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Abstract

Many computational models of reasoning rely on explicit
relation representations to account for human cognitive
capacities such as analogical reasoning. Relational luring, a
phenomenon observed in recognition memory, has been
interpreted as evidence that explicit relation representations
also impact episodic memory; however, this assumption has
not been rigorously assessed by computational modeling. We
implemented an established model of recognition memory, the
Generalized Context Model (GCM), as a framework for
simulating human performance on an old/new recognition task
that elicits relational luring. Within this basic theoretical
framework, we compared representations based on explicit
relations, lexical semantics (i.e., individual word meanings),
and a combination of the two. We compared the same
alternative representations as predictors of accuracy in solving
explicit verbal analogies. In accord with previous work, we
found that explicit relation representations are necessary for
modeling analogical reasoning. In contrast, preliminary
simulations incorporating model parameters optimized to fit
human data reproduce relational luring using any of the
alternative representations, including one based on non-
relational lexical semantics. Further work on model
comparisons is needed to examine the contributions of lexical
semantics and relations on the luring effect in recognition
memory.

Keywords: relational luring, analogy, episodic memory

Introduction

Human reasoning depends on the ability to represent the
world not only in terms of individual concepts, such as beagle
and dog, but also in terms of the relations between concepts,
such as a beagle is a kind of dog. Computational models of
human analogical reasoning have incorporated explicit
representations of relations, so that a relation can link
multiple pairs of concepts yet remain distinct from any
particular linked concepts (e.g., Falkenhainer, Forbus, &
Gentner, 1989; Hummel & Holyoak, 1997). Thus, the
relation is a kind of can also link spear and weapon, and an
indefinite number of other concept pairs, while maintaining
its separate identity.
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Relational Luring in Recognition Memory

If relations have explicit representations used in reasoning
tasks, then it may be possible to detect their influence in
memory tasks that do not directly involve reasoning.
Recently, it has been reported that relation similarity can
impact episodic memory in recognition tasks, yielding a
phenomenon termed relational Iuring (Popov, Hristova, &
Anders, 2017). In a typical experiment, participants were
shown a sequence of word pairs to commit to memory, and
at test were asked to indicate that a given word pair was ‘old’
if they had seen that exact word pair previously in the
sequence, ‘recombined’ if it was a novel combination of
individual words that they had seen before, or ‘new’ if they
had not previously seen either the full word pair or its
constituent words. Popov et al. showed that participants were
more likely to misclassify ‘recombined’ word pairs as ‘old’,
and took longer to correctly identify ‘recombined’ word
pairs, when the pair instantiated a relation made familiar by
previously-presented pairs as compared to word pairs that did
not instantiate the same relation as a prior word pair.
Moreover, the degree to which ‘recombined’ word pairs were
misclassified, and correct responses were delayed, increased
linearly with the number of instances of that relation a
participant had seen previously (see also Challis & Sidhu,
1993; Reder et al., 2000).

On the face of it, relational luring is naturally explained by
assuming that an explicit representation of a semantic relation
becomes increasingly familiar as it is activated by exposure
to specific instances. The accrued familiarity of the relation
then serves as a cue that tends to lead to false recognition of
recombined word pairs that instantiate the same relation.
Thus, relational luring has been interpreted as providing
evidence for the role of explicit relations in guiding
recognition memory (Popov et al., 2017). However, this
assumption has never been formalized in a computational
model of recognition memory, nor compared against
alternative possibilities. The present paper fills this gap.



Word Embeddings as Predictors of Analogical
Reasoning and Word Recognition

Advances in natural language processing (NLP) have
generated representations of individual word meanings (e.g.,
Mikolov et al., 2013; Pennington, Socher, & Manning, 2014;
Devlin et al., 2019), referred to as word embeddings. These
representations are high-dimensional vectors that constitute
hidden layers of activation within neural network models
trained to predict patterns of text in sequence as they appear
in large corpora. Word embeddings have been used to predict
human judgments of lexical similarity and probability (for a
review see Bhatia & Aka, 2022; for a discussion of and
response to critiques of embeddings as psychological models,
see Giinther et al., 2019.)

Crucially, word embeddings may capture rich aspects of
conceptual meaning that go beyond surface features and
direct category relations. For example, Utsumi (2020) was
able to extract information from embeddings sufficient to
predict the values of about 500 words on most of 65 semantic
features for which neurobiological correlates have been
identified. Such successes suggest that it may be possible to
account for relational luring in terms of lexical overlap based
solely on embeddings for word pairs, without necessarily
involving explicit relation representations. In particular,
embeddings might capture information about characteristic
relational roles that concepts play (Goldwater, Markman, &
Stilwell, 2011; Jones & Love, 2007; Markman & Stilwell;,
2001). For example, concatenated embeddings for the word
pair nurse:hospital might include features that implicitly
encode the facts that nurse is a human occupation and that
hospital is a work location, perhaps creating a basis for
relational luring.

In the present study we build on recent theoretical
developments in which embeddings are used to learn relation
representations that can provide a basis for analogical
reasoning. A number of alternative methods can be used to
define relation similarity, in the sense of similarity between
word pairs. In the present study, alternative methods take the
same embeddings as inputs, extracted using Word2vec
(Mikolov et al., 2013), and all compute relation similarity
based on cosine similarity (a measure well-suited for high-
dimensional spaces). Critically, relation representations can
either be based on explicit re-representations within a new
relational space, or implicit in the raw word embeddings (Lu,
Chen, & Holyoak, 2012; Lu, Wu, & Holyoak, 2019; Lu,
Ichien, & Holyoak, 2022).

We first report an experiment designed to elicit relational
luring. Rather than studying word pairs in the context solely
of a memory task (Popov et al., 2017), we compared two
encoding contexts that were more incidental in nature. One
encoding task, involving relatedness judgments, required
participants to decide whether or not the two words in a pair
were related. Because relatedness judgments do not require
identification of any specific relation, they can potentially be
made using an implicit relation representation. The second
encoding task, verbal analogical reasoning, required
participants to decide whether or not an analogy in A:B :: C:D

format was valid. Evaluating analogies requires attention to
the specific relation linking the 4:B and the C:D word pairs,
and hence is likely to depend on explicit relation
representations (consistent with previous computational
modeling; Lu et al., 2019). Each task was followed by a test
of recognition memory, with conditions designed to elicit
relational luring.

Critically, both the analogy task and the subsequent
recognition memory task can be modeled using the same
alternative measures of word-pair similarity. Specifically, we
compare a measure of lexical similarity between individual
word meanings, relational similarity between explicit
relation representations, and a joint measure that combines
lexical and relational similarity. Based on previous findings,
we predicted that the measure based on relational similarity
would prove most effective for the analogy task. The key
question is whether recognition memory will be predicted by
the same measure of word-pair similarity, or whether a
dissociation will be observed between the analogical
reasoning and recognition memory tasks.

Encoding task 2:
Verbal analogy

Encoding task I:
Relatedness

bind
robin

Related? YN Related? YN

Distractor task:

v

v
Distractor task:

'
Memory task I: Memory task 1:
Old/new recognition Old/new recognition

Definitely new / Maybe new Definitely new / Maybe new
Maybe old / Definitely old Maybe old / Definitely old

Figure 1. Task structure. Participants completed six tasks,
divided into two blocks (columns) of three tasks each. Task
order was fixed. The two blocks of tasks were the same
except for the encoding task, with assignment of specific
word pairs counterbalanced across the two sets.

Experiment

Procedures and analyses were pre-registered on AsPredicted
(#66576).

Method

Participants. Participants were 111 undergraduates (Mg =
20.12, SDage = 1.94) at either UCLA (n = 93) or at Dartmouth
(n = 18; 81 female, 20 male, 1 nonbinary, 9 gender not
reported) who completed our tasks online to obtain partial
course credit in psychology classes. The study was approved
by the Institutional Review Boards at UCLA and at
Dartmouth. Participants were self-assessed proficient English
speakers, and 82% were native English speakers. We
excluded 17 participants whose median correct response
time, number of omitted responses, and/or d’ were 3 standard
deviations away from the sample mean on any task (final
sample size: 94).

Procedure. All participants completed two blocks, each of
which included three tasks. The first task in each block was
an incidental encoding task: either relatedness judgments



(first block) or analogical reasoning (second block). The
second task in each block was a demanding distractor task
involving visuospatial reasoning (a short form of Raven’s
Progressive Matrices). The third task in each block was a
recognition memory task. The assignment of word pairs to
each block was counterbalanced across participants.
Participants were first shown a list of all the tasks that they
would be completing during the experimental session (and
thus made aware before starting the experiment that they
would be completing memory tasks). The entire test session
lasted approximately one hour. Figure 1 presents the
sequence of tasks that each participant completed during an
experimental session.

Materials and Encoding Tasks. Both encoding tasks
involved word pairs that instantiated one of three abstract
semantic relations: category:exemplar (e.g., bird:robin),
part:whole (e.g., toe:foof), and place:thing (e.g.,
store:groceries), or else were not semantically related (e.g.,
mascara:spoon). To create the tasks, a total of 200 word pairs
were constructed out of 400 unique words. These word pairs
were evenly distributed across two 100 word-pair lists.
Within each list, 10 unrelated pairs consisted of words with
no discernible semantic relation between them. The
remaining 90 pairs were evenly distributed across the three
abstract semantic relations. Participants saw one list during
the relatedness task and the other list during the verbal
analogy task; which list was presented during each task was
counterbalanced across participants.

Each encoding task consisted of two halves, and each word
pair within a given list was presented once during each half.
Thus, each half of the relatedness task consisted of 100 trials
(with one word pair shown per trial), yielding 200 trials in
total. Each half of the verbal analogy task consisted of 50
trials (with two word pairs shown per trial), yielding 100
trials in total. Thus, participants saw each word pair twice
across the two halves of each encoding task.

In the relatedness task, participants were presented with a
sequence of word pairs and asked to judge whether each pair
was comprised of words that were semantically related; this
was the case 90% of the time. In the verbal analogy task,
participants were sequentially presented with two word pairs
on each trial, and were asked to judge whether or not each set
constituted a valid analogy; this was the case 54% of the time.
Prior to beginning the relatedness task, participants were
shown examples of related and unrelated word pairs and then
completed seven practice trials. Prior to beginning the verbal
analogy task, participants were shown examples of valid and
invalid analogies (e.g., carpenter:hammer is analogous to
nurse:syringe, whereas bowl:cereal is not analogous to
poverty:money), and then completed four practice trials.
Neither the individual words in the practice trials, nor the
relations instantiated by them, overlapped with the word pairs
used in the actual encoding tasks. Unlike the relatedness task,
the analogy task was expected to require explicit comparison
of relations; hence, this task was always delivered after the
relatedness task, so as to avoid priming an explicit strategy of
identifying abstract relations in the relatedness task.

Recognition Memory Task. Following each encoding task
and the intervening distractor task, participants completed a
subsequent old/new recognition task, during which they were
presented with a sequence of word pairs. Each word pair was
constructed out of individual words that participants had seen
during their prior encoding task. Participants were asked to
identify whether or not they had seen that exact combination
of words in the previous encoding task, as well as to rate how
confident they were in their judgment using a four-point
scale: "Definitely New", "Maybe New", "Maybe Old", and
"Definitely Old". The specific word pairs differed across the
memory tasks in the two blocks. Participants were given a
brief tutorial on the memory task prior to beginning each such
task. None of the individual words nor relations instantiated
in this tutorial overlapped with those used in the actual task.

A total of 100 word pairs were used for the memory tasks,
with each word pair drawn from one of four types. The first
type, intact, consisted of word pairs that were shown during
the relation identification or analogy task. For intact pairs,
responses of either “Maybe Old” or "Definitely Old" were
scored as correct. The second, third, and fourth types
consisted of word pairs that were not used in either encoding
task; either “Maybe New” or "Definitely New" were scored
as correct responses. These three types of word pairs were all
constructed by recombining words that had appeared in the
immediately prior encoding task, so that individual words
were now paired differently, generating novel word pairs
distinct from those used in the encoding task. More
specifically, relationally familiar word pairs consisted of
unseen, recombined word pairs instantiating relations to
which participants had been exposed during the encoding
tasks (i.e., part-whole, category:exemplar, and place:thing).
Relationally unfamiliar word pairs consisted of unseen,
recombined word pairs instantiating a relation type
(similarity) to which participants had not been exposed.
These word pairs included concepts with overlapping salient
attributes  (e.g., bartender:cashier), and hence were
relationally similar to one another, but not with respect to any
of the three relations included in the encoding tasks. Finally,
unrelated word pairs consisted of recombined word pairs that
were not semantically related in any discernible way.

Based on prior evidence for relational luring (Popov et al.,
2017), we hypothesized that participants would false-alarm
more often to relationally familiar word pairs than to either
relationally unfamiliar or unrelated word pairs.

Experiment Results

Encoding Tasks. Overall, participants performed well on
both of the encoding tasks: relatedness task, M 4., = .94,
SD 4. =.04; verbal analogy task, My, =.76, SD .. =
.11. Note that the false alarm rate for unrelated word pairs
on the relatedness task was low (Mgq =.19, SDg, =.18),
yielding a high d-prime (Mp, = 2.77, SDp, =.71). Thus,
even though 90% of the trials involved semantically related
word pairs, participants completed the task as instructed, and



did not achieve their high accuracy by simply classifying all
word pairs as related.

Recognition Memory. Participants showed good overall
performance in recognizing studied word pairs, M., = .80,
SD4cc = .12. They correctly recognized intact word pairs as
either "Maybe Old" or "Definitely Old" with high accuracy,
exhibiting a high hit rate, My; = .88, SDy; = .10;
however, they also sometimes misrecognized recombined
word pairs (familiar, unfamiliar, or unrelated), exhibiting a
substantial false-alarm rate, M, = .25, SDp, = .16.

To test for a relational luring effect, we performed a within-
subjects ANOVA on the false alarm data for new pairs with
two factors: encoding task (relatedness or verbal analogy)
and pair type (familiar, unfamiliar, unrelated). Pair type
reliably influenced false alarm rate, (2, 186) = 122.21, p =
<.001. Planned comparisons revealed that false alarms were
more frequent for familiar (.32) than unfamiliar (.22) pairs,
and for unfamiliar than unrelated (.10) pairs (both p’s <.001).
The higher false alarm rate for familiar than unfamiliar pairs
reveals a relational luring effect, qualitatively similar to that
observed by Popov et al. (2017). The main effect of encoding
task was not significant, F(1,93)=0.16, p =.69; nor was the
interaction with pair type, F(2, 186) = 1.96, p = .14.

A. Relational

B. Lexical

O category:exemplar
part:whole
place:thing

Figure 2. 2-D multidimensional scaling solution of the
similarity space derived using relational similarity (Panel A)
and lexical similarity (Panel B). Plots show word-pair stimuli
instantiating category:exemplar (blue circles), part:whole
(magenta squares), and place:thing (green diamonds)
relations.

Computational Models

Measures of Word-Pair Similarity

To predict performance on both the analogy task and the
recognition memory task, we compared two basic measures
of similarity between word pairs: (1) lexical: similarity of
word pairs computed directly from the similarities of the
individual words in each pair; (2) relational: similarity of
word pairs based on the similarity of the explicit relation
between the two words in each individual pair. We also
considered the possibility of (3) a joint measure that
combines both lexical and relational similarity. We
implemented specific versions of each of these three

possibilities, all rooted in 300-dimensional word embeddings
created by Word2vec.

To compute lexical similarity, the meaning of a word pair
is represented by a simple aggregate of the semantic vectors
of the two individual words. We use f;, to denote the semantic
vector for the first word 4 in a word pair and f;, to denote the
semantic vector for the second word B. We compute the
distance between word pairs i and j as the mean of the
distances between f,, and fAj and between f, and fB).:

cos (fAi.fAj)+COS (fBirfBj)
dLexi j = 2 . (1)
This representation is nonrelational, coding word pairs solely
in terms of the meanings of the individual words.

To compute relational similarity, we used relation vectors
generated by Bayesian  Analogy with  Relational
Transformations (BART; Lu et al., 2012, 2019). BART
assumes that specific semantic relations between words are
coded as distributed representations over a set of abstract
relations. The BART model takes concatenated pairs of
Word2vec vectors as input, and then uses supervised learning
with both positive and negative examples to acquire
representations of individual semantic relations.

After learning, BART calculates a relation vector
consisting of the posterior probability that a word pair
instantiates each of the learned relations. BART uses its pool
of 270 learned relations to create a distributed representation
of the relation(s) between any two paired words A and B. The
posterior probabilities calculated for all learned relations
form a 270-dimensional relation vector R,p, in which each
dimension codes how likely a word pair instantiates a
particular relation. The distance between word pairs i and j
is computed as the cosine distance between corresponding
relation vectors R; and R; :

dRelij = cos (R;, Rj). 2)

Finally, to compute joint similarity, we simply combined

lexical and relational representation by taking the unweighted

average of the distances generated by each:
drex;j+dRel;;
— 3)
To provide a preliminary sense of how well the two basic
measures of word-pair similarity (lexical and relational)
capture the categorical distinctions among the three relation
types used in the encoding tasks (category.exemplar,
part:whole, and place:thing), Figure 2 plots the word pairs
used in the experiment on a 2-dimensional projection of the
similarity space derived using the two measures. From visual
inspection, it is clear that the relational measure (Panel B)
separates the three types of pairs into clusters corresponding
to semantic categories more clearly than does the lexical
measure (Panel A); however, the lexical measure also
predicts relation type to some extent.

d]ointij =

Modeling Verbal Analogical Reasoning

Performance on the verbal analogy task was modeled directly
by the BART model, which in addition to learning relations
(as described above), can also be used to predict behavioral
(Lu et al., 2019) and neural (Chiang et al., 2021) responses to



analogy problems. In order to predict yes/no decisions about
analogy problems, we computed cosine distances between
representations of the A:B and C:D word pairs, and then fit a
threshold parameter t such that distances below t indicated a
valid analogy and those above t indicated an invalid analogy.

In calculating distance for the purpose of solving analogy
problems, we used each of the three similarity metrics
described above: lexical, relational, and joint. Based on prior
modeling of verbal analogical reasoning (Lu et al., 2019) and
of explicit judgments of relation similarity (Ichien, Lu, &
Holyoak, 2021), we predicted that the model based on
relational similarity would best predict human judgments on
the explicit analogy task.

Figure 3 presents the proportion of model and human
'valid’ responses broken down by valid analogies (darker
bars) and invalid analogies (lighter bars). Overall, BART
based on explicit relation similarity achieved the highest
accuracy (.75), nearly matching human proportion correct
(.76). The alternative model based on lexical (non-relational)
similarity performed poorly (.59 correct); this version was
overly permissive, detecting valid analogies at a high rate but
failing to reject invalid analogies at a similarly high rate.
Accuracy for the joint model was intermediate (.65 correct),
indicating that incorporating lexical similarity in addition to
relational similarity actually impaired model performance on
the analogy task.

08
Problem type
W i
06
invalid
Gd I

human relational lexical joint
Similarity metric

Figure 3. Model and human 'valid' responses on the verbal
analogy task. Darker bars represent hits on valid analogies,
and lighter bars represent false alarms on invalid analogies.
Error bars reflect +1 standard error of the mean for human

responses.

‘Valid' response rate

An item-level analysis corroborated these results. We used
the cocor package in R to test the difference between the
extent that each similarity measure correlated with the
frequency with which human reasoners judged each analogy
as valid (Diedenhofen & Musch, 2015). A Dunn and Clark’s
(1969) z-test showed that relational similarity was more
highly correlated with human responses (» = .47) than were
either lexical (r = .21; z = 3.69, p = 2.00 x 10™) or joint
similarity (» = .38; z=2.04, p = .04). Moreover, because this
item-level analysis is based purely on similarity predictions
generated with each metric, its results are independent of the
decision threshold that was fit to maximize model accuracy

in the analogy task. These simulation results thus confirm
previous findings indicating that the BART model based on
explicit relations outperforms variants based on lexical
similarity in tasks involving verbal analogy and explicit
judgments of relation similarity (Chiang et al., 2021; Ichien
etal., 2021; Lu et al., 2019).

Modeling Recognition Memory

To provide a formal account of relational luring in
recognition memory, we adapted an established model of
recognition memory, the Generalized Context Model (GCM,;
Nosofsky, 1988, 1991; Nosofsky & Zaki, 2003). GCM
predicts old/new recognition judgments, and is closely
related to several other successful cognitive models (e.g.,
Anderson, 1991; Krushke, 1992; Love, Medin, & Gureckis,
2004). If a version of GCM is able to account for relational
luring, we will have demonstrated that this phenomenon is
one of many that can be explained within a unified theoretical
framework  of  exemplar-based  recognition  and
categorization.

In the version of GCM implemented here, we assume that
recognition of a given word pair on a memory task is based
on a comparison of similarities between that word pair and
all word pairs presented during a prior encoding task (as
described below). The probability with which a participant
will classify a word pair i as one they had seen during the
encoding task is given by

N _ Fi
P(old|i) = e 4)
where k is a parameter representing a criterion for
recognition, and F; is the familiarity of word pair i which is
defined as:

Fi =¥ ¢Sij- (5
Here, ] is the set of word pairs shown during the encoding
task, and s;; is the similarity between word pair i in the
memory task and each word pair j from the encoding task.
This similarity follows an exponential decay function
(Shepard, 1987) of the psychological distance d;; between
word pairs i and j,

sy = e ¢, (6)
where c is a scaling parameter representing the rate of decline
in similarity with psychological distance among word pairs.
When GCM is fit to data from individual participants, c is
typically interpreted as a measure of a participant’s memory
sensitivity: i.e., the extent to which they can discriminate
between word pairs in memory (Nosofsky, 1988). In the
present simulations we fit the model to group-level data,
varying the representations for word pairs over which the
model operates (details below). In our simulations, ¢ (as it
varies across different types of representations) is naturally
interpreted as the discriminability between word-pair items
within a given representational space. Because our
representations are high-dimensional, we adopt cosine
distance to compute d;;, rather than the Minkowski power
formula typically used in previous work (e.g., Nosofsky,
1988, 1991; Nosofsky & Zaki, 2003).



As the above equations make clear, GCM must be
grounded on some measure of similarity between word pairs.
We compared the three measures described above (lexical,
relational, joint) within the basic GCM framework. Because
we found no reliable differences in false alarm rates across
the two encoding tasks, we simulated the data obtained by
averaging responses across them. Using data for intact and
unrelated word pairs only, we fit the GCM model using each
of the three variants of similarity (tuning the criterion and
scaling parameters k and c for each) by maximizing the item-
wise root mean square deviation (RMSD) between model-
generated P(old|i) predictions of the mean frequency with
which human participants judged a word pair item to be either
"Maybe old" or "Definitely old". Across the three variants,
GCM achieved comparable RMSD (where lower RMSD
indicates closer fit to human data): lexical: RMSD = .0606;
relational: RMSD = .0556; and joint: RMSD = .0584.
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Figure 4. Model and human false-alarm rates on the
recognition memory task. Error bars reflect +1 SEM.
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The models were then assessed with respect to their
predictions for the critical relationally familiar and
relationally unfamiliar word pairs (not used in parameter
estimation). Figure 4 presents false-alarm rates for model-
generated P(old|i) predictions and human data, broken
down by type of recombined word pairs. Crucially, using
each of the alternative similarity calculations, GCM predicts
the relational luring effect observed in the human data. We
evaluated each variant’s ability to account for held-out
human data by computing both the Spearman correlation and
RMSD between model-generated predictions P(old|i) and
the mean frequency of human "old" judgments for
relationally familiar and relationally unfamiliar word pairs.
Across the three variants, GCM achieved comparable fits to
the human data (where higher p indicates closer fit to human
data): lexical: RMSD = .1629, p = .4623; relational: RMSD
=.1588, p = .4786; and joint: RMSD = .1535, p = .5043.

Given that joint lexical and relational similarity tended to
match the human data slightly more accurately (in terms of
RMSD) than either lexical or relational similarity alone, we
assessed whether each factor may have independently
contributed to this overall improvement in model fit.
Specifically, we computed semi-partial correlations between
the mean frequency of human "old" responses for familiar

and unfamiliar word pairs (thus excluding the intact and
unrelated word pairs used to fit each model), and model-
generated P(old|i) predictions based on either lexical or
relational similarity, after residualizing the other factor out of
the human data. Neither the semi-partial correlation for
lexical similarity, r = .15, p = .283, nor that for relational
similarity, r = .23, p = .105, was reliable. Thus, although
we can confidently conclude that the relational luring effect
observed in the human data can be fit to a reliable degree
using either or both lexical or relational similarity, the
evidence from our experiment does not allow us to separate
the impact of the two factors.

Discussion

A model based on explicit representations of relations clearly
provided the best account of human performance on an
analogy task, in accord with previous work (e.g., Chiang et
al., 2021; Ichien et al., 2021; Lu et al., 2019). We also
replicated the relational luring effect (Popov et al., 2017) in a
test of recognition memory, using two alternative encoding
tasks. However, computational modeling based on GCM
revealed that this luring phenomenon can be predicted using
either or both lexical and relational similarity. Relational
similarity was more accurate than lexical similarity in
clustering word pairs instantiating different categories of
semantic relations (see Figure 2); nonetheless, the measure of
lexical similarity appears to be crude but “good enough” to
reliably predict relational luring. As an instance-based model,
GCM effectively computes similarity of any test pair to the
entire pool of studied pairs, so even an imperfect measure of
word-pair similarity is sensitive to the broad relation types.
In contrast, solving a verbal analogy requires fine-grained
comparison of one particular word-pair relation (4:B) to
another (C:D), so lexical similarity does not suffice.

Importantly, simulation results reported here are restricted
to predictions from models after GCM parameters have been
optimized to minimize deviation from human data. Future
analyses will examine the extent to which variations in
GCM’s model parameters impact each similarity metric’s
ability to reproduce relational luring, thus clarifying how
likely it is that each of the alternative similarity metrics will
reproduce the human phenomenon of relational luring.

In sum, it appears that word embeddings generated by
machine learning include implicit information about typical
relational roles, so that that in a recognition task, similarity of
individual words in pairs can effectively approximate
similarity of explicit relations between words. We thus
reserve judgment as to whether the phenomenon of relational
luring in recognition memory reflects the impact of explicit
relational similarity (as previously suggested) and/or lexical
similarity.

Acknowledgements

Preparation of this paper was supported by NSF Grants BCS-
2022477, 2022357, and 2022369, respectively awarded to
S.A.B., D.JM.K., and K.J.H with H.L.



References

Anderson, J. R. (1991). The adaptive nature of human
categorization. Psychological Review, 98, 409-429.

Bhatia, S., & Aka, A. (2022). Cognitive modeling with
representations from large-scale digital data. Current
Directions in Psychological Science.
https://doi.org/10.1177/09637214211068113

Challis, B. H., & Sidhu, R. (1993). Dissociative effect of
massed repetition on implicit and explicit measures of
memory. Journal of Experiment Psychology: Learning,
Memory, & Cognition, 19(1), 115-127.

Chiang, J. N., Peng, Y., Lu, H., Holyoak, K. J., & Monti, M.
M. (2021). Distributed code for semantic relations predicts
neural similarity during analogical reasoning. Journal of
Cognitive Neuroscience, 33(3), 377-389.

Devlin, J., Chang, M-W., Lee, K., Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers of
language understanding. In Proceedings of the 2019
Conference for the North American Chapter of the

Association for Computational Linguistics: Human
Language Technologies Volume 1,4171-4186.
Diedenhofen, B., & Musch, J. (2015). Cocor: A

comprehensive solution for the statistical comparison of
correlations. PLoS One, 10(4), €0121945.

Dunn, O. J., & Clark, V. A. (1969). Correlation coefficients
measured on the same individuals. Journal of the
American Statistical Association, 64, 366-377.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The
structure-mapping engine: Algorithm and examples.
Artificial Intelligence, 41, 1-63.

Goldwater, M. B., Markman, A. B., Stilwell, C. H. (2011).
The empirical case for role-governed categories.
Cognition, 118, 359-376.

Giinther, F, Rinaldi, L, & Marelli, M. (2019). Vector-space
models of semantic representation from a cognitive
perspective: A discussion of common
misconceptions. Perspectives on Psychological Science,
14(6), 1006-1033.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed
representations of structure: A theory of analogical access
and mapping. Psychological Review, 104(3), 427-466.
https://doi.org/10.1037/0033-295X.104.3.427

Ichien, N., Lu, H., & Holyoak, K. J. (2021). Predicting
patterns of similarity among abstract semantic relations.
Journal of Experimental Psychology: Learning, Memory,
and Cognition.

Jones, M., & Love, B. C. (2007). Beyond common features:
The role of roles in determining similarity. Cognitive
Psychology, 55(3), 196-231.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based
connectionist model of category learning. Psychological
Review, 99, 22-44.

Love, B. C., Medin, D. L., Gureckis, T. M. (2004).
SUSTAIN: A network model of category learning.
Psychological Review, 111,309-332.

Lu, H., Chen, D., & Holyoak, K. J. (2012). Bayesian analogy
with relational transformations. Psychological Review,
119(3), 617-648. https://doi.org/10.1037/a0028719

Lu, H., Ichien, N., & Holyoak, K. J. (2022). Probabilistic
analogical mapping with semantic relation networks.
Psychological Review.
https://doi.org/10.1037/rev0000358

Lu, H.,, Wu, Y. N., & Holyoak, K. J. (2019). Emergence of
analogy from relation learning. Proceedings of the
National Academy of Sciences, USA, 116(10), 4176-4181.

Markman, A. B., & Stilwell, C. H. (2001). Role-governed
categories. Journal of Experimental & Theoretical
Artificial Intelligence, 13(4), 329-358.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., & Dean, J.
(2013). Distributed representations of words and phrases
and their compositionality. Advances in Neural
Information Processing Systems, 26, 3111-3119.

Nosofsky, R. M. (1986). Attention, similarity, and the
identification-categorization relationship. Journal of
Experimental Psychology: General, 115(1), 39-57.

Nosofsky, R. M. (1988). Exemplar-based accounts of
relations between classification, recognition, and
typicality. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 14(1), 54-65.

Nosofsky, R. M. (1991). Tests of an exemplar model for
relating perceptual classification and recognition memory.
Journal of Experimental Psychology: Human Perception
and Performance, 17(1), 3-27.

Nosofsky, R. M., & Zaki, S. R. (2003). A hybrid-similarity
exemplar model for predicting distinctiveness effects in
perceptual old-new recognition. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 29(6),
1194-1209.

Pennington, J., Socher, R., Manning, C. D. (2014). GloVe:
Global vectors for word representation. Empirical Methods
in Natural Language Processing (EMNLP), 1532-1543.

Popov. V., Hristova, P., & Anders, R. (2017). The relational
luring effect: Retrieval of relational information during
associative  recognition. Journal of Experimental
Psychology: General, 146(5), 722-745.

Reder, L. M., Nhouyvanisvong, A., Schunn, C. D., Ayers, M.
S., Angstadt, P., & Hiraki, K. (2000). A mechanistic
account of the mirror effect for word frequency: A
computational model of remember-know judgments in a
continuous recognition paradigm. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 26(2),
294,

Utsumi, A. (2020). Exploring what is encoded in
distributional word vectors: A neurobiologically motivated
analysis.  Cognitive Science, 44, e12844. DOI:
10.1111/cogs.12844



https://doi.org/10.1177/09637214211068113
https://psycnet.apa.org/doi/10.1037/rev0000358

