(:|s)]. Left: 90 policies taken from various points
in training with various hyperaparmeters and random seeds. Center: MSE learning curves. Right: KL,
learning curves. Error bars show min and max over 3 random seeds.

6.3 Iterative error exploitation

The previous subsection identifies how any algorithm that uses off-policy evaluation is fundamentally
limited by distribution shift, even if we were given fresh data and trained Q functions from scratch at
every iteration. But, in practice, iterative algorithms repeatedly iterate between optimizing policies
against estimated Q functions and re-estimating the Q functions using the same data and using the Q
function from the previous step to warm-start the re-estimation. This induces dependence between
steps that causes a problem that we call iterative error exploitation.

Intuition about the problem. In short, iterative error exploitation happens because 7; tends to
choose overestimated actions in the policy improvement step, and then this overestimation propagates
via dynamic programming in the policy evaluation step. To illustrate this issue more formally,
consider the following: at each s, a we suffer some Bellman error 7 (s, a) based on our fixed dataset
collected by 3. Formally,

@”(s, a) =r(s,a) + 7 ’IIE [@”(8’7(1’)] +e5(s, a). 3)
o o]’

Intuitively, e will be larger at state-actions with less coverage in the dataset collected by 5. Note that
£j can absorb all error whether it is caused by the finite sample size or function approximation error.

All that is needed to cause iterative error exploitation is that the €7 are highly correlated across
different , but for simplicity, we will assume that f is the same for all policies 7 estimated from
our fixed offline dataset and instead write € 3. Now that the errors do not depend on the policy we can
treat the errors as auxiliary rewards that obscure the true rewards and see that

oo

Q(s,a) = Q"(s,0) + QF(s,a), QF(s,a):= E D Aeslsna)| . (©)

|s0,a0=s,a =0

This assumption is somewhat reasonable since we expect the error to primarily depend on the data.
And, when the prior Q function is used to warm-start the current one (as is generally the case in
practice), the approximation errors are automatically passed between steps.

Now we can explain the problem. Recall that under our assumption the 3 are fixed once we have a
dataset and likely to have larger magnitude the further we go from the support of the dataset. So, with
each step 7; is able to better maximize ¢, thus moving further from /3 and increasing the magnitude

of @g relative to Q™. Even though Q™ may provide better signal than Q7 it can easily be drowned

out by @27 In contrast, @g has small magnitude, so the one-step algorithm is robust to errors'.

An example. Now we consider a simple gridworld example to illustrate iterative error exploitation.
This example fits exactly into the setup outlined above since all errors are due to reward estimation so
the e is indeed constant over all 7. The gridworld we consider has one deterministic good state with
reward 1 and many stochastic bad states that have rewards distributed as A'(—0.5,1). We collect a
dataset of 100 trajectories, each of length 100. One run of the multi-step offline regularized policy
iteration algorithm is illustrated in Figure 4.

In the example we see that one step often outperforms multiple steps of improvement. Intuitively,
when there are so many noisy states, it is likely that a few of them will be overestimated. Since the
data is re-used for each step, these overestimations persist and propagate across the state space due
to iterative error exploitation. This property of having many bad, but poorly estimated states likely
also exists in the high-dimensional control problems encountered in the benchmark where there are
many ways for the robots to fall down that are not observed in the data for non-random behavior.
Moreover, both settings have larger errors in areas where we have less data. So even though the errors
in the gridworld are caused by noise in the rewards, while errors in D4RL are caused by function
approximation, we think this is a useful mental model of the problem.

"'We should note that iterative error exploitation is similar to the overestimation addressed by double Q
learning [Van Hasselt et al., 2016, Fujimoto et al., 2018b], but distinct. Since we are in the offline setting, the
errors due to our finite dataset can be iteratively exploited more and more, while in the online setting considered
by double Q learning, fresh data prevents this issue. We are also considering an algorithm based on policy
iteration rather than value iteration.

True expected reward Beta, Value = -0.23 Pi 1, Value = 1.54 Pi 2, Value = 1.46 Pi 10, Value = 0.32

FTTTTTTTTTTT T M il M 10
Aot e oot e e
4 At 4 e 8
et e e bt do b b
4+ b + 4
SR ettt bt s
G et b
Attt 4
It At itk 4)
ottt + L»t A A4 T ;»
8 i Tt U}. i [L5< Sga 1] e o

00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125

Error: epsilon_beta Beta, Overestimation = 0.13 Pi 1, Overestimation = 0.36 Pi 2, Overestimation = 1.98 Pi 10, Overestimation = 4.02

1 T T T o ‘v'
t e
2 8 o \Sasunnnivee Frnmmty reee
1 e e e e de b b
Sdgeee
jessesens &
P e e
Frtt jesens
T
TIEEET et
Ieeeey
it 3 t j R
EEEELT TS = S °

00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125

=
i

e

Figure 4: An illustration of multi-step offline regularized policy iteration. The leftmost panel in each
row shows the true reward (top) or error £g (bottom). Then each subsequent panel plots 7; (with
arrow size proportional to 7;(a|s)) over either Q™ (top) or Qg (bottom), averaged over actions at
each state. The one-step policy (7r1) has the highest value. The behavior policy here is a mixture of
optimal 77* and uniform u with coefficient 0.2 so that 5 = 0.2 - 7* + 0.8 - u. We set & = 0.1 as the
regularization parameter for reverse KL regularization.

Training Evaluation
150 150
Step
125 4 125 0
10000
100 100 20000
75 4 75 = 30000
40000
50 4 50
254 25
0 0+
=500 0 500 1000 1500 =500 0 500 1000 1500
Overestimation Overestimation

Figure 5: Histograms of overestimation error (Q™ (s,a) — Q™ (s, a)) on halfcheetah-medium with
the iterative algorithm. Left: errors from the training Q function. Right: errors from an independently
trained Q function.

Empirical evidence. In practice we cannot easily visualize the progression of errors. However,
the dependence between steps still arises as overestimation of the Q values. We can track the
overestimation of the Q values over training as a way to measure how much bias is being induced by
optimizing against our dependent Q estimators. As a control we can also train Q estimators from
scratch on independently sampled evaluation data. These independently trained Q functions do not
have the same overestimation bias even though the squared error does tend to increase as the policy
moves further from the behavior (as seen in Figure 3). Explicitly, we track 1000 state, action pairs
from the replay buffer over training. For each checkpointed policy we perform 3 rollouts at each state
to get an estimate of the true Q value and compare this to the estimated Q value. Results are shown in
Figure 5.

7 When are multiple steps useful?

So far we have focused on why the one-step algorithm often works better than the multi-step and
iterative algorithms. However, we do not want to give the impression that one-step is always better.
Indeed, our own experiments in Section 5 show a clear advantage for the multi-step and iterative
approaches when we have randomly collected data. While we cannot offer a precise delineation of
when one-step will outperform multi-step, in this section we offer some intuition as to when we can
expect to see benefits from multiple steps of policy improvement.

As seen in Section 6, multi-step and iterative algorithms have problems when they propagate estima-
tion errors. This is especially problematic in noisy and/or high dimensional environments. While
the multi-step algorithms propagate this noise more widely than the one-step algorithm, they also

IS
3

N
S

Normalized return
w
s

—— One-step
—— Multi-step
] Iterative
— Medium

Random

(

0

0.2 0.4 0.6 0.8

0.0 1.0
Random data Medium data

Figure 6: Performance of all three algorithms with reverse KL regularization across mixtures between
halfcheetah-random and halfcheetah-medium. Error bars indicate min and max over 3 seeds.

propagate the signal. So, when we have sufficient coverage to reduce the magnitude of the noise, this
increased propagation of signal can be beneficial. The D4RL experiments suggest that we are usually
on the side of the tradeoff where the errors are large enough to make one-step preferable.

In Appendix A we illustrate a simple gridworld example where a slight modification of the behavior
policy from Figure 4 makes multi-step dramatically outperform one-step. This modified behavior
policy (1) has better coverage of the noisy states (which reduces error, helping multi-step), and (2)
does a worse job propagating the reward from the good state (hurting one-step).

We can also test empirically how the behavior policy effects the tradeoff between error and signal
propagation. To do this we construct a simple experiment where we mix data from the random
behavior policy with data from the medium behavior policy. Explicitly we construct a dataset D out
of the datasets D, for random and D,,, for medium such that each trajectory in D comes from the
medium dataset with probability p,,. So for p,, = 0 we have the random dataset and p,,, = 1 we
have the medium dataset, and in between we have various mixtures. Results are shown in Figure
6. It takes surprisingly little data from the medium policy for one-step to outperform the iterative
algorithm.

8 Discussion, limitations, and future work

This paper presents the surprising effectiveness of a simple one-step baseline for offline RL. We
examine the failure modes of iterative algorithms and the conditions where we might expect them
to outperform the simple one-step baseline. This provides guidance to a practitioner that the simple
one-step baseline is a good place to start when approaching an offline RL problem.

But, we leave many questions unanswered. One main limitation is that we lack a clear theoretical
characterization of which environments and behaviors can guarantee that one-step outperforms
multi-step or visa versa. Such results will likely require strong assumptions, but could provide useful
insight. We don’t expect this to be easy as it requires understanding policy iteration which has
been notoriously difficult to analyze, often converging much faster than the theory would suggest
[Sutton and Barto, 2018, Agarwal et al., 2019]. Another limitation is that while only using one step
is perhaps the simplest way to avoid the problems of off-policy evaluation, there are possibly other
more elaborate algorithmic solutions that we did not consider here. However, our strong empirical
results suggest that the one-step algorithm is at least a strong baseline.

Broader impact. Our paper studies a simple and effective baseline approach to the offline RL
problem. The effectiveness of this baseline raises some serious questions about the utility of prior
work proposing substantially more complicated methods. By making this observation of prior
shortcomings, our paper has the potential to encourage researchers to derive new and better methods
for offline RL. This has many potential impacts on fields as diverse as robotics and healthcare where
better offline decision making can lead to better real-world performance. As always, we note that
machine learning improvements come in the form of “building machines to do X better”. For a
sufficiently malicious or ill-informed choice of X, almost any progress in machine learning might
indirectly lead to a negative outcome, and our work is not excluded from that.

10

Acknowledgements

This work is partially supported by the Alfred P. Sloan Foundation, NSF RI-1816753, NSF CAREER
CIF 1845360, NSF CHS-1901091, Samsung Electronics, and the Institute for Advanced Study. DB is
supported by the Department of Defense (DoD) through the National Defense Science & Engineering
Graduate Fellowship (NDSEG) Program.

References

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pages 22-31. PMLR, 2017.

Alekh Agarwal, Nan Jiang, and S. Kakade. Reinforcement learning: Theory and algorithms. 2019.

P. Amortila, Nan Jiang, and Tengyang Xie. A variant of the wang-foster-kakade lower bound for the
discounted setting. ArXiv, abs/2011.01075, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/abs/
1606.01540.

Jacob Buckman, Carles Gelada, and Marc G. Bellemare. The importance of pessimism in fixed-dataset
policy optimization, 2020.

John Burkhardt. The truncated normal distribution, 2014.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
Proceedings of the 36th International Conference on Machine Learning. PMLR, 2019.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33, 2020.

Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear function
approximation. In International Conference on Machine Learning, pages 2701-2709. PMLR,
2020.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018a.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018b.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking batch
deep reinforcement learning algorithms. arXiv preprint arXiv:1910.01708, 2019.

Wonjoon Goo and Scott Niekum. You only evaluate once — a simple baseline algorithm for offline rl.
In Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gémez Colmenarejo, Konrad
Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
Benchmarks for offline reinforcement learning. arXiv preprint arXiv:2006.13888, 2020.

Caglar Gulcehre, Sergio Gémez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas Paine, Konrad
Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu, and Nando de Freitas. Regularized
behavior value estimation. arXiv preprint arXiv:2103.09575, 2021.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog, 2019.

11

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
ICML, volume 2, pages 267-274, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pages 11761-11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International Conference on Machine Learning, pages 3652-3661.
PMLR, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pages 1054-1062,
2016.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Kimia Nadjahi, Romain Laroche, and Rémi Tachet des Combes. Safe policy improvement with soft
baseline bootstrapping, 2019.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov,
Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning,
2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Martin L Puterman and Moon Chirl Shin. Modified policy iteration algorithms for discounted markov
decision problems. Management Science, 24(11):1127-1137, 1978.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Bruno Scherrer, Victor Gabillon, Mohammad Ghavamzadeh, and Matthieu Geist. Approximate
modified policy iteration. arXiv preprint arXiv:1205.3054, 2012.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889-1897, 2015.

Noabh Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavior modelling priors for offline reinforcement learning. In International Conference on
Learning Representations, 2020.

12

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy policy
evaluation for reinforcement learning. arXiv preprint arXiv:1911.06854, 2019.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. In Advances in Neural Information Processing Systems, pages
6288-6297, 2018.

Ruosong Wang, Dean P. Foster, and Sham M. Kakade. What are the statistical limits of offline rl with
linear function approximation?, 2020a.

Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham M Kakade. Instabilities of offline rl
with pre-trained neural representation. arXiv preprint arXiv:2103.04947, 2021.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33, 2020b.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2019.

Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch rl can be
exponentially harder than online rl, 2021.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 8 and Section 7.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section 8.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplement.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In all relevant figures.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] See Appendix C
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Data from Fu et al.
[2020].
(b) Did you mention the license of the assets? [Yes] The license is Apache 2.0.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Code in supplement.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Data is simulated.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Data is simulated.
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Setting and notation
	Related work
	Defining the algorithms
	Algorithmic template
	Policy evaluation operator
	Policy improvement operators

	Benchmark Results
	What goes wrong for iterative algorithms?
	Learning curves and hyperparameter sensitivity
	Distribution shift
	Iterative error exploitation

	When are multiple steps useful?
	Discussion, limitations, and future work

