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Abstract

Bayesian optimization is a class of global
optimization techniques. In Bayesian opti-
mization, the underlying objective function
is modeled as a realization of a Gaussian
process. Although the Gaussian process as-
sumption implies a random distribution of
the Bayesian optimization outputs, quantifi-
cation of this uncertainty is rarely studied in
the literature. In this work, we propose a
novel approach to assess the output uncer-
tainty of Bayesian optimization algorithms,
which proceeds by constructing confidence
regions of the maximum point (or value) of
the objective function. These regions can
be computed efficiently, and their confidence
levels are guaranteed by the uniform error
bounds for sequential Gaussian process re-
gression newly developed in the present work.
Our theory provides a unified uncertainty
quantification framework for all existing se-
quential sampling policies and stopping cri-
teria.

1 INTRODUCTION

The empirical and data-driven nature of data science
field makes uncertainty quantification one of the cen-
tral questions that need to be addressed in order to
guide and safeguard decision makings. In this work,
we focus on Bayesian optimization, which is effective
in solving global optimization problems for complex
blackbox functions. Our objective is to quantify the
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uncertainty of Bayesian optimization outputs. Such
uncertainty comes from the Gaussian process prior,
random input and stopping time. Closed-form solu-
tion of the output uncertainty is usually intractable
because of the complicated sampling scheme and stop-
ping criterion.

Let f be an underlying continuous function over Ω,
a compact subset of R

p. The goal of global op-
timization is to find the maximum of f , denoted
by maxx∈Ω f(x), or the point xmax which satisfies
f(xmax) = maxx∈Ω f(x). In many scenarios, objective
functions can be expensive to evaluate. For example,
f defined by a complex computer model may take a
long time to run. Bayesian optimization is a powerful
technique to deal with this type of problems, and has
been widely used in areas including designing engineer-
ing systems (Forrester et al., 2008; Jones et al., 1998),
materials and drug design (Frazier and Wang, 2016;
Negoescu et al., 2011; Solomou et al., 2018), chemistry
(Häse et al., 2018), deep neural networks (Diaz et al.,
2017; Klein et al., 2017), and reinforcement learning
(Marco et al., 2017; Wilson et al., 2014).

In Bayesian optimization, f is treated as a realiza-
tion of a stochastic process, denoted by Z. Usually,
people assume that Z is a Gaussian process. Every
Bayesian optimization algorithm defines a sequential
sampling procedure, which successively generates new
input points, based on the acquired function evalua-
tions over all previous input points. Usually, the next
input point is determined by maximizing an acquisi-
tion function. Examples of acquisition functions in-
clude probability of improvement (Kushner, 1964), ex-
pected improvement (Huang et al., 2006; Jones et al.,
1998; Mockus et al., 1978; Picheny et al., 2013a), Gaus-
sian process upper confidence bound (Azimi et al.,
2010; Contal et al., 2013; Desautels et al., 2014; Srini-
vas et al., 2010), entropy search (Hennig and Schuler,
2012), predictive entropy search (Hernández-Lobato
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et al., 2014), entropy search portfolio (Shahriari et al.,
2014), knowledge gradient (Scott et al., 2011; Wu and
Frazier, 2016; Wu et al., 2017), etc. We refer to Frazier
(2018); Shahriari et al. (2016) for an introduction to
popular Bayesian optimization methods.

Although Bayesian optimization has received consider-
able attention and numerous techniques have emerged
in recent years, how to quantify the uncertainty of
the outputs from a Bayesian optimization algorithm
is rarely discussed in the literature. Since we assume
that f is a random realization of Z, xmax and f(xmax)
should also be random. However, the highly nontrivial
distributions of xmax and f(xmax) make uncertainty
quantification rather challenging.

In this work, we develop efficient methods to construct
confidence regions of xmax and f(xmax) for Bayesian
optimization algorithms, where function f is a realiza-
tion of Gaussian process Z. Our uncertainty quantifi-
cation method does not rely on the specific formulae or
strategies, and can be applied to all existing methods
in an abstract sense. We show that by using the col-
lected data of any instance algorithm of Bayesian op-
timization, Algorithm 3 gives a confidence upper limit
with theoretical guarantees of their confidence level
in Corollary 3. To the best of our knowledge, this is
the first theoretical result of the uncertainty quantifi-
cation on the maximum estimator for Bayesian opti-
mization, under the assumption that f is a realization
of a Gaussian process. Compared with the traditional
point-wise predictive standard deviation of Gaussian
process regression, denoted by σ(x), our bound is only
inflated by a factor proportional to

√

log(eσ/σ(x)),
where σ is the prior standard deviation.

It is worth noting that uncertainty quantification typ-
ically differs from convergence analysis of algorithms.
In Bayesian optimization, the latter topic has been
studied more often. See, for instance, Bect et al.
(2019); Calvin (1997, 2005); Ryzhov (2016); Vazquez
and Bect (2010); Yarotsky (2013). These analyses
provide theoretical guarantee on the convergence of
Bayesian optimization algorithms, but do not directly
lead to techniques for uncertainty quantification. Re-
call that in this work, we assume that the underly-
ing function f is a realization of a Gaussian process,
and therefore, the sample path properties of f , such
as the smoothness, should be governed by the covari-
ance function of the Gaussian process. This Gaussian
process assumption differs from those in some existing
works in the analysis of Bayesian optimization, e.g.,
Bull (2011); Astudillo and Frazier (2019); Yarotsky
(2013), where the underlying function f is assumed
to be a deterministic function satisfying pre-specified
smoothness conditions.

The rest of this paper is structured as follows. In
Section 2, we present some preliminaries, including
an introduction to Gaussian process regression and
Bayesian optimization. Section 3 presents uncertainty
quantification results under fixed designs. Section 4
introduces our methods and main theoretical results.
How to calibrate the constant in our method is intro-
duced in Section 5. Numerical results are presented
in Section 6. Conclusions and discussion are made in
Section 7. Technical details are given in the Appendix.

2 PRELIMINARIES

In this section, we provide a brief introduction to
Gaussian process regression and review some existing
methods in Bayesian optimization.

2.1 Gaussian Process Regression

Recall that in Bayesian optimization, the objective
function f is assumed to be a realization of a Gaus-
sian process Z. In this work, we suppose that Z is
stationary and has mean zero, variance σ2 and corre-
lation function Ψ, i.e., Cov(Z(x), Z(x′)) = σ2Ψ(x−x′)
with Ψ(0) = 1. Under certain regularity conditions,
Bochner’s theorem (Wendland, 2004) suggests that
the Fourier transform (with a specific choice of the
constant factor) of Ψ, denoted by Ψ̃, is a probabil-
ity density function and satisfies the inversion for-
mula Ψ(x) =

∫

Rp cos(ω
Tx)Ψ̃(ω)dω. We call Ψ̃ the

spectral density of Ψ. Some popular choices of cor-
relation functions and their spectral densities are dis-
cussed in Section 3.3. Throughout this work, we fur-
ther assume Ψ satisfies the following condition. For
a vector ω = (ω1, . . . , ωp)

T , define its l1-norm as
∥ω∥1 = |ω1|+ . . .+ |ωp|.
Condition 1. The correlation function Ψ has a spec-
tral density, denoted by Ψ̃, and

A0 =

∫

Rp

∥ω∥1Ψ̃(ω)dω < +∞. (1)

Remark 1. The l1-norm in (1) can be replaced by the
usual Euclidean norm. However, we use the former
here because they usually have explicit expressions. See
Section 3.3 for details.

Remark 2. Condition 1 imposes a smoothness condi-
tion on the correlation function Ψ, which is equivalent
to the mean squared differentiability (Stein, 1999) of
the Gaussian process Z. Note that the mean squared
differentiability differs from the sample path differen-
tiability. We refer to Driscoll (1973); Steinwart (2019)
for results on the relationship between the sample path
smoothness of Z (thus f) and the smoothness of cor-
relation function Ψ.
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Suppose the set of points X = (x1, . . . , xn) is given.
Then f can be reconstructed via Gaussian process re-
gression. Let Y = (Z(x1), . . . , Z(xn))

T be the vec-
tor of evaluations of the Gaussian process at points
x1, ..., xn. The following results are well-known and
can be found in Rasmussen and Williams (2006). For
any untried point x, conditional on Y , Z(x) follows a
normal distribution. The conditional mean and vari-
ance of Z(x) are

µ(x) :=E[Z(x)|Y ] = rT (x)K−1Y, (2)

σ2(x) :=Var[Z(x)|Y ] = σ2(1− rT (x)K−1r(x)), (3)

where r(x) = (Ψ(x − x1), . . . ,Ψ(x − xn))
T ,K =

(Ψ(xj−xk))jk. Since we assume that f is a realization
of Z, µ(x) can serve as a reconstruction of f .

2.2 Bayesian Optimization

In Bayesian optimization, we evaluate f over a set of
input points, denoted by x1, . . . , xn. We call them
the design points, because these points can be cho-
sen according to our will. There are two categories
of strategies to choose design points. We can choose
all the design points before we evaluate f at any of
them. Such a design set is call a fixed design. An
alternative strategy is called sequential sampling, in
which the design points are not fully determined at
the beginning. Instead, points are added sequentially,
guided by the information from the previous input
points and the corresponding acquired function values.
An instance algorithm defines a sequential sampling
scheme which determines the next input point xn+1

by maximizing an acquisition function a(x;Xn, Yn),
where Xn = (x1, . . . , xn) consists of previous input
points, and Yn = (f(x1), . . . , f(xn))

T consists of cor-
responding outputs. The acquisition function can be
either deterministic or random given Xn, Yn. A gen-
eral Bayesian optimization procedure under sequential
sampling scheme is shown in Algorithm 1.

Algorithm 1 Bayesian optimization (described in
Shahriari et al. (2016))

1: Input: A Gaussian process prior of f , initial ob-
servation data X1, Y1.

2: for n = 1, 2 . . . , do
3: Find xn+1 = argmaxx∈Ω a(x;Xn, Yn), evaluate

f(xn+1), update data and the posterior probabil-
ity distribution on f .

4: Output: The point evaluated with the largest
f(x).

A number of acquisition functions are proposed in the
literature, for example:

1. Expected improvement (EI) (Jones et al., 1998;

Mockus et al., 1978), with the acquisition func-
tion aEI(x;Xn, Yn) := E((Z(x) − y∗n)1(Z(x) −
y∗n)|Xn, Yn), where 1(·) is the indicator function,
and y∗n = max1≤i≤n f(xi).

2. Gaussian process upper confidence bound (Srini-
vas et al., 2010), with the acquisition function
aUCB(x;Xn, Yn) := µn(x) + βnσn(x), where βn is a
parameter, and µn(x) and σn(x) are posterior mean
and variance of f after nth iteration, respectively.

3. Predictive entropy search (Hernández-Lobato
et al., 2014), with the acquisition func-
tion aPES(x;Xn, Yn) := H(y|Xn, Yn, x) −
Ep(xmax|Xn,Yn)H(y|Xn, Yn, x, xmax), where
H(y|Xn, Yn, x) and H(y|Xn, Yn, x, xmax) are
the differential entropy of the posterior distri-
bution p(y|Xn, Yn, x) and p(y|Xn, Yn, x, xmax),
respectively. The expectation can be approximated
via Thompson samples. Another entropy search
acquisition function is introduced by Hennig and
Schuler (2012), who also provide an efficient way
to approximate the distribution of xmax based on
the Gaussian process prior.

Among the above acquisition functions, aEI and aUCB

are deterministic functions of (x,Xn, Yn), whereas
aPES is random in practice because Thompson sam-
pling depends on a random sample from the poste-
rior Gaussian process. We refer to Shahriari et al.
(2016) for general discussions and popular methods in
Bayesian optimization.

In practice, one also needs to determine when to stop
Algorithm 1. Usually, decisions are made in consid-
eration of the budget and the accuracy requirement.
For instance, practitioners can stop Algorithm 1 after
finishing a fixed number of iterations (Frazier, 2018) or
no further significant improvement of function values
can be made (Acerbi and Ji, 2017). Although stopping
criteria plays no role in the analysis of the algorithms’
asymptotic behaviors, they can greatly affect the out-
put uncertainty.

3 OPTIMIZATION WITH

GAUSSIAN PROCESS

REGRESSION UNDER FIXED

DESIGNS

Before investigating the more important sequential
sampling schemes, we shall first consider fixed designs
in this section, because the latter situation is simpler
and will serve as an important intermediate step to the
general problem in Section 4.
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3.1 Uniform Error Bound

Although the conditional distribution of Z(x) is simple
as shown in (2)-(3), those for xmax and Z(xmax) are
highly non-trivial because they are nonlinear function-
als of Z. In this work, we construct confidence regions
for the maximum points and values using a uniform
error bound for Gaussian process regression, given in
Theorem 1. We will use the notion a∨ b := max(a, b).
Also, we shall use the convention 0/0 = 0 in all state-
ments in this article related to error bounds.

Theorem 1. Suppose Condition 1 holds. Let M =

supx∈Ω
Z(x)−µ(x)

σ(x) log1/2(eσ/σ(x))
, where µ(x) and σ(x) are

given in (2) and (3), respectively. Then the followings
are true.

1. EM ≤ C0

√

p(1 ∨ log(A0DΩ)), where C0 is a uni-
versal constant, A0 is as in Condition 1, and DΩ =
diam(Ω) is the Euclidean diameter of Ω.

2. For any t > 0, P(M − EM > t) ≤ e−t2/2.

In practice, Part 2 of Theorem 1 is hard to use di-
rectly because EM is difficult to calculate accurately.
Instead, we can replace EM by its upper bound in Part
1 of Theorem 1. We state such a result in Corollary 1.
Its proof is trivial.

Corollary 1. Under the conditions and notation of
Theorem 1, for any constant C such that EM ≤
C
√

p(1 ∨ log(A0DΩ)), we have that for any t > 0,

P(M − C
√

p(1 ∨ log(A0DΩ)) > t) ≤ e−t2/2.

To use Corollary 1, we need to determine the universal
constant C and the moment of the spectral density
A0. According to our numerical simulations in Section
5 and Section F of the Supplementary material, we
recommend using C = 1 in practice. We shall discuss
the calculation of A0 in Section 3.3.

3.2 Uncertainty Quantification

In light of Corollary 1, we can construct a confidence
upper limit of f . Algorithm 2 describes how to com-
pute the confidence upper limit of f at a given untried
x. For notational simplicity, we regard the dimension
p, the variance σ2, the moment A0 and the universal
constant C as global variables so that Algorithm 2 has
access to all of them.

Based on the UCL function in Algorithm 3, we can
construct a confidence region for xmax and a confi-
dence interval for f(xmax). These regions do not have
explicit expressions. However, they can be approxi-
mated by calling UCL with many different x’s. Let

Algorithm 2 Uniform confidence upper limit at a
given point: UCL(x, t,X, Y )

1: Input: Untried point x, significance parameter t,
data X = (x1, . . . , xn)

T , Y .
2: Set r = (Ψ(x − x1), . . . ,Ψ(x − xn))

T ,K =
(Ψ(xj − xk))jk. Calculate µ = rTK−1Y, s =
√

σ2(1− rTK−1r).

3: Output: µ+s
√

log(eσ/s)(C
√

p(1 ∨ log(A0DΩ))+
t).

Y = (f(x1), . . . , f(xn))
T . The confidence region for

xmax is defined as

CRt :=

{

x ∈ Ω : UCL(x, t,X, Y ) ≥ max
1≤i≤n

f(xi)

}

. (4)

The confidence interval for f(xmax) is defined as

CIt :=

[

max
1≤i≤n

f(xi),max
x∈Ω

UCL(x, t,X, Y )

]

. (5)

It is worth noting that the probability in Corollary 1
is not a posterior probability. Therefore, the regions
given by (4) and (5) should be regarded as frequentist
confidence regions under the Gaussian process model,
rather than Bayesian credible regions. Such a frequen-
tist nature has an alternative interpretation, shown in
Corollary 2. Corollary 2 simply translates Corollary
1 from the language of stochastic processes to a de-
terministic function approximation setting, which fits
the Bayesian optimization framework better. It shows
that CRt in (4) and CIt in (5) are confidence region

of xmax and f(xmax) with confidence level 1− e−t2/2,
respectively. In particular, to obtain a 95% confidence
region, we use t = 2.448.

Corollary 2. Let C(Ω) be the space of continuous
functions on Ω and PZ be the law of Z. Then there
exists a set B ⊂ C(Ω) so that PZ(B) ≥ 1− e−t2/2 and
for any f ∈ B, its maximum point xmax is contained
in CRt defined in (4), and f(xmax) is contained in
CIt defined in (5).

In practice, the shape of CRt can be highly irregular
and representing the region of CRt can be challenging.
If Ω is of one or two dimensions, we can choose a fine
mesh over Ω and call UCL(x, t,X, Y ) for each mesh
grid point x. In a general situation, we suggest calling
UCL(x, t,X, Y ) with randomly chosen x’s and using
the k-nearest neighbors algorithm to represent CRt.

3.3 Calculating A0

For an arbitrary Ψ, calculation of A0 in (1) can be
challenging. Fortunately, for two most popular corre-
lation functions in one dimension, namely the Gaus-
sian and the Matérn correlation functions (Rasmussen
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and Williams, 2006), A0 can be calculated in closed
form. The results are summarized in Table 1. In Ta-
ble 1, Γ(·) is the Gamma function and Kν(·) is the
modified Bessel function of the second kind.

For multi-dimensional problems, a common practice
is to use product correlation functions. Specifically,
suppose Ψ1, . . . ,Ψp are one-dimensional correlation
functions. Then their product Ψ(x) =

∏p
i=1 Ψ(xi)

forms a p-dimensional correlation function, where x =
(x1, . . . , xp)

T . If a product correlation function is used,
the calculation of A0 is easy. It follows from the ele-
mentary properties of Fourier transform that Ψ̃(x) =
∏p

i=1 Ψ̃i(xi). Let Xi be a random variable with prob-
ability density function Ψi. Then A0 =

∑p
i=1 E|Xi|,

i.e., the value of A0 corresponding to a product correla-
tion function is the sum of those given by the marginal
correlation functions. If each Ψi is either a Gaussian
or Matérn correlation function, then E|Xi|’s can be
read from Table 1.

4 UNCERTAINTY

QUANTIFICATION FOR

SEQUENTIAL SAMPLINGS

In Bayesian optimization, sequential samplings are
more popular, because such approaches can utilize the
information from the previous responses and choose
new design points in the area which is more likely
to contain the maximum points. In this section, we
present our uncertainty quantification methodology
for sequential samplings, as well as the theoretical
guarantees.

4.1 Methodology

In this subsection, we construct confidence regions for
the maximum points and values under sequential sam-
pling scheme, as presented in Algorithm 3. In the rest
of this work, let T be the number of iterations when
an instance of Algorithm 1 stops and DΩ be the di-
ameter of Ω. It is worth noting that under sequential
sampling scheme, T can be a random variable, which
introduces additional randomness of the confidence in-
terval, and complicates the theoretical analysis. Given
n, we denote X1:n = (x1, . . . , xmn), where each xi is
corresponding to one data point and mn is the number
of sampled points after n iterations of the algorithm,
and Y1:n = (f(x1), . . . , f(xmn))

T . In this work, we
allow mn ≥ 1, which means that we can sample one
point or a batch of points at a time in each iteration.

Let g(x) = UCL(x, t,X1:T , Y1:T ),

CRseq
t :=

{

x ∈ Ω : g(x) ≥ max
1≤i≤mT

f(xi)

}

, (6)

CIseqt :=

[

max
1≤i≤mT

f(xi),max
x∈Ω

g(x)

]

. (7)

Algorithm 3 Confidence regions for xmax and
f(xmax)

1: Input: Significance parameter t, data X1:T , Y1:T

collected from an instance of Bayesian optimiza-
tion algorithm.

2: For point x ∈ Ω, set r(x) = (Ψ(x− x1), . . . ,Ψ(x−
xmT

))T ,K = (Ψ(xj − xk))jk. Calculate

µT (x) = r(x)TK−1Y1:T , (8)

sT (x) =
√

σ2(1− r(x)TK−1r(x)). (9)

3: Compute UCL(x, t,X1:T , Y1:T ) via Algorithm 2.
4: Let g(x) = UCL(x, t,X1:T , Y1:T ). Calculate

CRseq
t and CIseqt via (6) and (7), respectively.

5: Output: The confidence region CRseq
t for xmax

and the confidence interval CIseqt for f(xmax).

In Section 4.2, we will show that under the condition
that f is a realization of Z, CRseq

t and CIseqt are confi-
dence regions of xmax and f(xmax), respectively, with

a simultaneous confidence level at least 1− e−t2/2, re-
spectively. In particular, to obtain a 95% confidence
region, we use t = 2.448. The calculation of A0 follows
the discussion in Section 3.3, and we recommend using
C = 1 in practice, as in Algorithm 2.

4.2 Theory

To facilitate our mathematical analysis, we first state
the general Bayesian optimization framework in a rig-
orous manner. Recall that we assume that f is a real-
ization of a Gaussian process Z with correlation func-
tion Ψ. From this Bayesian point of view, we shall not
differentiate f and Z in this section.

Denote the vectors of input and output points in the
nth iteration as Xn and Yn, respectively. Let X1:n and
Y1:n be as in Section 4.1. Because X1:n and Y1:n are
random, the data (X1:n, Y

T
1:n) is associated with the

σ-algebra Fn, defined as the σ-algebra generated by
(X1:n, Y

T
1:n). When the algorithm just starts, the data

is an empty set, which is associated with the trivial
σ-algebra F0. In each sampling-evaluation iteration,
a sequential sampling strategy, which determines the
next sample point or a batch of points based on the
current data, is applied. Clearly, such strategy should
not depend on unobserved data. After each sampling-
evaluation iteration, a stopping criterion is checked
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Correlation family Gaussian Matérn

Correlation function exp{−(x/θ)2} 1
Γ(ν)2ν−1

(

2
√
ν|x|
θ

)ν

Kν

(

2
√
ν|x|
θ

)

Spectral density θ
2
√
π
exp{−ω2θ2/4} Γ(ν+1/2)

Γ(ν)
√
π

(

4ν
θ2

)ν (
ω2 + 4ν

θ2

)−(ν+1/2)

A0
2√
πθ

4
√
νΓ(ν+1/2)√

π(2ν−1)θΓ(ν)
for ν > 1/2

Table 1: Gaussian And Matérn Correlation Families.

and to determine whether to terminate the algorithm.
A stopping decision should depend only on the current
data and/or prespecified values such as computational
budget, and should not depend on unobserved data
either. Let T be the number of iterations when the
algorithm stops. Then a Bayesian optimization algo-
rithm must satisfy the following conditions.

1. Conditional on Fn−1, Xn and Z are mutually inde-
pendent for n = 1, 2, . . ..

2. T is a stopping time with respect to the filtration
{Fn}∞n=0. We further require 1 ≤ T < +∞, a.s., to
ensure a meaningful Bayesian optimization proce-
dure.

We shall establish a generic theory that bounds the
uniform prediction error, which can be applied to any
instance algorithms of Bayesian optimization. It is
worth noting that several literature, including Sniekers
and van der Vaart (2015); Yoo et al. (2016); Yang et al.
(2017); Kuriki et al. (2019); Azzimonti et al. (2019);
Azäıs et al. (2010), investigate uncertainty quantifica-
tion methods which are not within the Bayesian op-
timization or sequential sampling scheme, and cannot
be directly applied to quantify the uncertainties of out-
puts of Bayesian optimization.

In Bayesian optimization, sequential samplings are
more popular, because such approaches can utilize the
information from the previous responses and choose
new design points in the area which is more likely to
contain the maximum points. Similar to Section 3, we
first quantify the uncertainty of Z(·) − µT (·). Note
that Z(·)− µT (·) is generally not a Gaussian process,
because in the sequential samplings situation, the stop-
ping time T is random. Nonetheless, an error bound
similar to that in Theorem 1 is still valid. In the fol-
lowing theorem, we define

µn(x) :=rTn (x)K
−1
n Y1:n, (10)

σ2
n(x) :=σ2(1− rTn (x)K

−1
n rn(x)), (11)

where rn(x) = (Ψ(x − x1), . . . ,Ψ(x − xmn
))T ,Kn =

(Ψ(xj − xk))jk.

Theorem 2. (Uncertainty quantification for se-
quential samplings) Suppose Condition 1 holds.

Given an instance of Bayesian optimization algorithm,
let

Mn = sup
x∈Ω

Z(x)− µn(x)

σn(x) log
1/2(eσ/σn(x))

,

where µn(x) and σn(x) are given in (10) and (11),
respectively. Then for any t > 0,

P(MT − C
√

p(1 ∨ log(A0DΩ)) > t) ≤ e−t2/2, (12)

where C,A0, DΩ are the same as in Corollary 1.

The proof of Theorem 2 can be found in Appendix
D. The major difficulty of proving Theorem 2 is that
the stopping time T is random, which introduces extra
uncertainties of the output of a Bayesian optimization
algorithm. The probability bound (12) has a major
advantage: the constant C is independent of the spe-
cific Bayesian optimization algorithm, and it can be
chosen the same as that for fixed designs. This sug-
gests that when calibrating C via numerical simula-
tions (see Section 5 and Appendix F), we only need to
simulate for fixed-design problems, and the resulting
constant C can be used for the uncertainty quantifica-
tion of all past and possible future Bayesian optimiza-
tion algorithms. The dimension p does not influence
our uncertainty quantification a lot, in the sense that
only

√
p appears in (12). However, the dimension will

strongly influence the performance of Bayesian opti-
mization (Bull, 2011), which could lead to a large con-
fidence region.

Analogous to Corollary 2, we can restate Theorem 2
under a deterministic setting in terms of Corollary
3. In this situation, we have to restrict ourselves to
deterministic instances of Bayesian optimization al-
gorithms, in the sense that the sequential sampling
strategy is a deterministic map, such as the first two
examples in Section 2.2.

Corollary 3. Let C(Ω) be the space of continuous
functions on Ω and PZ be the law of Z. Given a deter-
ministic instance of Bayesian optimization algorithm,
there exists a set B ⊂ C(Ω) so that PZ(B) ≥ 1−e−t2/2

and for any f ∈ B, its maximum point xmax is con-
tained in CRseq

t defined in (6), and f(xmax) is con-
tained in CIseqt defined in (7).
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5 CALIBRATING C VIA

SIMULATION STUDIES

To construct confidence regions (4) and (6), and con-
fidence intervals (5) and (7), we need to specify the
constant C. An upper bound of the constant C in
Theorem 1 can be obtained by examine the proof of
Lemma A.1 and Theorem A.1. However, this theoret-
ical upper bound can be too large for practical use.
In this work, we consider estimating C via numerical
simulation. The details are presented in Appendix F.
Here we outline the main conclusions of our simulation
studies.

Our main conclusions are: 1) C = 1 is a robust choice
for most of the cases; 2) for the cases with Gaussian
correlation functions or small A0DΩ, choosing C = 1
may lead to very conservative confidence regions. We
suggest practitioners first consider C = 1 to obtain
robust confidence regions. When users believe that
this robust confidence region is too conservative, they
can use the value in Table F.1 or F.2 corresponding to
their specific setting, or run similar numerical studies
as in Appendix F to calibrate their own C.

6 NUMERICAL EXPERIMENTS

In this section, we conduct several numerical studies to
compare the performance between the proposed confi-
dence interval CIseqt as in (7) and the naive bound of
Gaussian process. The nominal confidence levels are
95% for both methods. The naive 95% confidence up-
per bound, denoted by CIG, is defined as the usual
pointwise upper bound of Gaussian process, i.e.,

CIG :=

[

max
1≤i≤mT

f(xi),max
x∈Ω

µT (x) + q0.05σT (x)

]

,

(13)

where q0.05 is the 0.95 quantile of the standard normal
distribution, µT (x) and σT (x) are given in (8) and (9),
respectively. As suggested in Section 5, we use C = 1
and t = 2.448 in CIseqt .

6.1 Well-Specified Gaussian Process

We first consider that the underlying truth is a Gaus-
sian process with known covariance function. We con-
sider the Matérn correlation functions (see Table 1)
with ν = 1.5, 2.5, 3.5, and A0DΩ = 25. We simulate
Gaussian processes on Ω = [0, 1]2 for each ν. We use
optimal Latin hypercube designs (Stocki, 2005) to gen-
erate five initial points. We employs aUCB (see Section
2.2) as the acquisition function, where the parameter
βn is chosen as the theoretically optimal parameter,
suggested by Srinivas et al. (2010).

We repeat the above procedure 100 times to estimate
the coverage rate by calculating the relative frequency
of the event f(xmax) ∈ CIseqt or f(xmax) ∈ CIG. We
also compare CIseqt and CIG with the “optimal upper
bound” in the sense that we choose a constant aν and
the confidence upper bound

CIa :=

[

max
1≤i≤mT

f(xi),max
x∈Ω

µT (x) + aνσT (x)

]

,

such that the relative frequency of the event f(xmax) ∈
CIa is exactly 95%, where aν only depends on ν. Then
we plot the coverage rate of CIseqt and CIG, and the
width of CIseqt , CIG, and CIa under 5, 10, 15, 20, 25,
30 iterations, respectively.

Panels 1 and 2 in Figure 1 shows the coverage rates and
the width of the confidence intervals under different
smoothness with ν = 1.5, 2.5, 3.5. From the Panel 1
in Figure 1, we find that the coverage rate of CIseqt

is almost 100% for all the experiments, while CIG has
a lower coverage rate no more than 75%. Thus the
proposed method is conservative while the naive one
is permissive. Such a result shows that using the naive
method may be risky in practice, because the naive one
underestimates the uncertainties. The coverage results
support our theory and conclusions made in Section
4.2. As shown by the Panel 2 in Figure 1, the widths
of CIseqt are about five times of CIG, and about 2-
2.5 times of CIa. The ratio decreases as the number
of iterations increases. The inflation in the width of
confidence intervals is the cost of gaining confidence.

6.2 Misspecified Gaussian Process

Although our theory does not cover the case when
the Gaussian process is misspecified, we conduct nu-
merical studies to study the influence of model mis-
specification. The misspecification is in the sense
that the correlation function is misspecified. Specif-
ically, we consider the Matérn correlation functions
with ν0 = 1.5, 2.5, 3.5, and A0DΩ = 25. The rest of
the settings are the same as those in Section 6.1. The
only difference is that, we use Matérn correlation func-
tions with ν = 1.5, 2.5, 3.5 to construct predictors and
confidence intervals for each ν0. The coverage rates of
CIseqt and CIG and the width of CIseqt , CIG, and CIa
are shown in Panels 1-6 in Figure G.1 in Appendix G.
We find similar patterns as discussed in Section 6.1,
namely, the proposed confidence interval is conserva-
tive while the naive one is permissive. We also find
that for each ν0, the width of confidence intervals does
not change a lot for different ν. These findings in-
dicate that our theory may work for the misspecified
case, while the theoretical development needs further
study.

We also consider another case of misspecification,
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Figure 1: Coverage rates of CIseqt and CIG (Panel 1) and widths of CIseqt , CIG, and CIa (Panel 2) under
different scenarios. The nominal confidence level is 95%. The Gaussian process is well specified. More figures of
misspecified cases are available in Appendix G.

where the correlation function used in the prediction is
a rational quadratic kernel (Rasmussen and Williams,
2006) defined as

ΨQK(x, x′) =

(

1 +
∥x− x′∥2

2αϕ

)−α

,

where α, ϕ > 0 are parameters. Here we consider α = 1
as in Hennig and Schuler (2012). We choose ϕ = 10
and 20. The results are in Figure G.2 in Appendix G.
From Figure G.2 it can be seen that both CIseqt and
CIG do not achieve the nominal level, but CIseqt is
much closer to the nominal level than the naive one.
This indicates that if the misspecification is severe,
then it has a strong influence of uncertainty quantifi-
cation, while our method is more robust than the naive
one.

6.3 Deterministic Functions

In this subsection, we consider three deterministic
functions. Because a deterministic function is no
longer random (thus not a Gaussian process), a model
misspecification occurs. Furthermore, there is no defi-
nition of “confidence interval” for a deterministic func-
tion. Therefore, we evaluate the confidence intervals
CIseqt and CIG by checking whether they cover the
optimal point after certain number of iterations.

In both numerical examples in this subsection, we use
aUCB (defined in Section 2.2) as the acquisition func-
tion. The iteration numbers we consider are 5, 10,
15, 20, 25, 30. There are three parameters needed to

be specified in the Gaussian process regression: the
smoothness parameter ν, the constant A0 in Condi-
tion 1, and the variance σ2. Following the usual ap-
proaches in Gaussian process regression (Santner et al.,
2003), we impose a specific ν, and estimate A0 and
σ2 via maximum likelihood estimation based on the
initial evaluations of the function values on the ini-
tial points. These estimated parameters are used for
constructing the prior distribution of underlying func-
tions and evaluation of aUCB in Algorithm 1, and con-
structing confidence intervals CIseqt (by Algorithm 3)
and CIG (by (13)). For the conciseness, we put all
the details and numerical results in this subsection to
Appendix H, and only list the test functions we used
in this section. Here we select three test functions
from the Optimization category of Virtual Library of
Simulation Experiemnts: Test function and Datasets
(http://www.sfu.ca/ ssurjano/optimization.html).

• Modified test function in Higdon (2002):

f1(x) = 1.5 sin(2πx/2)−0.2 sin(2πx/2.5)−(x−1)2/120,

where x ∈ [0, 8]. The modification is made because
the original function is quite easy to be optimized.

• The test function in Keane et al. (2008):

f3(x) = −(6x− 2)2 sin(12x− 4), x ∈ [0, 1].

• The rescaled form of the Branin-Hoo function



Rui Tuo*, Wenjia Wang*

(Picheny et al., 2013b):

f4(x) =− 1

51.95

((

x̄2 −
5.1x̄2

1

4π2
+

5x̄1

π
− 6

)2

+

(

10− 10

8π

)

cos(x̄1)− 44.82

)

,

where x̄1 = 15x1 − 5, x̄2 = 15x2, and x = (x1, x2)
T ∈

[0, 1]2. This function has mean zero and variance one.

From Tables H.1-H.3 in Appendix H, we can see
that our proposed confidence interval is more robust
than the naive confidence interval. Unlike misspeci-
fied Gaussian processes, the smoothness plays a more
important role in the effectiveness of the confidence in-
tervals. This suggests that when the underlying truth
is a deterministic function, this kind of model misspec-
ification has a strong impact on the quality of uncer-
tainty quantification. Robust uncertainty quantifica-
tion methodologies for deterministic functions will be
pursued in the future.

7 CONCLUSIONS AND

DISCUSSION

In this work, we propose a novel methodology to con-
struct confidence regions for the outputs given by
any Bayesian optimization algorithm with theoretical
guarantees. To the best of our knowledge, this is the
first result of this kind. As a cost of its high flexibility,
the confidence regions may be somewhat conservative,
because they are constructed based on generic proba-
bility inequalities that may not be tight enough. Nev-
ertheless, given the fact that naive methods may be
highly permissive, the proposed method can be useful
when a conservative approach is preferred, such as in
reliability assessments. To improve the power of the
proposed method, one needs to seek for more accurate
inequalities in a future work. One might also need to
derive better error bounds tailored to specific acquisi-
tion functions and specify the constants in the upper
bounds, and find robust confidence intervals, or other
uncertainty quantification methods, which can miti-
gate the impact of model misspecification. Other pos-
sible future extensions include considering more sur-
rogate models, such as Decision trees or Tree Parzen
estimators.
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A INEQUALITIES FOR GAUSSIAN PROCESSES

In this section, we review some inequalities on the maximum of a Gaussian process. Let G(x) be a separable
zero-mean Gaussian process with x ∈ Γ. Define the metric on Γ by

dg(G(x1), G(x2)) =
√

E(G(x1)−G(x2))2.

The ϵ-covering number of the metric space (Γ, dg), denoted as N(ϵ,Γ, dg), is the minimum integer N so that
there exist N distinct balls in (Γ, dg) with radius ϵ, and the union of these balls covers Γ. Let D be the diameter
of Γ with respect to the metric dg. The supremum of a Gaussian process is closely tied to a quantity called the
entropy integral, defined as

∫ D/2

0

√

logN(ϵ,Γ, dg)dϵ. (A.1)

For detailed discussion of entropy integral, we refer to Adler and Taylor (2009).

Lemma A.1 provides an upper bound on the expectation of the maximum value of a Gaussian process, which is
Theorem 1.3.3 of Adler and Taylor (2009). Note that the right-hand side of (A.2) is an upper bound of Talagrand’s
majorizing measure (Talagrand, 1996). Talagrand’s bound, albeit sharper, is not numerically tractable in the
current context, because the covariance function of the GP regression posterior is highly nonstationary and
complicated. Therefore, we apply Lemma A.1 in our proofs.

Lemma A.1. Let G(x) be a separable zero-mean Gaussian process with x lying in a dg-compact set Γ, where dg

is the metric. Let N be the ϵ-covering number. Then there exists a universal constant η such that

E

(

sup
x∈Γ

G(x)

)

≤ η

∫ D/2

0

√

logN(ϵ,Γ, dg)dϵ. (A.2)

Lemma A.2, which is Theorem 2.1.1 of Adler and Taylor (2009), presents a concentration inequality.

Lemma A.2. Let G be a separable Gaussian process on a dg-compact Γ with mean zero, then for all u > 0,

P

(

sup
x∈Γ

G(x)− E(sup
x∈Γ

G(x)) > u

)

≤ e−u2/2σ2
Γ , (A.3)

where σ2
Γ = supx∈Γ EG(x)2.

Theorem A.1 is a slightly strengthened version of Theorem 1 of Wang et al. (2020). Its proof, in Section E, is
based on Lemmas A.1-A.2 and some machinery from scattered data approximation Wendland (2004).

Theorem A.1. Suppose Condition 1 holds. Let µ(x) and σ(x) be as in (2) and (3), respectively, and DΩ =
diam(Ω) be the Euclidean diameter of Ω. Then for any u > 0, and any closed deterministic subset A ⊂ Ω, with
probability at least 1− exp{−u2/(2σ2

A)}, the kriging prediction error has the upper bound

sup
x∈A

Z(x)− µ(x) ≤ η1σA

√

p(1 ∨ log(A0DΩ))
√

log(eσ/σA)) + u, (A.4)

where A0 is defined in Condition 1, η1 is a universal constant, and σA = supx∈A σ(x).
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B PROOF OF THEOREM 1

We proof Theorem 1 by partitioning Ω into subregions, and applying Theorem A.1 on each of them. Let
Ωi = {x ∈ Ω|σe−i ⩽ σ(x) ⩽ σe−i+1}, for i = 1, . . .. Let σi = supx∈Ωi

σ(x).

Take η2 = η1
√
2e. By Theorem A.1, we have

P

(

sup
x∈Ω

Z(x)− µ(x)

σ(x) log1/2(eσ/σ(x))
> η2

√

p(1 ∨ log(A0DΩ)) + u

)

⩽

∞
∑

i=1

P

(

sup
x∈Ωi

Z(x)− µ(x)

σ(x) log1/2(eσ/σ(x))
> η2

√

p(1 ∨ log(A0DΩ)) + u

)

⩽

∞
∑

i=1

P

(

sup
x∈Ωi

Z(x)− µ(x) > (η2
√

p(1 ∨ log(A0DΩ)) + u)σe−i
√
i

)

⩽

∞
∑

i=1

P

(

sup
x∈Ωi

Z(x)− µ(x) > (η2
√

p(1 ∨ log(A0DΩ)) + u)σi log
1/2(eσ/σi)/(

√
2e)

)

⩽

∞
∑

i=1

exp
{

−u2 log(eσ/σi)/(4e
2)
}

⩽

∞
∑

i=1

exp
{

−iu2/(4e2)
}

=
exp

{

−u2/(4e2)
}

1− exp {−u2/(4e2)} ,

which, together with the fact that M ≥ 0, implies the following upper bound of EM

EM =

∫ ∞

0

P(M > x)dx

≤
(
∫ η2

√
p(1∨log(A0DΩ))+1

0

+

∫ ∞

η2

√
p(1∨log(A0DΩ))+1

)

P(M > x)dx

≤ η2
√

p(1 ∨ log(A0DΩ)) + 1 +

∫ ∞

1

2 exp
{

−x2/(4e2)
}

1− exp {−x2/(4e2)}dx

≤ C0

√

p(1 ∨ log(A0DΩ)).

To access the tail probability, we note that M −EM is also a Gaussian process with mean zero. Thus by Lemma
A.2, we have

P(M − EM > t) ≤ e−t2/2σ2
M ,

where

σ2
M = sup

x∈Ω
E

(Z(x)− µ(x))2

σ(x)2 log(eσ/σ(x))
≤ 1.

Hence, we complete the proof.

C INDEPENDENCE IN SEQUENTIAL GAUSSIAN PROCESS MODELING

The proof of Theorem 2 relies on certain independence properties of sequential Gaussian process modeling shown
in Lemmas C.1-C.2. First we introduce some notation. For an arbitrary function f , and X = (x1, . . . , xn), define
f(X) = (f(x1), . . . , f(xn))

T , and

IΨ,Xf(x) = rT (x)K−1f(X), (C.1)

where r = (Ψ(x− x1), . . . ,Ψ(x− xn))
T ,K = (Ψ(xj − xk))jk. For notational convenience, we define IΨ,∅f = 0.



Uncertainty Quantification for Bayesian Optimization

Lemma C.1. Let Z be a stationary Gaussian process with mean zero and correlation function Ψ. For two sets
of scattered points X ′ ⊂ X = (x1, . . . , xn), we have

Z − IΨ,X′Z = (Z − IΨ,XZ) + IΨ,X(Z − IΨ,X′Z). (C.2)

In addition, if X and X ′ are deterministic sets, then the residual Z − IΨ,XZ and the vector of observed data
(Z(x1), . . . , Z(xn))

T are mutually independent Gaussian process and vector, respectively.

Proof. It is easily seen that IΨ,X and IΨ,X′ are linear operators and IΨ,X′IΨ,X = IΨ,X , which implies (C.2).

The residual Z − IΨ,XZ is a Gaussian process because IΨ,X is linear. The independence between the Gaussian
process and the vector can be proven by calculation the covariance

Cov(Z(x′)− IΨ,X′Z(x′), Z(X))

= Cov(Z(x′)− rT (x′)K−1Z(X), Z(X))

= r(x′)− r(x′) = 0,

which completes the proof.

Lemma C.2. For any instance algorithm of Bayesian optimization, the following statements are true.

1. Conditional on Fn−1 and Xn, the residual process Z(·)− µn(·) is independent of Fn.

2. Conditional on Fn, the residual process Z(·) − µn(·) is a Gaussian process with same law as Z ′(·) −
IΨ,X1:n

Z ′(·), where Z ′ is an independent copy of Z.

Proof. We use induction on n. For n = 1, the desired results are direct consequences of Lemma C.1, because the
design set is suppressed conditional on F0.

Now suppose that we have proven already the assertion for n and want to conclude it for n+1. First, we invoke
the decomposition given by Lemma C.1 to have

Z ′ − IΨ,X1:n
Z ′ = (Z ′ − IΨ,X1:(n+1)

Z ′) + IΨ,X1:(n+1)
(Z ′ − IΨ,X1:n

Z ′). (C.3)

Because µn = IΨ,X1:n
Z, we also have

Z − µn = (Z − µn+1) + IΨ,X1:(n+1)
(Z − µn). (C.4)

By the inductive hypothesis, Z−µn has the same law as Z ′−IΨ,X1:n
Z ′ conditional on Fn, denoted by Z−µn

d
=

Z ′ −IΨ,X1:n
Z ′|Fn. Our assumption that Xn+1 is independent of (Z,Z ′) conditional on Fn implies that Xn+1 is

independent of (Z − µn, Z
′ − IΨ,X1:n

Z ′) as well. Thus,

Z − µn
d
= Z ′ − IΨ,X1:n

Z ′|Fn, Xn+1.

Clearly, this equality in distribution is preserved by acting IΨ,X1:(n+1)
on both sides, which implies

(

Z − µn, IΨ,X1:(n+1)
(Z − µn)

) d
=
(

Z ′ − IΨ,X1:n
Z ′, IΨ,X1:(n+1)

(Z ′ − IΨ,X1:n
Z ′)
)

|Fn, Xn+1.

Incorporating the above equation with (C.3) and (C.4) yields

(Z − µn+1, Z − µn))
d
=
(

Z ′ − IΨ,X1:(n+1)
Z ′, Z ′ − IΨ,X1:n

Z ′) |Fn, Xn+1. (C.5)

Now we consider the vectors V := Z(Xn+1) − µn(Xn+1) and V ′ = Z ′(Xn+1) − IΨ,X1:nZ
′(Xn+1). Then (C.5)

implies

(Z − µn+1, V ))
d
=
(

Z ′ − IΨ,X1:(n+1)
Z ′, V ′) |Fn, Xn+1. (C.6)

Because V ′ consists of observed data, we can apply Lemma C.1 to obtain that, conditional on Fn and Xn+1,
Z ′−IΨ,X1:(n+1)

Z ′ is independent of V ′, which, together with (C.6), implies that Z−µn+1 and V are independent
conditional on Fn and Xn+1. Because µn(Xn+1) is measurable with respect to the σ-algebra generated by Fn

and Xn+1, we obtain that Z − µn+1 is independent of Z(Xn+1) conditional on Fn and Xn+1, which proves
Statement 1. Combining Statement 1 and (C.5) yields Statement 2.
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D PROOF OF THEOREM 2

The law of total probability implies

P(MT − C
√

p(1 ∨ log(A0DΩ)) > t)

=

∞
∑

i=n

P(MT − C
√

p(1 ∨ log(A0DΩ)) > t|T = n)P(T = n)

=

∞
∑

n=1

P(Mn − C
√

p(1 ∨ log(A0DΩ)) > t|T = n)P(T = n)

=

∞
∑

n=1

E

{

P(Mn − C
√

p(1 ∨ log(A0DΩ)) > t|Fn)
∣

∣

∣
T = n

}

P(T = n),

where the last equality follows from the fact that {T = n} ∈ Fn, namely, T is a stopping time. Clearly, the

desired results are proven if we can show P(Mn−C
√

p(1 ∨ log(A0DΩ)) > t|Fn) < e−t2/2. Now we resort to part
2 of Lemma C.2, which states that conditional on Fn, Z(·) − µn(·) is identical in law to its independent copy
Z ′(·) − IΨ,X1:nZ

′(·). Although the event {Mn − C
√

p(1 ∨ log(A0DΩ)) > t} looks complicated, it is measurable
with respect to Z(·)− µn(·). Thus, we arrive at

P(Mn − C
√

p(1 ∨ log(A0DΩ)) > t|Fn)

= P

(

sup
x∈Ω

Z ′(x)− IΦ,X1:n
Z ′(x)

σn(x) log
1/2(eσ/σn(x))

− C
√

p(1 ∨ log(A0DΩ)) > t|Fn

)

. (D.1)

Because Z ′ is independent of Z, the part of conditioning with respect to Z(X1:n) in (D.1) has no effect on Z ′.
The only thing that matters is the effect of the conditioning on the design points X1:n. Hence, (D.1) is reduced
to

P

(

sup
x∈Ω

Z ′(x)− IΦ,X1:n
Z ′(x)

σn(x) log
1/2(eσ/σn(x))

− C
√

p(1 ∨ log(A0DΩ)) > t|X1:n

)

. (D.2)

Clearly, we can regard the points X1:n in the formula above as a fixed design. Then the probability (D.2) is

bounded above by e−t2/2 as asserted by Corollary 1.

E PROOF OF THEOREM A.1

This proof is similar to Theorem 1 of Wang et al. (2020) but with a few technical improvements.

Because µ(x) is a linear combination of Z(xi)’s, µ(x) is also a Gaussian process. The main idea of the proof is to
invoke a maximum inequality for Gaussian processes, which states that the supremum of a Gaussian process is
no more than a multiple of the integral of the covering number with respect to its natural distance d. See Adler
and Taylor (2009); van der Vaart and Wellner (1996) for related discussions.

Let g(x) = Z(x)− µ(x). For any x, x′ ∈ A, because A is deterministic, we have

d(x, x′)2 =E(g(x)− g(x′))2

=E(Z(x)− µ(x)− (Z(x′)− µ(x′)))2

=σ2(Ψ(x− x)− rT (x)K−1r(x) + Ψ(x′ − x′)− rT (x′)K−1r(x′)

− 2[Ψ(x− x′)− rT (x′)K−1r(x)]),

where r(·) = (Ψ(· − x1), . . . ,Ψ(· − xn))
T , K = (Ψ(xj − xk))jk.

The rest of our proof consists of the following steps. In step 1, we bound the covering number N(ϵ, A, d). Next
we bound the diameter D. In step 3, we obtain a bound for the entropy integral. In the last step, we invoke
Lemmas A.1 and A.2 to obtain the desired results.
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Step 1: Bounding the covering number

Let h(·) = Ψ(x− ·)−Ψ(x′ − ·). It can verified that

d(x, x′)2 =− σ2[h(x′)− IΨ,Xh(x′)] + σ2[h(x)− IΨ,Xh(x)].

By Theorem 11.4 of Wendland (2004),

d(x, x′)2 ≤ 2σ2(σA/σ∥h∥NΨ(Rd)) = 2σσA∥h∥NΨ(Rd), (E.1)

where

σ2
A = sup

x∈A
σ(x)2 = σ2 sup

x∈A
(Ψ(x− x)− rT (x)K−1r(x)).

Denote the Euclidean norm by ∥ · ∥. Then, by the definition of the spectral density and the mean value theorem,
we have

∥h∥2NΨ(Rd) = Ψ(x− x)− 2Ψ(x′ − x) + Ψ(x′ − x′)

= 2

∫

Rd

(1− cos((x− x′)Tω))Ψ̃(ω)dω

≤
(

2

∫

Rd

∥ω∥Ψ̃(ω)dω

)

∥x− x′∥

≤ 2A0∥x− x′∥, (E.2)

where the last inequality follows from the fact that ∥ω∥ ≤ ∥ω∥1. Combining (E.1) and (E.2) yields

d(x, x′)2 ≤ 2A
1/2
0 σσA∥x− x′∥1/2. (E.3)

Therefore, the covering number is bounded above by

logN(ϵ, A, d) ≤ logN

(

ϵ4

4A0σ2σ2
A

, A, ∥ · ∥
)

. (E.4)

The right side of (E.4) involves the covering number of a Euclidean ball, which is well understood in the literature.
See Lemma 4.1 of Pollard (1990). This result leads to the bound

logN(ϵ, A, d) ≤ p log

(

48A0DAσ
2σ2

A

ϵ4
+ 1

)

≤ p log

(

48A0DΩσ
2σ2

A

ϵ4
+ 1

)

, (E.5)

where DA = diam(A) and DΩ = diam(Ω) are the Euclidean diameter of A and Ω, respectively.

Step 2: Bounding the diameter D

Define the diameter under metric d by D = supx,x′∈A d(x, x′). For any x, x′ ∈ A,

d(x, x′)2 =E(g(x)− g(x′))2 ≤ 4 sup
x∈A

E(g(x))2

=4 sup
x∈A

E(Z(x)− IΨ,XZ(x))2

=4σ2 sup
x∈A

(Ψ(x− x)− rT (x)K−1r(x)) = 4σ2
A. (E.6)

Thus we conclude that

D ≤ 2σA. (E.7)
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Step 3: Bounding the entropy integral

By (E.5) and (E.7),

∫ D/2

0

√

logN(ϵ, A, d)dϵ ≤
∫ σA

0

√

p log

(

48A0DΩσ2σ2
A

ϵ4
+ 1

)

dϵ

≤
(
∫ σA

0

dϵ

)1/2(∫ σA

0

p log

(

48A0DΩσ
2σ2

A

ϵ4
+ 1

)

dϵ

)1/2

=

(
∫ σA

0

dϵ

)1/2
(

σ

∫ σA/σ

0

p log

(

48A0DΩσ
2
A

u4σ2
+ 1

)

du

)1/2

≤ σ
1/2
A

(

σ

∫ σA/σ

0

p log

(

48A0DΩσ
2
A

u4σ2
+

σ2
A

u4σ2

)

du

)1/2

≤
√

2pσA

√

log(e2
√

1 + 48A0DΩσ/σA))

≤
√

4pσA

√

log(e
√

1 + 48A0DΩ)
√

log(eσ/σA))

≤ c
√

p(1 ∨ log(A0DΩ))σA

√

log(eσ/σA)), (E.8)

where c =
√

6 log(7e).

Step 4: Bounding P(supx∈A Z(x)− µ(x) > η
∫D/2

0

√

logN(ϵ, A, d)dϵ+ u)

By Lemmas A.1 and A.2, we have

P

(

sup
x∈A

Z(x)− µ(x) > η

∫ D/2

0

√

logN(ϵ, A, d)dϵ+ t

)

≤ e−t2/(2σ2
A). (E.9)

By plugging (E.8) into (E.9), we obtain the desired inequality with η1 = cη, which completes the proof.

F DETAILS OF CALIBRATING C VIA SIMULATION

An upper bound of the constant C in Theorem 1 can be obtained by examine the proof of Lemma A.1 and
Theorem A.1. However, this theoretical upper bound can be too large for practical use. In this section, we
consider estimating C via numerical simulation.

According to Part 1 of Theorem 1,
C0 ≥ EM/

√

p(1 ∨ log(A0DΩ)),

where M = supx∈Ω
Z(x)−µ(x)

σ(x) log1/2(eσ/σ(x))
, A0 is as in (1), and DΩ is the Euclidean diameter of Ω. For a specific

Gaussian process, EM/
√

p(1 ∨ log(A0DΩ)) is a constant and can be obtained by Monte Carlo. Let M be the
collection of Gaussian processes satisfying the conditions of Theorem 1. Then

C0 = sup
M∈M

EM/
√

p(1 ∨ log(A0DΩ)) =: sup
M∈M

H(M).

The idea is to consider various Gaussian processes and find the maximum value of EM/
√

p(1 ∨ log(A0DΩ)).
This value can be close to C when we cover a broad range of Gaussian processes.

In the numerical studies, we consider Ω = [0, 1]p for p = 1, 2, 3. We consider different A0 values to get different
A0DΩ’s. In each Monte Carlo sampling, we approximate M using

M1 = sup
x∈Ω1

Z(x)− µ(x)

σ(x) log1/2(eσ/σ(x))
,

where Ω1 is the first 100, 1000, 2000 points of the Halton sequence (Niederreiter, 1992) for p = 1, 2, 3, respectively.
We calculate the average of M1/

√

p(1 ∨ log(A0DΩ)) over all the simulated realizations of each Gaussian process.
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Specifically, We simulate 1000 realizations of the Gaussian processes for p = 1, 100 realizations for p = 2, 3 and
consider the following four cases. In Cases 1-3, we use maximin Latin hypercube designs (Santner et al., 2003),
and use independent samples from the uniform distribution in Case 4.

Case 1: We consider p = 1 with 20 and 50 design points. We consider the Gaussian correlation functions and
Matérn correlation functions with ν = 1.5, 2.5, 3.5. The results are presented in Table F.1.

Case 2: We consider p = 2 with 20, 50, and 100 design points. We consider the Gaussian correlation functions
and product Matérn correlation functions with ν = 1.5, 2.5, 3.5. The results are presented in Table F.2.

Case 3: We consider p = 3 with 20, 50, 100 and 500 design points. We consider the product Matérn correlation
functions with ν = 1.5, 2.5, 3.5. The results are shown in Table F.3.

Case 4: We consider p = 2 with 20, 50, and 100 design points. We consider the product Matérn correlation
functions with ν = 1.5, 2.5, 3.5. The results are shown in Table F.4.

Table F.1: Simulation Results of Case 1

design points A0DΩ = 1 A0DΩ = 3 A0DΩ = 5 A0DΩ = 10 A0DΩ = 25

Gaussian 20 0.11640290 0.1978563 0.2450737 0.4542654 0.859318
50 0.08102775 0.0916648 0.1206034 0.1683377 0.422786

ν = 1.5 20 0.9640650 1.065597 0.9537634 0.9429957 1.0197966
50 0.9442937 1.009187 0.8981430 0.8331926 0.8372607

ν = 2.5 20 0.7432965 0.8554707 0.7804686 0.8371662 1.0074204
50 0.7304104 0.8218710 0.7346077 0.6987832 0.7563067

ν = 3.5 20 0.6054239 0.7248086 0.6833789 0.7711124 0.9608837
50 0.3367513 0.6941391 0.6244660 0.6278185 0.6928741

Table F.2: Simulation Results of Case 2

design points A0DΩ = 1 A0DΩ = 3 A0DΩ = 5 A0DΩ = 10 A0DΩ = 25

Gaussian 20 0.2801128 0.4767259 0.5644628 0.7408401 1.0554507
50 0.1465512 0.2927036 0.3789438 0.5683807 0.9309326
100 0.1156139 0.1961319 0.2436626 0.4189444 0.7641615

ν = 1.5 20 0.8106718 0.9528429 0.8748865 0.9365989 1.0894451
50 0.8114071 0.9299506 0.8568070 0.8576984 0.9964256
100 0.8137517 0.9108342 0.8224467 0.7951887 0.9168643

ν = 2.5 20 0.6072854 0.7709362 0.7411921 0.8540687 1.0933120
50 0.6316136 0.7218077 0.7218077 0.7690956 0.9703693
100 0.5651732 0.6677120 0.6677120 0.7090934 0.8791792

ν = 3.5 20 0.5243251 0.6881401 0.6915576 0.8290974 1.0876019
50 0.3947094 0.6420423 0.6434791 0.7030224 0.9494486
100 0.2898865 0.6279639 0.6036111 0.6420049 0.8373886

Table F.3: Simulation Results of Case 3

Cases H(M)

20 design points, ν = 1.5, A0DΩ = 1 0.6977030
500 design points, ν = 3.5, A0DΩ = 5 0.4961581
100 design points, ν = 2.5, A0DΩ = 3 0.6628567
50 design points, ν = 1.5, A0DΩ = 10 0.7632713

From Tables F.1-F.4, we find the following patterns:



Rui Tuo*, Wenjia Wang*

Table F.4: Simulation Results of Case 4

Cases H(M)

100 design points, ν = 3, A0DΩ = 3 0.6778535
50 design points, ν = 1.5, A0DΩ = 1 0.8144700
20 design points, ν = 2.5, A0DΩ = 5 0.7735112
100 design points, ν = 1.5, A0DΩ = 10 0.8164859

• All numerical values (H(M)) in Tables F.1-F.4 are less than 1.10. Only eight entries are greater than one.

• In most scenarios, the obtained values are decreasing in ν. This implies that H(M) is smaller when M is
smoother.

• H(M) is not monotonic in A0DΩ, which implies a more complicated function relationship between H(M)
and A0DΩ.

• In most scenarios, H(M) decreases as the dimension p increases.

• The obtained values are decreasing in the number of design points.

In summary, the largest H(M) values are observed when the sample size is small, the smoothness is low and the
dimension is low. Therefore, we believe that our simulation study covers the largest possible H(M) values and
our suggestion of choosing C0 = 1 can be used in most practical situations.

G MORE FIGURES OF NUMERICAL EXPERIMENTS FOR MISSPECIFIED

GAUSSIAN PROCESSES

Here we present more figures of numerical experiments when Gaussian process is misspecified, as shown in Figures
G.1 and G.2.

H DETAILS OF NUMERICAL EXPERIMENTS FOR DETERMINISTIC

FUNCTIONS

Deterministic function 1 The first deterministic function we consider is

f1(x) = 1.5 sin(2πx/2)− 0.2 sin(2πx/2.5)− (x− 1)2/120,

where x ∈ [0, 8], which is a modification of the function used in Higdon (2002). The modification is made because
the original function is quite easy to be optimized. The maximum of f1 is taken on the point x∗ = 0.520, and
the maximum is f1(x

∗) = 1.5953. The initial points are selected as 30 equally spaced points on the interval [0, 8].
The results are collected in Table H.1 in Appendix H.

Deterministic function 2 The third deterministic function we consider is the test function in Keane et al.
(2008):

f3(x) = −(6x− 2)2 sin(12x− 4), x ∈ [0, 1].

The maximum of f3 is taken on the point x∗ = 0.7575, with f3(x
∗) = 6.0207. The initial points are selected as

30 equally spaced points on the interval [0, 8]. We use Ω1 to approximate Ω, where Ω1 is a set of grid points
with grid length 1/2499 (thus, there are 2500 test points in total).

Deterministic function 3 The fourth deterministic function we consider is the rescaled form of the Branin-
Hoo function (Picheny et al., 2013b):

f4(x) =− 1

51.95

((

x̄2 −
5.1x̄2

1

4π2
+

5x̄1

π
− 6

)2

+

(

10− 10

8π

)

cos(x̄1)− 44.82

)

,

where x̄1 = 15x1 − 5, x̄2 = 15x2, and x = (x1, x2)
T ∈ [0, 1]2. The settings are the same of that in Deterministic

function 2.
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Table H.1: Simulation Results of Deterministic Function 1. The following abbreviations are used: IN = iteration
number, CI = confidence interval. The notation !stands for “cover” and %stands for “not cover”.

CI IN = 5 IN = 10 IN = 15 IN = 20 IN = 25 IN = 30

ν = 1.5 CIseqt ! ! ! ! ! !

CIG ! ! ! ! ! !

ν = 2.5 CIseqt ! ! ! ! ! !

CIG ! % % % % %

ν = 3.5 CIseqt ! ! ! ! ! !

CIG ! % % % % %

ν = 5.5 CIseqt % % % % % %

CIG % % % % % %

Table H.2: Simulation Results of Deterministic Function 2. The following abbreviations are used: IN = iteration
number, CI = confidence interval. The notation !stands for “cover” and %stands for “not cover”.

CI IN = 5 IN = 10 IN = 15 IN = 20 IN = 25 IN = 30

ν = 1.5 CIseqt ! ! ! ! ! !

CIG ! ! ! ! ! !

ν = 2.5 CIseqt ! ! ! ! ! !

CIG ! ! ! ! ! !

ν = 4 CIseqt ! ! ! ! ! !

CIG ! ! % % % %

ν = 5.5 CIseqt ! ! ! ! ! !

CIG ! ! % % % %

Table H.3: Simulation Results of Deterministic Function 3. The following abbreviations are used: IN = iteration
number, CI = confidence interval. The notation !stands for “cover” and %stands for “not cover”.

CI IN = 5 IN = 10 IN = 15 IN = 20 IN = 25 IN = 30

ν = 1.1 CIseqt ! ! ! ! ! !

CIG ! ! ! ! ! !

ν = 2.3 CIseqt ! ! ! ! ! !

CIG ! ! ! ! ! !

ν = 2.8 CIseqt ! ! ! ! ! !

CIG ! ! ! ! ! !

ν = 4 CIseqt ! ! ! ! ! !

CIG ! ! ! ! ! !

I ILLUSTRATION OF CONFIDENCE REGIONS

We plot confidence regions for one realizations of Gaussian process with smoothness ν = 1.5. The iteration
number is 30. The results are shown in Figure I.1. It can be seen from Figure I.1 that our confidence region is
more conservative than the naive one.
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Figure G.1: Coverage rates of CIseqt and CIG (Panels 1, 3, 5, 7) and widths of CIseqt , CIG, and CIa (Panels 2,
4, 6, 8) under different scenarios. The nominal confidence level is 95%. Panels 1 and 2: The Gaussian process
is well specified. Panels 1 and 2: The Gaussian process is misspecified with ν0 = 1.5. Panels 3 and 4: The
Gaussian process is misspecified with ν0 = 2.5. Panels 5 and 6: The Gaussian process is misspecified with
ν0 = 3.5.
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Figure G.2: Coverage rates of CIseqt and CIG under different scenarios, where a rational quadratic correlation
function is used for prediction. The nominal confidence level is 95%. The underlying true correlation function is
Matérn with smoothness parameter ν0. Panel 1: ν0 = 1.5. Panel 2: ν0 = 2.5. Panel 2: ν0 = 3.5.
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Figure I.1: Confidence region of CIseqt (Panel 1) and CIG (Panel 2). The nominal confidence level is 95%.


