Bandwidth and Congestion Aware Routing for
Wide-Area Hybrid Networks

Osama Abu Hamdan, Scotty Strachan, and Engin Arslan
Department of Computer Science and Engineering
University of Nevada, Reno, USA
oabuhamdan @nevada.unr.edu, sstrachan@nshe.nevada.edu, earslan@unr.edu

Abstract—An increasing number of science projects rely on
sensors to gather data from remote areas. For example, a wildfire
detection project deploys video cameras to various high-risk
areas to identify wildfires as quickly as possible. These projects
typically depend on hybrid networks that are composed of a
combination of wireless and wired links to stream data from
sensors to datacenters. The management of such hybrid networks
is a burdensome task as both link capacities and traffic rates of
flows are dynamic and unpredictable.

In this paper, we introduce a BAndwidth- and Congestion
Aware Routing (BACAR) for hybrid networks using Software
Defined Networks. We use active delay measurements to identify
congested links and update their capacity to measure traffic rate
to detect any link capacity degradation events. We test BACAR in
Mininet and show that it offers a robust solution to detect
bandwidth fluctuations that can happen in long-distance wireless
links and find optimal routes for rate-sensitive flows to improve
overall network utilization and enhance flow performance.

Index Terms—Software Defined Networks, Hybrid Networks,
Congestion-aware routing

I. INTRODUCTION

Individual edge devices and locations communicate (via
wireless or wired ethernet) with a set of middle aggrega-
tion points, which are in turn connected by fiber or high-
speed microwave backhaul links to form an interconnected
infrastructure leading to private datacenters or cloud services
as illustrated in Figure [T} The resulting end-to-end network
topology is highly variable in terms of availability and capacity
over both space and time, often due to conditions outside
of engineering control such as weather, radio interference, or
physical disturbance.

Current network management practices for hybrid networks
rely on static routing technologies, such as Open Shortest Path
First (OSPF) and Multiprotocol Label Switching (MPLS), that
are manually configured by experienced network administra-
tors across the physical and virtual WANs. Although tradi-
tional distributed routing algorithms work fairly well for ho-
mogeneous networks with rare link failures, it requires highly-
skilled network managers to frequently tune link weights
in large-scale hybrid networks where link capacity, network
demand, and QoS metrics are exceedingly dynamic. While
Software Defined Network (SDN) concept is proposed to
facilitate network management and improve Quality of Service
(QoS), existing SDN-based solutions assume the bandwidth
of links to be static and decide on flow routes based on

Regional WAN
Routing

Fire/Hazard

Ethernet
Cameras =

Commercial Cloud

" 1-100G
> Optical ™
=l
Field Station

On-Prem
Dtacenter

5-50M
Wireless

Weather/Climate
Stations
Wireless

Wireless

Smart Traffic
Infrastructure

Regional WAN
Wireless Routing) X
|_®. — _E

50-200M
Off-Prem

Datacenter

1-10G
Optical

Optical

Edge Acquisition ——— > | Data Aggregation/Distribution | ———>

Fig. 1: A Sample hybrid network infrastructure used to stream data
from sensors to central clusters.

link utilization values. However, hybrid sensor networks fre-
quently face bandwidth fluctuations in wireless links due to
environmental conditions, thus requiring an effective way of
measuring link capacities to adapt to changing conditions.

In this paper, we propose bandwidth and congestion-aware
routing for wide-area hybrid networks. To capture link ca-
pacity degradation, we monitor port statistics and schedule
lightweight delay measurement probes if the traffic rate on
any link changes significantly. Since a bottleneck link will
affect the traffic rate on most links, we conduct lightweight
active delay measurements to localize the link with degraded
capacity. Finally, flows are rerouted to alternate routes based
on the utilization of primary and alternate paths.

The rest of the paper is structured as the following: Sec-
tion [[I] provides the literature study and related works. Our
implementation details are provided in Section Section
demonstrates our experimentation, results, and analysis.
Finally, conclusions are drawn in Section [VI]

II. RELATED WORK

Congestion control techniques in SDN can be classified into
two in-network solutions [[1]] [2]] [3] [4] and hybrid congestion
methods [5]] [6] [7] [8] and [9] which utilize both in-network
and end hosts to control traffic rates. In-network approaches
mainly modify receive buffer field in TCP packets when
congestion is detected to force senders to throttle their sending
rate. Hybrid solutions, on the other hand, send signals to the

traffic sender (or virtual machine hypervisor) when congestion
is detected such that the sender can lower its rate to avoid
overwhelming network resources.

Jamali et al. [[10] targeted the load balancing problem and
proposed a routing algorithm to find routes with high through-
put and shortest path. They also aimed at keeping the number
of changes at a minimum to minimize the impact of rerouting
on application performance. Sminesh et al. [11] identify a
link as a bottleneck if the link is over-utilized by periodically
collecting the port statistics. Once a bottleneck is detected,
the SDN controller initiates alternate route computation. If
an alternate path exists, the flow admission module models
a Bayesian network to decide whether the alternate path
can handle the new flow load without leading to congestion
propagation.

Kanagavelu et al. [12] proposed a local re-routing mech-
anism in SDN, where the OpenFlow controller collects the
port, table, and flow statistics from all OpenFlow switches at
fixed intervals. The routing engine computes the least-loaded,
shortest candidate paths between any pair of end hosts, based
on these statistics. It checks for congestion periodically across
all the links and if any link load exceeds a threshold value, the
controller re-routes one or more large flows across the link to
an alternate path one by one, ensuring that the large flow will
not overload the newly chosen alternate path. Kao et al. [[13]]
proposed an effective proactive traffic re-routing mechanism
for congestion avoidance using an SDN controller to manage
actions and forwarding rules. The controller observes the
current traffic of switches and updates the topology according
to link weights that are assigned based on measured bandwidth
usage. Then, the traffic on the congested link is instantly
transferred to other links, if possible. Park et al. [[14] proposed
a routing architecture called Automatic Re-routing with Loss
Detection (ARLD). In ALRD, the SDN controller treats a link
as a bottleneck if a packet drop is observed, then it invokes
a rerouting algorithm to find alternate paths for flows passing
through the congested link.

Attarha et al. [15] proposed a congestion avoidance algo-
rithm in which the SDN controller monitors the network status
periodically and routes the newly arrived flows through a path
that can forward the flow without resulting in congestion.
Whenever the utilization exceeds 70% of the link capacity,
the controller computes the amount of traffic and the shortest
backup path through which the flows are to be re-routed
to avoid congestion. This in turn reduces the load on the
congested ports of an over-utilized switch.

In the area of available bandwidth measurement, most
previous works adopted an active probing approach. They
conduct transfers between hosts periodically to discover avail-
able capacity in different routes [[16]—[18]. However, these
approaches can have an adverse impact on production traffic,
and thus cannot be executed frequently. Therefore, we chose
to execute delay measurement to infer congestion, then use
port statistics to calculate current link capacity.

Power lost
aggregation point

Primary path
radio link damaged

Primary path
radio link iced over

Datasource: rxmbps

qckland / Mikrotik Bandwidth Rx

Week 03
22,906 Last

Week 04
48.196 Max

Week 05
Average

Week 06
12,755 Min
Command check_mikrotik

B rxmbps 29.784

Fig. 2: Example of bandwidth fluctuations in a wireless link used
in The Nevada Climate-ecohydrological Assessment Network (Nev-
CAN) project. Extreme weather conditions lead to a nearly 50%
reduction in transmission rate.

III. BACKGROUND AND MOTIVATION

The available network capacity of radio channels can be
affected by environmental conditions. In particular, winter con-
ditions such as heavy snowfall can lower the effective trans-
mission rate of long-distance directional radio links as they
can increase the signal-to-noise ratio by disturbing antenna
orientation, damaging the antenna dish, and causing moisture
in coaxial cable. In addition to extreme weather conditions,
interference is also a common problem when using unlicensed
frequencies, which can adversely affect the transmission rate
of wireless links. Consequently, the bandwidth of wireless
links exhibits a highly fluctuating behavior in production wide-
area hybrid networks.

As an example Figure [2] demonstrates the available band-
width of one of the wireless links used in The Nevada Climate-
ecohydrological Assessment Network (NevCan) project. It can
be seen from the figure that path capacity exhibits drastic
changes as snowstorms cause icing and disorientation on the
antenna. While the average available capacity is nearly 40
Mbps during the first and second week in monthly data, it
falls below 20 Mbps in the third week as a result of weather
conditions damaging individual wireless link capacities on the
network. While it may be possible to capture the signal-to-
noise ratio on wireless interfaces to detect such bandwidth
degradation, it is not always easily accessible to network
administrators, and therefore requires a manual process of
examining system behavior to detect such changes. Although
there are backup links that can be used in the event of
primary link failures, bandwidth degradation events typically
do not trigger route changes as primary links still appear to be
functional. This in turn can lead to applications experiencing
congestion while alternate links go unused.

SDN offers a great opportunity to take advantage of avail-
able links as it can automatically divert some flows to backup
routes when the primary route is congested. However, existing
solutions in this domain assume that link bandwidth does not
change over time, so they solely focus on detecting congestion
and mitigating them by means of choosing custom routes to
improve network utilization. As a result, they fail to resolve
network congestion caused by link performance degradation
events in wireless links. We, therefore, introduce BAndwidth
and Congestion-Aware Routing (BACAR) to find optimal paths

Src-Dst Pair Mac addresses for source and destination hosts

Current Path The current route this flow is passing through

Alt Paths Alternative paths connecting the same src-dst

Current Rate The current recorded rate of the flow

Highest Recorded Rate | The highest recorded rate for the flow

Start Time Start time of the flow

TABLE I: Data saved in the Active Flows database.

by taking both bandwidth and congestion into account.
IV. IMPLEMENTATION DETAILS

BACAR consists of several data stores and services that are
working in parallel to keep track of performance statistics and

detect and mitigate network congestion events.
A. Link Utilization Store

This data store keeps track of link utilization statistics for
every link in a network which plays an important role in
detecting congestion events. It keeps track of four metrics as
latest rate, current capacity rate, bandwidth, and propagation
delay. Latest is a list of reported traffic rates in last m reporting
intervals whereas current capacity is maximum traffic rate
observed in last n reporting intervals where n >> m. The
default value of » and m are set to 15 and 5, respectively.
Unlike latest and capacity rates that depend on observed traffic
rates and network congestion, bandwidth is a fixed value
specifying the maximum traffic rate a link can carry in ideal
conditions. The current capacity and bandwidth are expected
to be the same for wired links all the time whereas it can be
different for wireless links due to environmental conditions. As
an example, if a wireless link is exposed to ice accumulation
on the antenna, then its capacity for that time interval can be
lower than its “true” bandwidth. To estimate the latest and
current capacity rates, BACAR relies on port metrics included
in OpenFlow statistics.

Delay is the propagation delay of a link. While it is
reasonable to assume that propagation delay can be calculated
ahead of time, we keep track of it in case it is not available or
the initial estimation is incorrect. Since propagation delay does
not change over time, we assign it to the minimum observed
value among all measurements. Section details how to
link delay is measured.

B. Active Flows Store

This data store keeps track of active flows in the network.
When a new flow joins, we record five metrics as shown in
Table [[I In addition to some static values such as source-
destination MAC address pair, alternate routes, and start time,
we keep track of its current rate, maximum reported rate, and
current path. Note that alternative paths are lazy-loaded, which
means that it is not calculated on initialization.

C. Congestion Detection

Network congestion in hybrid networks can happen due to
three main reasons (1) start of a new flow, (2) an increase
in sending rate of existing flows, and (3) capacity decrease
of wireless links due to environmental conditions. When a
new flow joins, BACAR executes Path Selection Algorithm to
find a route with the highest available bandwidth. To detect

congestion caused by increasing sending rate or decreased
link capacity, we rely on Link Utilization Store which parses
OpenFlow statistics as they arrive from switches. After saving
the reported values, it initiates the rerouting algorithm if the
last reported rate is more than 30% different than the average
of values in latest reported link rates for that link. Link
Utilization Store can also be updated when Link Capacity
Tracker service if the current measured link capacity appears
to be different than the previous value. As a result, the start/end
of a new flow, the increase/decrease in sending rate of existing
flows considerable, and the increase/decrease of link capacity
can all trigger the rerouting algorithm.

When the rerouting algorithm is called, it first identifies the
flows passing through the target link, then tries to find alternate
routes to divert some of the active flows. We first sort the flows
on the link in ascending order based on traffic rate, then pull
one flow from the list. We add it to retain list and subtract
its sending rate from the target link’s current maximum. If the
flow did not demand full link capacity, we then pick the next
flow from the list and add it to retain list then subtract its
sending rate from the remaining capacity of the link. We keep
adding flows until the total of their sending rates is smaller
than the link capacity. As soon as the link capacity is reached,
we then try to divert the remaining flows to alternate routes
using Path Selection Algorithm. If any flow is rescheduled to
an alternate route, then we run a global search for all flows to
make sure that the changes we make for one link do not lead
to suboptimal performance for other flows in the network.

D. Path Selection Algorithm

When path selection is called for a flow, we first calculate
all available paths using Dijkstra’s algorithm and sort them
in ascending order based on hop count. We then iterate over
available paths and calculate the available capacity of each
path. To calculate the throughput of a path, we estimate the
available bandwidth for each link on the path using below
following formula and take the minimum capacity of all links
in the path.

7 capacity)
#of flows + 1

where capacity is the current capacity of a link and the
latest is the reported traffic rates in the last few (by default
5 intervals) consecutive reporting intervals. If a link is not
fully utilized, the candidate flow can claim the available
capacity. However, if the link is already fully utilized by one or
more flows, then the candidate flow can obtain its fair share,
which can be calculated by dividing the bandwidth, current
maximum, by the number of active flows plus 1. Note that we
categorize flows with less than 1 Mbps sending rate as mice
flow and do not consider them for rerouting or available link
capacity estimation.

Maz(capacity — mazx(latest)

E. Link Capacity Tracker

As link capacity plays an important role in determining flow
paths, it is important to detect any changes in a timely manner.
Thus, BACAR conducts active probing to discover the current

Controller

tsl,f \\tsz
»'/I *
g — — &
Switch 1 Switch 2

Source Destination

Fig. 3: When the traffic rate on a link changes more than 30%, we
schedule delay measurement to determine if the link is congested by
means of comparing the observed delay to propagation delay.

capacity of links when the traffic rate on a link changes more
than 30%. However, as opposed to transferring a large volume
of data to measure the available capacity of a path, we conduct
delay measurements to detect if a link experinces a congestion.
In other words, if a link with actual bandwidth B currently
transfers at B’ rate (B’ < B) and it is showing the symptoms
of congestion, then we can infer that the link capacity is no
longer equal to B and set its new capacity, current capacity,
to B’. Since OpenFlow statistics do not capture packet drops
caused by queue overflow, we are unable to sense congestion
using OpenFlow statistics. We therefore conduct delay probes
to notice queue build-up on any link, which can be used to
deduce congestion events.

Figure (3| illustrates the delay measurement method we
adopted to detect congested links, which is originally proposed
in [[19] to discover the propagation delay of each link in the
network. To measure the delay between Switch I and Switch
2 in Figure |3 we first send an Echo Request messages to both
switches, wait for the Echo Reply messages, and measure the
response time. We next create a custom packet at Controller
and send it to Switch 1 which forwards it to Switch 2. The
packet is then forwarded to Controller by Switch 2, where its
travel time is calculated. After all three messages are received
and their duration is calculated, we use the following equation
to estimate one-way delay between Switch 1 and Switch 2:

1, t2
dslfs2 - tslfsQ (9 + 9) (2)
where ¢; and t; round trip time between the Controller
to switches. ts;_4o is the duration of the custom packet to
travel from the controller to Switch 1 to Switch 2 and back
to the Controller. It is expected that dg1_so will be equal
to the propagation delay of the link between Switch 1 and
Switch 2 when the egress queue in Switch 1 is empty and
will increase in proportion to the queue build up. Figure [
shows the value of ds;_4o relative to propagation delay for
the middle link in Figure [3| Links between source and Switch
1 and Switch 2 and destination are set to 1 Gbps and middle
link has 100 Mbps bandwidth and 2ms propagation delay. We
use Iperf to create TCP and UDP transfers between source and
destination nodes with fixed rates. As an example, we set the
UDP traffic rate between source and destination nodes to 50
Mbps to measure link delay when the middle link is 50%

v
o

—=— TCP
—— UDP

N
o

w
o

N
o

=
o

Measured Delay/Propagation Delay

o

20 40 60 80
Utilization (%)

100

Fig. 4: Delay measurement returns high values when link utilization
is near 100% utilization.

—=— 90% Utilization
—%— 95% Utilization
—e— 100% Utilization

S [«2] o2
o o o

=N
o o

Measured Delay/Propagation Delay

_———
200

10 25 50 100
Queue Size (Packets)

Fig. 5: Queue size has a significant impact on observed delay. Yet,
when a link is fully utilized, the observed delay is still 4 —80x higher
than the propagation delay.

utilized by a UDP flow. We set the buffer size on the egress
port of the Switch 1 to 100 packets. The congestion control
algorithm for the TCP traffic is set Cubic. We start the Iperf
transfers between source and destination before we initiate
our delay measurement method for the link between Switch
and Switch 2. We measured the delay ten times and reported
the average value. It is evident that measured delay remains
close to propagation delay until link utilization reaches 95% at
which point it increases considerably. When the link utilization
is at 100%, the measured delay becomes more than 10z of the
propagation delay in the presence of both TCP and UDP flows
between source and destination.

Since our delay measurement is highly dependent on queue
size on the first link (Switch 1), we next examine the impact
of queue size on observed delay in Figure [5] We used the
same topology as shown in Figure (3| but varied queue size
on Switch 1 between 10 and 200 packets. We ran TCP traffic
with 90 Mbps, 95 Mbps, and 100 Mbps rates to represent 90%,
95% , and 100% link utilization scenarios. As expected, the
increasing queue size leads to an increase in measured delay as
probing packets now share the queue with the traffic between
source and destination nodes. However, the rate of increase
depends on the link utilization rate. Specifically, when link
utilization is 90% or 95%, measured delay ranges between
1 — 7z of propagation delay. On the other hand, when the
link utilization is 100%, the measured delay ranges between
4 — 90z of propagation delay. Therefore, we can exploit the

variation in the measured delay to determine whether or not
a link is fully utilized. For example, if the measured delay
is more than 10z of propagation delay, then we can say
that the link must be fully (i.e., 100%) utilized. Please note
measured delay for 100% utilization case with a queue size
of 10 overlaps with the measured delay of 95% utilization
with a 200 queue size, so using a low (e.g., 5x) threshold
to distinguish 100% utilization from lower utilization values
may result in misclassification if the queue size is not known.
We, therefore, expect the measured delay to be at least 10x
of propagation delay to determine whether or not a link is
100% utilized, which requires queue size to be more than 25
packets. We believe this is a reasonable assumption for wide
area networks and leave further optimizations for lower queue
sizes as future work.

When a link delay measurement indicates 100% utiliza-
tion, we update its current maximum to be the last reported
sending rate, which could be smaller than its bandwidth if
a link experienced an increase in signal to noise ratio due
to environmental conditions. Please note that it is possible
that the utilization of a link drops more than 30% even if its
rate does not change. This can happen either when a flow
terminates, reduces its sending rate, or when another link
experiences capacity degradation which reduced the sending
rate of a flow that passes multiple links including the degraded
link. In this case, the delay measurement will return a value
that is less than 10z since the link does not experience
congestion. Thus, we will not update its current maximum and
leave it as is. Moreover, links with degraded bandwidth may
recover to full performance when system conditions improve
(e.g., melting of ice on antenna due to increased temperature)
we implemented a timer for current maximum rate to forget
bandwidth limitations after being degraded such that we can
reuse these links again and discover their new rate. While the
timer can be set to values in the order of minutes or hours,
we set it to 15 seconds in our experiments to demonstrate the
functionality on a smaller time scale.

V. EXPERIMENTAL RESULTS

We compare the performance of BACAR against two ap-
proaches shortest path and congestion-aware algorithms. The
shortest path algorithm shows the performance of traditional
decentralized route selection techniques such as OSPF. The
congestion-aware solution, on the other hand, represents the
performance of state-of-the-art solutions for SDN-based traffic
engineering as existing work in this domain mainly focused
on mitigating congestion in wired networks with static link
capacity. Upon the detection of congestion (i.e., when a link
utilization reaches above a certain threshold), the congestion-
aware routing employs a similar route selection algorithm as
BACAR , but assumes link capacity is fixed.

Figure [6] shows the experimentation topology created in
Mininet and inspired by UNR wide-area hybrid network as
illustrated in Figure [I] We created 16 TCP flows between the
Hosts and the Servers with randomly chosen rates in 400— 700
Mbps range, and randomly chosen duration between 30 — 60

Servers

Fig. 6: The network topology used in the evaluations.

seconds. All links have 1 Gbps bandwidth, but we reduce
the capacity of some links while transfers are running to
represent wireless link performance degradation changes due
to environmental conditions.

3000

2500

First Drop|
Second Drop
First Recovery|

.

Secon

N
o
o
o

1500

Rate (Mbps)

1000
—— Shortest Path
—— Congestion Aware
—— BACAR

500 {
1

0 20 40 60 80 100 120 140
Time (s)

Fig. 7: Performance evaluation of BACAR in comparison to the
shortest path and congestion-aware routing algorithms. While the
shortest path solution falls short to detect and avoid congestion,
the congestion-aware routing fails to notice bandwidth fluctuations.
Thus, BACAR outperforms both approaches and increases network
utilization significantly.

Figure [7] shows overall network utilization using different
routing approaches under link capacity changes. At the be-
ginning of the experiment, all three approaches yield similar
performance. However, as more transfers join, the shortest path
algorithm leads to congestion as multiple flows share the same
bottleneck link. Congestion-Aware routing and BACAR , on
the other hand, can assign new flows to underutilized links
to increase the bandwidth of flows as well as to maximize
network utilization. At ¢ = 15s, we reduce the bandwidth of
the link between S4 and S6 from 1 Gbps to 100 Mbps, which
causes Congestion-Aware to suffer as it still assumes that link
bandwidth is fixed and causes congestion on that link. On
the other hand, BACAR detects link bandwidth change imme-
diately and schedules delay measurement probes to calculate
the delay for each link. It then notices that the link between S4
and S6 is fully utilized whereas its adjacent links (sharing the
same path) are not. Thus, it assigns the current traffic rate on
link S4 and S6 to be its current bandwidth, current capacity
and saves it into Link Utilization Store. Finally, it reschedules
some of the existing flows to alternate routes to alleviate the

congestion on the S4 — S6 link and lead to an increase in the
overall network utilization.

When the capacity of the link between S3 and S6 drops
from 1 Gbps to 100 Mbps at ¢ = 40s, both Congestion-Aware
and BACAR are affected negatively as there is no backup
link with higher capacity to move traffic. Yet, the impact of
bandwidth drop is more severe for Congestion-Aware as it
still assigns more flows to these low bandwidth links than
they can handle. When the first link recovers to its full speed
at t = 80, the traffic rate on it increases more than 30%,
triggering the Path Selection Algorithm to reconsider this link
for congested links. The effect of this recovery is obvious
at t = 80s as the network utilization enhanced significantly
for BACAR , while other algorithms attain slightly better
performance. Finally, at ¢ = 110s and when the second link
recovers to its original bandwidth, all algorithms experience
improvements in overall utilization, but the largest gain is
only observed by BACAR since its Path Selection Algorithm
is triggered again to make use of the spare capacity on the
second link.

VI. CONCLUSION

Wide-area hybrid networks are increasingly used to deploy
sensors to remote areas to collect data. Harsh environmental
conditions in these hard-to-access locations cause significant
fluctuations in the capacity of wireless links, adversely af-
fecting the performance of flows. While there have been
alternate routes to take, existing rigid routing solutions impede
the use of these alternate routes in the event of bandwidth
fluctuations. While Software Defined Network is proposed
to facilitate network management and increase the quality
of service for applications, existing solutions to utilize SDN
mainly focused on scenarios in which link capacity is fixed,
thus they are unable to provide a solution to bandwidth
fluctuation issues faced in wide-area hybrid networks. In this
paper, we present Bandwidth and Congestion Aware Routing
(BACAR) to detect bandwidth changes and incorporate them
into the route selection algorithm along with congestion infor-
mation. Experimental results show that BACAR improves the
network utilization significantly in the presence of bandwidth
fluctuation in comparison to state-of-the-art congestion-aware
solutions. It does this by detecting link bandwidth changes and
rerouting some flows from degraded links to others.

ACKNOWLEDGEMENT

The work in this study was supported in part by the NSF
grant #2019164.

REFERENCES

[1] S. Song, J. Lee, K. Son, H. Jung, and J. Lee, “A congestion avoidance
algorithm in sdn environment,” in 2016 International Conference on
Information Networking (ICOIN), 2016, pp. 420-423.

[2] R. Kanagevlu and K. M. M. Aung, “Sdn controlled local re-routing to
reduce congestion in cloud data center,” in Proceedings of the 2015
International Conference on Cloud Computing Research and Innovation
(ICCCRI), ser. ICCCRI ’15. USA: IEEE Computer Society, 2015, p.
80-88. [Online]. Available: https://doi.org/10.1109/ICCCRI.2015.27

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” ser.
NSDI'10. USA: USENIX Association, 2010, p. 19.

Y. Lu, Z. Ling, S. Zhu, and L. Tang, “Sdtcp: Towards datacenter tcp
congestion control with sdn for iot applications,” Sensors, vol. 17, no. 1,
2017. [Online]. Available: https://www.mdpi.com/1424-8220/17/1/109
M. Ghobadi, S. H. Yeganeh, and Y. Ganjali, “Rethinking end-to-end
congestion control in software-defined networks,” in Proceedings of
the 11th ACM Workshop on Hot Topics in Networks, ser. HotNets-XI.
New York, NY, USA: Association for Computing Machinery, 2012, p.
61-66. [Online]. Available: https://doi.org/10.1145/2390231.2390242

J. Gruen, M. Karl, and T. Herfet, “Network supported congestion avoid-
ance in software-defined networks,” in 2013 19th IEEE International
Conference on Networks (ICON), 2013, pp. 1-6.

H. A. Pirzada, M. R. Mahboob, and 1. A. Qazi, “Esdn: Rethinking
datacenter transports using end-host sdn controllers,” ser. SIGCOMM
’15. New York, NY, USA: Association for Computing Machinery,
2015, p. 605-606. [Online]. Available: https://doi.org/10.1145/2785956.
2790022

A. M. Abdelmoniem and B. Bensaou, “Sdn-based incast congestion
control framework for data centers: Implementation and evaluation,”
CSE Dept, HKUST, Tech. Rep. HKUST-CS16-01, 2016.

H. Haile, K.-J. Grinnemo, S. Ferlin, P. Hurtig, and A. Brunstrom,
“End-to-end congestion control approaches for high throughput and
low delay in 4g/5g cellular networks,” Computer Networks, vol. 186,
p- 107692, 2021. [Online]. Available: https://www.sciencedirect.com/|
science/article/pii/S1389128620312974

S. Jamali, A. Badirzadeh, and M. S. Siapoush, “On the use
of the genetic programming for balanced load distribution in
software-defined networks,” Digital Communications and Networks,
vol. 5, no. 4, pp. 288-296, 2019. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S235286481830261X:

C. N. Sminesh, E. G. M. Kanaga, and K. Ranjitha, “A proactive flow
admission and re-routing scheme for load balancing and mitigation of
congestion propagation in sdn data plane,” ArXiv, vol. abs/1812.02474,
2018.

R. Kanagevlu and K. M. M. Aung, “Sdn controlled local re-routing
to reduce congestion in cloud data center,” in 2015 International
Conference on Cloud Computing Research and Innovation (ICCCRI).
IEEE, 2015, pp. 80-88.

M.-T. Kao, B.-X. Huang, S.-J. Kao, and H.-W. Tseng, “An effective
routing mechanism for link congestion avoidance in software-defined
networking,” 2016 International Computer Symposium (ICS), pp. 154—
158, 2016.

S. M. Park, S. Ju, and J. Lee, “Efficient routing for traffic offloading
in software-defined network,” Procedia Computer Science, vol. 34, pp.
674-679, 2014, the 9th International Conference on Future Networks
and Communications (FNC’14)/The 11th International Conference on
Mobile Systems and Pervasive Computing (MobiSPC’14)/Affiliated
‘Workshops. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S187705091400951X!

S. Attarha, K. Haji Hosseiny, G. Mirjalily, and K. Mizanian, “A load
balanced congestion aware routing mechanism for software defined net-
works,” in 2017 Iranian Conference on Electrical Engineering (ICEE),
2017, pp. 2206-2210.

N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Net-
work monitoring in openflow software-defined networks,” in 2014 IEEE
Network Operations and Management Symposium (NOMS). 1EEE,
2014, pp. 1-8.

F. Pakzad, M. Portmann, and J. Hayward, “Link capacity estimation in
wireless software defined networks,” in 2015 International Telecommu-
nication Networks and Applications Conference (ITNAC). 1EEE, 2015,
pp- 208-213.

A. Al-Najjar, F. Pakzad, S. Layeghy, and M. Portmann, “Link capacity
estimation in sdn-based end-hosts,” in 2016 10th International Con-
ference on Signal Processing and Communication Systems (ICSPCS).
IEEE, 2016, pp. 1-8.

K. Phemius and M. Bouet, “Monitoring latency with openflow,” in
Proceedings of the 9th International Conference on Network and Service
Management (CNSM 2013), 2013, pp. 122-125.

https://doi.org/10.1109/ICCCRI.2015.27
https://www.mdpi.com/1424-8220/17/1/109
https://doi.org/10.1145/2390231.2390242
https://doi.org/10.1145/2785956.2790022
https://doi.org/10.1145/2785956.2790022
https://www.sciencedirect.com/science/article/pii/S1389128620312974
https://www.sciencedirect.com/science/article/pii/S1389128620312974
https://www.sciencedirect.com/science/article/pii/S235286481830261X
https://www.sciencedirect.com/science/article/pii/S235286481830261X
https://www.sciencedirect.com/science/article/pii/S187705091400951X
https://www.sciencedirect.com/science/article/pii/S187705091400951X

	Introduction
	Related Work
	Background and Motivation
	Implementation Details
	Link Utilization Store
	Active Flows Store
	Congestion Detection
	Path Selection Algorithm
	Link Capacity Tracker

	Experimental Results
	Conclusion
	References

