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Abstract

We introduce the “inverse bandit” problem of
estimating the rewards of a multi-armed ban-
dit instance from observing the learning pro-
cess of a low-regret demonstrator. Existing
approaches to the related problem of inverse
reinforcement learning assume the execution
of an optimal policy, and thereby su↵er from
an identifiability issue. In contrast, we pro-
pose to leverage the demonstrator’s behav-
ior en route to optimality, and in particu-
lar, the exploration phase, for reward esti-
mation. We begin by establishing a general
information-theoretic lower bound under this
paradigm that applies to any demonstrator
algorithm, which characterizes a fundamen-
tal tradeo↵ between reward estimation and
the amount of exploration of the demonstra-
tor. Then, we develop simple and e�cient re-
ward estimators for upper-confidence-based
demonstrator algorithms that attain the opti-
mal tradeo↵, showing in particular that con-
sistent reward estimation—free of identifia-
bility issues—is possible under our paradigm.
Extensive simulations on both synthetic and
semi-synthetic data corroborate our theoret-
ical results.

1 Introduction

Reward specification plays a crucial role in build-
ing safe and reliable machine learning systems that
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are aligned with human values (Amodei et al., 2016).
However, as pointed out in the extensive behavioral
science literature, it is challenging to achieve this align-
ment, and hand-designed rewards are often misspeci-
fied (Anderson, 2001; Gershman and Niv, 2015; Mac-
Glashan and Littman, 2015; Boune↵ouf et al., 2017;
Gershman, 2018). The paradigm of inverse reinforce-
ment learning (IRL) presents a compelling workaround
to explicit reward specification, and leverages the
implicit optimality in expert demonstrations to in-
fer a reward function. In particular, this paradigm
places emphasis on behavioral demonstrations—that
is, the demonstrator’s actions themselves—as reflect-
ing human values. Popular types of IRL include im-
itating the optimal policy (Ho and Ermon, 2016; Li
et al., 2017b), apprenticeship learning (Abbeel and
Ng, 2004), meta-learning (Finn et al., 2017) and learn-
ing the reward function (the original formulation of
IRL) (Ng et al., 2000; Ramachandran and Amir, 2007;
Ziebart et al., 2008; Suay et al., 2016).

Arguably the most outstanding challenge in reward-
based IRL is that the reward function may not be
uniquely identifiable from the agent’s behavior, and in-
finitely many reward functions can explain the demon-
strator’s actions. This issue is particularly pronounced
when we assume demonstrations from the optimal pol-
icy (Ng et al., 2000), and subsequent work in IRL has
developed heuristics to regularize the space of reward
functions depending on how well they explain behav-
ior (Ziebart et al., 2008; Ramachandran and Amir,
2007). Even so, some of these approaches, including
maximum-entropy IRL (Ziebart et al., 2008), still suf-
fer from their own identifiability issues.

The central message of this paper is that the reward
identifiability issue can be alleviated even in the case
where we have a single demonstration, provided the
demonstrator improves over time by exploration and
then exploitation. In other words, such a demonstra-
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tor begins her trajectory facing an unknown environ-
ment, explores the environment through a sequence of
actions, and eventually settles on an (approximately)
optimal policy. Coincidentally, the original introduc-
tion of the IRL problem to the AI community did in-
volve learning from this type of evolving demonstra-
tor (Russell, 1998). Concretely, Russell (1998) frames
the goal of IRL as being “to output the reward func-
tion that the agent is optimizing...given measurements
of an agent’s behavior over time”, and asks whether
we can determine the reward function “by observation
during, rather than after, learning”. Indeed, the pro-
cess of policy improvement leaks information: when
the demonstrator ceases to use a suboptimal policy
might contain useful signal about how suboptimal that
policy is. This, in turn, provides more information
about the reward function than observations solely of
the optimal policy.

We make this intuition formal and provide simple,
tractable and optimal reward estimators from demon-
strations in the multi-armed bandit (MAB) setting
that alleviate the aforementioned identifiability issue.
Note that the identifiability issue from optimal demon-
strations is particularly acute in MAB: this is because
no information about the suboptimal arms’ rewards
is revealed from the optimal demonstration, only the
fact that they are suboptimal. In addition to this con-
ceptual motivation, studying the problem in the MAB
setting also has several independent motivations. First
and most directly, MAB forms the cornerstone of ex-
periment design in several applications: two notable
examples are hyperparameter selection in large-scale
machine learning (Li et al., 2017a) and protocol se-
lection for battery charging (Attia et al., 2020), where
sequential experiment design is performed using popu-
lar, o↵-the-shelf bandit algorithms. Being able to infer
the utility of various alternative options from prior ex-
perimentation holds substantial value, as we can use
this inference to assess the performance of all config-
urations that were involved in the experiment with-
out actually rerunning the experiment itself (which
may be expensive). Second, it is also worth noting
that humans frequently face MAB problems in the real
world (Anderson, 2001; Boune↵ouf et al., 2017). It is
often desirable to make inferences about their intrin-
sic preferences (e.g. a latent measure of customer util-
ity) from observing their behavior, which can, in turn,
be modeled from observing past interactions with a
known environment.

Our paradigm is applicable in both such cases. In
contrast to learning purely from the exploitation phase
in which the demonstrator pulls the optimal arm, we
will use a model for the MAB algorithm—in particular,
the temporal information revealed by the choices of
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Figure 1: An illustration of exploration decreasing
along the learning path for algorithms in the (a) upper-
confidence-bound (UCB) family (Auer et al., 2002)
(b) successive-arm-elimination (SAE) family (Even-
Dar et al., 2006). (c) The tradeo↵ between exploration
and reward estimation, signifying that algorithms that
explore more are easier to estimate rewards from.

which arms to pull over the course of the algorithm—
to make inferences about the suboptimal arms.

Contributions. We formally introduce the inverse
bandit problem and take a fundamental approach to
it, providing both information-theoretic lower bounds
and provably optimal algorithms. What is notable,
and perhaps surprising, from our work is that the
demonstrator’s sequence of choices can reveal not only
the relative suboptimality of arms but also the ex-
tent of suboptimality, enabling consistent estimation
of the reward of each arm from the behavior of a sin-
gle demonstrator. To the best of our knowledge, this
constitutes the first analysis of this type for inverse
reward estimation, whether in bandits or RL. In more
detail:

• We first derive information-theoretic lower bounds
that apply to any demonstrator algorithm (Theo-
rem 3.1), which provide a quantitative tradeo↵ be-
tween exploration and reward estimation. This is illus-
trated schematically in Figure 1(c). In the special case
of two arms, these bounds show that reward estimation
error is inversely proportional to the square root of the
regret of the demonstrator’s algorithm (Corollary 4.3),
thereby formalizing our claim from the abstract.

• We develop simple and e�cient reward estima-
tion procedures (Procedures 1 and 2) for demonstra-
tions based on the popular successive-arm-elimination
(SAE) (Even-Dar et al., 2006) and upper-confidence-
bound (UCB) (Lai and Robbins, 1985) algorithms, and
prove upper bounds on the estimation error which
match our lower bounds (Theorem 4.2). Both al-
gorithms can be naturally parameterized by their
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amount of in-built exploration, and are schematically
represented in Figures 1(a) and 1(b), respectively. In
particular, these show that for either type of demon-
strator, exploration can be optimally leveraged in re-
ward estimation, even though the exploration schedule
takes di↵erent forms1.

• Our theory is corroborated by extensive simulations
and semi-synthetic experiments (e.g. on battery charg-
ing and gene expression datasets).

After discussing related work in the next subsection,
we provide background on bandit algorithms and re-
gret and formally state the inverse bandit problem in
Section 2. Section 3 contains statements and discus-
sions of our main theoretical results, and we present
and discuss our experiments in Section 5. We conclude
with a discussion of future work in Section 6.

Related work. Alternative IRL paradigms. Recent
work has explored easier settings that have the scope
to avoid reward identifiability issues in IRL by assum-
ing either additional structure on the reward or ac-
cess to side-information (Amin et al., 2017; Gershman,
2016; Geng et al., 2020; Ballard and McClure, 2019;
Jeon et al., 2020; Fu et al., 2017). In contrast to this
line of work, our reward estimation procedure recovers
the exact reward function in the limit, without addi-
tional assumptions, for a natural class of low-regret
demonstrations. A parallel line of work on learn-
ing from demonstrations, including imitation learn-
ing, studies alternative approaches that directly copy
the demonstrators’ actions without specifying a re-
ward function (Ho and Ermon, 2016; Li et al., 2017b).
While these approaches have had many successful ap-
plications, the lack of reward identification limits their
use in others. For instance, planning across multiple
environments—with di↵erent transition dynamics—
cannot be accomplished purely by imitation learning
since the optimal policy can vary significantly. On the
other hand, a learned reward function can be used to
transfer knowledge across environments.

Learning from “improving demonstrators”. Our
paradigm of learning from an exploring demonstrator
is similar in spirit to a line of recent work on learn-
ing from improving demonstrators (Gao et al., 2018;
Jacq et al., 2019; Wu et al., 2019; Balakrishna et al.,
2020; Ramponi et al., 2020). We highlight two key

1
While Section 4 provides exact details of both the SAE

and UCB algorithms, we provide a short high-level descrip-

tion here. While SAE and UCB algorithms both trade

o↵ exploration and exploitation in a similar manner, their

day-to-day behavior diverges sharply. In particular, SAE-

based algorithms have a marked transition between their

exploration and exploitation phases. On the other hand, in

UCB-based algorithms the amount of exploration reduces

smoothly with time (as reflected in Figure 1(b).

di↵erences in both the setting and theoretical scope.
First, we show that reward estimation is possible from
observing a single demonstration, and consistent esti-
mation is obtainable as the horizon of the demonstra-
tion grows. On the other hand, related work on learn-
ing from improving demonstrators is based on estimat-
ing population-based quantities arising from RL algo-
rithms like soft policy iteration on gradient descent,
and requires a large number of demonstrations for es-
timation. At a lower level, our analysis proves not only
consistency, but also non-asymptotic guarantees on
reward estimation that are matched by information-
theoretic lower bounds. On the other hand, there are
no finite-sample guarantees available in the literature
on learning from improving demonstrators, optimal or
otherwise.

Finally, we mention that IRL in bandits has been con-
sidered by two recent papers, but the settings are mo-
tivated by social choice (Noothigattu et al., 2021) and
imitation/assisted learning (Chan et al., 2019), as op-
posed to reward learning from a single demonstration.

2 Preliminaries

We formally define the problem of reward estimation
in a multi-armed bandit (MAB) instance from a single
demonstrator who uses a low-regret algorithm. We be-
gin by setting up standard notation for the MAB prob-
lem, and by formally defining (pseudo-)regret (Latti-
more and Szepesvári, 2020; Slivkins, 2019).

2.1 Multi-armed bandits (MAB) and regret

minimization

Consider a K-armed bandit instance with action (arm)
set [K] := {1, 2, . . . , K}. Every time an arm i 2 [K] is
pulled, a random reward is generated, independently of
past actions, from an unknown probability distribution
⌫i. We assume that the distribution ⌫i is supported
on the interval [0, 1] for each i 2 [K], and denote by
µi = EX⇠⌫i [X] the expected reward of arm i. We
assume throughout this paper that there is a unique
best arm with highest expected reward. We let i

⇤ :=
argmaxi2[K]µi denote the index of the best arm, and
use µ

⇤ := µi⇤ to denote its reward. We refer to the
remaining arms as suboptimal arms, and define the
suboptimality gap of arm i 6= i

⇤ to be �i := µ
⇤
� µi.

Owing to the uniqueness of the best arm, note that
�i > 0 for all i 6= i

⇤.

The demonstrator takes actions on the bandit instance
with the goal of maximizing her accumulated reward
over a finite horizon consisting of T rounds. At each
round t 2 {1, 2, . . . , T} and based on her observations
thus far, the demonstrator pulls an arm It 2 [K] and
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receives a reward rt ⇠ ⌫It . Define ni,t to be the num-
ber of times arm i has been pulled up to time t. It
is also useful to define the empirical reward estimate

of arm i at time t as µ̄i,t =
�Pt

s=1 rs·I{Is=i}
�
/ni,t. The

performance of the demonstrator is measured by her
regret, which quantifies the di↵erence between the best
possible reward she could accrue if she knew which arm
was the best one, and the actual accumulated reward.

Definition 2.1 (Pseudo-regret (Lattimore and
Szepesvári, 2020)). The (expected) pseudo-regret is

E[RT ] = Tµ
⇤
� E

h TX

t=1

rt

i
=
X

i2[K]

�iE[ni,t].

A low-regret demonstrator is one whose regret scales
sublinearly in T with high probability, that is, RT =
o(T ) with probability that goes to 1 as T !1.

2.2 The “inverse bandit” problem

The “inverse bandit” problem is to estimate the ex-
pected rewards {µi}i2[K] of a multi-armed bandit in-
stance from observing only the actions of a demon-
strator algorithm. Importantly, we do not observe the
rewards accrued at each round. Consider a demon-
stration consisting of the sequence of actions {It}

T
t=1.

A reward estimation procedure is a mapping from
{It}

T
t=1 7! {bµi}i 6=i⇤ , where bµi denotes the mean es-

timate arm i. The goal of the reward estimation pro-
cedure is to minimize the expected estimation error
for each arm2

i, given by E[|bµi � µi|]. Here, the ex-
pectation is taken over the randomness of the received
rewards and the sequence of actions. Furthermore,
since the behavior of any natural demonstrator is in-
variant to constant shifts of all expected rewards, we
assume that the procedure has access to the value of
µ
⇤ (but not the index i

⇤) to avoid trivial identifiabil-
ity issues. Note that one can remove this recentering
assumption and instead consider estimating the sub-
optimality gaps.

Note that this goal of estimation is significantly more
challenging than simply ranking the arms: the latter
problem is solvable by ordering the arms according to
their pull counts, but does not produce cardinal reward
values. Nevertheless, we will show shortly that reward
estimation can indeed be performed from observing a
single trajectory from a natural class of demonstrators.

2
Our guarantees are most natural to state on the strin-

gent arm-by-arm error metric, and yield `p guarantees.

3 Fundamental Limits on Reward

Learning

To provide a concrete baseline, we first prove
information-theoretic lower bounds showing a funda-
mental tradeo↵ between reward estimation and explo-
ration, regardless of the specific reward estimation pro-
cedure and the demonstrator’s learning algorithm. At
a high level, the identifiability issues that arise in IRL
already suggest that exploration is necessary for non-
trivial reward estimation; our lower bound makes this
formal. We then present some intuitive but unsuccess-
ful attempts to achieve this lower bound.

3.1 Information-theoretic lower bound

The following theorem collects our lower bound.

Theorem 3.1. (Proof in Appendix A) For ev-
ery K-armed Bernoulli bandit instance M satisfying
maxi2[K] |µi � 1/2| 6 1/4 and for each suboptimal
arm i 6= i

⇤, the following is true. Suppose that the
demonstrator employs algorithm A, and let E[nA

i,T ] de-
note the expected number of times arm i is pulled by
A when presented the instance M. Then there ex-
ists an instance M

0 such that for any reward estima-
tion procedure having knowledge of µ

⇤ and mapping
{I1, . . . , IT } 7! {bµi}i2[K],i 6=i⇤ ,

max
fM2{M,M0}

E[|bµi � µi(fM)|] > 1

16
·

0

@ 1q
E[nA

i,T ]
^ 1

1

A .

Here µi(M) denotes the i-th reward mean of the bandit
instance M.

Note that in addition to applying to any reward esti-
mation procedure, Theorem 3.1 provides a fundamen-
tal limit for any choice of demonstrator algorithm in
terms of the degree of exploration in that algorithm.
Its proof utilizes information-theoretic lower bounds
on the demonstrator’s regret (Kaufmann et al., 2016):
even with the strong side information of noisy reward
observations, we need su�ciently many pulls of arm i

to be able to estimate its reward, since zero informa-
tion is shared across arms in the MAB setting. Thus,
the e�cacy of any inverse procedure for estimating µi

is fundamentally limited by E[ni,T ]�1/2.

3.2 Some initial observations

Theorem 3.1 constitutes a fundamental limit on re-
ward estimation from any demonstrator algorithm,
even if we know the algorithm beforehand. We now
make some observations to help assess the types of
demonstrator algorithms that allow us to match this
lower bound.
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The algorithm needs to satisfy instance-

adaptivity. Ideally, we would aim to obtain reward
estimation guarantees from any plausible low-regret
algorithm. Unfortunately, such a general statement
cannot be true (even if we are satisfied with a worse
estimation error bound) as witnessed by the following
simple counterexample. Suppose that the demonstra-
tor employs the explore-then-commit algorithm (Latti-
more and Szepesvári, 2020) which pulls arms randomly
for O(T 2/3) rounds, and then pulls the arm with the
highest estimated mean reward thereafter. This algo-
rithm achieves regret O(T 2/3) for all bandit instances,
and so constitutes a no-regret algorithm. However, it
is easy to see (since the arm pulls provide no infor-
mation about the rewards themselves) that nontrivial
reward estimation is impossible from observing the ac-
tions alone. As this example shows, reward estimation
is only possible when the algorithm exhibits some type
of instance-dependent behavior (e.g., if the action se-
quence di↵ers when the suboptimality gaps change).

Algorithm 1 Successive arm elimination (SAE) with
O(T↵) regret (for 0 < ↵ < 1) or O(log T ) regret (for
↵ = 0)

1: Input: K arms, ↵ 2 [0, 1), total rounds T .

2: Initialize: Set SAE epoch tr = 1, active set
S(1) [K] and round t = 0.

3: while |S(tr)| > 1 do

4: Sample arm i 2 S(tr) once and set t t + 1
5: Let µ̄i,t be the average reward of arm i by t

6: Set Ci,t
def
=
q

2(T↵�1)
↵·tr .

7: for each i 2 S(tr) and µ̄i,t 6 µ̄max(t)� 2Ci,t

do

8: S(tr) S(tr) \ {i}.
9: end for

10: tr  tr + 1
11: end while

12: Pull arm in S and set t t + 1 until t = T .

Does order-wise instance-optimal regret suf-

fice? The next natural question that arises is
whether it is possible to estimate the rewards from any
algorithm that exhibits (order-wise) optimal instance-
dependent behavior, even when we do not know the
specific details of the algorithm. In particular, we
might hope to use the number of pulls of a subop-
timal arm by round T , which we denoted by ni,T , as
a su�cient statistic for our estimation procedure. For
example, classic instance-dependent bounds are of the

form ni,T = ⇥
⇣

log T
�2

i

⌘
, where the constant inside the

⇥(·) varies across arms. A possible estimator from

this relation would be to construct b�i = C0

q
log T
ni,T

for

each suboptimal arm i, for some choice of common con-
stant C0. While this estimator possesses the attractive
property of being algorithm-agnostic, it turns out to
not even be statistically consistent (with respect to the
number of rounds T ), let alone match the fundamen-
tal limit given by Theorem 3.1. In fact, an elementary

analysis verifies that |b�i ��i| = ⇥
⇣q

log T
ni,T

⌘
= ⇥(1),

and so the estimation error does not decay with T .
At a high level, such a “naive” estimator does not ef-
fectively exploit the day-to-day structure present in
a demonstrator algorithm, and consequently cannot
match the lower bound in Theorem 3.1 (also see Ap-
pendix F).

Our lower bound and preliminary observations moti-
vate a class of procedures that utilizes3 the character-
istics of structured, instance-adaptive algorithms like
successive-arm-elimination (SAE) (Even-Dar et al.,
2006) and upper-confidence-bounds (UCB) (Lai and
Robbins, 1985) to perform reward estimation.

Algorithm 2 Upper confidence bound (UCB) with
O(T↵) regret (for 0 < ↵ < 1) or O(log T ) regret (for
↵ = 0)

1: Input: K arms, ↵ 2 [0, 1), total rounds T .

2: Initialize: Set round t = 1. Set for every arm a
confidence width Ci,0 =1.

3: while t < T do

4: Pull arm It = argmaxi2[K] µ̄i,t�1+Ci,t�1 (break
ties arbitrarily).

5: Let µ̄i,t be the average reward of arm i by time
t, and let ni,t be the number of times arm i is
pulled by time t.

6: Set Ci,t
def
=
q

2(T↵�1)
↵·ni,t

7: t t + 1
8: end while

Note: When ↵ = 0, we use that lim↵!0
T↵�1

↵ = log T .

4 Optimal Reward Estimators

Two popular families of algorithms in the MAB litera-
ture are successive-arm-elimination (SAE) and upper-
confidence-bounds (UCB), presented formally in Al-
gorithms 1 and 2. While these algorithms di↵er in
their round-by-round details, they are both based on
the principle of optimism in the face of uncertainty,

3
In addition to this conceptual motivation, assuming

knowledge of the demonstrator’s algorithm is reasonable,

e.g., in experiment design settings where algorithms like

UCB constitute the “gold standard”.
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whereby exploration is encouraged by constructing an
“optimistic” upper-confidence-bound on the reward of
an arm that is a decreasing function of the number of
times that arm has been pulled thus far.

The SAE algorithm proceeds in multiple epochs; in
each epoch, all active arms are pulled in a round robin
fashion and their sample means are maintained. As
soon as we observe that a certain arm is obviously sub-
optimal, we drop it from consideration and render it
“inactive”, or eliminated. The UCB algorithm instead
intertwines exploration with exploitation.

Remark 4.1. The use of ↵ in Algorithms 1 and 2 is
only to obtain a more general class of algorithms with
a smooth variation in their regret. In particular, a
higher value of ↵ essentially inflates the confidence in-
tervals, allowing for greater exploration. Indeed, both
the SAE and UCB algorithm incur a sublinear regret
of O(T↵) in high probability for any ↵ 2 [0, 1) (the
statement and proof of this result is in Appendix C for
completeness). The smaller the value of ↵, the smaller
the regret and—from the fundamental limits that we
characterized in Theorem 3.1—the harder it is to per-
form reward estimation. The typical choice of Ci,t is

O

⇣q
log T
ni,t

⌘
, which yields the instance-optimal regret

guarantee O

⇣P
i 6=i⇤

log T
�2

i

⌘
, is recovered by taking the

limit ↵ ! 0. It is important to note that we obtain
consistency of estimation even in this case of minimal
exploration, and our main ideas are already evident
here.

4.1 Optimal reward estimation

The naive attempts from before suggest that one needs
more delicate procedures in order to an optimal (or
even consistent) estimator. We now present such esti-
mators for the SAE and UCB algorithms, starting with
SAE since the ideas are most intuitive when there is a
clear separation between exploration and exploitation.

SAE reward estimator. Note from the description
of SAE in Algorithm 1 that the transition from explo-
ration to exploitation is particularly abrupt: for every
arm i, there exists (with high probability) a round ⌧i at
which the condition for arm i to be eliminated is met.
More formally, for a typical execution of SAE given by
{I1, . . . , IT }, we define this “switching round” as

⌧i := {t > 1 : It = i and It0 6= i 8t
0
> t}. (1)

Procedure 1 estimates the suboptimality gap of arm i

by exactly twice the width of the confidence interval
at the switching round ⌧i, denoted by Ci,⌧i . Figure 2
provides three-fold intuition for why this simple es-
timator is reasonable in the simplest case of 2 arms

Procedure 1 SAE reward estimator

1: Input: Sequence of actions {I1, . . . , IT }; scalar
µ
⇤.

2: Set bı 2 argmaxi ni,T

3: for each i 2 [K], i 6= bı: do
4: Compute ⌧i according to Eq. (1)

5: bµi
def
= µ

⇤
� 2 · Ci,⌧i .

6: end for

7: return bµi for i 2 [K].

t = �2

�2

2C1,t

2C2,t

̂�i,t �i

t = �2 + 1

arm 1 arm 2

2C1,t

2C2,t

arm 1 arm 2

Figure 2: SAE on a 2-armed bandit instance at the
rounds ⌧2 and ⌧2+1. In Procedure 1, we exploit the
fact that on both left and right �2 ⇡ C1,t + C2,t.

(with i
⇤ = 1).

First, at round ⌧2 arm 2 is still in play; so the sum
of the confidence widths C1,⌧2+1 + C2,⌧2+1 must up-
per bound the di↵erence in sample means µ̄1,⌧2� µ̄2,⌧2 .
This is depicted on the left hand side of Figure 2. Sec-
ond, at round ⌧2 + 1 the condition for elimination of
arm 2 must be met; so the sum of the confidence in-
tervals C1,⌧2+1 + C2,⌧2+1 must lower bound the di↵er-
ence in the algorithm’s sample means µ̄1,⌧2+1�µ̄2,⌧2+1.
This is depicted on the right hand side of Figure 2.
Putting these together, we obtain an estimator that
is close to the di↵erence in sample means µ̄1,⌧2+1 �

µ̄2,⌧2+1 (which is in turn very close to µ̄1,⌧2 � µ̄2,⌧2).
Finally, since both arm 1 and arm 2 have been active
until switching round ⌧2, their confidence widths are
identical. This leads to the particularly simple descrip-
tion of the SAE estimator in Procedure 1.

UCB reward estimator. While the details are sig-
nificantly more complex for UCB, a similar idea works.
In this case suboptimal arms could be pulled through-
out the decision-making process, but there will still ex-
ist (with high probability) a maximal round at which
arm i is pulled and the optimal arm is pulled at least
once there-after. Let bı denote the index of the arm
that is pulled most often in the demonstration; this is
our estimate of the optimal arm. The switching round
of interest is given by

⌧i := max{t : It = i and It0 = bı for some t
0
> t}. (2)
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Procedure 2 UCB reward estimator

1: Input: Sequence of actions {I1, . . . , IT }; scalar
µ
⇤.

2: Set bı 2 argmaxi ni,T

3: for each i 2 [K], i 6= bı: do
4: Compute ⌧i according to Eq. (2)

5: bµi
def
= µ

⇤
� (Ci,⌧i � Cbı,⌧i).

6: end for

7: return bµi for i 2 [K].

t = �2

�2̂�i,t �i

t = �2 + 1
arm 1 arm 2

C1,t
C2,t
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Figure 3: UCB on a 2-armed bandit instance at the
rounds ⌧2 and ⌧2+1. In Procedure 2, we exploit the
fact that on both left and right �2 ⇡ C2,t � C1,t.

Then, Procedure 2 directly estimates the reward of
arm i by exactly the di↵erence in confidence widths of
arms i and i

⇤ at ⌧i. As illustrated in Figure 3 for the
case of 2 arms, the confidence widths can be signifi-
cantly di↵erent for the optimal and suboptimal arm
at the switching round for the case of UCB. However,
similar intuition as in the case of the SAE estimator
continues to hold here; once again, arm 2 is subopti-
mal and we work on the high-probability event that
i
⇤ = bı = 1. First, at round ⌧2 the upper confidence
bound of arm 2 must exceed that of arm 1; therefore,
the di↵erence in confidence widths must upper bound
the di↵erence in sample means. Second, at round t

0 the
upper confidence bound of arm 1 exceeds that of arm
2; therefore, the di↵erence in confidence widths must
lower bound the di↵erence in sample means. Putting
these together, we again obtain an estimator that is
close to the di↵erence in sample means µ̄1,⌧2 � µ̄2,⌧2 .

Our main theorem makes the above intuition precise
and obtains a unified characterization of the estima-
tion error |bµi�µi| for each i 2 [K] arising from demon-
strations of either SAE or UCB.

Theorem 4.2. (Proof in Appendix D for SAE, Ap-
pendix E for UCB) Suppose4 T > 64

P
i 6=i⇤

T↵�1
↵�2

i
, and

let ni,T denote the number of times arm i is pulled by
either Algorithm 1 or 2. Denote the total number of
arms as K. There is a universal positive constant C

4
This condition ensures, by Proposition C.1, that bı = i⇤

with high probability.

such that for any suboptimal arm i, Procedures 1 and 2
satisfy

E|bµi � µi| 6 C

s
log(E[ni,T ]

p
K)

E[ni,T ]
.

Furthermore, we have E[ni,T ] > c ·
T↵�1
↵�2

i
for a second

universal constant c > 0.

Since the map x 7! log x/x is decreasing for large
enough x, the two parts of the theorem also provide an
upper bound on the estimation error purely in terms
of the the tuple (T, ↵,�i). Nevertheless, we have cho-
sen to state it in terms of the expected number of pulls
of arm i so as to bring into sharp focus the e↵ect of
exploration on reward estimation. Note that E[ni,T ]
measures the degree to which the suboptimal arm i

is explored; Theorem 4.2 shows that a larger value of
ni,T will lead to a smaller error. The precise quantita-
tive relationship is also compelling: indeed, if we had
oracle access to the reward samples accrued over the
course of the demonstration, simply averaging them
and outputting the sample mean would achieve a rate

of the order n
�1/2
i,T . The theorem shows that a simi-

lar rate is achievable solely using observations of the
trajectory itself.

The role of algorithmic hyperparameters. Our
procedures were based on knowing not just the partic-
ular type of demonstrator algorithm being employed
but also its hyperparameters (since these were used to
construct the confidence intervals). It is natural to ask
if the latter assumption can be relaxed. We note that
even without the knowledge of the constants in the
confidence widths, the same reward estimation proce-
dures will still able to estimate the suboptimality gaps
up to a scaling constant that is common to all arms.
In particular, such a guarantee would su�ce to argue
statements of the form “the second arm is twice as
suboptimal as the third”; such relative comparisons of
the arms’ rewards are often su�cient in many appli-
cations.

Technical novelty. Let us make a few comments
on the technical di�culties involved in proving Theo-
rem 4.2. Figures 2 and 3 suggest that the estimated
gap closely tracks the di↵erence in sample means
µ̄bı,⌧i � µ̄i,⌧i . The first step is to make this precise: we
show that in both cases, the overall estimation error
is characterized, up to lower order terms, by the dis-
tance from the sample means to the true means at ⌧i.
The second step is to characterizing the sample-mean
estimation error, and is challenging for a number of
reasons: (1) the sample means both in UCB and SAE
are biased even for a fixed round t due to adaptive
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(a) (b) (c) (d)

Figure 4: Results of 100 runs of simulation experiments for the UCB algorithm. Figures (a-c) are for a two-armed
bandit instance with µ = (1, 1/2) and Gaussian rewards with unit variance. Here, individual curves represent
two values of ↵ 2 {0.15, 0.25}. Figure (d) is a 4-armed instance with µ = (1, 2/3, 1/3, 0) and Gaussian rewards
with variance 1/4. Here, individual curves represent the three suboptimal arms. Overall, these log-log plots
corroborate our principal finding that better reward estimation is achievable from higher regret demonstrations;
see the text for a detailed discussion.

sampling (Nie et al., 2018; Shin et al., 2019) (2) the
switching round ⌧i is itself random for both UCB and
SAE, and (3) in the case of UCB, there is a discrep-
ancy between the quantities ni,⌧i and nbı,⌧i . Substan-
tial technical e↵ort in our proofs goes into constructing
high-probability lower-bounds on ni,⌧i and nbı,⌧i , both
of the order of E[ni,T ]. The lower bound on nbı,⌧i ap-
pears to be the first of its kind, and does not follow
even from other lower bounds on the total number of
pulls of each arm derived in the literature (Syed et al.,
2010). Instead, it requires a fine-grained understand-
ing of the day-to-day behavior of UCB. We present a
case-by-case analysis of UCB to provide these high-
probability lower bounds, which may be of indepen-
dent interest.

4.2 A consequence: reward estimation /

regret tradeo↵s for two-armed bandits

A key message of our results is that more exploration in
the demonstration is both necessary and su�cient for
e�cient reward estimation, in an arm-by-arm sense. In
the special case of a two-armed bandit problem, this
tradeo↵ can be expressed solely in terms of the regret:

Corollary 4.3. (Informal) Let i
⇤ = 1. Procedures 1

and 2 achieve, from a demonstration of SAE or UCB
with expected regret E[RT ], the bound E[|bµ2 � µ2|] .q

�2
E[RT ] . Conversely, any reward estimator bµ2 from

a demonstration algorithm A having expected regret

E[RT ] must su↵er error E|bµ2 � µ2| &
q

�2
E[RT ] ^ 1.

The predictions of this corollary and our other results
are now verified in numerical experiments.

5 Experiments

We now implement the reward estimators in Proce-
dures 1 and 2 on a range of synthetic bandit instances
and on a physics simulator derived from a real-world
application in battery charging (Attia et al., 2020;
Grover et al., 2018). Further experimental results and
more detailed explanations of setups in this domain
and including a new domain in gene expression data
can be found in Appendix F.

Simulated data. We simulate a K = 2 armed
bandit instance with Gaussian rewards distribution
X ⇠ N(µi, �

2) for each arm. The arm means µi are
bounded in the range [0, 1] with �

2 = 1.0. Our first set
of experiments is based on simulations of Algorithms 1
and 2 (and the corresponding Procedures 1 and 2).
The results with two arms and UCB are illustrated in
Figure 4; SAE results are similar (see Appendix F).

Panel (a) of Figure 4 verifies that the regret is sub-
linear in T , with higher values of ↵ incurring larger
regret, as predicted by Proposition C.1. In panel (b),
we plot the MSE of reward estimation (⇡ the square
of the quantity in our theorems) from UCB against T ,
and observe that Procedures 1 and 2 attain smaller
error when the algorithm has higher regret, i.e., for
larger values of ↵. We also see di↵erent slopes in these
plots for di↵erent values of ↵ (as predicted by Theo-
rem 4.2), and this motivates the question of whether a
common quantity governs the scaling law across di↵er-
ent choices of ↵. Panel (c) confirms that this is indeed
the case: the curves collapse onto each other when we
plot the MSE against regret, and the slope of the best-
fit lines—as predicted by Corollary 4.3—are very close
to �1.
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Figure 5: Results from 250 runs of estimating (normal-
ized) battery lifetimes from a UCB experiment design
procedure (a variance-adjusted version of Algorithm 2
with ↵ = 0.25). (a) Estimation error for a random
subset of 3 arms in the “high” regime when algorithm
is run on a 20-armed instance. (b) Error of estimat-
ing arm 12 in both “low” and “high” regimes with 4
protocols.

In the K-armed case with K = 4, panel (d) demon-
strate the variation of estimation rates across arms,
where arms having large gaps (or lower values of µ) are
harder to estimate than those having small gaps. Once
again, this corroborates the result of Theorem 4.2,
where we saw that the MSE must depend near-linearly
on the gap of the arm since arms with larger gaps are
pulled less often.

Application: Battery charging. In many scien-
tific domains, we are interested in studying the per-
formance landscape of a set of configurations. For ex-
ample, in battery charging, there are several electric
current protocols for charging an electric battery (At-
tia et al., 2020). Depending on the chosen protocol and
a specified temperature regime, a battery undergoes a
di↵erent range of chemical reactions that eventually
determine its final lifetime. Understanding relation-
ships between charging protocols and induced battery
lifetimes for di↵erent temperature regimes is crucial to
designing the future generation of batteries that oper-
ate at a favorable point on this tradeo↵.

Our data at hand often consists of the results of exper-
iments that were designed to search for lifetime max-
imizing configurations, and we would like to estimate
the landscape of lifetimes from this data. We can cast
this problem as one of reward estimation from an ex-
ploring demonstration. In particular, we map every
temperature regime to a bandit instance where each
charging protocol is an arm and the arm’s reward is
given by it’s expected lifetime. Given a demonstration
of sequential experiments (i.e., arm pulls), our goal is
to infer the lifetimes of all charging protocols.

We consider K distinct charging protocols from At-
tia et al. (2020) in two temperature regimes: low and

high. These two operating regimes exhibit di↵erent
ranges of expected battery lifetime: low in [901, 962]
and high in [573, 1208]. We obtain lifetime distribu-
tions for each protocol by fitting a Gaussian to a mix
of real-world experimental data and physical simula-
tions (Attia et al., 2020), and perform our experiments
on this semi-synthetic data using the UCB algorithm
as a representative experimental design approach. The
reward means are normalized to lie in the range [0, 1].

Figure 5(a), plotted in the high temperature regime for
K = 20 (see Appendix F for other regimes), shows that
the estimate for each charging protocol improves as the
length of the trajectory T increases. Lifetime estima-
tion is thus possible even in cases where the number of
protocols is moderately large. Next, we consider the
problem of evaluating a particular charging protocol
across temperature regimes with K = 4. In Figure
5(b), we plot the estimation error for a representa-
tive arm having similar lifetime in both temperature
regimes. Here, the behavior in panels (d) of Figure 4
is observed again: since the arm-gap in the low tem-
perature regime is lower than in the high temperature
regime, the error of Procedure 2 is correspondingly re-
duced.

6 Discussion

We introduced and studied the inverse bandit prob-
lem of estimating rewards from observing a low-regret
demonstrator. We provided information-theoretic
lower bounds and simple, optimal reward estimation
procedures. Our results quantify a tradeo↵ between
exploration and reward estimation, and are corrobo-
rated by extensive synthetic and semi-synthetic exper-
iments. While this work takes a first step towards the-
oretically optimal reward estimation from an explor-
ing demonstration, many open questions remain. It
is interesting to study other demonstrator algorithms,
e.g., randomized algorithms, in which the reward es-
timation comes with new challenges. Tackling these
challenges is crucial to deploying this paradigm in sce-
narios where humans are known to randomize their be-
havior (Daw et al., 2006; Schulz et al., 2015; Speeken-
brink and Konstantinidis, 2015). Another interesting
direction is to extend our insights to more expressive
settings like contextual bandits, tabular RL, and con-
tinuous control.
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rithms. Cambridge University Press, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter op-
timization. The Journal of Machine Learning Re-
search, 18(1):6765–6816, 2017a.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Info-
GAIL: interpretable imitation learning from visual
demonstrations. In Neural Information Processing
Systems, pages 3815–3825, 2017b.

James MacGlashan and Michael L Littman. Be-
tween imitation and intention learning. In Inter-
national Joint Conference on Artifical Intelligence,
pages 3692–3698, 2015.

Andrew Y Ng, Stuart J Russell, et al. Algorithms
for inverse reinforcement learning. In International
Conference on Machine Learning, volume 1, page 2,
2000.

Xinkun Nie, Xiaoying Tian, Jonathan Taylor, and
James Zou. Why adaptively collected data have neg-
ative bias and how to correct for it. In International
Conference on Artificial Intelligence and Statistics,
pages 1261–1269, 2018.

Ritesh Noothigattu, Tom Yan, and Ariel D. Procac-
cia. Inverse reinforcement learning from like-minded
teachers. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(10):9197–9204, May 2021.

Deepak Ramachandran and Eyal Amir. Bayesian in-
verse reinforcement learning. In International Joint
Conference on Artificial Intelligence, volume 7,
pages 2586–2591, 2007.

Giorgia Ramponi, Gianluca Drappo, and Mar-
cello Restelli. Inverse reinforcement learning
from a gradient-based learner. arXiv preprint
arXiv:2007.07812, 2020.

Stuart Russell. Learning agents for uncertain environ-
ments. In Proceedings of the eleventh annual confer-
ence on Computational learning theory, pages 101–
103, 1998.

Eric Schulz, Emmanouil Konstantinidis, and Maarten
Speekenbrink. Learning and decisions in contextual
multi-armed bandit tasks. In CogSci, pages 2122–
2127, 2015.

Jaehyeok Shin, Aaditya Ramdas, and Alessandro Ri-
naldo. Are sample means in multi-armed bandits
positively or negatively biased? arXiv preprint
arXiv:1905.11397, 2019.

Aleksandrs Slivkins. Introduction to multi-armed ban-
dits. Foundations and Trends® in Machine Learn-
ing, 12(1-2):1–286, 2019.

Maarten Speekenbrink and Emmanouil Konstantini-
dis. Uncertainty and exploration in a restless bandit
problem. Topics in Cognitive Science, 7(2):351–367,
2015.

Halit Bener Suay, Tim Brys, Matthew E Taylor, and
Sonia Chernova. Learning from demonstration for
shaping through inverse reinforcement learning. In
Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, pages
429–437, 2016.

Umar Syed, Aleksandrs Slivkins, and Nina Mishra.
Adapting to the shifting intent of search queries.
arXiv preprint arXiv:1007.3799, 2010.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao,
Voot Tangkaratt, and Masashi Sugiyama. Imita-
tion learning from imperfect demonstration. In In-
ternational Conference on Machine Learning, pages
6818–6827, 2019.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
and Anind K Dey. Maximum entropy inverse rein-
forcement learning. In AAAI Conference on Artifi-
cial Intelligence, volume 8, pages 1433–1438, 2008.



Learning from an Exploring Demonstrator

Supplementary Material:

Learning from an Exploring Demonstrator:

Optimal Reward Estimation for Bandits

In the following appendices, we collect proofs of all main results, and also present some additional numerical
experiments. Throughout our proofs, we suppose that T is greater than some absolute constant. We will use
c, C, c1, C1, . . . to denote universal positive constants that may change from line to line. We also define the
shorthand notation

i
def
= 4(T↵�1)/↵�2

i , (3)

which will appear in multiple proofs and simplifies our exposition.

The appendices are organized as follows. Appendix A provides the proof of Theorem 3.1, our information-
theoretic lower bound on reward estimation from a single demonstration of any algorithm. Appendix B collects
preliminary lemmas for general bandit algorithms that are used as building blocks in all subsequent proofs.
Appendix C provides, for completeness, proofs of high-probability regret bounds of SAE and UCB implemented
with our inflated confidence widths. Appendix D provides the proof of Theorem 4.2, our upper bound on reward
estimation error, from a demonstration of the SAE algorithm, and Appendix E provides the corresponding proof
for the UCB case. Finally, Appendix F presents additional experimental details and results.

A Proof of Theorem 3.1

The proof of Theorem 3.1 establishes a natural link to information-theoretic lower bounds on best-arm identifica-
tion. Denote the K-arm bandit instance byM = {Bern(µ1), . . . ,Bern(µK)}, and suppose without loss of general-
ity that the arms of M are indexed with decreasing expected rewards, i.e. µ

⇤ = µ1 > µ2 > · · · > µK . (Note that
the demonstrator’s algorithm A does not know this indexing.) Recall that n

A
i,T denotes the number of times arm

i is pulled by the demonstrator’s algorithm A. Further, for any t, let Ft(A) be the sigma algebra of the sequence

of actions and random reward samples generated by the algorithm A, i.e. Ft(A)
def
= �({I1, rI1 , I2, rI2 , . . . , It, rIt})

where rIt ⇠ Bern(µIt) denotes a random reward sample, and F(A) = {Ft(A)}t>1 is a filtration.

Corresponding to some suboptimal arm i 6= 1, we construct another bandit instance M
0 =

{Bern(µ0
1), . . . ,Bern(µ

0
K)) with µ

0
j defined as follows. Let µ

0
j = µj for each j 6= i, and set

µ
0
i =

(
µi + " if µi 6 1/2,

µi � " otherwise.

for some scalar " 2 (0, 1/4) that we will subsequently specify. Because µi 2 [0, 1], we have µ
0
i 2 [1/4, 3/4] for all

i 2 [K].

We now reduce the reward estimation problem to one of binary testing via the classic Le-Cam approach. Suppose
one of instanceM orM0 is chosen uniformly at random, and we observe sequence ⇠T = {I1, I2, · · · , IT } generated
by algorithm A. Let ⇠

0
T denote this random sequence under the bandit instance M, and denote by ⇠

1
T the random

sequence observed under the bandit instance M
0. We denote the distributions of ⇠

0
T and ⇠

1
T by ⌫

0
T and ⌫

1
T ,

respectively. We use E0[·] to denote expectations under the bandit instance M, and E1[·] to denote expectations
under the bandit instance M

0. Analogously, we use P0(·) to denote E0[I(·)], and P1(·) to denote E1[I(·)].

Now suppose the reward estimation procedure has knowledge of µ1 = µ
0
1 = µ

⇤, and must estimate the sequence
of reward means {µi}i2[K]. Since the error of estimation is lower bounded by the error of testing between the
instances M and M

0, we have
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max{E0[|bµi � µi|],E1[|bµi � µi|]} > "

2

�
1� k⌫0

T � ⌫
1
T kTV

�

> "

2

 
1� sup

E2FT (A)
|P0(E)� P1(E)|

!
,

(4)

where the last step follows from the definition of the total variation (TV) distance and the fact that the action
sequence is in the filtration.

We now apply Kaufmann et al. (2016, Lemma 1) to obtain

sup
E2FT (A)

|P(E)� P1(E)| 6
r

E[ni,T ] ·KL(Bern(µi),Bern(µ0
i))

2

where KL(·, ·) denotes the Kullback-Leibler (KL) divergence between two distributions. Then, we have

KL(Bern(µi),Bern(µ
0
i)) = (µ0

i + ") log

✓
µ
0
i + "

µ0
i

◆
+ (1� µ

0
i � ") log

✓
1� µ

0
i � "

1� µ0
i

◆

6
✓

1

µ0
i

+
1

1� µ0
i

◆
· "

2 6 16

3
"
2

where the first inequality follows from applying log(1 + x) 6 x, and the second inequality follows from the fact
that µ

0
i 2 [1/4, 3/4].

Therefore, we have

sup
E2FT (A)

|P(E)� P1(E)| 6
r

8

3
· "2 · E0[nA

i,T ].

Combining the above with Eq (4), we have

max{E0[|bµi � µi|],E1[|bµi � µi|]} > "

2

 
1� "

r
8

3
E[nA

i,T ]

!
> "

2

 
1� "

r
8

3
(E[nA

i,T ] _ 3/2)

!

Picking " =
p
3/{4
p

2(E[nA
i,T ]_3/2)} < 1/4 to maximize the right hand side of the above equation, we have

max{E0[|bµi � µi|],E1[|bµi � µi|]} >
p
3

16
p
2
·

0

@ 1q
E[nA

i,T ]
^

1p
3/2

1

A > 1

16
·

0

@ 1q
E[nA

i,T ]
^ 1

1

A .

This completes the proof. ⌅
Remark A.1. Note from the proof that an identical lower bound applies even if the procedure has access to the
random reward samples themselves, in addition to the demonstrator’s action sequence.

B Preliminary lemmas for general bandit algorithms

We first present a convenient interpretation of the multi-armed bandit instance using the notion of “reward
tapes” (Slivkins, 2019, Chapter 1). We consider a reward tape of length T for each arm i 2 A, each cell of which
contains a random reward sample from that arm. In particular, cell j on the tape corresponding to arm i contains
the reward sample Xi,j ⇠ ⌫i (recall that ⌫i denotes the reward distribution of arm i). Each time arm i is pulled,
we move one cell forward on its reward tape, and obtain a reward from the new cell. Note that ni,T simply
denotes the number of cells we have gone through on the reward tape of arm i by round T , and we trivially have

ni,T 6 T . Corresponding to the n
th cell of the reward tape, we define confidence width C(n)

def
=
q

2(T↵�1)
↵n .

The reward tape construction applies to a generic adaptive sampling algorithm (including both the SAE and
UCB algorithms), and simplifies the construction of certain critical events concerning the concentration of sample
means of arms around their true means. We start by stating and proving a basic lemma, which essentially follows
from Hoe↵ding’s inequality.



Learning from an Exploring Demonstrator

Lemma B.1. Denote by µ̄i(n) the sample mean of arm i obtained by moving n cells along the reward tape.
Then, for any n > 1, we have

|µ̄i(n)� µi| <

r
log(2/�)

2n
,

with probability at least 1� �.

Proof. By construction of the reward tape, the j-th pull of arm i generates the random reward Xi,j ⇠ ⌫i. This
random variable is bounded in the range [0, 1] and has expectation E[Xi,j ] = µi. The sample mean is given by
µ̄i(n) =

1
n

Pn
j=1 Xi,j . Applying Hoe↵ding’s inequality yields

P (|µ̄i(n)� µi| > ") 6 2e�2"2n
.

Setting " =
q

log(2/�)
2n , we obtain

P
 
|µ̄i(n)� µi| <

r
log(2/�)

2n

!
> 1� �,

which completes the proof. ⌅

The following series of events will be used as building blocks in all of our proofs.

Definition B.2. We define the following events that ensure concentration of the sample means of arms obtained
along the reward tape around their true means.

1. “Anytime” concentration events:

E
(i)
0

def
= {|µ̄i(n)� µi| 6 C(n) for all n = 1, . . . , T}, (5)

corresponding to each suboptimal arm i 2 [K]. These events will be used to prove sub-linear regret guaran-
tees for the SAE and UCB algorithms.

2. “Small-sample” concentration events

E
(i)
1

def
= {
p

n|µ̄i(n)� µi| 6
p
log(8i) for all n = 1, . . . , 8i}, (6)

corresponding to each suboptimal arm i 2 [K]\i⇤. These events will be used to provide an eventual guarantee
on estimation error of rewards of suboptimal arms. With a slight abuse of notation, we also define the event

E
(j,i)
1

def
= {
p

n|µ̄j(n)� µj | 6
q
log(8i

p

K) for all n = 1, . . . , 8i}, (7)

where j is the index of an arm that remains active during the first 8i rounds.

3. Tighter concentration events

E
(i)
2

def
=

(
|µ̄i(n)� µi| 6

r
3

4
C(n) for all n = 1, . . . , T

)
and (8a)

E
(i)
3

def
=

⇢
|µ̄i(n)� µi| 6

C(n)
p
2

for all n = 1, . . . ,
i

32

�
, (8b)

corresponding to each arm i 2 [K]. These events will be used to ensure that suboptimal arms are pulled
su�ciently often to guarantee low error in estimation of their rewards.

4. “Large-sample” concentration events

E
(i⇤,i)
4

def
=

8
<

:
|µ̄i⇤(n)� µi⇤ | 6

q
2 log i

ci
for all n 2 {ci, . . . , 

2
i } and

|µ̄i⇤(n)� µi⇤ | 6
q

log T
2
i

for all n 2 {
2
i + 1, . . . , T},

(9)

defined for the optimal arm i
⇤ with reference to a suboptimal arm i 2 [K] \ i

⇤. These events will be used in
the case of the UCB algorithm to ensure high-probability lower bounds on the random variable ni⇤,⌧i .
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The following lemma shows that each of these events occurs with high probability.

Lemma B.3. For each i 2 [K], the following results hold:

– Event E(i)
0 occurs with probability at least 1� 2/T 3.

– Event E(i)
1 occurs with probability at least 1� 1/4i.

– Event E(j,i)
1 occurs with probability at least 1� 1/4iK.

– Event E(i)
2 holds with probability at least 1� 2/T 2.

– Event E(i)
3 holds with probability at least 1� 1/16i.

– Event E(i⇤,i)
4 holds with probability at least 1� 2/T � c/i.

Proof. The proof of Lemma B.3 proceeds by repeatedly applying the basic using the basic Lemma B.1 for di↵erent
choices of � and union bounding over varying ranges of n. We prove each claim separately. Proof for event

E
(i)
0 : For each i 2 [K] and a fixed n > 1, we have

P (|µ̄i(n)� µi| > C(n)) 6 P
 
|µ̄i(n)� µi| >

r
2 log T

n

!

6 2

T 4
,

where the first inequality follows because C(n) >
p

2 log T/n, and the second inequality follows by applying
Lemma B.1 with the choice � = 2/T 4. Taking a union bound over n = 1, . . . , T yields

P (|µ̄i(n)� µi| > C(n) for some n = 1, . . . , T ) 6 2

T 3
.

This shows that the event E(i)
0 holds with probability at least 1� 2/T 3, completing the proof.

Proof for event E
(i)
1 : For each i 2 [K] and each n = 1, . . . , 8i, we apply Lemma B.1 with � = 2/642

i .
Then, we take a union bound over all n = 1, . . . , 8i to obtain

P
 
|µ̄i(n)� µi| >

r
log(8i)

n
for some n = 1, . . . , 8i

!
6 8i ·

2

642
i

=
1

4i
.

This completes the proof.

Proof for event E
(j,i)
1 : Applying Lemma B.1 with the choice � = 2/642

iK yields

P

0

@|µ̄i⇤(n)� µi⇤ | >

s
log 8i

p
K

n

1

A 6 2

642
iK

,

for each fixed n, and taking a union bound over n in the desired range completes the proof.

Proof for event E
(i)
2 : For each i 2 [K] and a fixed n > 1, we have

P
 
|µ̄i(n)� µi| >

r
3

4
C(n)

!
6 P

 
|µ̄i(n)� µi| >

r
3 log T

2n

!

6 2

T 3
,
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where the first inequality follows because C(n) >
p

2 log T/n, and the second inequality follows by applying
Lemma B.1 with the choice � = 2/T 3. Taking a union bound over n = 1, . . . , T yields

P (|µ̄i(n)� µi| > C(n) for some n = 1, . . . , T ) 6 2

T 2
.

This shows that the event E(i)
2 holds with probability at least 1� 2/T 2, completing the proof.

Proof for event E
(i)
3 : For each i 2 [K] and a fixed n 2 {1, . . . , i/32}, we have

P
✓
|µ̄i(n)� µi| >

C(n)
p
2

◆
6 P

 
|µ̄i(n)� µi| >

r
log i

n

!

6 2

2
i

,

where the first inequality follows because C(n)/
p
2 >

p
log i/n for the specified range of n, and the second

inequality follows by applying Lemma B.1 with the choice � = 2/2
i . Taking a union bound over the specified

range of n completes the proof.

Proof for event E
(i⇤,i)
4 : First, consider the case where ci 6 n 6 

2
i . In this case, we have

P
 
|µ̄i⇤(n)� µi⇤ | >

r
2 log i

ci

!
6 P

 
|µ̄i⇤(n)� µi⇤ | >

r
2 log i

n

!

6 2

4
i

,

where the first inequality follows because n > ci, and the second inequality follows by applying Lemma B.1
with the choice � = 2/4

i . Second, consider the case where 
2
i < n 6 T . In this case, we have

P
 
|µ̄i⇤(n)� µi⇤ | >

s
log T

2
i

!
6 P

 
|µ̄i⇤(n)� µi⇤ | >

r
log T

n

!

6 2

T 2
,

where the first inequality follows because we are in the case n > 
2
i , and the second inequality follows by applying

Lemma B.1 with the choice � = 2/T 2. Taking a union bound over n = ci, . . . , T completes the proof. ⌅

We will work on combinations of these events to prove Theorem 4.2 for the case of the SAE algorithm (Ap-
pendix D) and the case of the UCB algorithm (Appendix E).

C Sub-linear regret guarantees for UCB and SAE

For completeness, we provide a proof for Proposition C.1, which bounds the regret of the UCB and SAE algo-
rithms.

Proposition C.1. Recall that �i = µ
⇤
� µi. For any T > K, Algorithm 1 and Algorithm 2 both incur regret

RT 6Pi 6=i⇤
32(T↵�1)

↵�i
with probability at least 1� 4K

T 3 .

For clarity, we prove it separately for the SAE and UCB algorithms in Sections C.1 and C.2, respectively.
These proofs follow from straightforward modifications to classical results (Even-Dar et al., 2006; Lattimore and
Szepesvári, 2020), and readers familiar with regret analysis are advised to skip to Sections D and E for novel
analyses of our reward estimation procedures.

C.1 Proof of Proposition C.1 with SAE algorithm

We begin with a useful lemma whose proof is provided at the end of the subsection (see Section C.1.1). Recall
the definition of the scalar i from Equation (3).
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Lemma C.2. For the SAE algorithm, we have

ni,T 6 8i,

simultaneously for all suboptimal arms i with probability at least 1� 2K/T 3. Furthermore, on the same event, the
optimal arm i

⇤ is never eliminated.

With this lemma in hand, the proof of Proposition C.1 for the SAE algorithm follows immediately.

Proof of Proposition C.1, SAE. By the definition of pseudo-regret, we have

RT = Tµ
⇤
�

TX

t=1

rt,It

=
X

i2[K]

�ini,T

6
X

i2[K]

8i�i
def
=

32(T↵
� 1)

↵�i
,

where the final inequality holds with probability at least 1� 2K/T 3 by applying Lemma C.2. This completes the
proof. ⌅

C.1.1 Proof of Lemma C.2

Throughout this proof, we work on the event \Ki=1E
(i)
0 , which we showed in Lemma B.3 holds with probability

at least 1 � 2K/T 3. Recall the definition of i from Equation (3). It is easy to verify that C(8i) 6 �i/4.
Consequently, we have

µ̄i(8i) + C(8i) 6 µi + 2C(8i) 6 µi +
�i

2
. (10)

Similarly, for the optimal arm i
⇤ we have

µ̄i⇤(8i)� C(8i) > µi⇤ � 2C(8i) > µi⇤ �
�i

2
. (11)

On the other hand, we have µ̄i(n)�C(n) 6 µi and µ̄i⇤(n)+C(n) > µi⇤ for every n = 1, . . . , T and every i 2 [K].
Because µi⇤ > µi, this yields

2C(n) > µi⇤ � µ̄i⇤(n) + µ̄i(n)� µi > µ̄i(n)� µ̄i⇤(n), (12)

for every n = 1, . . . , T and every i 2 [K] \ i
⇤. Equation (12) guarantees that arm i

⇤ remains active throughout,
as claimed.

To complete the proof, we show that each arm i 6= i
⇤ is eliminated by the time we arrive at epoch 8i. Denote

by t(s) the (random) last round of epoch s. If arm i has already been eliminated in an epoch preceding epoch
8i, we are done. Otherwise, since arm i

⇤ is always active, combining Equations (10) and (11) gives us

2Ci,t(8i) 6 µi +
�i

2
� µi⇤ +

�i

2
+ µ̄i⇤,t(8i) � µ̄i,t(8i)

= µ̄i⇤,t(8i) � µ̄i,t(8i)

6 µ̄max(t(8i))� µ̄i,t(8i).

In summary, the condition for arm i to be eliminated is met by epoch at most 8i, directly implying that
ni,T 6 8i. This completes the proof. ⌅
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C.2 Proof of Proposition C.1 for UCB

The structure of this proof is identical to the SAE case. Recall the definition of the scalar i from Equation (3).

Lemma C.3. For the UCB algorithm, we have

ni,T 6 8i

for a suboptimal arm i with probability at least 1� 4/T 3.

As with the SAE case, the proof of Proposition C.1 follows immediately from this lemma. The steps are exactly
identical and we omit them for brevity. We conclude this section by proving Lemma C.3.

C.2.1 Proof of Lemma C.3

Throughout this proof, we work on the event E(i)
0 \E

(i⇤)
0 , which we showed in Lemma B.3 holds with probability

at least 1� 4/T 3. Since C(n) 6 �i/4 for all n > 8i, we have

µ̄i(n) + C(n) 6 µi + 2C(n) 6 µi +
�i

2
= µi⇤ �

�i

2
(13)

for all n > 8i.

On the other hand, for the optimal arm i
⇤ we have

µ̄i⇤(n) + C(n) > µi⇤ (14)

for all n = 1, . . . , T . Denote by t(8i) the (random) earliest round after which arm i was pulled for the 8i-th
time. If no such round exists, then we are done. Otherwise, combining Equations (13) and (14) gives us

µ̄i⇤,t + Ci⇤,t > µ̄i,t + Ci,t

for all t > t(8i). Thus, we have shown that the upper-confidence bound of arm i
⇤ dominates the upper confidence

bound of arm i for all rounds t > t(8i), implying that arm i is never pulled thereafter. This directly gives us
ni,T = ni,t(8i) 6 8i, which completes the proof for each suboptimal arm i. ⌅

D Proof of Theorem 4.2 for SAE

In this section, we provide the proof of Theorem 4.2 for the case of the SAE algorithm. Recall that we need to

bound the estimation error |bµi � µi|, and recall the notation i
def
= 4(T↵�1)/↵�2

i from Equation (3). This proof
will follow as a series of deterministic statements working on the high-probability event

ESAE
def
=

K\

i=1

⇣
E
(i)
0 \ E

(i)
2

⌘
\ E

(i)
1 \

⇣
\j2[K]E

(j,i)
1

⌘
. (15)

Lemma B.3 together with an application of the union bound ensures that the event ESAE holds with probability
at least 1� 2K/T 3 � 1/2i � 2K/T 2.

First, we claim that on the event ESAE and under our assumption that T > 32
P

i 6=i⇤ i, we have bı = i
⇤. In

order to see this, note that on the event \Ki=1E
(i)
0 we may apply the statement of Lemma C.2 to conclude that

ni,T 6 8i simultaneously for all suboptimal arms i 6= i
⇤. Consequently, we have

ni⇤,T = T �

X

i 6=i⇤

ni,T > 8
X

i 6=i⇤

i > max
i 6=i⇤

ni,T .

Next, we consider the estimation error |bµi � µi| for any suboptimal arm i. Recall that ⌧i is the round at which
suboptimal arm i 2 A is eliminated (Equation (1)). Since we identified the optimal arm, i.e. bı = i

⇤, we have
⌧i < T . Further, since arm i is eliminated at round ⌧i, we have

2Ci,⌧i 6 µ̄max(⌧i)� µ̄i,⌧i . (16)
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On the other hand, denote by ⌧
0
i the penultimate round on which arm i is pulled. Since arm i is still active

during this round, we have

2Ci,⌧ 0
i

> µ̄max(⌧
0
i)� µ̄i,⌧ 0

i
. (17)

Note that ni,⌧ 0
i
= ni,⌧i � 1 = ni,T � 1. Therefore, we have

2Ci,⌧i = 2

s
T↵ � 1

↵ni,T
> 2

s
T↵ � 1

↵(ni,T � 1)
� 4

r
T↵ � 1

↵
· (ni,T � 1)�

3/2

= 2Ci,⌧ 0
i
� 4

r
T↵ � 1

↵
· (ni,T � 1)�

3/2

> µ̄max(⌧
0
i)� µ̄i,⌧ 0

i
� 4

r
T↵ � 1

↵
· (ni,T � 1)�

3/2
.

Above, the first inequality follows from the fact that 1p
x
�

1p
x+1

6 2x�3/2 for any x > 1, and the second inequality

is a direct substitution of Equation (17).

Furthermore, we obtain

µ̄max(⌧
0
i)� µ̄i,⌧ 0

i
> µ̄max(⌧i)� µ̄i,⌧i �

2

ni,T
,

as a consequence of the rewards being bounded between [0, 1]. Therefore, we have

(µ̄max(⌧i)� µ̄i,⌧i)� 2Ci,⌧i 6
2

ni,T
+ 4

r
T↵ � 1

↵
· (ni,T � 1)�

3/2
. (18)

Proceeding now to the error term of interest, we have

|bµi � µi| = |2Ci,⌧i � (µ⇤
� µi)|

6 |2Ci,⌧i � (µ̄max(⌧i)� µ̄i,⌧i)|+ |µ̄max(⌧i)� µ̄i,⌧i � (µ⇤
� µi)|

6 2

ni,T
+ 4

r
T↵ � 1

↵
· (ni,T � 1)�

3/2 + |µ̄max(⌧i)� µ
⇤
|+ |µ̄i,⌧i � µi|

6 2

ni,T
+ 2
p

i · (ni,T � 1)�
3/2 + |µ̄max(⌧i)� µ

⇤
|+ |µ̄i,⌧i � µi|,

(19)

where the first inequality follows from triangle inequality and rearranging terms, and the second inequality follows
from Equation (18) and noting that |2Ci,⌧i � (µ̄max(⌧i)� µ̄i,⌧i)| = (µ̄max(⌧i)� µ̄i,⌧i)� 2Ci,⌧i as a consequence of
Equation (16).

It remains to bound the sample-mean deviations |µ̄max(⌧i)� µ
⇤
| and |µ̄i,⌧i � µi|. Towards that end, we require

two technical lemmas, stated below and proved at the end of this section. The first lemma bounds the deviation
of the sample mean for each arm.

Lemma D.1. Fix a suboptimal arm i. On the event ESAE, there are universal positive constants C, C1, C2 such
that for any arm j 2 [K] that remains active at round ⌧i, we have

|µ̄j,⌧i � µj | < C

s
log(i

p
K)

i
.

The second lemma provides a high-probability lower bound on ni,⌧i , which is significantly more intricate than
the typical lower bound on E[ni,⌧i ].

Lemma D.2. There is a universal constant c > 0 such that on the event ESAE, we have ni,T > ci.

Having stated these technical lemmas, we now use them to complete the proof of Theorem 4.2 for SAE. First,
Lemma D.1 applied to the case j = i directly gives us

|µ̄i,⌧i � µi| < C

s
log(i

p
K)

i
.
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Next, we again use Lemma D.1 to bound |µ̄max(⌧i) � µ
⇤
|. We denote by imax 2 [K] the arm index such that

µ̄imax = µ̄max(⌧i). On one hand, we have

µ̄max(⌧i)� µ
⇤ 6 µ̄imax � µimax

< C

s
log(i

p
K)

i

where the last step follows from Lemma D.1. On the other hand, we have

µ
⇤
� µ̄max(⌧i) 6 µ

⇤
� µ̄i⇤

< C

s
log(i

p
K)

i

where, again, the last step follows from Lemma D.1.

Proceeding from equation (19) and applying the inequalities established above, we have we have

|bµi � µi| 6
C

i
+ C

0

s
log(i

p
K)

i

on the event ESAE. Taking an expectation to include the complement of ESAE, we have

E|bµi � µi| 6 C

s
log(i

p
K)

i
+

C1

i
+

C2K

T 2
6 C

00

s
log(i

p
K)

i
.

We have used that T
2
/K & pi in stating the second inequality.

To complete the proof of the theorem, note that the proof of Proposition C.1 (see Lemma C.2) yields E[ni,T ] 6 c
0
i

for some positive constant c
0
> 0. Since the map x 7! log x/x is decreasing, we obtain

E|bµi � µi| 6 C
00

s
log(E[ni,T

p
K)]

E[ni,T ]

for some adjusted constant C
00. This completes the proof of the first part of the theorem. The second part

follows directly from Lemma D.2. ⌅

D.1 Proof of Lemma D.1

As detailed at the beginning of Appendix D, working on the event ESAE guarantees that ni,T 6 8i for each
suboptimal arm i and that arm i

⇤ remains active throughout. In addition, because event ESAE holds, we have

that E(i)
1 \ ([j2SiE

(j,i)
1 ) (defined in Equations (6) and (7), and Si denotes the set of arms that remain active in

the first 8i rounds) holds. This gives us

sup
16n68i

p
n|µ̄k(n)� µk| 6

q
log(8i

p

K) (20)

where k can denote either the optimal arm i
⇤ or any suboptimal arm j that remains active until round ⌧i. Finally,

note by the definition of ⌧i that for all arms j 2 [K] that are active, we have nj,⌧i = ni,⌧i = ni,T 6 8i, which
ensures that nj,⌧i lies in the required range {1, . . . , 8i} to apply Equation (20). Moreover, by Lemma D.2 (which
also holds on event ESAE) we have ni,⌧i > ci for some constant c > 0. Combining this with Equation (20) yields

|µ̄j,⌧i � µj | <

s
log(8i

p
K)

ci

for all active arms j 2 [K]. This completes the proof. ⌅
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D.2 Proof of Lemma D.2

Because the event ESAE holds, we have that \Ki=1E
(i)
2 (defined in Equation (8a)) holds, which guarantees that

|µ̄i(n)� µi| 6
r

3

4
C(n) for all n = 1, . . . , T and all i 2 [K]. (21)

For only this proof, we let c
def
= (2�

p
3)2 for brevity. It is easy to verify that �i = c ·C

⇣
c2i
2

⌘
. By the triangle

inequality, we have

|µ̄i0(n)� µ̄i(n)| 6 |µ̄i0(n)� µi0 |+�i + |µ̄i(n)� µi|

6 2C(n)
(22)

for all n 6 c2i
2 and every i 6= i

0. In other words, provided the number of pulls of arm i does not exceed c2i
2 , the

condition for elimination is not met. Arm i thus stays active for at least c2i
2 epochs, establishing the desired

lemma. ⌅

E Proof of Theorem 4.2 for UCB

In this section, we provide the proof of Theorem 4.2 for the more complex case of the UCB algorithm. The
structure of the proof resembles the SAE case, but the steps themselves are significantly more involved. Recall

that we need to bound the estimation error |bµi � µi|, and recall the notation i
def
= 4(T↵�1)/↵�2

i . As before, the
proof will follow as a series of deterministic statements working on the high-probability event

EUCB
def
=

 
K\

i=1

E
(i)
0

!
\ E

(i)
1 \ E

(i⇤,i)
1 \ E

(i)
2 \ E

(i)
3 \ E

(i⇤)
3 \ E

(i⇤,i)
4 (23)

From Lemma B.3 and the union bound, we have that the event EUCB holds with probability at least 1�C1/i�C2/T

for universal constants C1, C2 > 0.

First, we note that on the event EUCB and under our assumption of T > 32
P

i 6=i⇤ i, we have bı = i
⇤ via an

argument that is identical to the SAE case (provided at the beginning of Appendix D). For any suboptimal arm
i, let ⌧ i denote the first round after ⌧i in which the best arm is pulled, noting that such a round always exists
by the definition of ⌧i.

Since arm i is pulled at round ⌧i and arm i
⇤ is pulled at round ⌧ i, the respective upper confidence relations yield

the bounds

µ̄i,⌧i + Ci,⌧i � (µ̄i⇤,⌧i + Ci⇤,⌧i) > 0 and

µ̄i,⌧ i + Ci,⌧ i � (µ̄i⇤,⌧ i + Ci⇤,⌧ i) 6 0.

Combining the above two equations, rearranging terms, and applying the triangle inequality, we obtain

|Ci,⌧i � Ci⇤,⌧i � (µ̄i⇤,⌧i � µ̄i,⌧i)| 6 |Ci,⌧i � Ci,⌧ i |+ |Ci⇤,⌧i � Ci⇤,⌧ i |+ |µ̄i⇤,⌧i � µ̄i⇤,⌧ i |+ |µ̄i,⌧i � µ̄i,⌧ i |

= |Ci,⌧i � Ci,⌧ i |+ |Ci⇤,⌧i � Ci⇤,⌧ i |+ |µ̄i,⌧i � µ̄i,⌧ i |,
(24)

where the last equality follows because arm i
⇤ is not pulled between round ⌧i and ⌧ i. Thus, we have |µ̄i⇤,⌧i �

µ̄i⇤,⌧ i | = 0. Proceeding now to the error term of interest, we have

|bµi � µi| = |Ci,⌧i � Ci⇤,⌧i � (µ⇤
� µi)|

6 |Ci,⌧i � Ci⇤,⌧i � (µ̄i⇤,⌧i � µ̄i,⌧i)|+ |µ̄i⇤,⌧i � µ
⇤
|+ |µ̄i,⌧i � µi|

6 |Ci,⌧i � Ci,⌧ i |+ |Ci⇤,⌧i � Ci⇤,⌧ i |+ |µ̄i,⌧i � µ̄i,⌧ i |

+ |µ̄i⇤,⌧i � µ
⇤
|+ |µ̄i,⌧i � µi|,

where the second inequality follows from equation (24). We bound each of the above terms separately. First,
because arm i

⇤ is not pulled between rounds ⌧i and ⌧ i, we have ni⇤,⌧i = ni⇤,⌧ i , and consequently, its confidence
interval stays the same, with

|Ci⇤,⌧i � Ci⇤,⌧ i | = 0. (25)
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On the other hand, the confidence interval of arm i changes, but not by much. We have

|Ci,⌧i � Ci,⌧ i | =

r
2(T↵ � 1)

↵

✓
1

p
ni,⌧i

�
1

p
ni,⌧ i

◆

=

r
2(T↵ � 1)

↵

 
1

p
ni,⌧i

�
1p

ni,⌧i + 1

!

6
r

2(T↵ � 1)

↵
· n

�3/2
i,⌧i

.

(26)

where the inequality uses the fact that
p

j + 1�
p

j 6 j
�1/2 for any integer j > 1. Next, using our reward tape

notation, note that

|µ̄i,⌧ i � µ̄i,⌧i |
def
=

�����

Pni,⌧i
j=1 Xi,j

ni,⌧ i

�

Pni,⌧i
j=1 Xi,j

ni,⌧i

�����

=

����
µ̄i,⌧i · ni,⌧i + Xni,⌧i

ni,⌧i + 1
� µ̄i,⌧i

����

=

����
Xni,⌧i

� µ̄i,⌧i

ni,⌧i + 1

���� 6
1

ni,⌧i

,

(27)

where the last inequality follows from the fact that both Xi,j and µ̄i,⌧ are bounded between 0 and 1.

It remains to bound the sample-mean deviations |µ̄i⇤,⌧i �µ
⇤
| and |µ̄i,⌧i �µi|. Towards that end, we require three

technical lemmas, stated below and proved at the end of this section. The first lemma bounds the deviation of
the sample mean for arm i in terms of the number of times it has been pulled.

Lemma E.1. On the event EUCB, we have

sup
16t6T

p
ni,t|µ̄i,t � µi| <

p
log 8i (28)

for any suboptimal arm i.

The second lemma provides a high-probability lower bound on ni,⌧i , which is significantly more intricate than
the typical lower bound on E[ni,⌧i ].

Lemma E.2. On the event EUCB, there is an absolute constant c > 0 such that we have ni,⌧i > ci for any
suboptimal arm i.

Our third and final lemma bounds the deviation of the sample mean for arm i
⇤.

Lemma E.3. On the event EUCB, there is an absolute constant C > 0 such that

|µ̄i⇤,⌧i � µ
⇤
| < C

r
log i

i
. (29)

Having stated these technical lemmas, let us now complete the proof of Theorem 4.2 for UCB, operating through-
out on the event EUCB. Applying Lemma E.1 yields

sup
16t6T

p
ni,t|µ̄i,t � µi| <

p
log 8i,

from which we obtain

|µ̄i,⌧i � µi| <

s
log i

ni,⌧i

. (30)

In addition, Lemma E.3 yields the bound

|µ̄i⇤,⌧i � µi⇤ | < C

r
log i

i
. (31)
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Putting together equations (25), (26), (27), (30) and (31), the following sequence of bounds holds (where constants
change from line-to-line, but are always absolute):

|bµi � µi| 6
1

ni,⌧i

+

r
2(T↵ � 1)

↵
· n

�3/2
i,⌧i

+

s
log i

ni,⌧i

+ C

r
log i

i

6 1

ni,⌧i

+ C
p

i · n
�3/2
i,⌧i

+

s
log i

ni,⌧i

+ C

r
log i

i
.

Here, the second inequality holds by definition of i. Finally, Lemma E.2 provides a lower bound on ni,⌧i , which
gives us

|bµi � µi| 6 C

r
log i

i

on the event EUCB. Recall that the event EUCB holds with probability greater than 1� C1/i � C2/T for absolute
constants C1, C2. Substituting the value of i and reasoning exactly as in the SAE case about the complementary
event, we obtain the desired upper bound on the expected error. ⌅

E.1 Proof of Lemma E.1

As detailed at the beginning of Appendix E, working on the event EUCB guarantees that ni,T 6 8i for each

suboptimal arm i (see Lemma C.3). Moreover, since event EUCB holds, we have that event E
(i)
1 (defined in

Equation (6)) holds, which guarantees that

p
n · |µ̄i(n)� µi| 6

p
log 8i for all n = 1, . . . , 8i.

Thus, it follows directly that

sup
16t6T

p
ni,t|µ̄i,t � µi| 6 sup

16n68i

p
n|µ̄i(n)� µ| 6

p
log 8i,

which completes the proof. ⌅

E.2 Proof of Lemma E.2

Since event EUCB holds, we have that events \Ki=1E
(i)
0 (defined in Equation (5)) and E

(i)
2 (defined in Equation (8a))

hold. Our first observation is that we have ni,⌧i > ni,3T/4 on the event EUCB. To see this, we define e⌧i to be the
last time that arm i was pulled before round 3T/4, and make a series of observations:

1. e⌧i always exists and is well-defined, since an examination of Algorithm 2 reveals that all arms will be pulled
at least once in the first K rounds, including any suboptimal arm i.

2. On the event \Ki=1E
(i)
0 , we have ni,T 6 8i for all i 6= i

⇤. Since T > 32
P

i 6=i⇤ i, this implies that the optimal
arm i

⇤ will be pulled at least 3T/4 times, and hence, at least once between rounds 3T/4 and T . Thus, the
optimal arm i

⇤ is pulled at least once after e⌧i.

3. By definition, ni,e⌧i = ni,3T/4.

The first two observations (italicized) are also satisfied for the round ⌧i, except that it is the maximal round for
which these observations hold. Thus, we have ni,⌧i > ni,e⌧i = ni,3T/4, implying that it su�ces to lower bound
ni,3T/4.

Consider the reward tapes for arms i
⇤ and i, indexed by n = 1, . . . , 3T/4. Recall that the confidence interval in

reward-tape notation is given by C(n)
def
=
q

2(T↵�1)
↵n . First, note that for n > 8i we have C(n) 6 �i/4. Thus,

we have

µ̄i⇤(n) + C(n) 6 µi⇤ + 2C(n) 6 µi⇤ +
�i

2
for all n > 8i (32)
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where the first inequality holds on event E(i⇤,i)
0 . On the other hand, event E(i)

2 gives us

µ̄i(n) > µi �

r
3

4
· C(n) for all n > 1. (33)

Finally, Lemma C.3 guarantees (see also its proof) that under event E(i)
0 \ E

(i⇤)
0 , we have ni,⌧i 6 8i.

We now use these statements to prove the lemma. We consider indices n, n
0 for reward tapes corresponding to

arms i
⇤ and i respectively. Provided that n > 8i and n

0 6 i/32, we obtain

µ̄i(n
0) + C(n0) > µi �

r
3

4
· C(n0) + C(n0)

= µi + C(n0)

 
1�

r
3

4

!

> µi⇤ +
�i

2
> µ̄i⇤(n) + C(n),

where the first and third inequality follow from Equations (33) and (32) respectively, and the second inequality
follows from the constraint on n

0. Ultimately, we obtain

µ̄i(n
0) + Ci(n

0) > µ̄i⇤(n) + Ci⇤(n) as long as n > 8i and n
0 6 i

32
. (34)

In essence, Equation (34) describes a su�cient condition for arm i
⇤ not to be picked, i.e. the reward tape for

arm i
⇤ has been run for greater than 8i cells and the reward tape for arm i has been run for at most i/32 steps.

At a high level, our proof strategy is as follows: on the event \Ki=1E
(i)
0 , arm i

⇤ has to be picked su�ciently often
at “regular intervals”. For this to be possible, arm i needs to be pulled a minimal number of times to ensure
that the condition in Equation (34) is not satisfied.

We expand on this proof intuition below. Consider the round T/2 and note from Lemma C.3 that the optimal
arm i

⇤ needs to be pulled at least once between rounds T/2 and 3T/4. This requires

µ̄i⇤(ni⇤,t) + Ci⇤,t > µ̄i(ni,t) + Ci,t for some t 2


T

2
,
3T

4

�
. (35)

We now split the proof into two cases.

Case ni,T/2 > i/32: In this case, we have ni,3T/4 > ni,T/2 > i/32 and we are done.

Case ni,T/2 < i/32: We provide a proof-by-contradiction for this case. Suppose that ni,3T/4 < i/32. By

Lemma C.3, arm i
⇤ has to be pulled at least 8i times within the horizon T/2, i.e. we have ni⇤,t > 8i for

all t 2 [T/2, 3T/4]. Thus, if we had ni,3T/4 < i/32, the condition in Equation (34) would be satisfied for all
t 2 [T/2, 3T/4], implying that arm i

⇤ can never be picked in this interval. This contradicts our statement that
arm i

⇤ has to be pulled at least once in this interval, and shows that we require ni,3T/4 > i/32 in this case. This
completes the proof. ⌅

E.3 Proof of Lemma E.3

Since event EUCB holds, we have that the event E(i⇤,i)
4 (defined in Equation (9)) holds. We begin with the following

claim, which we return to prove momentarily.

Claim E.4. Under the event EUCB, there exists a universal positive constant c such that

ni⇤,⌧i > ci. (36)

Taking this claim as given, we split the proof of the lemma into two cases:
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Case 1: ci 6 ni⇤,⌧i 6 
2
i . Here, the first case under the event E(i⇤,i)

4 directly yields

|µ̄i⇤(n)� µi⇤ | 6
r

2 log i

ci
.

Case 2: ni⇤,⌧i > 
2
i . Here, the second case under the event E(i⇤,i)

4 directly yields

|µ̄i⇤(n)� µi⇤ | 6
s

log T

2
i

.

To complete the proof for this case, note that

i =
4(T↵

� 1)

↵�2
i

> 4 log T

�2
i

> 4 log T,

which gives us |µ̄i⇤(ni⇤,⌧i)� µi⇤ | 6
p

1/4i. It only remains to establish Claim E.4, which we do below.

Proof of Claim E.4: Since event EUCB holds, we have that events E
(i)
3 and E

(i⇤)
3 (defined in Equation (8b))

hold and the statement of Lemma E.2 holds. Then, we have:

µ̄i⇤(n) + C(n) > µi⇤ +

✓
1�

1
p
2

◆
C(n) for all n 6 i

32
(37a)

µ̄i(n) + C(n) 6 µi +

✓
1 +

1
p
2

◆
C(n) for all n 6 i

32
, and (37b)

ni,⌧i >
i

32
. (37c)

Let us define �i as the i/32-th time that arm i is pulled, and �i as the (i/32� 1)-th time that arm i is pulled.

We will prove the lemma for the explicit choice c = 1/968. We now have two cases.

Case 1: ni⇤,�i�1 > ci. In this case, the claim follows immediately, since on event E 00
3 , we have ni⇤,⌧i > ni⇤,�i .

Case 2: ni⇤,�i�1 < ci. As a consequence of the above inequalities, we have:

µ̄i⇤(ni⇤,�i�1) + C(ni⇤,�i�1) > µi⇤ +

✓
1�

1
p
2

◆
C(ni⇤,�i�1)

> µi⇤ +

✓
1�

1
p
2

◆
C(ci)

= �i + µi +

✓
1�

1
p
2

◆
C(ci)

> �i + µ̄i

⇣
i

32
� 1
⌘
�

1
p
2
C

⇣
i

32
� 1
⌘
+

✓
1�

1
p
2

◆
C(ci),

where the first inequality follows from Equation (37a), the second inequality is because C(·) is decreasing in
its argument, and the third inequality follows from Equation (37b). By definition, ni,�

i
= i/32 � 1, and by

Lemma E.2 arm i must be pulled at least one more time. Furthermore, since c = 1/968 we have

�
1
p
2
C

⇣
i

32
� 1
⌘
+

✓
1�

1
p
2

◆
C(ci) = �

1
p
2
C

⇣
i

32
� 1
⌘
+ 5.5

✓
1�

1
p
2

◆
C

⇣
i

32

⌘

> 3.2�i

> C

⇣
i

32
� 1
⌘
��i,

where the final two steps follow from the relations

4�i 6 C(i/32) 6 C(i/32� 1) 6 4.2�i.
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Putting together the pieces yields

µ̄i⇤(ni⇤,�i�1) + C(ni⇤,�i�1) > µ̄i(ni,�i�1) + C(ni,�i�1) = µ̄i(ni,�
i
) + C(ni,�

i
).

But by definition, arm i is pulled at round �i, and so we have the desired contradiction. Consequently, we must
have ni⇤,�i > ci. The claim then follows from the observation that ni,⌧i > ni,�i (by Eq (37c)). ⌅

F Additional Experimental Details and Results

In this section, we provide additional details on the experiments with simulated and battery charging data in
Section 5, as well as further experimental results.

F.1 Simulation results with SAE

First, we present the simulation results with the SAE algorithm in Figure 6.

��� ���� ����
+RUL]RQ�7

��

���

���

���

���

���

5H
JU
HW
�5
7

�ͅ ����
�ͅ ����

(a)

��� ���� ����
+RUL]RQ�7

��ಜ�

�[��ಜ�

�[��ಜ�

�[��ಜ�

0
6(
���
�
_
ʳ ͐ �
ಜ
͐ �
_�

�ͅ ����
�ͅ ����

(b)

��� �����
5HJUHW�57

�[��ಜ�

�[��ಜ�

�[��ಜ�

0
6(
���
_
ʳ ͐ �
ಜ
͐ �
_�

ͅ ����
ͅ ����

(c)

��� ���� ����
+RUL]RQ�7

��ಜ�

��ಜ�

0
6(
���
_
ʳ ͐ L
ಜ
͐ L
_�

͐ �
͐ ���
͐ ���

(d)

Figure 6: Results of 250 runs of simulation experiments for the SAE algorithm. Figures (a-c) are for a two-armed
bandit instance with µ = (1, 1/2) and Gaussian rewards with unit variance. Here, individual curves represent
two values of ↵ 2 {0.15, 0.25}. Figure (d) is a 4-armed instance with µ = (1, 2/3, 1/3, 0) and Gaussian rewards
with variance 1/4. Here, individual curves represent the three suboptimal arms. Overall, these log-log plots
corroborate our principal finding that better reward estimation is achievable from higher regret demonstrations;
see the text for a detailed discussion.

F.2 Simulating multi-armed bandits

We design a simple simulator for K-arm multi-bandit instances. In all our experiments, we assume Gaussian
rewards for each arm, i.e ri ⇠ N(µi, �

2). Note that we fixed the variance �
2 across all arms. The code for
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reproducing the results will be shared publicly on publication.

Algorithm implementation: Algorithms 1 and 2 provide O(T↵) regret for any ↵ 2 (0, 1). Using our simu-
lator, we collect demonstrations for di↵erent ↵ 2 {0.15, 0.25}.

For the two-armed bandit instance, we let µ1 = 1 and µ2 = 0.5, i.e with a fixed � = 0.5. For the K-arm instances,
we choose the means µi to be linearly spaced between [0, 1], (e.g for K=4, µ = (1, 2/3, 1/3, 0)) with fixed variance
�
2 = 0.25 across all arms. We report results averaged over 100 independent demonstrations. We evaluate the

estimators in Procedures 1 and 2 for di↵erent time-horizons T , evenly spaced in log space 2 [500, 5000].

Mean-squared error vs regret: In Corollary 4.3, we characterized the relationship between error in esti-
mating rewards, and regret of the demonstrator’s algorithm. Recall that for di↵erent values of T , the regret
of both our upper-confidence-bound algorithms grows as O(T↵). To study relationship between mean-squared
error (MSE) and regret, we fix T and collect multiple demonstrations for instance with a fixed gap �. The mean
regret RT and corresponding standard error are computed by averaging across these demonstrations. Similarly,
we estimate the gap using Procedure 2 and 1, measuring MSE as average of the squared error for T 2 [500, 5000].

F.3 Dependence on �
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Figure 7: For the two-arm case, we construct MAB instances of varying di�culty by choosing the value of the
suboptimality gap �T for horizon T as �T = 1/T

� . In figure (a), we verify that the regret increases for higher
� (i.e for fixed T, suboptimality gap reduces with higher �). Figure (b) empirically supports our predictions; for
fixed �, estimation error decreases with T .

In this section, we explore the role of the suboptimality gap � in reward estimation for the case K = 2.
Corollary 4.3 predicts that decreasing � will make reward estimation easier because it increases the regret.
To investigate whether this happens empirically, we make �T decay smoothly with increasing time-horizon T ,
following the power law �T = 1/T

� , for � 2 (0, 0.5). We expect the following behavior:

1. for fixed �, the reward estimation error decays with increasing horizon T .

2. for fixed horizon T , the rate of decay of reward estimation error increases with �.

We consider two cases: � 2 {0.05, 0.5}. Figure 7 shows that the regret indeed increases with a decrease in
suboptimality gap (higher T ). We observe that the reward estimation error decreases with T for both values of
�. Moreover, the estimation error decays faster for larger values of �.

F.4 Comparisons with the naive estimator

We provide further comparisons between the proposed estimator and the naive estimator as described in Section 4.
We evaluated the naive estimator with di↵erent values of C0 2 {0.2, 0.75, 1.0, 1.5} in Fig. 8. The experiment



Learning from an Exploring Demonstrator

setting is similar to Fig 4 with two-arm stochastic bandits and a UCB demonstrator, where the mean rewards
of the two arms are µ1 = 1.0, µ2 = 0.5 with standard deviation � = 1.0. For the baseline plots in Fig 8 (b)-(e),
the horizon T is linearly spaced in [500, 1000]. All the results are averaged over 50 runs and plotted with the
standard errors.

(a) (b)

(c) (d) (e)

Figure 8: Comparing our proposed estimator with a simple estimator b� = C0

q
log T
na

for C0 2 {0.2, 0.75, 1.0, 1.5}.

F.5 Battery charging

Dataset: The original dataset (Attia et al., 2020) provides battery life-cycles for 224 protocols, in di↵erent
temperature regimes. The problem of identifying the optimal protocol (with highest mean lifetime) is cast as a
MAB problem with 224 arms, where the three regimes are di↵erent instances. The distribution of reward means
µi varies significantly across the regimes (see Figure 9). In our experiments, we compare the “low” and “high”
temperature regimes. We subsample 20 arms which are representative of the distribution. In particular, we
generate a histogram of rewards for the “high” setting with n = 20 bins, and pick an arm randomly from each
bin. We fix this subset of 20 arms for all our experiments in this section. Unless mentioned, we evaluate the
estimators with number of independent runs (N) as N = 100.

Normalization: The lifecycle of batteries across the regimes is in the range [573, 1208], with empirical
standard-deviation (for the Gaussian prior) given by � = 164. We normalize the distribution parameters such
that µi 2 [0, 1] for all arms i 2 [K]. The normalization constant is fixed to be maximum of the life-cycles across
all environments, i.e., µmax = 1208. This preprocessing provides instances with µi 2 (0.474, 1] and �

2 = 0.018.

Adjusting for variance: The estimators in Procedures 1 and 2 are defined under the assumption that � = 1.
For non-unit �, we extend the procedures to their variance-adjusted versions, scaling the confidence interval by



Guo, Agrawal, Grover, Muthukumar, Pananjady

5�, i.e Ci,t = 5�
q

T↵�1
↵ni,t

, while still using the same estimators.
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Figure 9: Reward distributions in the “low” and “high” temperature regimes vary significantly. Figure (d)
represents the error of estimating arm 12 in both “low” and “high” regimes with 4 protocols.

Additional results: While the distributions of mean lifetime vary between the high and low temperature
regimes, there are protocols that enjoy similar performance across both regimes. For instance, Figure 9(a) shows
that arm 8 has normalized rewards of 0.802 and 0.775 in the high and low regimes respectively. In Figure 9(d),
we demonstrate that it is easier to estimate the mean lifetime of this arm in the low regime. We run the
same experiment for large subset of arms in the dataset. In this setting we take ↵ = 0.001 to get a low-regret
demonstrator, and fix T2 {25000, 45000, 70000}. In Figure 10, we verify pictorially that the reward estimation
error reduces uniformly across all arms as we increase the demonstration horizon (see the caption for a detailed
explanation).
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Figure 10: Each charging protocol in the battery lifecycle dataset is defined by three independent variables
(CC1, CC2, CC3). These parameters correspond to constant-currents applied to the battery in a specified range
(0–20%, 20–40% and 40–60%, respectively). Here, each point in the plot corresponds to one such protocol and the
color profile represents mean-squared-error in estimating the average lifetime. As we increase the time-horizon
T of the demonstration, our estimates improve uniformly across protocols.

F.6 Gene expression

Dataset: Identifying the top genes responsible for virus replication could provide information about potential
targets for antiviral therapy in the host. In one such study, Hao et al. (2008) investigate 13K genes in drosophila
in the context of influenza, by adding fluorescence virus to single-gene knock-down cell strains. Measuring the
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fluorescence level, the authors estimate the importance of the corresponding gene in replication; where lower
fluorescence indicates that the knock-down gene encourages replication. This problem of identifying top-k genes
under noisy measurements has previously been studied under the best-arm identification setting (Jun et al.,
2016).

Normalization: Following the original dataset, we model rewards for arm i to follow N(µi, 0.1). As indicated
by Figure 11 (a), the reward means µi lie in the range (�1.3, 2.01). We normalize the reward means to be within
the range µi 2 [0, 1] by centering and scaling. Accordingly, the variance per arm is normalized to 0.0092. In
summary, we have ri ⇠ N(µi, 0.0092).

Results: Our goal is to estimate the mean reward µi of each knock-down gene from a single demonstration
with uniform error guarantees. We subsample K 2 {100, 200, 400} arms from a dataset of 12979 arms, and
evaluate our estimator on each of the resulting instances. While sampling the subset with K arms, we ensure
that arm 12979 is present across all instances, and track the error in estimating its mean reward across di↵erent
instances. In Figure 11(b), we demonstrate that our estimator works well across all values of K. Figure 11(b)
also shows that the estimation error depends minimally on K as predicted by our theory.

(a) (b)

Figure 11: (a) depicts mean-reward per-arm for all the 12979 arms before normalization. (b) We track the reward
estimation error of arm 12979 (this arm is added to all instances) as a function of T for K 2 {100, 200, 400}.


