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Abstract 

Many computational models of reasoning rely on explicit 
relation representations to account for human cognitive 
capacities such as analogical reasoning. Relational luring, a 
phenomenon observed in recognition memory, has been 
interpreted as evidence that explicit relation representations 
also impact episodic memory; however, this assumption has 
not been rigorously assessed by computational modeling. We 
implemented an established model of recognition memory, the 
Generalized Context Model (GCM), as a framework for 
simulating human performance on an old/new recognition task 
that elicits relational luring. Within this basic theoretical 
framework, we compared representations based on explicit 
relations, lexical semantics (i.e., individual word meanings), 
and a combination of the two. We compared the same 
alternative representations as predictors of accuracy in solving 
explicit verbal analogies. In accord with previous work, we 
found that explicit relation representations are necessary for 
modeling analogical reasoning. In contrast, preliminary 
simulations incorporating model parameters optimized to fit 
human data reproduce relational luring using any of the 
alternative representations, including one based on non-
relational lexical semantics. Further work on model 
comparisons is needed to examine the contributions of lexical 
semantics and relations on the luring effect in recognition 
memory. 
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Introduction 

Human reasoning depends on the ability to represent the 

world not only in terms of individual concepts, such as beagle 

and dog, but also in terms of the relations between concepts, 

such as a beagle is a kind of dog. Computational models of 

human analogical reasoning have incorporated explicit 

representations of relations, so that a relation can link 

multiple pairs of concepts yet remain distinct from any 

particular linked concepts (e.g., Falkenhainer, Forbus, & 

Gentner, 1989; Hummel & Holyoak, 1997). Thus, the 

relation is a kind of can also link spear and weapon, and an 

indefinite number of other concept pairs, while maintaining 

its separate identity. 

Relational Luring in Recognition Memory 

If relations have explicit representations used in reasoning 

tasks, then it may be possible to detect their influence in 

memory tasks that do not directly involve reasoning. 

Recently, it has been reported that relation similarity can 

impact episodic memory in recognition tasks, yielding a 

phenomenon termed relational luring (Popov, Hristova, & 

Anders, 2017). In a typical experiment, participants were 

shown a sequence of word pairs to commit to memory, and 

at test were asked to indicate that a given word pair was ‘old’ 
if they had seen that exact word pair previously in the 

sequence, ‘recombined’ if it was a novel combination of 
individual words that they had seen before, or ‘new’ if they 
had not previously seen either the full word pair or its 

constituent words. Popov et al. showed that participants were 

more likely to misclassify ‘recombined’ word pairs as ‘old’, 
and took longer to correctly identify ‘recombined’ word 
pairs, when the pair instantiated a relation made familiar by 

previously-presented pairs as compared to word pairs that did 

not instantiate the same relation as a prior word pair. 

Moreover, the degree to which ‘recombined’ word pairs were 
misclassified, and correct responses were delayed, increased 

linearly with the number of instances of that relation a 

participant had seen previously (see also Challis & Sidhu, 

1993; Reder et al., 2000). 

On the face of it, relational luring is naturally explained by 

assuming that an explicit representation of a semantic relation 

becomes increasingly familiar as it is activated by exposure 

to specific instances. The accrued familiarity of the relation 

then serves as a cue that tends to lead to false recognition of 

recombined word pairs that instantiate the same relation. 

Thus, relational luring has been interpreted as providing 

evidence for the role of explicit relations in guiding 

recognition memory (Popov et al., 2017). However, this 

assumption has never been formalized in a computational 

model of recognition memory, nor compared against 

alternative possibilities. The present paper fills this gap. 
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(first block) or analogical reasoning (second block). The 

second task in each block was a demanding distractor task 

involving visuospatial reasoning (a short form of Raven’s 
Progressive Matrices). The third task in each block was a 

recognition memory task. The assignment of word pairs to 

each block was counterbalanced across participants. 

Participants were first shown a list of all the tasks that they 

would be completing during the experimental session (and 

thus made aware before starting the experiment that they 

would be completing memory tasks). The entire test session 

lasted approximately one hour. Figure 1 presents the 

sequence of tasks that each participant completed during an 

experimental session. 

Materials and Encoding Tasks. Both encoding tasks 

involved word pairs that instantiated one of three abstract 

semantic relations: category:exemplar (e.g., bird:robin), 

part:whole (e.g., toe:foot), and place:thing (e.g., 

store:groceries), or else were not semantically related (e.g., 

mascara:spoon). To create the tasks, a total of 200 word pairs 

were constructed out of 400 unique words. These word pairs 

were evenly distributed across two 100 word-pair lists. 

Within each list, 10 unrelated pairs consisted of words with 

no discernible semantic relation between them. The 

remaining 90 pairs were evenly distributed across the three 

abstract semantic relations. Participants saw one list during 

the relatedness task and the other list during the verbal 

analogy task; which list was presented during each task was 

counterbalanced across participants. 

Each encoding task consisted of two halves, and each word 

pair within a given list was presented once during each half. 

Thus, each half of the relatedness task consisted of 100 trials 

(with one word pair shown per trial), yielding 200 trials in 

total. Each half of the verbal analogy task consisted of 50 

trials (with two word pairs shown per trial), yielding 100 

trials in total. Thus, participants saw each word pair twice 

across the two halves of each encoding task. 

In the relatedness task, participants were presented with a 

sequence of word pairs and asked to judge whether each pair 

was comprised of words that were semantically related; this 

was the case 90% of the time. In the verbal analogy task, 

participants were sequentially presented with two word pairs 

on each trial, and were asked to judge whether or not each set 

constituted a valid analogy; this was the case 54% of the time. 

Prior to beginning the relatedness task, participants were 

shown examples of related and unrelated word pairs and then 

completed seven practice trials. Prior to beginning the verbal 

analogy task, participants were shown examples of valid and 

invalid analogies (e.g., carpenter:hammer is analogous to 

nurse:syringe, whereas bowl:cereal is not analogous to 

poverty:money), and then completed four practice trials. 

Neither the individual words in the practice trials, nor the 

relations instantiated by them, overlapped with the word pairs 

used in the actual encoding tasks. Unlike the relatedness task, 

the analogy task was expected to require explicit comparison 

of relations; hence, this task was always delivered after the 

relatedness task, so as to avoid priming an explicit strategy of 

identifying abstract relations in the relatedness task.  

Recognition Memory Task. Following each encoding task 

and the intervening distractor task, participants completed a 

subsequent old/new recognition task, during which they were 

presented with a sequence of word pairs. Each word pair was 

constructed out of individual words that participants had seen 

during their prior encoding task. Participants were asked to 

identify whether or not they had seen that exact combination 

of words in the previous encoding task, as well as to rate how 

confident they were in their judgment using a four-point 

scale: "Definitely New", "Maybe New", "Maybe Old", and 

"Definitely Old". The specific word pairs differed across the 

memory tasks in the two blocks. Participants were given a 

brief tutorial on the memory task prior to beginning each such 

task. None of the individual words nor relations instantiated 

in this tutorial overlapped with those used in the actual task. 

A total of 100 word pairs were used for the memory tasks, 

with each word pair drawn from one of four types. The first 

type, intact, consisted of word pairs that were shown during 

the relation identification or analogy task. For intact pairs, 

responses of either “Maybe Old” or "Definitely Old" were 

scored as correct. The second, third, and fourth types 

consisted of word pairs that were not used in either encoding 

task; either “Maybe New” or "Definitely New" were scored 

as correct responses. These three types of word pairs were all 

constructed by recombining words that had appeared in the 

immediately prior encoding task, so that individual words 

were now paired differently, generating novel word pairs 

distinct from those used in the encoding task. More 

specifically, relationally familiar word pairs consisted of 

unseen, recombined word pairs instantiating relations to 

which participants had been exposed during the encoding 

tasks (i.e., part:whole, category:exemplar, and place:thing). 

Relationally unfamiliar word pairs consisted of unseen, 

recombined word pairs instantiating a relation type 

(similarity) to which participants had not been exposed. 

These word pairs included concepts with overlapping salient 

attributes (e.g., bartender:cashier), and hence were 

relationally similar to one another, but not with respect to any 

of the three relations included in the encoding tasks. Finally, 

unrelated word pairs consisted of recombined word pairs that 

were not semantically related in any discernible way. 

Based on prior evidence for relational luring (Popov et al., 

2017), we hypothesized that participants would false-alarm 

more often to relationally familiar word pairs than to either 

relationally unfamiliar or unrelated word pairs. 

Experiment Results 

Encoding Tasks. Overall, participants performed well on 

both of the encoding tasks: relatedness task, 𝑴𝑨𝒄𝒄 = . 𝟗𝟒, 𝑺𝑫𝑨𝒄𝒄 =. 𝟎𝟒; verbal analogy task, 𝑴𝑨𝒄𝒄 = . 𝟕𝟔, 𝑺𝑫𝑨𝒄𝒄 = . 𝟏𝟏. Note that the false alarm rate for unrelated word pairs 

on the relatedness task was low (𝑴𝑭𝑨 = . 𝟏𝟗, 𝑺𝑫𝑭𝑨 =. 𝟏𝟖), 

yielding a high d-prime (𝑴𝑫′ =  𝟐. 𝟕𝟕, 𝑺𝑫𝑫′ =. 𝟕𝟏). Thus, 

even though 90% of the trials involved semantically related 

word pairs, participants completed the task as instructed, and 



did not achieve their high accuracy by simply classifying all 

word pairs as related. 

Recognition Memory. Participants showed good overall 

performance in recognizing studied word pairs, 𝑀𝐴𝑐𝑐 =  .80, 𝑆𝐷𝐴𝑐𝑐 =  .12. They correctly recognized intact word pairs as 

either "Maybe Old" or "Definitely Old" with high accuracy, 

exhibiting a high hit rate, 𝑀𝐻𝑖𝑡 =  .88, 𝑆𝐷𝐻𝑖𝑡 =  .10; 

however, they also sometimes misrecognized recombined 

word pairs (familiar, unfamiliar, or unrelated), exhibiting a 

substantial false-alarm rate, 𝑀𝐹𝐴 =  .25, 𝑆𝐷𝐹𝐴 =  .16. 

 To test for a relational luring effect, we performed a within-

subjects ANOVA on the false alarm data for new pairs with 

two factors: encoding task (relatedness or verbal analogy) 

and pair type (familiar, unfamiliar, unrelated). Pair type 

reliably influenced false alarm rate, F(2, 186) = 122.21, p = 

< .001.  Planned comparisons revealed that false alarms were 

more frequent for familiar (.32) than unfamiliar (.22) pairs, 

and for unfamiliar than unrelated (.10) pairs (both p’s < .001). 

The higher false alarm rate for familiar than unfamiliar pairs 

reveals a relational luring effect, qualitatively similar to that 

observed by Popov et al. (2017). The main effect of encoding 

task was not significant,  F(1, 93) = 0.16, p = .69; nor was the 

interaction with pair type, F(2, 186) = 1.96, p = .14. 

 
Figure 2. 2-D multidimensional scaling solution of the 

similarity space derived using relational similarity (Panel A) 

and lexical similarity (Panel B). Plots show word-pair stimuli 

instantiating category:exemplar (blue circles), part:whole 

(magenta squares), and place:thing (green diamonds) 

relations. 

Computational Models 

Measures of Word-Pair Similarity 

To predict performance on both the analogy task and the 

recognition memory task, we compared two basic measures 

of similarity between word pairs: (1) lexical: similarity of 

word pairs computed directly from the similarities of the 

individual words in each pair; (2) relational: similarity of 

word pairs based on the similarity of the explicit relation 

between the two words in each individual pair. We also 

considered the possibility of (3) a joint measure that 

combines both lexical and relational similarity. We 

implemented specific versions of each of these three 

possibilities, all rooted in 300-dimensional word embeddings 

created by Word2vec. 

To compute lexical similarity, the meaning of a word pair 

is represented by a simple aggregate of the semantic vectors 

of the two individual words. We use 𝑓𝐴 to denote the semantic 

vector for the first word 𝐴 in a word pair and 𝑓𝑏 to denote the 

semantic vector for the second word 𝐵. We compute the 

distance between word pairs 𝑖 and 𝑗 as the mean of the 

distances between 𝑓𝐴𝑖  and 𝑓𝐴𝑗  and between 𝑓𝐵𝑖   and 𝑓𝐵𝑗: 𝑑𝐿𝑒𝑥𝑖𝑗 = 𝑐𝑜𝑠 (𝑓𝐴𝑖 ,𝑓𝐴𝑗)+𝑐𝑜𝑠 (𝑓𝐵𝑖 ,𝑓𝐵𝑗)2 .  (1) 

This representation is nonrelational, coding word pairs solely 

in terms of the meanings of the individual words. 

To compute relational similarity, we used relation vectors 

generated by Bayesian Analogy with Relational 

Transformations (BART; Lu et al., 2012, 2019).  BART 

assumes that specific semantic relations between words are 

coded as distributed representations over a set of abstract 

relations. The BART model takes concatenated pairs of 

Word2vec vectors as input, and then uses supervised learning 

with both positive and negative examples to acquire 

representations of individual semantic relations. 

After learning, BART calculates a relation vector 

consisting of the posterior probability that a word pair 

instantiates each of the learned relations. BART uses its pool 

of 270 learned relations to create a distributed representation 

of the relation(s) between any two paired words 𝐴 and 𝐵. The 

posterior probabilities calculated for all learned relations 

form a 270-dimensional relation vector 𝑅𝐴𝐵, in which each 

dimension codes how likely a word pair instantiates a 

particular relation. The distance between word pairs 𝑖 and 𝑗 

is computed as the cosine distance between corresponding 

relation vectors 𝑅𝑖 and 𝑅j : 𝑑𝑅𝑒𝑙𝑖𝑗 = cos (𝑅𝑖,, 𝑅𝑗).             (2) 

Finally, to compute joint similarity, we simply combined 

lexical and relational representation by taking the unweighted 

average of the distances generated by each: 𝑑𝐽𝑜𝑖𝑛𝑡𝑖𝑗 = 𝑑𝐿𝑒𝑥𝑖𝑗+𝑑𝑅𝑒𝑙𝑖𝑗2 .          (3) 

To provide a preliminary sense of how well the two basic 

measures of word-pair similarity (lexical and relational) 

capture the categorical distinctions among the three relation 

types used in the encoding tasks (category:exemplar, 

part:whole, and place:thing), Figure 2 plots the word pairs 

used in the experiment on a 2-dimensional projection of the 

similarity space derived using the two measures. From visual 

inspection, it is clear that the relational measure (Panel B) 

separates the three types of pairs into clusters corresponding 

to semantic categories more clearly than does the lexical 

measure (Panel A); however, the lexical measure also 

predicts relation type to some extent. 

Modeling Verbal Analogical Reasoning 

Performance on the verbal analogy task was modeled directly 

by the BART model, which in addition to learning relations 

(as described above), can also be used to predict behavioral 

(Lu et al., 2019) and neural (Chiang et al., 2021) responses to 



analogy problems. In order to predict yes/no decisions about 

analogy problems, we computed cosine distances between 

representations of the A:B and C:D word pairs, and then fit a 

threshold parameter 𝑡 such that distances below 𝑡 indicated a 

valid analogy and those above 𝑡 indicated an invalid analogy. 

In calculating distance for the purpose of solving analogy 

problems, we used each of the three similarity metrics 

described above: lexical, relational, and joint. Based on prior 

modeling of verbal analogical reasoning (Lu et al., 2019) and 

of explicit judgments of relation similarity (Ichien, Lu, & 

Holyoak, 2021), we predicted that the model based on 

relational similarity would best predict human judgments on 

the explicit analogy task. 

Figure 3 presents the proportion of model and human 

'valid’ responses broken down by valid analogies (darker 

bars) and invalid analogies (lighter bars). Overall, BART 

based on explicit relation similarity achieved the highest 

accuracy (.75), nearly matching human proportion correct 

(.76). The alternative model based on lexical (non-relational) 

similarity performed poorly (.59 correct); this version was 

overly permissive, detecting valid analogies at a high rate but 

failing to reject invalid analogies at a similarly high rate. 

Accuracy for the joint model was intermediate (.65 correct), 

indicating that incorporating lexical similarity in addition to 

relational similarity actually impaired model performance on 

the analogy task. 

 

 
Figure 3. Model and human 'valid' responses on the verbal 

analogy task. Darker bars represent hits on valid analogies, 

and lighter bars represent false alarms on invalid analogies. 

Error bars reflect ±1 standard error of the mean for human 

responses. 

 

An item-level analysis corroborated these results. We used 

the cocor package in R to test the difference between the 

extent that each similarity measure correlated with the 

frequency with which human reasoners judged each analogy 

as valid (Diedenhofen & Musch, 2015).  A Dunn and Clark’s 
(1969) z-test showed that relational similarity was more 

highly correlated with human responses (r = .47) than were 

either lexical (r = .21; z = 3.69, p = 2.00 x 10-4) or joint 

similarity (r = .38; z = 2.04, p = .04). Moreover, because this 

item-level analysis is based purely on similarity predictions 

generated with each metric, its results are independent of the 

decision threshold that was fit to maximize model accuracy 

in the analogy task. These simulation results thus confirm 

previous findings indicating that the BART model based on 

explicit relations outperforms variants based on lexical 

similarity in tasks involving verbal analogy and explicit 

judgments of relation similarity (Chiang et al., 2021; Ichien 

et al., 2021; Lu et al., 2019). 

Modeling Recognition Memory 

To provide a formal account of relational luring in 

recognition memory, we adapted an established model of 

recognition memory, the Generalized Context Model (GCM; 

Nosofsky, 1988, 1991; Nosofsky & Zaki, 2003).  GCM 

predicts old/new recognition judgments, and is closely 

related to several other successful cognitive models (e.g., 

Anderson, 1991; Krushke, 1992; Love, Medin, & Gureckis, 

2004). If a version of GCM is able to account for relational 

luring, we will have demonstrated that this phenomenon is 

one of many that can be explained within a unified theoretical 

framework of exemplar-based recognition and 

categorization. 

In the version of GCM implemented here, we assume that 

recognition of a given word pair on a memory task is based 

on a comparison of similarities between that word pair and 

all word pairs presented during a prior encoding task (as 

described below). The probability with which a participant 

will classify a word pair 𝑖 as one they had seen during the 

encoding task is given by 𝑃(𝑜𝑙𝑑|𝑖) = 𝐹𝑖𝐹𝑖+𝑘,   (4) 

where 𝑘 is a parameter representing a criterion for 

recognition, and 𝐹𝑖 is the familiarity of word pair 𝑖 which is 

defined as: 𝐹𝑖 = ∑ 𝑠𝑖𝑗𝑗 ∈𝐽 .    (5) 

Here, 𝐽 is the set of word pairs shown during the encoding 

task, and 𝑠𝑖𝑗  is the similarity between word pair 𝑖 in the 

memory task and each word pair 𝑗 from the encoding task. 

This similarity follows an exponential decay function 

(Shepard, 1987) of the psychological distance 𝑑𝑖𝑗  between 

word pairs 𝑖 and 𝑗,  𝑠𝑖𝑗 = 𝑒−𝑐𝑑𝑖𝑗,   (6) 

where 𝑐 is a scaling parameter representing the rate of decline 

in similarity with psychological distance among word pairs. 

When GCM is fit to data from individual participants, 𝑐 is 

typically interpreted as a measure of a participant’s memory 
sensitivity: i.e., the extent to which they can discriminate 

between word pairs in memory (Nosofsky, 1988). In the 

present simulations we fit the model to group-level data, 

varying the representations for word pairs over which the 

model operates (details below). In our simulations, 𝑐 (as it 

varies across different types of representations) is naturally 

interpreted as the discriminability between word-pair items 

within a given representational space. Because our 

representations are high-dimensional, we adopt cosine 

distance to compute 𝑑𝑖𝑗 , rather than the Minkowski power 

formula typically used in previous work (e.g., Nosofsky, 

1988, 1991; Nosofsky & Zaki, 2003). 



As the above equations make clear, GCM must be 

grounded on some measure of similarity between word pairs. 

We compared the three measures described above (lexical, 

relational, joint) within the basic GCM framework. Because 

we found no reliable differences in false alarm rates across 

the two encoding tasks, we simulated the data obtained by 

averaging responses across them.  Using data for intact and 

unrelated word pairs only, we fit the GCM model using each 

of the three variants of similarity (tuning the criterion and 

scaling parameters 𝑘 and 𝑐 for each) by maximizing the item-

wise root mean square deviation (RMSD) between model-

generated 𝑃(𝑜𝑙𝑑|𝑖) predictions of the mean frequency with 

which human participants judged a word pair item to be either 

"Maybe old" or "Definitely old". Across the three variants, 

GCM achieved comparable RMSD (where lower RMSD 

indicates closer fit to human data): lexical: RMSD = .0606; 

relational: RMSD = .0556; and joint: RMSD = .0584. 

 
Figure 4. Model and human false-alarm rates on the 

recognition memory task. Error bars reflect ±1 SEM. 

 

The models were then assessed with respect to their 

predictions for the critical relationally familiar and 

relationally unfamiliar word pairs (not used in parameter 

estimation). Figure 4 presents false-alarm rates for model-

generated 𝑃(𝑜𝑙𝑑|𝑖) predictions and human data, broken 

down by type of recombined word pairs. Crucially, using 

each of the alternative similarity calculations, GCM predicts 

the relational luring effect observed in the human data. We 

evaluated each variant’s ability to account for held-out 

human data by computing both the Spearman correlation and 

RMSD between model-generated predictions 𝑃(𝑜𝑙𝑑|𝑖) and 

the mean frequency of human "old" judgments for 

relationally familiar and relationally unfamiliar word pairs. 

Across the three variants, GCM achieved comparable fits to 

the human data (where higher ρ indicates closer fit to human 

data): lexical: RMSD = .1629, ρ = .4623; relational: RMSD 

= .1588, ρ = .4786; and joint: RMSD = .1535, ρ = .5043. 

Given that joint lexical and relational similarity tended to 

match the human data slightly more accurately (in terms of 

RMSD) than either lexical or relational similarity alone, we 

assessed whether each factor may have independently 

contributed to this overall improvement in model fit. 

Specifically, we computed semi-partial correlations between 

the mean frequency of human "old" responses for familiar 

and unfamiliar word pairs (thus excluding the intact and 

unrelated word pairs used to fit each model), and model-

generated 𝑃(𝑜𝑙𝑑|𝑖) predictions based on either lexical or 

relational similarity, after residualizing the other factor out of 

the human data. Neither the semi-partial correlation for 

lexical similarity, 𝑟 =  .15, 𝑝 =  .283, nor that for relational 

similarity, 𝑟 =  .23, 𝑝 =  .105, was reliable. Thus, although 

we can confidently conclude that the relational luring effect 

observed in the human data can be fit to a reliable degree 

using either or both lexical or relational similarity, the 

evidence from our experiment does not allow us to separate 

the impact of the two factors. 

Discussion 

A model based on explicit representations of relations clearly 

provided the best account of human performance on an 

analogy task, in accord with previous work (e.g., Chiang et 

al., 2021; Ichien et al., 2021; Lu et al., 2019). We also 

replicated the relational luring effect (Popov et al., 2017) in a 

test of recognition memory, using two alternative encoding 

tasks. However, computational modeling based on GCM 

revealed that this luring phenomenon can be predicted using 

either or both lexical and relational similarity. Relational 

similarity was more accurate than lexical similarity in 

clustering word pairs instantiating different categories of 

semantic relations (see Figure 2); nonetheless, the measure of 

lexical similarity appears to be crude but “good enough” to 
reliably predict relational luring. As an instance-based model, 

GCM effectively computes similarity of any test pair to the 

entire pool of studied pairs, so even an imperfect measure of 

word-pair similarity is sensitive to the broad relation types. 

In contrast, solving a verbal analogy requires fine-grained 

comparison of one particular word-pair relation (A:B) to 

another (C:D), so lexical similarity does not suffice. 

Importantly, simulation results reported here are restricted 

to predictions from models after GCM parameters have been 

optimized to minimize deviation from human data. Future 

analyses will examine the extent to which variations in 

GCM’s model parameters impact each similarity metric’s 
ability to reproduce relational luring, thus clarifying how 

likely it is that each of the alternative similarity metrics will 

reproduce the human phenomenon of relational luring. 

 In sum, it appears that word embeddings generated by 

machine learning include implicit information about typical 

relational roles, so that that in a recognition task, similarity of 

individual words in pairs can effectively approximate 

similarity of explicit relations between words. We thus 

reserve judgment as to whether the phenomenon of relational 

luring in recognition memory reflects the impact of explicit 

relational similarity (as previously suggested) and/or lexical 

similarity.  
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