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Abstract

We develop an exact and scalable algorithm for one-dimensional Gaussian process regression
with Matérn correlations whose smoothness parameter v is a half-integer. The proposed al-
gorithm only requires O(v3n) operations and O(vn) storage. This leads to a linear-cost solver
since v is chosen to be fixed and usually very small in most applications. The proposed method
can be applied to multi-dimensional problems if a full grid or a sparse grid design is used. The
proposed method is based on a novel theory for Matérn correlation functions. We find that
a suitable rearrangement of these correlation functions can produce a compactly supported
function, called a “kernel packet”. Using a set of kernel packets as basis functions leads to a
sparse representation of the covariance matrix that results in the proposed algorithm. Simu-
lation studies show that the proposed algorithm, when applicable, is significantly superior to
the existing alternatives in both the computational time and predictive accuracy.

Keywords: Computer experiments, Kriging, Uncertainty quantification, Compactly sup-
ported functions, Sparse matrices

1. Introduction

Gaussian process (GP) regression is a powerful function reconstruction tool. It has been widely
used in computer experiments (Santner et al., 2003; Gramacy, 2020), spatial statistics (Cressie,
2015), supervised learning (Rasmussen, 2006), reinforcement learning (Deisenroth et al., 2013),
probabilistic numerics (Hennig et al., 2015) and Bayesian optimization (Srinivas et al., 2009).
GP regression models are flexible to fit a variety of functions, and they also enable uncertainty
quantification for prediction by providing predictive distributions. With these appealing fea-
tures, GP regression has become the primary surrogate model for computer experiments since
popularized by Sacks et al. (1989). Despite these advantages, Gaussian process regression has
its drawbacks. A major one is its computational complexity. Training a GP model requires
furnishing matrix inverses and determinants. With n training points, each of these matrix ma-
nipulations takes O(n®) operations (referred to as “time” thereafter, assuming for simplicity that
no parallel computing is enforced) if a direct method, such as the Cholesky decomposition, is
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applied. Besides, the computation for model training may also be hindered by the O(n?) storage
requirement (Gramacy, 2020) to store the n X n covariance matrix.

Tremendous efforts have been made in the literature to address the computational chal-
lenges of GP regression. Recent advances in scalable GP regression include random Fourier
features (Rahimi and Recht, 2007), Nystrom Approximation (also known as inducing points)
(Smola and Schélkopf, 2000; Williams and Seeger, 2001; Titsias, 2009; Bui et al., 2017; Katz-
fuss, 2017; Chen and Stein, 2021), structured kernel interpolation Wilson and Nickisch (2015),
etc. These methods are based on different types of approximation of GPs, i.e., the efficiency is
gained at the cost of its accuracy. In contrast, the main objective of this work is to propose a
novel scalable approach that does not need an approximation.

In this work, we focus on the use of GP regression in the context of computer experiments. In
these studies, the training data are acquired through an experiment, in which the input points
can be chosen. Such a choice is called a design of the experiment. It is well known that a suitably
chosen design can largely simplify the computation. Here we consider the “tensor-space” tech-
niques in terms of using a product correlation function and a full grid or a sparse grid (Plumlee,
2014) design. The tensor-space techniques can reduce a multivariate GP regression problem
to several univariate problems. It is worth noting that, in some applications besides computer
experiments, even if the input sites are not controllable, the data are naturally observed on full
grids, e.g., the remote sensing data in geoscience applications (Bazi and Melgani, 2009). In these
scenarios, the tensor-space techniques are also applicable.

Having the tensor-space techniques, the final hard nut to crack is the one-dimensional
GP regression problem. We assume that the one-dimensional input data are already ordered
throughout this work. This assumption is reasonable in computer experiment applications
since the design points are chosen at our will. In other applications where we do not have
ordered data in the first place, it takes only O(n log n) time to sort them.

This work presents a mathematically exact algorithm to make conditional inference for one-
dimensional GP regression with time and space complexity both linear in n. This algorithm is
specialized for Matérn correlations with smoothness v being a half-integer (see Section 1.1 for
the definition.) Matérn correlations are commonly used in practice (Stein, 1999; Santner et al.,
2003; Gramacy, 2020). In most applications, v is chosen to be small, e.g., v = 1.5 or v = 2.5, for
the sake of a higher model flexibility. The proposed algorithm enjoys the following important
features.

« Given the hyper-parameters of the GP, the proposed algorithm is mathematically exact,
i.e., all numerical error is attributed to the roundoff error given by the machine precision.

« There is no restriction for the one-dimensional input points. But if the points are equally
spaced, the computational time can be further reduced.

« It takes only O(v*n) time to compute the matrix inversion and the determinant. For
equally spaced designs, this time is further reduced to O(v?n).

« After the above pre-processing time, it takes only O(v + log n) or even O(v) time to make
a new prediction (i.e., evaluate the conditional mean) at an untried point.

+ The storage requirement is only O(vn).
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The remainder of this article is organized as follows. We will review the general idea of GP
regression and some existing algorithms in Sections 1.1 and 1.2, respectively. The mathemati-
cal theory behind the proposed algorithm is introduced in Section 2. In Section 3, we propose
the main algorithm. Numerical studies are given in Section 4. In Section 5, we briefly discuss
some possible extensions of the proposed method. Concluding remarks are made in Section 6.
Appendices A and B contain the required mathematical tools and our technical proofs, respec-
tively.

1.1 A review on GP Regression

Let Y (x) denote a stationary GP prior on R¢ with mean function u(x), variance o2, and correla-
tion function K(x,x’). The correlation function is also referred to as a “kernel function” in the
language of applied math or machine learning (Rasmussen, 2006). When d = 1, there are two
types of popular correlation functions. The first type is the Matérn family (Stein, 1999):

(@lx;xq)”Kv(@pc;x’I)’ o)

for any x,x’ € R, where v > 0 is the smoothness parameter, w > 0 is the scale and K,, is
the modified Bessel function of the second kind. The smoothness parameter v governs the
smoothness of the GP Y (Santner et al., 2003; Stein, 1999); the scale parameter w determines
the spread of the correlation (Rasmussen, 2006). Matérn correlation functions are widely used
because of its great flexibility. The second type is the Gaussian family:

1-v
K(x,x") = 12“(7/)

712
K(x,x") = exp (—%) (2)
for any x,x’ € R4, A Gaussian kernel function is the limit of a sequence of Matérn kernels
with the smoothness parameter tending to infinity. The sample paths generated by GP with
Gaussian correlation function are infinitely differentiable.

For multi-dimensional problems, a typical choice of the correlation structure is the separable
or product correlation:

d
Kxx) =[] K;(x;, x)), (3)
j=1
forany x = (x4, ..., x)T,x' = (x;, ,xé)T, where K jisa one-dimensional Matérn or Gaussian
correlation function for each j. This assumption ensures that the GP lives in a tensor space,
and is key to the “tensor-space” techniques, which reduces the multi-dimensional problems to
one-dimensional ones. T
Suppose that we have observed Y = (Y(x;),---,Y(x,)) on n distinct points X = x}
The aim of GP regression is to predict the output at an untried input x* by computing the distri-
bution of Y(x*) conditional on Y, which is a normal distribution with the following conditional
mean and variance (Santner et al., 2003; Banerjee et al., 2014):

E[Yx)[Y] = u(x*) + K(x*, X)K™1 (Y — ), 4)

Var[Y(x*)|Y] = O'2<K(X*, x*) — K(x*, X)K1K(X, x*)), (5)
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where o2 > 0 is the variance of the stationary Gaussian process, K(x*,X) = (K(X, x*))T =

¥ T
(K(X*5X1)a o aK(X 9XVI,))’ K= [K(Xl"xs)]zszl andl‘l = (#(Xl)’ o0 alu(xn)) .
In GP regression, the mean function y is usually parametrized as a linear form u = Zle Bifi

T
for unknown coefficient vector g = (8y, -+, B p) and known regression functions f1, ---, f,. To
improve the predictive performance of GP regression, the coefficient vector 8, variance o and

T
scalesw = (w,---,y) associated to each one-dimensional correlation function k; are usually
estimated via maximum likelihood (Jones et al., 1998). The log-likelihood function given the
data is:

L(B,0%, w) = —% nlogo? + logdet(K) + %(Y — Fﬁ)TK_l(Y —Fp)|, (6)

where det(K) denotes the determinant of the correlation matrix K and F is the n X p matrix
whose (i, s)™ entry is f(x;). The Maximum Likelihood Estimator (MLE) is then defined as the
maximimizer of the log-likelihood function: (B ,62,0) = argmaxg . , L(B,0?%, w).

In both GP regression and parameter estimation, the computation can become unstable
or even intractable because it involves the pursuit of the inversion and the determinant of the
correlation matrix K. Each task takes O(n®) time if a direct method, such as the Cholesky
decomposition, is applied, which is a fundamental computational challenge for GP regression.

1.2 Comparisons with Existing Methods

When applicable, as a specialized algorithm, the proposed method is significantly superior to
the existing alternatives. In this section, we compare the proposed method with a few popu-
lar existing approaches for large-scale GP regression. It is worth noting that, the fundamental
mathematical theory for the proposed method differs from that of any of the existing methods.
A summary of the comparisons is presented in Table 1.

Method Kernels Design Time Storage Accuracy
Proposed Method Matérn-v,v — 1/2 € N | Arbitrary |  O(v*n) O(vn) Exact
Stationary Equally Depending on the
Toeplitz Methods Kernels Spaced | O(nlogn) O(n) number of iterations
Local Approximate GP
(with m nearest neighbors) Arbitrary Arbitrary | O(m?) O(m? + n) Unknown
Random Fourier Features Matérn-v, v > %
(with m random features) Gaussian Arbitrary | O(m?n) | O(m? + mn) 0,(m™1/?)
Nystrom Approximation Matérn-v, v > g Matérn: Op(m’zv’l)
(with m inducing points) Gaussian Arbitrary | O(m?n) | O(m? + mn) | Gaussian: Op(exp(—amlogm))

Table 1: Comparisons with existing methods.

Toeplitz methods: Toeplitz methods (Wood and Chan, 1994) work for stationary GPs with
equally spaced design points. These methods leverage the Toeplitz structure of the covariance
matrices under this setting. To make a prediction in terms of solving (4) and (5), there are two
approaches. The first is to solve the Toeplitz system exactly, using, for example, the Levinson
algorithm (Zhang et al., 2005). This takes O(n?) time. A more commonly used approach is based
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on a conjugate gradient algorithm (Atkinson, 2008) to solve the matrix inversion problems in
(4) and (5). Each step takes O(n logn) time. For the sake of rapid computation, the number of
iterations is chosen to be small. But then the method becomes inexact. Moreover, the conjugate
gradient algorithm is unable to find the determinant in (6) (Wilson and Nickisch, 2015). Thus
one has to resort to the exact algorithm to compute the likelihood value, which takes O(n?)
time. Toeplitz methods only works for equally spaced design points. This is a strong restriction
for one-dimensional problems. For multi-dimensional problems in a tensor space, having this
restriction can also be disturbing, especially under a sparse grid design. Many famous sparse
grid designs are not based on equally spaced one-dimensional points, such as the Clenshaw-
Curtis sparse grids (Gerstner and Griebel, 1998) or the ones suggested by Plumlee (2014).

Local Approximate Gaussian Processes: Gramacy and Apley (2015) proposed a sequential
design scheme that dynamically defines the support of a Gaussian process predictor based on a
local subset of the data. The local subset comprises of m data points and, consequently, local ap-
proximate GP reduces the time and space complexity of GPs regression to O(m?*) and O(m? + n)
respectively. Local approximate GPs can achieve a decent accuracy level in empirical experi-
ments but theoretical properties of this algorithm are still unknown.

Random Fourier Features: The class of Fourier features methods originates from the work
by Rahimi and Recht (2007). These methods essentially use Zln;l #:(x)¢;(x") to approximate
K(x,x’), where ¢;(X), ..., ,,(X) are basis functions constructed based on random samples from
the spectral density, i.e., the Fourier transform of the kernel function K. This low-rank approx-
imation reduces the time and space complexity of GP regression to Op(mzn) and © p(m2 +mn),
respectively, with accuracy OP(m‘l/ 2) (Sriperumbudur and Szabo, 2015). Clearly, the price for
fast computation of random Fourier features is the loss of its accuracy.

Nystrom Approximation: These methods approximate the n X n covariance matrix K by an
mxm matrix K = K(X, X), where X = {&; }i2 | are called the inducing points. Similar to random
Fourier features, Nystrém approximations reduce the time complexity and space complexity of
GP regression to Op(mzn) and Op(m2 + mn), respectively. There are several approaches to
choose the inducing points. Smola and Scholkopf (2000); Williams and Seeger (2001) selected
X from data points X by an orthogonalization procedure. Titsias (2009); Bui et al. (2017) treated
X as hidden variables and select these inducing points via variational Bayesian inference. Katz-
fuss (2017); Chen and Stein (2021) further developed the Nystrém approximation to construct
more precise kernel approximations with multi-resolution structures. For Matérn-v kernel with
v > 3/2, it is shown in Burt et al. (2019) that the accuracy level of any inducing points method
is Op(m_z”_l), which is higher than that of the random Fourier features. It was also shown in
Tuo and Wang (2020) that GP regression with Matérn-v kernel converges to the underlying, true

GP at the rate O(n~”) and, hence, the number of inducing points should satisfy m = O(n2+1) to

achieve the optimal order of approximation accuracy. In this case, the time and space complex-
2y

ity of Nystrém approximations are O(n' T 2+1) and O(n'* »+1), respectively. These are higher
than that of the proposed algorithm, not to mention that the latter provides the exact solutions.

Other methods: Using a compactly supported kernel (Gramacy, 2020) can induce a sparse co-
variance matrix, which can lead to an improvement in matrix manipulations. However, if the
support of the kernel remains the same while the design points become dense in a finite inter-
val, the sparsity of the covariance matrix is not high enough to improve the order of magnitude.
On the other hand, shrinking the support may substantially change the sample path properties
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of the GP, and impair the power of prediction. Recently, Loper et al. (2021) proposed a gen-
eral approximation scheme for one-dimensional GP regression, which results in a linear-time
inference method.

2. Theory of Kernel Packet Basis

In this section, we introduce the mathematical theory for the novel approach of inverting the
correlation matrix in (4) and (5). Technical proofs of all theorems are deferred to Appendix B.

Direct inverting the matrix K in (4) and (5) is time consuming, because K is a dense matrix.
Note that each entry of K is an evaluation of function K(-, x;) for some j. The matrix K is not
sparse because the support of K is the entire real line. The main idea of this work is to find an
exact representation of K in terms of sparse matrices. This exact representation is built in terms
of a change-of-basis transformation.

In this section, we suppose K is a one-dimensional kernel. Consider the linear space KX =
span{K(-, x j)};.;l. The goal is to find another basis for X, denoted as {¢; ;.‘:1, satisfying the
following properties:

1. Almost all of the ¢;’s have compact supports.

2. {¢ j};’zl can be obtained from {K(-, x J-)}’J?=1 via a sparse linear transformation, i.e., the ma-
trix defining the linear transform from {K(-, x j)};.‘:1 to {¢; ;.‘:1 is sparse.

Unless otherwise specified, throughout this article we assume that the one-dimensional

kernel K is a Matérn correlation function as in (1), whose spectral density is proportional to

- 1/2
(27/ Jw? + x2) 1/ ); see Rasmussen (2006); Tuo and Wu (2016). For notational simplicity, let
¢? := 2v/w? and the above spectral density is proportional to (¢ + x2)~("+1/2),

2.1 Definition and Existence of Kernel Packets

In this section we introduce the theory that explains how we can find a compactly supported
function in XK. Clearly, such a function must admit the representation ¢(x) = 27:1 AjK(x, x;).
Recall the requirement that the linear transform is sparse, which means that most of the coef-
ficients A;’s must be zero. This inspires the following definition.

Definition 1 Given a correlation function K and input points a, < --- < ay, a non-zero function
¢ is called a kernel packet (KP) of degree k, if it admits the representation ¢(x) = Z?:l AiK(x,a;)),
and the support of ¢ is [ay, ai].

At first sight, it seems to be too optimistic to expect the existence of KPs. But, surprisingly,
these functions do exist for one-dimensional Matérn correlation functions with half-integer
smoothness. We will show that if the smoothness parameter v is a half integer, i.e.,v—1/2 € N,
there is a KP of degree k := 2v + 2 given any k distinct input points.

For simplicity, we will use k to parametrize the Matérn correlation, in other words, v =
(k —2)/2fork = 3,5,7,... Leta = (ay, ..., a;)" be a vector with a; < --- < a,. The goal is to
find coefficients A;’s such that

k
$a(x) 1= D AjK(x,a)) (7
j=1
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is a KP. We will first find a necessary condition for A j’s, and next we will prove that such a
condition is also sufficient. We apply the Paley-Wiener theorem (see Lemma 15 in Appendix
A and Stein and Shakarchi (2003)), which states that ¢,(x) has a compact support only if the
inverse Fourier transform of ¢,, denoted as cﬁa(x), can be extended to an entire function, i.e., a
complex-valued function that is holomorphic on the whole complex plane. Leti = \/—_1 Our
convention of inverse Fourier transform is f(£) = (2z)~'/2 f _020 f (x)e’**dx. Direct calculations

show
k

$a(x) x Z Ajexplia;x} [ (2 + x2)~k-D/2 x e R.
j=1

Clearly, the analytic continuation of this function (up to a constant) is

k
$a(2) Z Ajexplia;z} | (c* + z2)~ k=72 = y(z)(c? + z2)~k-D/2,
=1

and this function can be defined at any z € C \ {zci}. Note that the function (¢? + z2)~k-1/2
has poles at z = +ci, each with multiplicity (k — 1)/2. According to Paley-Wiener theorem, we
have to make ¢,(z) an entire function, which implies that y(+ci) = 0, each with multiplicity
(k — 1)/2 as well. This condition leads to a set of equations!:

yPeiy=0, yP(=ci) =0,

for j = 0,...,(k — 3)/2, where y{) denotes the jth derivative of y. Clearly, there are k — 1
equations, which can be rewritten as

k
Z Aja§ exp{dca;} =0, (8)
j=1

withl =0,...,(k —3)/2and § = +1, which is a (k — 1) X k linear system. All solutions to this
system are real-valued vectors because all coefficients are real.

Next we study the property of the linear system (8) and the corresponding ¢,. Theorem 2
states that ¢, can be uniquely determined by (8) up to a multiplicative constant.

Theorem 2 Ifa,, ..., a; are distinct, the solution space of (8) is one-dimensional, i.e., there do not
exist two linearly independent solutions to (8).

Another important property of (8) is that its solution is not affected by a shift of a. Define
a+t=(a;+t,..,a, +0).

Theorem 3 The solution space of (8), as a function of a, is invariant under a shift transformation
T,(a)=a+tforanyt € R.

Remark 4 Theorem 3 suggests that we can apply a shift on a without affecting the solution space.
It is worth noting that, although the solution space does not change theoretically, the condition

1. This statement is formalized as Lemma 20 in Appendix B.
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number of the linear system (8) may change, which may significantly affect the numerical accu-
racy. In order to enhance the numerical stability in solving (8), we suggest standardizing a using
transformation T,(a) = a + t such thata; +t = —(a, + t), ie, t = —(a; + a,)/2. The same
standardization technique will be employed in the proof of Theorem 5.

Theorem 5 confirms that any non-zero ¢, is indeed a KP.
Theorem 5 The support of any non-zero function ¢, defined by (7) and (8) is [ay, ai].
In other words, we have the following Corollary 6.

Corollary 6 Let K be a Matérn correlation with smoothness v. If v is a half integer, then K admits
a KP with degree 2v + 2. In addition, given a; < --- < ay, function ¢, with the form (7) is a KP if
and only if the coefficients A;’s are given by a non-zero solution to (8).

Figure 1 illustrates that the linear combination of 5 components {K(-,a j)};zl provides a
compactly supported KP corresponding to Matérn-3/2 correlation function.

—Kernel Packet
—Component 1
Component 2
Component 3

... —Component 4
—Component 5

Figure 1: KP ¢, (blackline) corresponding to Matérn-3/2, and Matérn-3/2 correlation function
and its components {K(:, a j)}?=1'

It is evident that KPs are highly non-trivial and precious. Their existence relies on the cor-
relation function. Theorem 7 shows that many other correlation function do not admit any KP,
and consequently, the proposed algorithm is not applicable to these correlations.

Theorem 7 The following correlation functions do not admit KPs:

1. Any Matérn correlation function whose smoothness parameter is not a half integer.

2. Any Gaussian correlation function.

Theorem 8 shows that the KP constructed by (8) has the lowest degree.

Theorem 8 Let K be a Matérn correlation function with half-integer smoothness v. Let m be a
positive integer with m < 2v + 2. Then any function of the form Z?Ll AjK(-,a;) does not have a
compact support unless A; = 0 for all j = 0, ..., m, and in other words, there does not exist a KP
of degree lower than 2v + 2.
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2.2 One-sided Kernel Packets

Besides KPs, we need to introduce a set of functions to capture the “boundary effects” of Gaus-
sian process regression. As before, let a = (ay,...,a,)! be a vector with a; < -+ < a,. We
consider the functions

$a(x) 1= Y AiK(x,a;), 9)
j=1

with (k +1)/2 < s < k — 1 and a non-zero real vector (A, ..., A;)". Then Theorem 8 suggests
that ¢, in (9) cannot have a compact support. Nevertheless, it is possible that the support of ¢,
is a half real line. In this case, we cal ¢, a one-sided KP. Specifically, we call ¢, a right-sided KP
if supp ¢, = [a;, +0), and we call ¢, a left-sided KP if supp ¢, = (—o0, a].

First we consider right-sided KPs. We propose to identify A;’s by solving

N S
Z Ajai. exp{—ca;} =0, Z Aja; exp{ca;} =0, (10)
j=1 j=1

wherel = 0, ..., (k—3)/2 and the second term of (10) comprises auxiliary equations for the case
s> (k+3)/2withr =0,...,5s — (k + 3)/2. Similar to (8), (10) is an (s — 1) X s linear system.

The following theorems describes the properties of the linear system (10) and the corre-
sponding ¢,. Specifically, Theorem 11 confirms that ¢, is indeed a right-sided KP.

Theorem 9 The solution space of (10) is one-dimensional provided that a, ..., ag are distinct.

Theorem 10 The solution space of (10), as a function of a, is invariant under a shift transforma-
tionT,(a) =a+t foranyt € R.

Theorem 11 The support of any non-zero function ¢, defined by (9) and (10) is [a;, +0).

Left-sided KPs are constructed similarly by solving the following equations:

N S
Z Aja§. expica;} =0, Z Aja; exp{—ca;} =0, (11)
j=1 j=1

where l = 0, ..., (k — 3)/2 and the second term comprises auxiliary equations for the case s >
(k +3)/2withr =0,...,s — (k + 3)/2. The properties of left-sided KPs are analogous to these
stated in Theorems 9-11, for which we omit the statements.

Remark 12 As in Remark 4, we suggest applying a shift transformation on a before computing
Ajs. Let T/(a) = (a}, ..., a;)". We suggest using T, such that a = 0 (i.e, t = —ay) for the right-
sided KPs, and al = 0 (i.e, t = —a,) for the left sided KPs. The same shifting is employed in the
proof of Theorem 11.
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2.3 Kernel Packet Basis

Let x; < --- < x, be the input data, and K a Matérn correlation function with a half-integer
smoothness. Suppose n > k. We can construct the following n functions, as a subset of X:

1. ¢1, ¢2, vee s ¢(k—l)/2’ defined as left-sided KPs ¢(x1,...,x(k+1)/2)a ¢(x1,...,x(k+1)/2+1)’ vee s ¢(x1’~--7xk—1)’

2. Pacr1)/2 Plicr1) /2415 -+ > Pr—(e—1) /2> defined as KPS by x5 Pixy,xinr)s 0 Pnisrsntn)?

Note that KPs and one-sided KPs given the input points cannot be uniquely defined. They
are unique only up to a non-zero multiplicative factor. Here the choice of these factors are
nonessential. The general theory and algorithms in this article will be valid for each specific
choice. Now we present Theorem 13, which, together with the fact that the dimension of X is
n, implies that {¢; };’=1 forms a basis for X, referred to as the KP basis.

Theorem 13 Let x; < --- < X, be the input data and the functions ¢, ..., $,, are constructed in
the above manner. Then the basis functions {¢ j};zl are linearly independent in X.

Further, it is straightforward to check via Theorems 5 and 11 that, given any x € R, the vector
¢(x) = (¢$1(x), ..., ¢n(x))T has at most k — 1 non-zero entries. As a result, we have constructed a
basis for X satisfying the two sparse properties mentioned at the beginning of Section 2. Figure
2 illustrates a KP basis corresponding to Matérn-3/2 and Matérn-5/2 correlation function with
input points X = {0.1,0.2, ..., 1}.

x10%  Kernel Packet Basis with Degree k=5 «107  Kernel Packet Basis with Degree k=7

3.5 10

Figure 2: KP basis functions corresponding to Matérn-3/2 (left) and Matérn-5/2 (right) corre-
lation function with input points X = {0.1,0.2, ..., 1}. The KPs, left-sided KPs, and the
right-sided KPs are plotted in orange, blue, and green lines, respectively.

3. Kernel Packet Algorithms

In this section, we will employ the KP bases to develop scalable algorithms for GP regression
problems. In Sections 3.1 and 3.2 , we present algorithms for one-dimensional GP regression
with noiseless and noisy data, respectively. In section 3.3, we generalize the one-dimensional
algorithms to higher dimensions by applying the tensor and sparse grid techniques.

10
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3.1 One-dimensional GP Regression with Noiseless Data

The theory in Section 2 shows that for one-dimensional problems, given ordered and distinct
inputs x; < --- < X, the correlation matrix K admits a sparse representation as

KA = ¢(X), (12)

where both A and ¢(X) are banded matrices. In (12), the (1, j)* entry of $(X) is ¢ i(x7)- In view
of the compact supportedness of ¢;, ¢(X) is a banded matrix with bandwidth (k — 3)/2:

j0=|  HmG) e g

The matrix of A consists of the coefficients to construct the KPs. In view of the sparse rep-
resentation, A is a banded matrix with bandwidth (k — 1)/2:

A'+2k’;1 ‘+k’;1
J+25+

Computing A and ¢(X) takes O(k*n) time, because in the construction of each ¢ j» at most
k kernel basis functions are needed and the time complexity for solving the coefficients {4, ; :
lw—j| < %} satisfying equation (8), (10) or (11) is O(k*). The computational time O(k>n)
in this step will dominate that in the next step, which is 9(k?n). However, if the design points
are equally spaces, the KP coefficients given by (8) will remain the same for each k consecutive
data points, so that we only need to compute these values once, and thus the computational
time of this step is only O(k*). In this case, the computation time in the next step, i.e., O(k’n),
will be dominant, provided that k < n.

Now we solve the GP regression problem, by substituting the identity K(-,X) = ¢(-)A~! into
(4) and (5) to obtain

Y] = u(x*) + ¢ () [$)] (Y — ), (13)
Y] = 02<K(x*, x*) — ¢ () [¢X)] ' K(X, x*)). (14)

E[Y(x*)

Var[Y(x*)

11
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The key to GP regression now becomes calculating the vector [c;S(X)]_1 vwithv =Y —por
v = K(X, x*). This is equivalent to solving the sparse banded linear system ¢(X)s = v. There
exists quite a few sparse linear solvers that can solve this linear system efficiently. For example,
the algorithm based on the LU decomposition in Davis (2006) can be applied to solve for s in
O(k*n) time. MATLAB provides convenient and efficient builtin functions, such as mldivide
or decomposition, to solve sparse banded linear system in this form.

It is worth noting that (13) can be executed in the following faster way when we need to
evaluate E [Y(x*)|Y] for a many different x*. First, we compute s := [c;S(X)]_1 (Y — u), which
takes O(k?n) time. Next we evaluate u(x*) + qu(x*)s for different x*. As said before, ¢T(x*)
has at most k — 1 non-zero entries; see Figure 2. If we know which k — 1 entries are non-
zero, the second step takes only O(k) time. To find the non-zero entry, a general approach
is to use a binary search, which takes O(logn) time. Sometime, these entries can be found
within a constant time. For example, if the design points are equally spaced, there exist explicit
expressions for the indices of the non-zero entries; if we need to predict for x* over a dense mesh
(which is a typical task of surrogate modeling), we can use the indices of the non-zero entries
for the previous point as an initial guess to find those for the current point.

Similar to the conditional inference, the log-likelihood function (6) can also be computed in
O(k?n) time. First, the log-determinant of K can be rewritten as log det(K) = log det (¢(X)) —
log det(A), according to identity (12): Because both A and ¢(X) are banded matrices, their de-
terminants can be computed in O(k?n) time by sequential methods (Kamgnia and Nguenang,
2014, section 4.1). Second, the same method for the conditional inference can be applied to
compute (Y — FB)" K~1 (Y — FB) in O(k?n) time.

3.2 One-dimensional GP Regression with Noisy Data

Suppose we observe data Z, which is a noisy version of Y. Specifically, Z(x;) = Y(x;) + ¢, where
£ ~ V'(0,02). In this case, the covariance of the observed noisy responses is Cov(Z(x;), Z(x;)) =
o2K(x;,x i)+ af,ll(xl- = X;). In other words, the covariance matrix Cov(Z, Z) is o’K+ a%l, where
ILis the identity matrix. The posterior predictor at a new point x* is also normal distributed with
the following conditional mean and variance:

2 171

o
E[Y(x9)|Z] = u(x*) + K(x*, X) | K + U—gl (Z-p), (15)
5 -1
(o}
Var [Y(x)|Z] = 0% | K(x*,x*) — K(x*,X) | K + G—‘;I KX, x*) |, (16)
and the log-likelihood function given data Z is:
T -1
L(g,0%w) = —3 [log det(0’K + 021) + (Z — Ff) [0°K + 021 (Z-FB)|. (17

When the input x is one dimensional, (15), (16), and (17) can be calculated in O(k*n) as the
noiseless case because the covariance matrix o?K + O'%I admits the following factorization:

o’K + 031 = (0¢(X) + 07 A)A™L. (18)

12
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By substituting (18) and the identity K(-, X) = ¢(-)A~! into (15), (16), and (17), we can obtain:
-1

(Z - ,Ll) ’ (19)

2

E[Y(9|z] = ux®) + ¢ (x%) [¢(x> +=Xa

2 -1

Z) = 02<K(x*, x*) — ¢ (x*) I¢(X) + %A

Var[Y(x*) K(X, x*)). (20)

and
L(B,0%, w) =— %[ logdet (6?¢(X) + o3 A) — log det(A)
+(z- F,G)TA[aqu(X) + agA]_l(z - Fﬁ)]. (21)

We have shown that ¢(X) and A are banded matrices with bandwidth (k—3)/2 and (k—1)/2, re-
spectively. Therefore, the matrix O'2¢(X)+O€.A isalso a banded matrix with bandwidth (k—3)/2.
Time complexity for computing this sum is O(kn). We then can use the algorithms for banded
matrices introduced in section 3.1 to compute (19), (20), and (21) in time complexity O(k?n).
Recall that the time complexities for computing ¢(X) and A are both O(k*n). Therefore, in the
noisy setting, the total time complexity for computing the posterior and MLE is still O(k3n),
which is the same as the noiseless case.

3.3 Multi-dimensional KP

When data is noiseless, the exact algorithm proposed in Section 3.1 can be used to solve multi-
dimensional problems if the input points are full or sparse grids.
A full grid is defined as the Cartesian product of one dimensional point sets: X¥C = szlx(i )

where each X\/) denotes any one-dimensional point set. Assuming a separable correlation func-
tion (3) comprising d one-dimensional Matérn correlation functions with half-integer smooth-
ness, and inputs on a full grid X¥©, the covariance vector K(x*,X¥®) and covariance matrix K
decompose into Kronecker products of matrices over each input dimension (Saatci, 2012; Wil-
son, 2014):

d d d d
KX = QK (. X)) = @ part = (@90 (@47) @2
k=1 j=1 j=1 j=1
d d d d
K = ®Kj(X(j),X(j)) - ® ¢j(X(j))AJ71 = <® ¢j(X(j))>< ®A;1>. (23)
k=1 j=1 j=1 j=1

When we compute the vector K(x*, X)K !, the matrix ®?=1 AJT1 is cancelled as the one dimen-
sional case. Therefore, (4) and (5) can be expressed as

E[Y(x*)

d d ~
Y] = u60) +| @ #1) || @ [¢,x0] | ¥ - (24)
j=1

j=1

13



CHEN, DING AND TUO

Var[Y(x*)

d -1
v] = o?(KGe' x) - [T 816 [8,x00)] K, x,x7) 25)
j=1
and the log-likelihood function (6) becomes

d
L(B, 0% w) = ——[nlogcr +Z nl(logdetqs (X(f))—logdetA)

d _
+ Lv-rp) || @]’ (v~ 8)|, 26)
j=1 j=1

where ¢ j’s are the KPs associated to correlation function K; and point set XW, A ; s the coeffi-

. . . . d
cient matrix for constructing ¢ i defined in (12),and n = szl

; . d . .
of X1). We can also note that entries of vector ®j=1 ¢ j(-) are products of one-dimensional KPs.

n; is the size of X¥G, n; is the size

. . . d .
Therefore, similar to the one-dimensional case, ®j=1 ¢ j(-) is a vector of compactly supported
functions.

0.8

(right) correlation function.

In (24)-(26), szl $(x) [¢ j(x@)]_1 K;(X¥, x*)and z‘jzl Z (log det ¢,(X)—log det A )

-1
can clearly be computed in 0(2?21 k3n ;) time. The computation of <®j:1 [45 j(X(f ))] )v for

v € R" is known as Kronecker product least squares (KLS), which has been extensively studied;
see, e.g., Graham (2018); Fausett and Fulton (1994). Essentially, the task can be accomplished
by sequentially solving d problems where the j™ problem is to solve n/n ;j independent banded
linear equations with n; variables. With a banded solver, the total time complexity is O(dk3n).

Although full grid designs result in simple and fast computation of GP regression, their sizes
increase exponentially in the dimension. When the dimension is large, another class of grid-
based designs called the sparse grids can be practically more useful. Let X; denote full grids in

14
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the form X; = ><‘;=1X,j where [; € Nand X, is a one-dimensional point set satisfying the nested
structure d = X, C X; C --- C X, for each j. A sparse grid of level 7 is defined as a union of
full grids X;’s: Xf’]G = Ulll <ntd—1 X;, where |1| := ijl l;. GP regression on sparse grid designs
was first discussed in Plumlee (2014). According to Algorithm 1 in Plumlee (2014), (24) and
(25), GP regression on X%G admits the expression

7

Eveo]=uec)+ D (S e, @7
1| =max{d,j—d-+1} n
Var [Y(x")|Y] = 02<K(x* x*) — Zn] (—1)’7-“'( d—1 )K (x* x*)) (28)
’ || =max{d,j—d-+1} IR

where

d d ~
A= | Q|| Qo] |- m).
=1 j=1

J
d -1
Kl(x*, X*) ‘= H ¢Z(x;‘) [¢lj (Xl])] Kj(le, x;f),
=1

come from (24) and (25), respectively; Yy and u, denote the sub-vectors of Y and u on full grid
X, respectively. Based on Theorem 1 and Algorithm 2 in Plumlee (2014) and (26), log det K and

T T
(Y — FB) KXY — FB) in the log-likehood function (6) can be decomposed as the following
linear combinations, respectively:

7 d ( det ¢lj (le) det Alj H
og ~ log ) TTon, - m.. 29)
|1|l=max{d,n+d—1} j=1 det ¢lj (le—l) det AAlj_1 W#j
U (=1~

d d B
(|?7|_—11>(Y1_F1‘6 )T ®Al/ ®[¢lj(xlj)] 1 (Y, —Fg), (30)
J=1 j=1

2
N=maxidp+d—1} 9

where ¢,(X,) = Ay = 1 and F; denotes the sub-matrix of F on full grid X;.

The above idea of direct computation fails to work for noisy data, because the Kronecker
product structure of the covariance matrices breaks down due to the noise. Nonetheless, con-
jugate gradient methods can be implemented efficiently in the presence of the KP factorization
(12). We defer the details to Section 5.

4. Numerical Experiments

We first conduct numerical experiments to assess the performance of the proposed algorithm
for grid-based designs on test functions in Section 4.1. Next we employ the proposed method to
one-dimensional real datasets in Section 4.2 to further assess its performance.

4.1 Grid-based Designs

In this section, we examine the performance of the proposed algorithm by synthetic functions
over full and sparse grid designs.
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4.1.1 FuLL GRID DESIGNS

We test our algorithm on the following deterministic function:
f(x) = sin(127x;) + sin(127x,), x € (0,1)>.

Samples of f are collected from a level-# full grid design: X,';G = x?zl{z_”, 2:277,...,1-2""} with
n =15,6,---,13. The proposed KP algorithm is applied for GP regression using product Matérn
correlation function. We choose the same correlation function in each dimension, with w = 1,
and either v = 3/2 or 5/2. We will investigate the mean squared error (MSE) and the average
computational time over 1000 random test points for each prediction resulting from KP and the
following approximation/fast GP regression algorithms with fixed correlation functions.

1. 1aGP R package 2. In each experiment, laGP is run under Gaussian covariance family,
the only covariance family supported by the package; size of the local subset is set as 100.

2. Inducing Points provided in the GPML tool box (Rasmussen and Nickisch, 2010). The
number of inducing points m is setas m = ﬁ, which is the choice to achieve the optimal
approximation power for Matérn-5/2 correlation according to Burt et al. (2019). However,
if the algorithm crashes due to large sample size, m is reduced to a level that the algorithm
can run properly. We consider Matérn-3/2 and 5/2 correlations.

3. RFF to approximate Matérn-3/2 and Matérn-5/2 correlation functions by feature func-

tions [#(cos yix + bi)]zl, where m = ﬁ, {ri}_, are independent and identically dis-
tributed (i.i.d.) samples from ¢-distributions with degrees of freedom three and five, re-
spectively, and {b;}]" are i.i.d. samples from the uniform distribution on [0, 27]. If the
algorithm crashes due to large sample size, m is reduced to a level that the algorithm can

run properly.

4. Toeplitz system solver incorporates the one-dimensional Toeplitz method and the Kro-
nercker product technique. We consider Matérn-3/2 and 5/2 correlations. In this exper-
iment we use equally spaced design points, so that the Toeplitz method can work.

We sample 1000 i.i.d. test points uniformly from (0, 1)? for each experimental trial. Figure 4
compares the MSE and the computational time of all algorithms, both under logarithmic scales,
for sample sizes 2%/, j = 5,6,...13.

The performance curves of some algorithms in Figure 4 are incomplete, because these algo-
rithms fail to work at a certain sample size due to a runtime error, or the prediction MSE ceases
to improve. In this case, we stop the subsequent experimental trials with larger sample sizes for
these algorithms. Specifically, for sample size larger than 2!, 1aGP breaks down due to runtime
errors. The MSE of Toeplitz ceases to improve at sample size 2%°. For sample size larger than
220 the number of random features for RFF is fixed at m = 21° and the number of inducing
points for inducing points method is fixed at m = 2'° for subsequent trials. Otherwise, both the
inducing points method and RFF break down because the approximated covariance matrices
are nearly singular. Because of their fixed m’s, the performances of RFF and inducing points

2. https://bobby.gramacy.com/r_packages/laGP/
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Figure 4: Logarithm of MSE for predictions with Matérn-3/2 correlation function (left) and
Matérn-5/2 correlation function (middle) and logarithm of averaged computational
time (right). The 1aGP uses the Gaussian covariance family in both the left and the
middle figure. No results are shown for the cases when a runtime error occurs or the
prediction error ceases to improve.

method do not have noticeable improvement for sample size larger than 2!, In contrast, KP
can run on larger sample sets with sizes up to 22 (more than 67 million) grid points.

It is shown in Figure 4 that KP has the lowest MSE and the fastest computational time
in all experimental trials. The inducing points method, 1aGP and RFF have similar MSE in all
experimental trials. The Toeplitz and KP algorithms, which compute the GP regression in exact
ways, outperform other approximation methods.

4.1.2 SPARSE GRID DESIGNS

We test our algorithm on the Griewank function (Molga and Smutnicki, 2005), defined as

2

d d
f(x:Z_: J — [ ] cos (\/7)+1 x € (=2,2)4,

j=1

with d = 10 and d = 20 respectively. Samples of f are collected from a level- sparse grid
design (n = 3,4,---,7). We consider a constant mean u(x) = 8 and Matérn correlations with
v = 3/2,5/2 and a single scale parameter w for all dimensions. We treat mean 3, variance o>
and scale w as unknown variables and use the MLE-predictor. We compare the performance
of proposed KP algorithm and the direct method for GP regression on the sparse grids given in
Plumlee (2014).

We sample 1000 i.i.d. points uniformly from the input space for each experimental trial.
The mean squared error is estimated from these test points. In each trial, the mean squared
errors of KP and direct method are in the same order and their differences are within +1071.
This is because both methods compute the MLE-predictor in an exact manner, and this also
ensures the numerical correctness of the proposed method.

Figure 5 compares the logarithm of the needed computational time to estimate the unknown
parameters 3, o? and w and make predictions on the test points. The proposed KP algorithm is
significantly advantageous in the computational time. When there are more than 10° training
points, the KP algorithm is at least twice faster than the direct method in each trial.
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Figure 5: Logarithm of the computational time for MLE-predictions with Matérn-3/2 correla-
tion function and Matérn-5/2 correlation with 10 and 20 dimensional inputs.

4.2 Real Datasets

In this section, we assess the performance of the proposed algorithm on two real-world datasets:
the Mauna Loa CO, dataset (Keeling and Whorf, 2005) and the intraday stock prices of Apple
Inc.

4.2.1 CO, DATA INTERPOLATION

This dataset consists of the monthly average atmosphere CO, concentrations at the the Mauna
Loa Observatory in Hawaii for the last sixty years. The dataset has in total 767 data points and
features a overall upward trend and a yearly cycle.

We fit the data using GP models reinforced by KP, inducing points, and RFF methods, re-
spectively. For the proposed KP method, we consider a constant mean u(x) = (3, a single scale
parameter w, and Matérn correlations with v = 3/2,5/2, respectively. For the inducing points
method and RFF, we consider also constant mean u(x) = 8. Different from KP, we use Gaus-
sian correlations with scale parameter w for the inducing points method and RFF. The number
of inducing points is set as 100 for inducing points method. The number of generated random
feature is set as 30 for RFF. We treat mean 3, variance o and scale w for all algorithms as un-
known variables and use the MLE-predictor. For each algorithm, we compute the conditional
mean and standard deviation on 2000 test points and plot the predictive curve. To evaluate
the speed in training and prediction, we record the elapsed times for training and calculate the
average time for a new prediction.

The training and prediction time of each algorithm is shown in Table 2. It is seen that the
KP methods with Matérn-3/2 and Matérn-5/2 are faster than the inducing points and RFF.
The predictive curve given by each algorithm is shown in Figure 6. Clearly, both KP methods
interpolate adequately from 1960 to 2020 with accurate conditional standard deviations. In
contrast, inducing points and RFF fail to interpolate the data, because the numbers of feature
functions in inducing points and RFF are less than the number of observations. This results in
predictive curves with higher standard deviations.

4.2.2 STOCK PRICE REGRESSION

This dataset consists of the intraday stock prices of Apple Inc from January, 2009 to April, 2011.
The dataset has in total 1259 data points. We assume that the data points are corrupted by noise
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CO, Stock Price
Algorithm T train (s€C) Tpreq (1077 sec) | Tipin (SeC) Tpreq (1073 sec)
KP Matérn-3/2 0.18 £0.13 2.84 +0.96 0.37+0.11 2.83 +1.07
KP Matérn-5/2 0.23 +£0.17 3.31+1.22 0.44 +0.27 3.54 +1.73
Inducing Points 0.28 +0.09 5.26 £1.56 0.58 +0.13 9.88 + 3.37
RFF 0.25+0.12 3.34 +1.39 0.50 +0.26 7.42 +0.99

Table 2: Comparisons of training and prediction time

[ R |

950
Year

e
Year

Figure 6: Observations of monthly CO, concentration (first row) and its interpolation by KP
with Matérn-3/2 (second row) , KP with Matérn-5/2 (third row), Inducing Points
(fourth row), and RFF (fifth row). The blue curves label predictions and the red areas
label +1 standard deviation.

so they are randomly distributed around some underlying trend. In this experiment, our goal
is to reconstruct the underlying trend via GP regression.
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Similar to Section 4.2.1, we run KP with Matérn-3/2 and Matérn-5/2 correlations on the
dataset and use inducing pFoints and RFF as our benchmark algorithms. Settings of all algo-
rithms are exactly the same as Section 4.2.1 except that the number of inducing points is set as
200 and the number of generated random features is set as 100 for RFF. We further treat the data
variance parameter o2 as an unknown parameter and use the MLE predictor. We also record

Y
the elapsed times for training and calculate the average time for a new prediction.
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Figure 7: Stock Price regression by KP Matérn -3/2 (upper left), KP Matérn -5/2 (upper right),
inducing points (lower left) and RFF (lower right). The blue curves label predictions,
the red areas label +1 standard deviations, and the red dots labels observations.

Similar to the previous experiment, Table 2 shows that the KP methods are more efficient
than inducing points and RFF in both training and prediction. The predictive curve given by
each algorithm is shown in Figure 7. We can see that both KP methods successfully capture the
local changes of the overall trend while inducing points and RFF fail to do so. This is because
neither inducing points nor RFF have enough number of feature functions to reconstruct curves
with highly local fluctuations, and therefore, their predictive curves are too smooth so that a
larger number of data points are distributed outside of their +1 standard deviation areas.
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5. Possible Extensions

Although the primary focus of this article is on exact algorithms, we would like to mention
the potential of combining the proposed method with existing approximate algorithms. In this
section, we will briefly discuss how to use the conjugate gradient method in the presence of the
KP factorization (12) to accommodate a broader class of multi-dimensional Gaussian process
regression problems.

5.1 Multi-dimensional GP Regression with Noisy Data

Suppose the input points lie in a full grid X¥C and the observed data Z is noisy: Z(x;) = Y(x;)+¢,
where £ ~ N(0, a%). Following arguments similar to what we have done in Sections 3.2 and
3.3, we can show that the following matrix operations are essential in computing the posterior
and MLE:

-1

02 d
®¢(x0>) G—Y®A] v (31)
Jj=1
oy d
log det ®¢(x<]>) ;@A (32)
j=1

for some v € R". The direct Kronecker product approach fails to work in this scenario be-
cause the additive noise breaks the tensor product structure. Nonetheless, conjugate gradient
methods such as those implemented in GPyTorch (Gardner et al., 2018) or MATLAB (Barrett
et al., 1994) can be employed to solve (31) and (32) efficiently. This is because the conjugate
gradient methods require nothing more than the multiplication between the covariance matrix

and a vector. In our case, both {¢ j(X(j))} and {A;} are banded matrices so ®;l:1 ¢j(X(j)) and
®;1:1 A, which are Kronecker products of banded matrices, have only O(n) non-zero entries.

Therefore, the cost of matrix-multiplications by the matres ®?=1 ) j(XU)) and ®‘;=1 A; both
scale linearly with respect to the number of points in the grid. If input points lie in a sparse
grid, the posterior and MLE conditional on noisy data can also be computed efficiently because
they can be decomposed as linear combinations of posteriors and MLEs on full grids as shown
in section 3.3.

5.2 Additive Covariance Functions

Suppose the GP is equipped with the following additive covariance function:

Kxx)= ) [ ks jCxjx)) (33)
JeF jeJ
where 7 is any subset of the power set of {1,2, -+, d} and ky ; is any one-dimensional Matérn

correlation with half-integer smoothness. When input points lie in a full grid X¥C, the posterior
and MLE can also be efficiently computed using conjugate gradient methods. In this case, the
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covariance matrix can be written as the following form:

K=Y ®¢j,j(x<f>) ®A;j. . (34)

JeF | jed JjEI

The matrix-multiplication Kv can be computed in linear time in the size of XFC for any vector

v € R". Firstly, we use KLS techniques introduced in Section 3.3 to compute v/ = | ®;es A;j.]v,
which has linear time complexity in the size of XF¢. Then, we can compute [ ®j cr Py, i (XU ))]v’ ,
which has the same time complexity. Similar to Section 5.1, efficient algorithms also exist when

input points lie in a sparse grid.

6. Conclusions and Discussion

In this work, we propose a rapid and exact algorithm for one-dimensional Gaussian process
regression under Matérn correlations with half-integer smoothness. The proposed method can
be applied to some multi-dimensional problems by using tensor product techniques, including
grid and sparse grid designs, and their generalizations (Plumlee et al., 2021). With a simple
modification, the proposed algorithm can also accommodate noisy data. If the design is not
grid-based, the proposed algorithm is not applicable. We may apply the idea of Ding et al. (2020)
to develop approximated algorithms, which work for not only regression problems, but also for
other type of supervised learning tasks.

Another direction for future work is to establish the relationship between KP and the state-
space approaches. The latter methods leverage the Gauss-Markov process representation of cer-
tain GPs, including Matérn-type GPs with half-integer smoothness, and employ the Kalman
filtering and related methodologies to handle GP regression, which results in a learning al-
gorithm with time and space complexity both in O(n) (Hartikainen and Sarkka, 2010; Saatgi,
2012; Sarkka et al., 2013; Loper et al., 2021). Whether the key mathematical theories of KP
and state-space approaches are essentially equivalent is unknown and requires further inves-
tigation. Although having the same time and space complexity as KP, the Kalman filtering
method is formulated in a sequential data processing form, which significantly differs from the
usual supervised learning framework and makes it more difficult to comprehend. The pro-
posed method, in contrast, is presented by a simple matrix factorization (12), which is easy to
implement and incorporated in more complicated models.
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Appendix

Appendix A. Paley-Wiener Theorems

We will need two Paley-Wiener theorems in our proofs, given by Lemmas 15 and 16. For detailed
discussion, we refer to Chapter 4 of Stein and Shakarchi (2003). Denote the support of function

fassupp f.
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Definition 14 (Stein and Shakarchi (2003), page 112) We say that a function f is of moder-
ate decrease if there exists M € R so that | f(x)| < M /(1 + |x|%) for some a > 1, forall x € R.

Lemma 15 (Theorem 3.3 in Chapter 4 of Stein and Shakarchi (2003)) Suppose f is contin-
uous and of moderate decrease on R, f is the Fourier transform of f. Then, f has an exten-
sion to the complex plane that is entire with® |f(z)| < AeM? for some A > 0, if and only if
supp f ¢ [-M, M].

Lemma 16 (Theorem 3.5 in Chapter 4 of Stein and Shakarchi (2003)) Suppose f is contin-
uous and of moderate decrease on R, f is the Fourier transform of f. Then supp f C [0, +o0) if
and only if f can be extended to a continuous and bounded function in the closed upper half-plane
{z =x +1iy : y > 0} with f holomorphic in the interior.

Appendix B. Technical Proofs
B.1 Algebraic Properties

The following Lemma 17 will be useful in proving the main theorems. We use deg p to de-
note the degree of polynomial p. For notational convenience, we define the degree of the zero
polynomial as —1. We say x a zero of function f if f(x) = 0.

Lemma 17 Let p; and p, be polynomialswith deg p; = d;,deg p, = d,. Ifmax(deg p,,deg p,) >
0 and c # 0, then the function f(x) := p;(x)e“* + p,(x)e™* has at most d, + d, + 1 real-valued
Zeros.

Proof Without loss of generality, we assume that p; is non-zero. Suppose f hasatleastd; +d,+
2 real-valued zeros. Equivalently, the function g(x) = p;(x)e** + p,(x) has at least d; + d, + 2
real-valued zeros. The mean value theorem implies g’(£) = 0 for some £ lying between two con-
secutive real-valued zeros of g. Therefore, g’ has at least d; +d, + 1 real-valued zeros. Repeating
this procedure d, + 1 times, we can conclude that g{%2*1 has at least d, + 1 real-valued zeros.
Note that g{%2+1) possesses the form g(©2+1(x) = g(x)e?**, where g(x) is a non-zero polynomial
with degree d,. Because e** > 0, g(x) has at least d; + 1 real-valued zeros, which contradicts
the fundamental theorem of algebra. |

Lemma 18 can directly lead to Theorems 2 and 9. We call the vector of zero the trivial
solution to a homogeneous system of linear equations.

Lemma 18 The following homogeneous systems have only the trivial solutions.

1. For m > 1, the m X m system about (uy, ..., u,,)":
m
Z b; exp{cb;ju; =0,
j=1

withl =0,...,m — 1, ¢ # 0 and distinct real numbers by, ..., b,,,.

3. Stein and Shakarchi (2003) uses an equivalent but different definition of the inverse Fourier transform as f(£) =
S5, f(x)e?™dx, so that this inequality becomes | f(z)| < Ae*™!2,
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2. Form,s > 1, the (m + s) X (m + s) system about (Uy, ..., Uy 4s)"

m+s m+s

Z bﬁ. exp{cb;ju; = 0, Z b; exp{—cb;lu; =0, (35)
j=1 j=1

withl =0,..,m—1,r =0,..,5 — 1, c # 0 and distinct real numbers by, ..., by, ..

Proof For both parts, it suffices to prove that the coefficient matrices are of full row ranks, which
is equivalent to that they are of full column ranks. This inspires us to consider the transpose of
the coefficient matrices.

Here we only provide the proof for Part 2. The proof for Part 1 follows from similar lines.
For Part 2, the linear system corresponding to the transposed coefficient matrix is

s—1

m—1
Z bﬁ. expicb;}u; + Z b; exp{—cb;}vpr =0, (36)
=0 r=0

with the vector of unknowns (v, ..., V,,—1)". Suppose (35) has a non-trivial solution. Then
(36) also has a nontrivial solution, denoted as (v, ..., v}, +S_1)T. Write p;(x) = ZZ_OI Ul"‘xl and

po(x) = Zj;é U,,-X". Therefore, (36) implies that each b; is a zero of the function f(x) :=

D1(x)e + py(x)e~¢*. Hence f(x) has at least m + s distinct zeros. Note that degp; < m —

1,deg p, < s;. Because (v, ..., U, +s—1)T is non-trivial, we have max(deg p;, deg p,) > 0. Thus

Lemma 17 yields that f(x) has no more than m + s — 1 distinct zeros, a contradiction. |

Proof [Proof of Theorem 2| This theorem follows directly from Part 2 of Lemma 18, because
each (k — 1) X (k — 1) submatrix of the coefficient matrix corresponds a linear system of the
form in Part 2 of Lemma 18. |

Proof [Proof of Theorem 9] This theorem follows directly from Lemma 18, because each (s —
1) X (s — 1) submatrix of the coefficient matrix corresponds a linear system of the form in of
Lemma 18. |

Proof [Proof of Theorem 3] Let (A, ..., A;)T be a solution to (8). It suffices to prove that
k
D Aj(a; + ) exp{de(a; + 1)} = 0,
j=1
forl =0,...,(k—3)/2,5 = £1 and each t € R. This can be proved by noting that

k
Z Aj(a; + t)! exp{dc(a; + 1)}
j=1

k I
= exp{dct} Z Ajexp{dca;} Z (rfq)aj'."tl‘m
j=1 m=0
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! k
= exp{dct} Z (é)tl"” ZAja;.” exp{dca;}| =0,
m=0 Jj=1

where the last equality follows from the identity Z?zl Aj a;" exp{dca;} = 0for0 < m <[, en-
sured by equation system (8). |

Proof [Proof of Theorem 10] The proof follows from arguments similar to the proof of Theorem
3. |

B.2 Results for the Supports

We first prove the following useful lemma.

Lemma 19 Let K be a Matérn correlation with a half-integer smoothness. Supposeb; < --- < b,
andt € (b;,b.,;) forsomel < 7 < n. Let P(x) = Z;’LlBjK(x, b)), for B; € R. Denote

m

P(x) = 2521 BjK(x,b;), and ,(x) = Zj:r+1 B;K(x,b;). If there exists ¢ > 0 such that for
x€E(t—¢,t+e€)p(x)=0,then

YOO, forx<be 0 [0 forx <o,
0, otherwise. Y(x), otherwise.

Pi(x) =

Proof It is known that when v = p+1/2 with p € N, the Matérn correlation can be expressed
as (Santner et al., 2003)

K(x,x") = P,(|x — x'|) exp{—c|x — x'[}, (37)
where ¢ = 1/2v/w and P,(x) = crz(zp—p!)| Z?:o %(Zcx)p‘f is a polynomial of degree p.
Therefore, for any x € (b, b41),
b)) = hi(x) +Pa(x)
T m
= Z BjPp(x — bj)e_c(x_bf) + Z B;P,(b; - x)ec>=b))
Jj=1 j=r+1

=: p1(x)e™ + py(x)e*,

where p; and p, are polynomials. Thus (x) is an analytic function on (b;, b, ,1). Then(x) =0
for x € (t—e¢,t+¢)implies (x) = 0 for x € (b, b,,;), which is possible only if p; = p, = 0, be-
cause otherwise 3 can only have at most 2p + 1 distinct zeros on (b, b, ;) according to Lemma
17. Hence, 3;(x) = 0 whenever x > b,, and ¥,(x) = 0 whenever x < b, ;. |

The following lemma formalizes the rationale behind (8).

Lemma 20 Let U be a connected open subset of C containing a point z,. Let f(z) be a holomor-
phic function on U, and m a positive integer. Then f(z)(z — zy)™™ can be extended as a holomor-
phic function on U if and only if f(zy) = 0,for j =0,..,m — 1,
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Proof First assume f(z)(z — zy)™™ being holomorphic. Then f(z,) must be zero, because
otherwise lim,_,, f(z)(z — zp)™™ = oo. If f vanishes identically in U, the desired result is
trivial. If f does not vanish identically in U, according to Theorem 1.1 in Chapter 3 of Stein and
Shakarchi (2003), there exists a neighborhood V' C U of z,, and a unique positive integer m’
such that f(z) = (z — zo)m' g(z) for z € V with g being a non-vanishing holomorphic function
on V. Clearly it must hold that m’ > m, because otherwise we have lim,_,, f(z2)(z—2p)™™ = o0
again. Then it is easily checked that f()(z,) = 0, for j =0, ..., m — 1.

For the converse, in a small disc centered at z, the function f has a power series expansion
f = Z;ZO a;j(z — zy)/, where a; = fU)(zy)/j! for each j € N. Thus gy = -+ = a,,_; = 0.

Consequently, f(z)(z — zy) ™" = Z;’;m aj(z— Z,)/ ™™ and thus is holomophic on U. |

Proof [Proof of Theorem 8] As before, let k := 2v + 2. Suppose that ¢(x) = Z;.n:l AjK(x,a;)
has a compact support. The analytic continuation of its inverse Fourier transform is

m
$(2) = D) Ajexpia;zi(c? + z2)*D/2 1= y(z)(c? + 22)*kV/2,
j=1

for z € C € {#ci}. Then Lemma 20 entails y)(zci) = 0 for j = 0, ..., (k — 3)/2, which leads to
the linear system
m
Z Aja; exp{dca;} =0,
=1

with [ = 0,...,(k —3)/2 and § = +1. But this system has only the trivial solution in view of
Lemma 18. u

Proof [ Proof of Theorem 5]Without loss of generality, we can assume thata; = —M and a, = M
for some positive real number M, because otherwise we can apply a shift translation to convert
the original problem to this form in view of Theorem 3.

We first employ Lemma 15 to show that supp ¢, C [-M, M| = [a;, a;]. Lemma 20 implies
that §, is entire. By its continuity, |¢, | is bounded in the region |z| < 2¢c. For |z| > 2c, we have

8.2 = [1(@)] - |(@ + 2)ED1] < &k y(2)|

k k
< K2 Ay | fexpl—iayz}| < ¢ 2[4y expiM ),
j=1 =

where the last inequality follows from the fact that |e?| < el?l. Clearly, ¢, is of moderate de-
crease. According to Lemma 15, we obtain that supp ¢, C [-M, M].

It remains to prove that supp ¢, = [—M, M]. Suppose supp ¢, # [-M, M]. Then we can
find —-M < M, < M, < M, such that ¢,(x) = 0 for x € [M;, M,]. Therefore, Lemma 19 implies
that ¢, can be expressed as

T k
$a(x) = D AK(x,a) + D, AK(x,a;) 1=y (x) + (%),
j=1

J=1+1
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for some 1 < 7 < n, such that suppy, C [a;,a.],supp®, C [a.4;,a,]. Because either 3; or
1, must not be identically vanishing, such a function, according to Definition 1, is a KP with
degree less than k. But this contradicts Theorem 8. |

Proof [Proof of Theorem 7] For Part 1, when the smoothness parameter v of a Matérn kernel is
not a half integer, then direct calculations shows

k 1

Fa(x) x| Ajexpfia;x}|(c?+x2)7 2
=1

k

= | D] Ajexpfia;x}|exp {—(v + %) log(x? + cz)}. (38)
=1

The goal is to prove that (38) cannot be extended to an entire function unless A; = 0 for each
Jj. There is no continuous complex logarithm function defined on all C \ {0}. Here we consider
the principal branch of the complex logarithm Logz := log|z| + i Argz, where Argz is the
principal value of the argument of z ranging in (—x, 7]. For x € R, we have logx = Logx. It
is known that Log x is holomorphic on the set C \ {z € R : z < 0}. Therefore, the function in
(38) can be analytically continued to the region 8§ :=C\ 8 :=C\{yi : y e R, |y| > c}.

Because analytical continuation is unique, the analytical continuation of (38) should coin-
cide with

k
1
g(z) := [Z A exp{iajz}‘ exp {—(‘V + 5) Log(z? + cz)}
j=1
on 8. Because v + 1/2 is not an integer, exp {—(v + %) Log(x2 + cz)} is discontinuous when z
moves across 8¢. Suppose there exists a KP. Then g(z) must an entire function in view of lemma
15. To make g(z) continuous on 8¢, we must have Z?zl Ajexpiia;z} = 0 on &, but this readily

implies 2?21 Ajexpiia;z} = 0on C as Z’;zl Ajexpiia;z} is also an entire function. Therefore
g(z) = 0. By the uniqueness of the Fourier transform, the underlying KP vanishes identically
in R, which leads to a contradiction.

For part 2, a Gaussian correlation function K is an analytic function on R, and so does
Pa = Z';:l AjK(x — a;). Therefore, ¢, cannot have a compact support unless ¢, = 0. |

Proof [Proof of Theorem 11] Without loss of generality, we can assume that a; = 0 because
otherwise we can apply shift translation to make this happen in view of Theorem 10.
Clearly, ¢, is of moderate decrease in view of the expression (37). Direct calculation shows

$a(2) x [Z Aj exp{iajz}‘ (e + z2)~k=D/2 = y(z)(c? 4 z2)~k-D/2,
=1

Equation (10) implies y")(ci) = 0 for j = 0, ..., (k —3)/2. Thus %(7(2)(2+Ci)_(k_1)/2)|z=ci =0

for j = 0, ..., (k—3)/2, which, together with Lemma 20, yields that f(z) := y(z)(c?+z%)~k-D/2
is holomorphic in a neighborhood of ci. So f(z) is continuous on the upper half-plane {z =

27



CHEN, DING AND TUO

X + iy : y > 0} and is holomorphic in its interior. To employ Lemma 16, it remains to proof
that f(z) isbounded in {z = x + iy : y > 0}. For |z — ci| < ¢, f(z) is clearly bounded as it is a
continuous function. For |z —ci| > candz € {z = x + iy : y > 0}, we have

|@2+Z%—&—Dﬁ|=|Z_C“%b4yqz+c”%b4V2Sc%b&X

Write z = x + iy, then

F@I = @I +2) 62| < |3 A explia;(x + iy)je D
j=1

N S
< 6D 374 fexplia;(x + iyl = =D 37 |Aj| expi—a;y},
j=1 j=1

which is bounded as y > 0. Therefore, according to Lemma 16, supp ¢, C [0, +0).

Next, we prove that 0 € supp ¢,. First, it can be shown that A; # 0, because otherwise
(A,, ..., AT isasolution to the linear system Zj’:z a;. exp{—caj}Aj =0,withl =0,...,(k—3)/2,
. N N .
ifs = (k+1)/2, or ijz aﬁ. exp{—ca;}A; =0, ijz a; exp{ca;}A; = 0,withl =0,...,(k-3)/2
andr = 0,...,s — (k + 3)/2,if s > (k + 3)/2. Then Lemma 17 suggests that A; = 0 for all
j = 0,...,s, which is a contradiction. Now, suppose 0 & supp ¢,. Then there exists € > 0,
such that ¢,(x) = 0 for all x < €. Without loss of generality, assume € < a,. We now apply
a shift transformation. Recall that T_.(a) := (a; — ¢,..., a3 — €). Theorem 10 implies that

N
br.(a)(X) = ijl AjK(x +¢,a;). Thus,

(;STe(a)(Z) x \Z Aj exp{i(aj — e)z}] (c + Zz)—(k—n/z_

j=1

It is easily seen that cﬁTe(a)(z) is unbounded if z = iy for sufficiently large y > 0. Specifically,

CISTe(a)(iy) x [Z Ajexp{—(a; - €)y}] (c? — y2)~(k=D/2
j=1

= AP —y) T exple—ayb+ (@ —y) T Y A, expi—(a; — )y
j=2

where the first term diverges and the second term converges to zeroas y — +o0, because A; # 0
anda; <e<a; <--<a,.

The remainder is to prove that supp ¢, = [0, +0). Suppose supp ¢, # [0, +o0). Then there
exist M, > M; > 0, such that ¢, (x) = 0 whenever x € (M;, M,). Without loss of generality, we
assume that M, M, & {a, ..., a;}. Then we can write

$a(x) = D) AK(x,a;) +0- K(x,M;) + 0 - K(x, M).
j=1

Then Lemma 19 implies that ¢, (x) can be decomposed into

$a(x) = D AK(x,a) + D, AK(x,a;) 1=y (x) + (%),

j=1 Jj=t+1
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forsome 1 < 7 < s, such thatsupp¥; C [0, M;]and supp; C [M,, +o0). Because 0 € supp ¢,,
we have supp 1; # @. Therefore, ¢, is a non-zero function and has a compact support, which
contradicts Theorem 8. |

B.3 Linear Independence

Proof [Proof of Theorem 13] We have learned from Theorems 5 and 11, and the analogous
counterpart of Theorem 11 for the left-sided KPs that:

1. The left-sided KPs ¢y, ¢, ..., p—1y/2 have supports (—oc0, Xy1y/2] (=00, X(ey1)/241)5 s
(=00, xi_1], respectively.

2. The KPS (s1y/2: P1)/2415 - » Pn—(k—1)/2 have supports [x1, xp |, [x2, X1, ooos [Xp_per1, Xn],
respectively.

3. Theright-sided KPS ¢,,_(x_3)/25 -+ » $p—1, P have Supports [Xx,,_jy2, 00), ..e; [Xp—(k=1)/2-1> ),
[Xp—(k—1)/2> 00) Tespectively.

Therefore, for r < n — (k — 1)/2, any function of the form f := 2;21 A;¢; satisfies supp f C

(=00, X74(k—1)/2]- Note that supp ¢, 1 = [Xr11-k—1)/2> Xr+14(k=1)/2] € (=00, X4 (k—1)/2], which
proves that ¢.,; & span{¢, ...,¢.}. Hence, by induction, we can prove that ¢, ..., $,_—1)/2
are linearly independent.

Similarly, we can prove that the right-sided KPs ¢,,_(x_3)/2, --- » $,, are linearly independent.

Now suppose Z;[:l §j¢; =0for &y, ..., &, € R. We rearrange this identity as

n—(k=1)/2 n
fi:= Z §ipj=— Z §i9i =1 fa (39)
=1 j=n—(k-3)/2

i.e., the left-hand side of (39) is a linear combination of the left-sided KPs and the KPs, and the
right-hand side of (39) is a linear combination of the right-sided KPs.

Note that supp f1 C (—o0,x,] and supp f, C [X,_k42, +o0). Then identify (39) implies
supp f, C (=00, X, | N [Xp_k42, +0) = [X,,_k42, X, ]. By definition, f, is a linear combination of
k — 1 functions K(-, a,,_x42), - K(-, a,). Hence, by Theorem 8, f, has a compact support only
if f, = 0, which, together with the fact that ¢,__3)/2, ..., $, are linearly independent, yields

that §,_(—3)/2 = -+ = §, = 0. Then by (39), we similarly have &, ..., X,__1y/» = 0 because
$15 - s Pn—(k—1)/2 are proved to be linearly independent. In summary, we prove that ¢,,..., ¢,
are linearly independent. |
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