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Abstract

Many supervised learning problems involve high-dimensional data such as images,
text, or graphs. In order to make efficient use of data, it is often useful to leverage
certain geometric priors in the problem at hand, such as invariance to translations,
permutation subgroups, or stability to small deformations. We study the sample
complexity of learning problems where the target function presents such invariance
and stability properties, by considering spherical harmonic decompositions of such
functions on the sphere. We provide non-parametric rates of convergence for kernel
methods, and show improvements in sample complexity by a factor equal to the
size of the group when using an invariant kernel over the group, compared to
the corresponding non-invariant kernel. These improvements are valid when the
sample size is large enough, with an asymptotic behavior that depends on spectral
properties of the group. Finally, these gains are extended beyond invariance groups
to also cover geometric stability to small deformations, modeled here as subsets
(not necessarily subgroups) of permutations.

1 Introduction

Learning from high-dimensional data is known to be statistically intractable without strong assump-
tions on the problem. A canonical example is learning Lipschitz functions, which generally requires a
number of samples exponential in the dimension due to the curse of dimensionality (e.g., [31]). Many
high-dimensional machine learning problems involve highly structured data such as images, text, or
graphs, and may exhibit invariance to certain transformations of the input data, such as permutations,
translations or rotations, and near invariance to small deformations. More precisely, if X is the
high-dimensional data domain, and G is a set of transformations o : X — X', the learning task can be
alleviated if one knows in advance that the target function f varies smoothly under transformations in
G: |f(o - ) — f(x)] is uniformly small over x € X for o € G.

To further motivate this property, it is useful to view the data domain X" as a space of signals
X = L*(;R) defined over a geometric domain €2, such as a 2d grid. The set of transformations G
can then be articulated in terms of (2 rather than X', a much simpler geometric object, and then lifred
into X’ by composition: if o : Q@ — Q, and z € X then (0 - x)(u) := z(07 1 (u)) for every u € Q.
The smoothness to transformations can thus be interpreted as a form of geometric stability.

In this paper, we quantify the sample complexity gains brought by geometric stability. Concretely,
we consider target functions f defined on the sphere X = S?~! in d dimensions with finite L?(S%~1)
norm. In this case, we view the geometric domain as the discrete 1d grid Q@ = [1,...,d], and
consider geometric transformations G as subsets of the symmetric group of permutations of d
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elements. Given a set G (not necessarily a group), we consider the smoothing operator given
by Saf(x) = ﬁ >geq flo - a) for f € L2(S?!), and assume that our target function f is

geometrically stable, in the sense that f = Sgg for some g € L?(S?1). In words, the smoothing
operator S¢ replaces the prediction f(x) by the average over transformations of x. In particular,
functions which are invariant under the action of o € (G, namely

flo-z)=f(z), o€GuzesT )
are also stable, with f = Sg f.

Building on the recent work [23], we proceed by studying harmonic decompositions of such functions
using spherical harmonics [14], which generalize Fourier series on the circle to higher dimensions.
This allows us to obtain rates of approximation for invariant and geometrically stable functions with
varying levels of smoothness, and to study the generalization properties of invariant kernel methods
using kernels defined on the sphere. Specifically, our main contributions are:

* By comparing spectral properties of usual kernels on the sphere with invariant ones, we find that
the latter provide improvements in sample complexity by a factor of the order of the size of the
group when the sample size is large enough (Section 3).

* We study how this improvement factor varies with sample size, in terms of the structure of the
group and on spectral properties of the permutation matrices it contains (Section 4).

* We extend the invariance analysis to geometrically stable functions, establishing similar gains in
sample complexity that depend on the size of the transformation subset (Section 5).

Our proofs rely on comparing the dimension of invariant and non-invariant spherical harmonics at
a given degree, and showing that their ratio decays to the inverse group size as the degree tends to
infinity. In contrast to [23], we consider the dimension to be fixed and study non-parametric rates of
convergence for potentially non-smooth target functions and general groups of permutations, while
they consider a different regime in high dimension and focus on invariance to translation groups.

Related work. Invariance and deformation stability have been analysed using convolutional neural
network-type architectures such as the scattering transform [22, 7], or convolutional kernels [6,
20]. While these works characterise the stability in terms of the dyadic structure of convolutional
filters (such as wavelets), they do not cover a statistical analysis of sample complexity. Similarly,
models of compositional functions such as those in [11, 24, 27] study the benefit of hierarchical
representations with local connectivity for approximation, while [19, 21] study benefits of local
connectivity with optimization-based algorithms; yet these works do not consider invariance or
stability. [23] studies similar benefits of invariance but in a different, high-dimensional, regime where
only polynomials can be learned, focusing on translation groups, while we consider arbitrary groups
or sets of permutations in fixed dimension. [15] also sudies benefits of group invariance, but focuses
on linear models, and only considers interpolating estimators. [30] study general generalization
bounds of invariant classifiers that scale exponentially with the dimension, which would be pessimistic
under our assumptions. [10] study benefits of equivariant kernels in structured prediction problems.
[13] studies generalisation advantages of CNNs over fully-connected models, while our focus is on
non-parametrics.

2 Preliminaries

In this section, we describe our setup and provide some background on harmonic decompositions on
the sphere, and how these are affected by invariance.

Statistical learning setup. We consider a supervised learning problem where the data distribution
p on input-label pairs (z,y) is such that z € S?~! and E[y|z] = f*(z) for some target func-
tion f*in L2(S¢~1). For simplicity, we will assume that z is uniformly distributed on the sphere, and
denote the uniform measure on S~ ! by dr. We consider a regression setup with L? risk given by

R(f) = Eauyymp [(F(2) = 1)7] -

For a given estimator fn based on n samples from p, the goal is then to obtain generalization bounds
as a function of n on the excess risk

]E[R(fn)] _R(f*) :]E[an _f*H%Z(dT)]v (2



where the expectation is over the n samples. Such bounds are well-studied for various classes of target
functions f* such as smoothness classes, and estimators such as kernel ridge regression. These are
typically studied through harmonic decompositions of f* and of a kernel function in appropriate L?
bases, which then relate function regularity and decays of Fourier coefficients.

Harmonic analysis on the sphere. When considering functions in L?(dr), an appropriate choice
of orthonormal basis is that of spherical harmonic polynomials [1, 14]. More precisely, de-
note {Y, ; }N( ) denote an orthonormal basis of the space Vi of spherical harmonics of degree £,
i.e., homogeneous harmonic polynomials of degree k, where N (d, k) = %Qﬁ (k jﬁ;?’) Then, the
collection {Y},; : k > 0,5 = 1,...,N(d, k)} forms an orthonormal basis of L?(dr), so that any
function f € L?(d7) may be written

N(d,k)

B) = > an;Yi(e), (3)

k>0 j=1

with ), Z d *) g ; < co. Similarly, any dot-product kernel K (z,2") = x((z,2")) on the sphere
may be wrltten

N(d,k)
=> e Y Vij(@)Ya(a), )
k>0 j=1
where iy, is given by p = wd 2 f_ t) Py (t )(1—t2)(d’3)/2dt. Here, w,,_1 is the surface measure

of the sphere in p dlmensmns and Pd7  are Legendre or Gegenbauer polynomials of degree k in d
dimensions (normalized with Py (1) = 1),which form an orthogonal basis of L?([—1,1], dw),
with dw(t) = (1 — t?)(¢=3)/2dt. When the kernel K is positive definite and is used in the context of
kernel ridge regression with data uniformly distributed on the sphere, then the p;; also correspond
to the eigenvalues of the covariance operator. These eigenvalues and their decay then control the
statistical properties of the kernel ridge regression estimator [8].

Spherical harmonics and group-invariant functions. In order to describe harmonic decomposi-
tions of functions satisfying the group invariance property (1) for a discrete group G, we follow [23]
and define the symmetrization operator

Saf(x |G| > flo-x) ©)

oelG

This operator acts as a projection from L?(d7) to a subset thereof which contains invariant functions.
It can be shown that the spaces Vg of spherical harmonics of degree k are stable by S [23],
and we may then define an orthonormal basis of V4 j, :== Sg Vg i, consisting of invariant spherical

(d,k)

harmonics {Y, ; }]Nz1 . We then have the following lemma.

Lemma 1 (Representation of projection [23]). For any k > 0, we have

) = ) = g 2 B Paslr o) ©

The quantity ~4(k) will play an important role in determining the gains in sample complexity brought
by invariance. We will show in Section 4 that 4 (k) converges to 1/|G| for large k, with an asymptotic
behavior that is governed by spectral properties of the elements of the group.

3 Sample Complexity of Invariant Kernels

We begin our study by focusing on the invariant case. In this section, we study the sample complexity
of learning invariant functions, by considering kernel ridge regression estimators and providing non-
parametric rates of convergence that illustrate the gains achievable with invariant kernels compared
to non-invariant ones.



Kernel ridge regression (KRR) and invariant kernels. For a positive definite kernel K with
RKHS H , we consider the KRR estimator f) given by

n

; . 2 2
= — i) — Y; )\ . 7
fx = arg min ;(f(ff ) = 4)" + Al e 0
We consider the following kernels, which we assume positive definite, given for z, 2’ € S%~! by
K(z,2') = k({z,2")), Kg(z,2') |G| Z (o-x,2") (8)
oceG

with x(u) < 1. A common example for & is the arc-cosine kernel [9], which arises from infinite-width
shallow neural networks with ReLU activations. The following integral operator defined on L?(dr)
and its eigen decomposition play an important role for the statistical and approximation properties of
kernel methods:

Tk f(x /K x, o) f(x')dr(x). 9)

We now show that its spectral properties are closely related for K and K.

Lemma 2 (Spectral properties of K and K¢.). There exists a basis of spherical harmonics in which
the operators Tk and Tk, are jointly diagonalized. They admit the same eigenvalues puy, as in (4),
with multiplicity N (d, k) for Tk and N(d, k) for Tk.

The decay of the eigenvalues p controls the smoothness of functions in the RKHS, for instance
when p;; decays polynomially, T behaves similarly to powers of the Laplacian on the sphere, leading
to functional spaces similar to Sobolev spaces. For the example of the arc-cosine kernel, p;, decays
as k=972, leading to an RKHS containing functions with d/2 + 1 bounded derivatives [2].

Approximation error. The approximation error of kernel methods is often controlled by the
following quantity (e.g., [3, 12]):

A7) = 1f 1 = F W ar) + A (10)

where f* is a target function in L?(d7), and H is a given RKHS. In particular, if * is smooth enough
so that f* € H, then we have Ay (A, f*) < || f*[3,, while if f* ¢ H, e.g., if f* is only Lipschitz,
then Ay (A, f*) typically grows much faster with \. We now show a useful result for invariant targets,
showing that in this case the approximation error is the same for the kernels K and K.

Lemma 3 (Approximation error for invariant functions.). If f* is invariant to the group G, so
that f* = S f*, then we have

Az (N ) :AHKG()‘vf*)' (11)
Degrees of freedom. The above result suggests that any gains of using K instead of K for
learning invariant functions should come from estimation rather than approximation error. The

estimation error of ridge rigression estimators is typically controlled with the following quantity,
often called degrees of freedom or effective dimension (e.g., [3, 18])'

Nk(A) = Tr(Zx (Ex + M)~

Am +)\ (12)

m>0

where Y = E, [K(z,-) Qy, K(z,-)] is the covariance operator and (A, )., >0 its eigenvalues,
taking multiplicity into account, which are the same as those of T’x when data is distributed according
to dr [8]. We then obtain the following simple result relating N, to Nx.

Lemma 4 (Degrees of freedom for K and Kg.). For any £ > 0, we have
Nk (A) < D) + va(OO Nk (N),
where D(€) := 3", _, N(d, k) and v4(£) := sup,s,va(k), with 74 given in (6).

This suggests that for a fixed ¢, the effective dimension of K is controlled by a factor v4(¥) times
that of K, up to a finite fixed dimension D(¢). For difficult non-parametric problems which require
small \ at large sample sizes, the second term will tend to dominate, so that having a small v4(¢) may
help reduce sample complexity compared to using the vanilla kernel K, an observation which we
make rigorous below.



Generalization bound for KRR. Armed with the above lemmas on approximation error and
degrees of freedom, we now study generalization of KRR under the following assumptions:

(A1) capacity condition: N (\) < Cxg A~ with a > 1.

a—1

(A2) source condition: there exists r > %+ and g € L?(dr) with [|g||r2(ar) < Cp~ such
that f* = Tg.

(A3) invariance: f* is G-invariant.
(A4) problem noise: pis such that B, [(y — f*(x))*|z] < op.

The first, second, and fourth conditions are commonly used in the kernel methods literature [8]. (A1)
characterizes the “size” of the RKHS, and is satisfied when the eigenvalues A, of Tk decay as k~<.
On the sphere, o = % corresponds to having s bounded derivatives, e.g., we have s = d/2 + 1 for
the arc-cosine kernel. The parameter r in (A2) defines the regularity of f* relative to that of the kernel:
r = 1/2 corresponds to f* € H, while larger (resp. smaller) » implies f* is more (resp. less)
smooth. The condition on 7 is needed for our specific bound, which is based on [3, Proposition 7.2],
but may be bypassed using different algorithms or analyses [17, 26]. We now present our bound on
the excess risk.

Theorem 5 (Generalization of invariant kernel.). Assume (Al-4). Let v4(£) be as in Lemma 4, or an
upper bound thereof, and assume vy := infy>q v4(¢) > 0.

Let n > max { 1f*112./02, (C1/vo) Tt I=a } and define

Ly :=sup{l: D(¥) < CQVd(g)ﬁ%nﬁ}. (13)
We then have, for A = 03(Vd(€n)/n)°‘/(2"”’+1),
~ én %
E[R(fx) = R(f*)] < C4 (”d; )> , (14)

In the same setting, KRR with kernel K and X = Csna7+7 achieves E[R(fx)— R(f*)] < Cyn Zar T,
where C3, Cy are the same constants as for the invariant kernel. Here, the constants C1.4 only depend
on the parameters of assumptions (Al-4).

The theorem shows that the generalization error for the invariant kernel behaves as if it effectively had
access to n/v4(¢,,) samples, so that v4(¢,,) plays the role of an effective inverse sample complexity
gain at sample size n. Note that v4(¢,) < 1 and vy is decreasing, so that we always have some
improvement in sample complexity, and this gets better when /,, is large. In particular, we show in
Section 4 that v4(k), and hence v4(¢) converge to 1/|G|, so that asymptotically the gain in sample
complexity can be as large as the size of the group, which in some cases may grow exponentially in d.

Asymptotic estimates of the effective gain 1/4(£,). We now study the asymptotic behavior of the
effective gain factor v4(¢,,) when n — oo, by considering a case where an asymptotic equivalent
of v4(¢) in £ is known:
va(l) = vy +cl=P,

In Section 4, we obtain such asymptotics with vy = 1/|G|, and a rate 3 that depends on spectral
properties of the elements of GG, as well as upper bounds with possibly faster rates /3 at the cost of
larger 1. In Appendix B.5, we show that we may leverage this to obtain the following asymptotic
estimate of the effective gain v4(¢,,):

.y -5
Vd(gn) < vy + C min {(I/garn) @ DarD) | p@-D(Zar+D+28ar } ) (15)

Notice that when 8 < d, both exponents of n display a curse of dimensionality, but this curse goes
away as [ grows. Note also that the first exponent yields a faster rate, but one that is only achieved

for large n due to the factor 3", which may be small for large groups.

Curse of dimensionality and optimality. Note that the bound obtained in Theorem 5 is still cursed
for an invariant target f*, in the sense that the exponent in the rate is of order 1/d when f* is only
assumed to be Lipschitz. Indeed, a Lipschitz assumption on f* corresponds to taking r and « such
that 2ar ~ 2/(d — 1), which makes the source condition (A2) similar to a bound on ||V f*||£2(4r)-



This then leads to a cursed rate n~2/(2+4=1) raising the question of whether this can be improved.
We note that since v4(k) = Q(1/|G]) (as we show in Section 4), the asymptotic decays (as a function
of k) of the coefficients of f* and of the eigenvalues of Tk, are similar to those for the non-invariant
case, which implies that these rates cannot be improved (see, e.g., [8]). In Appendix B.6, we show that
our bounds with an improvement in sample complexity by a factor |G| are asymptotically minimax
optimal, so that this may be the best we can hope for under our assumptions.

Comparison to [23]. The work [23] also consider non-parametric learning of invariant functions
with similar kernels. They consider a high-dimensional regime where d — oo with sample sizes in
polynomial scalings n a d° for some s. They then show that if v4(k) = ©4(d~%) as d — oo, for
some « > 0 (which they call degeneracy), then the invariant kernel can learn polynomials of degree ¢
with n &~ d~“ while the non-invariant kernel needs n =~ df samples. In some cases, such as the
cyclic group, [23] show a = 1 and hence the gain of a factor d* = d is equal the size of the group,
but in other cases d* may be smaller than the group size. For groups of size exponential in d, the
analysis in [23] may only achieve polynomial improvements by factors d®, in contrast to our analysis,
which considers the different regime of fixed d and n — oo, and may lead to gains by exponential
factors if |G| is large, at least asymptotically.

4 Counting Invariant Polynomials

In this section, we study the asymptotic behavior of ~4(k), given in (6), when k& — oo and the
dimension d and the group G are fixed. This quantity can be seen as capturing the fraction
of orthogonal spherical harmonics of degree k that are invariant to G, and helps us control the
possible gains in sample complexity for learning invariant functions, as described in Section 3.
Denoting 4, (k) := Ey [Pyx({o - z,z))], we will show that v4 (k) vanishes for large k for
any o that is not the identity. This implies that v4(k) converges to 1/|G|, since we trivially
have v4, 14(k) = Py (1) = 1. We further characterize the asymptotic behavior of y4(k) in terms of
properties of the group elements. In the following we consider the case of GG being a subgroup of S,
the groups of permutations on d elements.

Decay of v, , (k). Our main insight is to leverage the fact that when o is not the identity, then the
random variable z, = (o -z, x) when x ~ 7 admits a density on [—1, 1], which we denote ¢,. This by
itself will prove sufficient to show that 4 (k) decays for large k, thanks to the oscillatory behavior
of P, ;. We can then further characterize its asymptotic behavior by studying the singularities of g,
leveraging the seminal work of Saldanha and Tomei [28]. In particular, these depend on spectral
properties of the matrix associated to 0. We summarize this in the next proposition.

Proposition 6 (Asymptotic behavior of 4 ,(k).). Let A, be the matrix associated to o # 1d, that is
such that o - x = Asx. Denote by A, the set of (complex) eigenvalues of A,, and by m) the multi-
plicity of A € Ay. When k — oo, we have the asymptotic equivalent Yq,o(k) = > _ycn_ Vd,on(K),
where

k—d-ﬁ-mA + O(k_d+7">\) , lf)\ S {:l:l} )

o) S :
Ya,on(k) S {kd+mx+4 +o(k=mat4) - otherwise, (10

where < hides constants that may depend on d, o and M.

Every permutation o € S; (where S is the symmetric group of permutations) can be decomposed
into cycles on disjoint orbits; the eigenvalues A (and their multiplicities m ) of a matrix A, admit
an interpretation based on such decomposition. Indeed, since A, is unitary, its eigenvalues are
of the form A = 2™, and one can verify that necessarily 6 = % € Q. Furthermore, assuming
w.l.0.g. that q is prime, such eigenvalue appears whenever ¢ contains a cycle of length a multiple of g.
In particular, the multiplicity of the eigenvalue 1, m1, corresponds to the total number of cycles in
such a decomposition, which we will denote by ¢(o). Then 4 » (k) can be controlled as follows.

Corollary 7 (Decay of vy »(k)). Let o # 1Id, and let c(o) denote the number of cycles in o. Then,

) | ife(o) > 43

S o
Vo (K) S {k—d/%ﬁ, otherwise .



Decay on specific subgroups. We may now use Corollary 7 to study the asymptotic behaviour of
~v4(k) as k — oo for various choices of subgroups of S, using the following result.

Corollary 8 (Upper bounds with permutation statistics). Let G be a subset of Sq and define
C(G,s):=1{c € G : c(o) > s}|fors € [d — 1]. Then, for any s, we have

’Yd(k) < <(|(Z;|8) +0 (kfderaX{s, d/2+6}) ’ 7)

with equality if s is such that (G, s) = 1.

Note that such an upper bound immediately yields a similar upper bound for v/4(¢) as defined in
Section 3, which then controls the effective gain in sample complexity in Theorem 5. Indeed, (17)
implies that there is a constant C such that for all & > 0, v4(k) < ((G, s5)/|G|+ Ck—d+max{s,d/2+6},
Since this upper bound decreases with k&, we obtain

va(f) < C(%ﬁ) 4+ g~ dtmax{s,d/2+6}
In the context of the generalization bound of Theorem 5 and our heuristic derivation thereafter, the
effective gain in sample complexity is then governed an upper bound on v4(¢,,) as in (15), with
asymptotic gain vy = C(lg"s) and rate 8 = d — max{s,d/2 + 6}.
Example 9 (Translations). Let G = Cy be the cyclic group on d elements. Then it holds

~a(k) = % +0 (k:*d/%ﬁ) :

This follows by noticing that every translation o (but the identity) satisfies c¢(c) < d/2. This leads to

an asymptotic gain v, V—dand B =d /2 — 6 leads to fast convergence in (15) even when d is large.

Example 10 (Local translations). Let d = s - r (with r,s > b for simplicity), and consider the group

composed of traslations over r blocks of coordinates of size s, i.e., the block-cyclic group
G={o: O':CT(I)O'--OO'(T)}

where each ¢ is a translation over the set {(i — 1)s + 1, ... ,is}, fori € [r]. Then it holds
1
Yalk) = = +0 (k7*/21) . (18)
ST

This follows by noticing that every local translation o (but the identity) satisfies ¢(c) < (d—s) + s/2.
Here the asymptotic gain is vy L= 57 = %5, which can be exponential in d when s is small. We
have 8 = s/2 — 1, which leads to much slower convergence than the translation case, unless s is
large and of order d.

Example 11 (Full permutation group). For the case of G = Sq, we can split the group based on the
value of Fix (o), the number of elements fixed by a permutation o. Denote

d
d
£(G,s) :=]0e€G : Fix(o) > s|= Z () I(d—-7j).
j=s+1 J
for s € [d — 1], where |k denotes the k-th subfactorial. Then we have

G7 S — maxy s
'Yd(k) < 6( p ) +0 (k d/24max{s/2, 6}) ,
with equality for s = d — 1. This follows from the fact that ¢(o) < Fix(c) + (d — Fix(0))/2. In
particular, it follows

2
k) < 19) (kfd/2+max{s/2, 6}) )
va(k) < N
When considering the full group, we may get a large asymptotic improvement of order vy 1= |G| =d!
in sample complexity, but a slow convergence with B = —1 as per Corollary 8 (assuming d large

enough). Using different values of s may yield different upper bounds with faster convergence
rates 3 = d/2 — max{s/2,6}, but smaller asymptotic gains in sample complexity, given by vy * =
(s+1)!/2. Forinstance, with s = d/2 and d large enough, we have 3 = d/4, leading to a potentially
fast convergence rate in 15 towards a sample complexity gain that is still significantly large, of

order (d/2 + 1)!/2.

Overall, these examples show that the size of the group determines the best possible improvement
in sample complexity, while the spectral properties of its permutations dictate how quickly we may
achieve these gains.



S Beyond Group Invariance: Geometric Stability

In this section, we study gains in sample complexity when the target function f* is not fully invariant
to a group, but may be stable under small geometric changes on the input. We formalize this by
considering a similar averaging operator S¢, but we allow G to be a generic set of permutations
instead of a group, and allow for a weighted average:

Saf(x) =Y h(o)f(o-x), (19)

ceG

where i(0) > Oforallo € Gand ) . h(o) = 1. We assume that G is “symmetric”, i.e., 0 ™' € G
when o € G and h(oc~1) = h(o), so that S is self-adjoint. In this case, images of Sg are not
invariant functions, but may nevertheless exhibit a form of “local” stability to small perturbations
of the input data. For instance, if G consists of local translations by at most a few pixels, or if G
consists of all translations but A is localized around the identity, then applying S¢ yields functions
that are stable to local translations. We may also consider a more structured set G of permutations
that resemble local deformations, consisting of both a global translation as well as different local
translations at different scales, as we describe below.

Spectral properties of S;. Note that in this setup, we no longer have that S is a projection,
however we may still view it as a smoothing operator, which attenuates certain harmonics that are
“less” invariant than others. The next lemma shows related spectral properties to the invariant case.

Lemma 12 (Spectral properties of S¢). There exists a basis of spherical harmonics 7;@7]-, fork >0,
andj =1,...,N(d, k), in which the operator S, is diagonal, with eigenvalues Ay, ; > 0. In analogy
to Lemma 1, we have

N(d,k)

va(k) = N(d, k)™ D> My =Y h(0)Eqs [Pur((o - z,2))]. (20)
j=1 oeG

We also define v4(€) := supy >, vya(k).

Sample complexity of stable kernel. In analogy to Section 3, we may consider a stable kernel

Ke(z,2') =Y ho)k((o - z,27)). (21)

ceG

Then, it is easy to check that the integral operator of K¢ is given by Tk, = SgTx. In contrast to
Section 3, we no longer have that the approximation errors of K and K are the same in general
on “geometrically stable" functions, since the notion is not precisely defined. Nevertheless, we may
represent favorable targets f* as those whose coefficients decay similarly at each frequency k to those
of Sg, by viewing it as a smoothing of some L? function g*, i.e., f* = SFg* for some exponent r.
With this in mind, we make the following assumptions, replacing assumptions (A1-3) of Section 3.

(AS) capacity: the eigenvalues (£,,,)m>0 of Tk satisfy &, < C(m +1)7°.

a—1

(A6) source condition: there exists r > %=+ and g € L*(dr) with [|g||r2(ar) < Cp+ such
that f* = SLT.g.

Note that (A6) corresponds to a standard source condition with the kernel K¢ (since Ty, =
ST, yet it reveals how K¢ jointly performs smoothing on the sphere, through Tk, as well as on
permutations through S¢. While these two forms of smoothing appear “entangled” in this assumption,
one may balance them by choosing different levels of smoothing in the kernel function &, or by
averaging multiple times in (21). Assumption (A5) is needed for obtaining a variant of Lemma 4,
and implies (A1) with Cx oc C''/®. We then obtain the following generalization bound.

Theorem 13 (Generalization with geometric stability.). Assume (A4-6), and assume vy :=
infy>o v4(€) > 0. Let n > max(|| f*||2. /02, (Cy Jvo) Y 1= and define

£y, :=sup{l: D(¥) < C’gl/d(ﬁ)2ﬂ27"r+1n‘2ﬂi+1 }- (22)



We then have, for X = Cs(v4(£,,)"/ /n)*/Ger+1),

2ar
R 1/a\ Zar+1

E[R(f) = R(/)] < C (”d(f“n)) : 23)
In the same setting, KRR with kernel K achieves a similar bound with Vd(fn)l/o‘ replaced by 1, but
with a possibly smaller constant Cy. Here, the constants C1.4 only depend on the parameters of
assumptions (A4-6).
Note that the obtained generalization bound is very similar to Theorem 5, but with a factor v4(£,,)'/*
instead of v4(¢,,). This is due to the fact that in contrast to the invariant case, where v4(k) in (6) can
help precisely control the number of invariant spherical harmonics, in this case v4(k) as computed
in (20) can only give information about the sum of the eigenvalues A, ; at frequency £, which may
be insufficient to precisely estimate the gains in effective dimension. The gap between these two
factors is relatively small for kernels with slow decays (o« ~ 1) but can be more pronounced for
smooth kernels with fast decays (large o). Note also that the different source condition (A6) leads to
a different approximation error, and thus to an approximation-estimation trade-off related to stability,
which does not appear in the group-invariant case. More precise estimates of the decays of A, ; may
help characterize this tradeoff more formally, and we leave this question to future work. As in (15),
we may derive an estimate of v4(£,, ), namely if v4(¢) ~ vy + c£~”, then we have

, -5 -5
va(ly) < vg+ Cmin {(Vgrn) (@=DRar+1)  n (@-D(@arFHF26r } . (24)

Deformation-like stability. For inputs x defined as signals = € L?({2) over a continuous domain
Q) C R®, s = 1,2, the action of ‘small’ diffeomorphisms ¢ : Q@ — Qas (¢ - x)(u) = z(¢~(u))
is a powerful diagnostic of performance of trainable CNNs [25], and a key guiding principle for
scattering representations [22, 7]. In these works, the basic deformation cost is measured as ||¢|| :=
sup,, |[Ve(u) — Ij|. We instantiate an equivalent of small deformations in our finite-dimensional
setting as follows.

b :={0€8; : |o(u)—o)—(u—1u)| <elu—1u'l}, (25)

where the differences are taken modulo d. For € = 0, we recover the translation group described in
Example 9. We can verify that € = 1 also corresponds to the translation group (due to the constraint
that o (u) # o(u’) whenever u # v’), thus the first non-trivial model corresponds to € = 2.

Proposition 14 (Upper bound on 4 (k) for deformations.). It holds &5 = ®,. Moreover; |®y| > 7¢
for T =~ 1.714, and
e d d
’Yd(k) <C <(277)2777—1_277) + 0 (k K ) (26)

- e2n
= e

forn < 1/4. In particular, 71 < 1 forn < 0.07, leading to an effective gain in

sample complexity exponential in d, v, Yo _ @(%d/ ), and 8 = nd resulting in fast convergence in

(24) even for large d.

We thus verify that small deformations, already with £ = 2, provide a substantial gain relative to
rigid translations, since ®3 now grows exponentially with the dimension, rather than linearly. Let
us remark that our small deformation model (25) acting on {1, d} differs in important ways from
diffeomorphisms acting on a continuous domain. In our case they define unitary operators (since
they are constructed as subsets of the permutation group), as opposed to diffeorphims, for which
ll - xllz2(q) # l|2[/L2() generally. In other words, the ‘deformations’ in ®. are more akin to local
shufflings of the pixels rather than local distortions. That said, our model does roughly capture the
size of small deformation classes. An interesting question for future work is to extend our framework
to non-unitary transformations, which could accommodate appropriate discretisations of continuous
diffeomorphisms.

6 Numerical Experiments

In this section, we provide simple numerical experiments on synthetic data which illustrate our
theoretical results. In Figure 1, we consider KRR on 5 000 training samples with inputs uniformly
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Figure 1: Comparison of KRR with invariant and non-invariant kernels. (left) permutation-invariant
target with d = 6, comparison between various invariant kernels (cyclic, block-cyclic, and permutation
groups). (center/right) invariant vs non-invariant kernels on invariant target functions with d = 12,
for block-cyclic groups G of two different sizes.

distributed on S%~!, and outputs generated according to a target non-smooth function f* = Sgg*,
with g*(z) = 1{w, = > 0.7}, where the averaging operator S¢ is over different groups in each plot.
The regularization parameter A is optimized on 5 000 test samples. We use the dot-product kernel
function k(u) = (u + 1)k1(u), where k1 is the arc-cosine kernel of degree 1, which corresponds to
an infinite-width shallow ReLLU network [9].

When the target is permutation-invariant, we can see in Figure 1(left) that the kernel based on
permutation invariance leads to the largest gain in sample complexity compared to those which use
cyclic or block-cyclic groups. Since the permutation group has the largest cardinality, this is consistent
with our finding that the gains may be of the order of the size of the group. Figures 1(center/right)
consider the example of cyclic translations on local blocks of size 2 or 6 (Example 10 with s = 2
or 6), and illustrate that the improvement in sample complexity happens later for s = 2 than s = 6,
which is consistent with the slower decays of v, obtained in (18) due to the larger number of cycles.

7 Discussion and Conclusion

We have studied how geometric invariance or stability assumptions on target functions enable more
efficient learning, with improvements in sample complexity which may be as large as the number of
permutations considered in the group or set of elements to which the target is invariant or stable. In
particular, this gain can be exponential in the dimension if we consider, e.g., all permutations, local
translations on small blocks, or permutations that resemble small deformations. This last example
provides a strong justification for seeking models and architectures that are stable to deformations, a
natural prior when learning functions on images [25]. In that respect, our results provide a theoretical
baseline to assess learning guarantees under geometric priors: by designing appropriate geometrically
stable kernels, we simultaneously address approximation and generalisation errors within a framework
of convex optimization.

That said, while these gains may be large in practice, the obtained rates are still generically cursed
by dimension if the target is non-smooth. In other words, invariance or geoemtric stability allows
us to express Lipschitz assumptions with respect to weaker metrics. While these stronger regularity
assumptions result in important gains in sample complexity, they do not overcome the inherent
difficulty of learning non-smooth structures in high-dimensions. This suggests that further assump-
tions may be needed to learn efficiently on high-dimensional geometric data, for instance with more
structured forms of regularity beyond our invariant/stable setup, which may be exploited perhaps
through architectures that involve local connectivity, hierarchy (which would explain the benefits
of depth, as opposed to our current results), or feature learning [2, 4, 16, 21, 27]. A natural further
question is to study stability to transformations that are not necessarily permutations, and which may
then provide more realistic models of continuous deformations. Another interesting question is to
study whether it is possible to adapt to general symmetries present in the target, instead of encoding
them in the model with an appropriately designed kernel as done here.
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