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Abstract

We consider distributed optimization under communication constraints for training
deep learning models. We propose a new algorithm, whose parameter updates
rely on two forces: a regular gradient step, and a corrective direction dictated
by the currently best-performing worker (leader). Our method differs from the
parameter-averaging scheme EASGD [1] in a number of ways: (i) our objective
formulation does not change the location of stationary points compared to the
original optimization problem; (ii) we avoid convergence decelerations caused by
pulling local workers descending to different local minima to each other (i.e. to the
average of their parameters); (iii) our update by design breaks the curse of symmetry
(the phenomenon of being trapped in poorly generalizing sub-optimal solutions in
symmetric non-convex landscapes); and (iv) our approach is more communication
efficient since it broadcasts only parameters of the leader rather than all workers.
We provide theoretical analysis of the batch version of the proposed algorithm,
which we call Leader Gradient Descent (LGD), and its stochastic variant (LSGD).
Finally, we implement an asynchronous version of our algorithm and extend it to
the multi-leader setting, where we form groups of workers, each represented by its
own local leader (the best performer in a group), and update each worker with a
corrective direction comprised of two attractive forces: one to the local, and one to
the global leader (the best performer among all workers). The multi-leader setting
is well-aligned with current hardware architecture, where local workers forming
a group lie within a single computational node and different groups correspond
to different nodes. For training convolutional neural networks, we empirically
demonstrate that our approach compares favorably to state-of-the-art baselines.

1 Introduction

As deep learning models and data sets grow in size, it becomes increasingly helpful to parallelize
their training over a distributed computational environment. These models lie at the core of many
modern machine-learning-based systems for image recognition [2], speech recognition [3], natural
language processing [4], and more. This paper focuses on the parallelization of the data, not the
model, and considers collective communication scheme [5] that is most commonly used nowadays.
A typical approach to data parallelization in deep learning [6, 7] uses multiple workers that run
variants of SGD [8] on different data batches. Therefore, the effective batch size is increased by the
number of workers. Communication ensures that all models are synchronized and critically relies
on a scheme where each worker broadcasts its parameter gradients to all the remaining workers.

* 1: Equal contribution. Algorithm development and implementation on deep models.
*2: Equal contribution. Theoretical analysis and implementation on matrix completion.
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This is the case for DOWNPOUR [9] (its decentralized extension, with no central parameter server,
based on the ring topology can be found in [10]) or Horovod [11] methods. These techniques
require frequent communication (after processing each batch) to avoid instability/divergence, and
hence are communication expensive. Moreover, training with a large batch size usually hurts
generalization [12, 13, 14] and convergence speed [15, 16].

Another approach, called Elastic Averaging (Stochastic) Gradient Decent, EA(S)GD [1], introduces
elastic forces linking the parameters of the local workers with central parameters computed as a
moving average over time and space (i.e. over the parameters computed by local workers). This
method allows less frequent communication as workers by design do not need to have the same
parameters but are instead periodically pulled towards each other. The objective function of EASGD,
however, has stationary points which are not stationary points of the underlying objective function
(see Proposition 8 in the Supplement), thus optimizing it may lead to sub-optimal solutions for the
original problem. Further, EASGD can be viewed as a parallel extension of the averaging SGD
scheme [17] and as such it inherits the downsides of the averaging policy. On non-convex problems,
when the iterates are converging to different local minima (that may potentially be globally optimal),
the averaging term can drag the iterates in the wrong directions and significantly hurt the convergence
speed of both local workers and the master. In symmetric regions of the optimization landscape,
the elastic forces related with different workers may cancel each other out causing the master to be
permanently stuck in between or at the maximum between different minima, and local workers to be
stuck at the local minima or on the slopes above them. This can result in arbitrarily bad generalization
error. We refer to this phenomenon as the “curse of symmetry”. Landscape symmetries are common
in a plethora of non-convex problems [18, 19, 20, 21, 22], including deep learning [23, 24, 25, 26].

This paper revisits the EASGD update
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local workers by an attractive force link-
ing the local workers and the current best
performer among them (leader). Our ap-
proach reduces the communication over-
head related with broadcasting parameters
of all workers to each other, and instead re-
quires broadcasting only the leader param- it

eters. The proposed approach easily adapts  Figure 1: Low-rank matrix completion problems solved
to a typical hardware architecture compris- with EAGD and LGD. The dimension d = 1000 and
ing of multiple compute nodes where each  four ranks r € {1, 10,50, 100} are used. The reported
node contains a group of workers and local  value for each algorithm is the value of the best worker

communication, within a node, is signifi- (8 workers are used in total) at each step.
cantly faster than communication between

the nodes. We propose a multi-leader extension of our approach that adapts well to this hardware
architecture and relies on forming groups of workers (one per compute node) which are attracted
both to their local and global leader. To reduce the communication overhead, the correction force
related with the global leader is applied less frequently than the one related with the local leader.

EAGD - rank 100
------ LGD - rank 100

Finally, our L(S)GD approach, similarly to EA(S)GD, tends to explore wide valleys in the optimization
landscape when the pulling force between workers and leaders is set to be small. This property often
leads to improved generalization performance of the optimizer [27, 28].

The paper is organized as follows: Section 2 introduces the L(S)GD approach, Section 3 provides
theoretical analysis, Section 4 contains empirical evaluation, and finally Section 5 concludes the paper.
Theoretical proofs and additional theoretical and empirical results are contained in the Supplement.



2 Leader (Stochastic) Gradient Descent “L(S)GD”’ Algorithm

2.1 Motivating example

Figure 1 illustrates how elastic averaging can impair convergence. To obtain the figure we applied
EAGD (Elastic Averaging Gradient Decent) and LGD to the matrix completion problem of the
form: miny {1|[M — XX7T||% : X € R¥*"}. This problem is non-convex but is known to have the
property that all local minimizers are global minimizers [18]. For four choices of the rank r, we
generated 10 random instances of the matrix completion problem, and solved each with EAGD and
LGD, initialized from the same starting points (we use 8 workers). For each algorithm, we report the
progress of the best objective value at each iteration, over all workers. Figure 1 shows the results
across 10 random experiments for each rank.

It is clear that EAGD slows down significantly as it approaches a minimizer. Typically, the center X
of EAGD is close to the average of the workers, which is a poor solution for the matrix completion
problem when the workers are approaching different local minimizers, even though all local minimiz-
ers are globally optimal. This induces a pull on each node away from the minimizers, which makes it
extremely difficult for EAGD to attain a solution of high accuracy. In comparison, LGD does not
have this issue. Further details of this experiment, and other illustrative examples of the difference
between EAGD and LGD, can be found in the Supplement.

2.2 Symmetry-breaking updates

Next we explain the basic update of the L(S)GD algorithm. Consider first the single-leader setting and
the problem of minimizing loss function L in a parallel computing environment. The optimization
problem is given as l
: : Q. ¢ Ai
min  L(z',22,... 2}) = _, lnin ZE[f(x,ﬁ)]+§||m — 7|2, (1)
’ i=1
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where [ is the number of workers, ', 22, ..., 2! are the parameters of the workers and 7 are the
parameters of the leader. The best performing worker, i.e. Z = argmin E[f(z*;£")]), and £'s are
ol x2 ... !

data samples drawn from some probability distribution P. X is the hyperparameter that denotes the
strength of the force pulling the workers to the leader. In the theoretical section we will refer to
E[f(x%; £")] as simply f(z*). This formulation can be further extended to the multi-leader setting.
The optimization problem is modified to the following form

min L(zbt 2b2, . amh

n l
= m171.1m”E:E:E[f(xj’z;fj”)]—k§||m3’z—x3||2+f;||x]’z—x||2, )

where n is the number of groups, [ is the number of workers in each group, %7 is the local leader of
the 5™ group (i.e. &7 = arg ming;a g2 a0 E[f (277 §7")]),  is the global leader (the best worker

among local leaders, ie. T = arg min E Jﬁj’i" U N l‘j’l ij’2 [P .Ifj’l are the parameters
) ) ) )
xlyl,mlﬂ ..... !

of the workers in the j group, and ¢/+%s are the data samples drawn from P. ) and Ag are the
hyperparameters that denote the strength of the forces pulling the workers to their local and global
leader respectively.

The updates of the LSGD algorithm are captured below, where ¢ denotes iteration. The first update
shown in Equation 3 is obtained by taking the gradient descent step on the objective in Equation 2
with respect to variables 27>*. The stochastic gradient of E[f (x*; £")] with respect to 7> is denoted

as g‘tj  (in case of LGD the gradient is computed over all training examples) and 7 is the learning rate.
iy =o' = ngl @) - Al — 3) ~delad - 2 ®
where 5:{ 41 and Ty are the local and global leaders defined above.

Equation 3 describes the update of any given worker and is comprised of the regular gradient step
and two corrective forces (in single-leader setting the third term disappears as A¢ = 0 then). These



Algorithm 1 LSGD Algorithm (Asynchronous)

Input: pulling coefficients A, Ag, learning rate 7, local/global communication periods 7, 7¢
Initialize:
Randomly initialize z*".
Set iteration counters t* =0 o
Set &} = a_urlgmir_l E[f (27" &)")], 2o = argmin E[f (27" &)")];
xdt, ..

L1 g2 gl

Ll bl gl

repeat

forallj =1,2,...,n,i=1,2,...,ldo > Do in parallel for each worker
Draw random sample £/;";
@it e i gl ()

A A
N1
if nl7 divides (Y > ¢7'*) then
j=1i=1
T = argming.a o0 E[f(27650)] > Determine the local best workers
20— It — N2t — 7)) > Pull to the local best workers
end if

no 1
if nl7g divides (D > t7*) then
j=1li=1

T =argming. .0 E[f (275 650)]. > Determine the global best worker
it 2dt — \g(aht — F) &> Pull to the global best worker
end if
end for

until termination

forces constitute the communication mechanism among the workers and pull all the workers towards
the currently best local and global solution to ensure fast convergence. As opposed to EASGD,
the updates performed by workers in LSGD break the curse of symmetry and avoid convergence
decelerations that result from workers being pulled towards the average which is inherently influenced
by poorly performing workers. In this paper, instead of pulling workers to their averaged parameters,
we propose the mechanism of pulling the workers towards the leaders. The flavor of the update
resembles a particle swarm optimization approach [29], which is not typically used in the context
of stochastic gradient optimization for deep learning. Our method may therefore be viewed as a
dedicated particle swarm optimization approach for training deep learning models in the stochastic
setting and parallel computing environment.

Next we describe the LSGD algorithm in more detail. We rely on the collective communication
scheme. In order to reduce the amount of communication between the workers, it is desired to pull
them towards the leaders less often than every iteration. Also, in practice each worker can have a
different speed. To prevent waiting for the slower workers and achieve communication efficiency,
we implement the algorithm in the asynchronous operation mode. In this case, the communication
period is determined based on the total number of iterations computed across all workers and the
communication is performed every nlt or nl7g iterations, where 7 and 7 denote local and global
communication periods, respectively. In practice, we use 7¢ > 7 since communication between
workers lying in different groups is more expensive than between workers within one group, as
explained above. When communication occurs, all workers are updated at the same time (i.e. pulled
towards the leaders) in order to take advantage of the collective communication scheme. Between
communications, workers run their own local SGD optimizers. The resulting LSGD method is very
simple, and is depicted in Algorithm 1.

The next section provides a theoretical description of the single-leader batch (LGD) and stochastic
(LSGD) variants of our approach.



3 Theoretical Analysis

We assume without loss of generality that there is a single leader. The objective function with multiple
leaders is given by f(z)+ 2k ||z — 21| +. ..+ 3¢ ||z — 2c||%, which is equivalent to f(z)+ 5|z —Z||?
for A =37  Ajand 2= £ 37 | A;z. Proofs for this section are deferred to the Supplement.

3.1 Convergence Rates for Stochastic Strongly Convex Optimization

We first show that LSGD obtains the same convergence rate as SGD for stochastic strongly convex
problems [30]. In Section 3.3 we discuss how and when LGD can obtain better search directions
than gradient descent. We discuss non-convex optimization in Section 3.2. Throughout Section 3.1,
f will typically satisfy:

Assumption 1 f is M -Lipschitz-differentiable and m-strongly convex, which is to say, the gradient
Vf satisfies ||V f(x) — Vf(y)|| < M|z — yl|, and f satisfies f(y) > f(z) + Vf(2)T(y — ) +
Sy — x||%. We write 2* for the unique minimizer of f, and  := % for the condition number of f.

3.1.1 Convergence Rates

The key technical result is that LSGD satisfies a similar one-step descent in expectation as SGD, with
an additional term corresponding to the pull of the leader. To provide a unified analysis of ‘pure’
LSGD as well as more practical variants where the leader is updated infrequently or with errors, we
consider a general iteration . = x — n(g(x) + AM(z — z)), where z is an arbitrary guiding point; that
is, 2 may not be the minimizer of !, ..., P, nor even satisfy f(z) < f(x*). Since the nodes operate
independently except when updating z, we may analyze LSGD steps for each node individually, and
we write 2 = x* for brevity.

Theorem 1. Let f satisfy Assumption 1. Let §(x) be an unbiased estimator for V f(x) with
Var(g(z)) < o? +v||Vf(x)|? and let = be any point. Suppose that n, X satisfy n < (2M (v +1))~*
and n\ < (26) "1, VX < (kv/2m) =Y. Then the LSGD step satisfies

2
* . n"M

Ef(ey) = fa") < (L=mn)(f(2) = f@) =n\(f(@) = f(2) + 50" @

Note the presence of the new term —nA(f (x)— f(z)) which speeds up convergence when f(z) < f(z),

i.e the leader is better than x. If the leader zj, is always chosen so that f(z) < f(xi) at every

step k, then limsup,,_, o Ef(zx) — f(2*) < inko?. Ifn decreases at the rate ny, = (%), then

Ef(zx) — f(2*) < O(3)-

The O(%) rate of LSGD matches that of comparable distributed methods. Both Hogwild [31] and

EASGD achieve a rate of O(%) on strongly convex objective functions. We note that published
convergence rates are not available for many distributed algorithms (including DOWNPOUR [9]).

3.1.2 Communication Periods

In practice, communication between distributed machines is costly. The LSGD algorithm has a
communication period T for which the leader is only updated every 7 iterations, so each node can run
independently during that period. This 7 is allowed to differ between nodes, and over time, which
captures the asynchronous and multi-leader variants of LSGD. We write xy, ; for the j-th step during
the k-th period. It may occur that f(z) > f(xy, ;) for some k, j, that is, the current solution xy, ;
is now better than the last selected leader. In this case, the leader term A(z — z) may no longer be
beneficial, and instead simply pulls x toward z. There is no general way to determine how many
steps are taken before this event. However, we can show that if f(z) > f(z), then

Ef(zy) < f(2)+ %7}2M027 5)

so the solution will not become worse than a stale leader (up to gradient noise). As 7 goes to infinity,
LSGD converges to the minimizer of ¢)(z) = f(x)+ 3|z — ||, which is quantifiably better than z as
captured in Theorem 2. Together, these facts show that LSGD is safe to use with long communication
periods as long as the original leader is good.



Theorem 2. Let f be m-strongly convex, and let x* be the minimizer of f. For fixed )\, z, define

Y(x) = f(z) + %Hx — z||%. The minimizer w of v satisfies f(w) — f(z*) < mf"_/\ (f(z) = f(x*)).

The theoretical results here and in Section 3.1.1 address two fundamental instances of the LSGD
algorithm: the ‘synchronous’ case where communication occurs each round, and the ‘infinitely
asynchronous’ case where communication periods are arbitrarily long. For unknown periods 7 > 1,
it is difficult to demonstrate general quantifiable improvements beyond (5), but we note that (4),
Theorem 2, and the results on stochastic leader selection (Sections 3.1.3 and 7.6) can be combined to
analyze specific instances of the asynchronous LSGD.

In our experiments, we employ another method to avoid the issue of stale leaders. To ensure that the
leader is good, we perform an LSGD step only on the first step after a leader update, and then take
standard SGD steps for the remainder of the communication period.

3.1.3 Stochastic Leader Selection

Next, we consider the impact of selecting the leader with errors. In practice, it is often costly to
evaluate f(x), as in deep learning. Instead, we estimate the values f(x*), and then select z as the

variable having the smallest estimate. Formally, suppose that we have an unbiased estimator f(z)
of f(z), with uniformly bounded variance. At each step, a single sample y1, . . ., y, is drawn from

each estimator f(z!),..., f(«P), and then z = {z* : y; = min{y1,...,y,}}. We refer to this as
stochastic leader selection. The stochastic leader satisfies Ef(2) < f(2¢rue) + 41/P0 s, Where zgyye
is the true leader (see supplementary materials). Thus, the error introduced by the stochastic leader

contributes an additive error of at most 4n\,/pos. Since this is of order 7 rather than n?, we cannot

guarantee convergence with 7, = @(%)' unless Ay is also decreasing. We have the following result:

Theorem 3. Let f satisfy Assumption 1, and let g(x) be as in Theorem 1. Suppose we use stochastic

leader selection with f(x) having Var(f(x)) < a)%. If n, \ are fixed so that n < (2M (v + 1))~}
and n\ < (26) 71, VA < (kv/2m) 7L, then limsup,,_, oo Ef (zx) — f(2*) < inko? + 27 /poy.
Ifn, X decrease at the rate n, = ©(3), \y = O(%), then Ef (z1) — f(z*) < O(3).

The communication period and the accuracy of stochastic leader selection are both methods of
reducing the cost of updating the leader, and can be substitutes. When the communication period is
long, it may be effective to estimate f(x*) to higher accuracy, since this can be done independently.

3.2 Non-convex Optimization: Stationary Points

As mentioned above, EASGD has the flaw that the EASGD objective function can have stationary
points such that none of 2!, ..., P, T is a stationary point of the underlying function f. LSGD does
not have this issue.

Theorem 4. Let Q; be the points (z*, ..., xP) where ' is the unique minimizer among (", ..., aP).
Ifz* = (wl,...,wP) € Q; is a stationary point of the LSGD objective function, then V f*(w®) = 0.

Moreover, it can be shown that for the deterministic algorithm LGD with any choice of communication
periods, there will always be some variable z* such that lim inf ||V f(z},)|| = 0.

Theorem 5. Assume that f is bounded below and M -Lipschitz-differentiable, and that the LGD step
sizes are selected so that n; < % Then for any choice of communication periods, it holds that for

every i such that " is the leader infinitely often, lim infy, ||V f(z%)| = 0.

3.3 Search Direction Improvement from Leader Selection

In this section, we discuss how LGD can obtain better search directions than gradient descent. In
general, it is difficult to determine when the LGD step will satisfy f(z — n(Vf(z) + Ma — 2))) <
f(x—nV f(x)), since this depends on the precise combination of f, x, z, 7, A, and moreover, the maxi-
mum allowable value of 7 is different for LGD and gradient descent. Instead, we measure the goodness
of a search direction by the angle it forms with the Newton direction dy () = —(V2f(x)) "1V f(x).
The Newton method is locally quadratically convergent around local minimizers with non-singular

o 1

'For intuition, note that >_0° | 1

is divergent.



Hessian, and converges in a single step for quadratic functions if 7 = 1. Hence, we consider it
desirable to have search directions that are close to d. Let 6(u, v) denote the angle between u, v. Let
d, = —(Vf(z)+A(xz—z)) be the LGD direction with leader z, and di () = —V f (). The angle im-
provement set is the set of leaders Ip(z,\) = {z : f(2) < f(x),0(d.,dn(x)) < O(dg(z),dn(z))}.
The set of candidate leaders is E = {z : f(z) < f(z)}. We aim to show that a large subset of leaders
in F belong to Ip(z, A).

In this section, we consider the positive definite quadratic f(z) = %xTAx with condition number «
and dg () = — Az, dy(x) = —x. The first result shows that as A becomes sufficiently small, at least
half of E improves the angle. We use the n-dimensional volume Vol(-) to measure the relative size
of sets: an ellipsoid E given by F = {x : 27 Az < 1} has volume Vol(E) = det(A)~'/2Vol(S,,),
where S, is the unit ball.

Theorem 6. Let x be any point such that 0, = 0(dg(x),dny(x)) > 0, and let E = {z : f(z) <
f(@)}. Thenlimy_.o Vol(Iy(z, \)) > 1 Vol(E)~

Next, we consider when A is large. We show that points with large angle between dg(z), dn ()
exist, which are most suitable for improvement by LGD. For » > 2, define S, = {z :
cos(0(dg(x),dn(z))) = ﬁ} It can be shown that S, is nonempty for all » > 2. We show

that for « € S, for a certain range of r, Iy(x, A) is at least half of E for any choice of \.
3/2

Theorem 7. Let R, = {r : ﬁ + 5 < 1} Ifz € S, forr € Ry, then for any X > 0,
Vol(Iy(z, N)) > 1 Vol(E).

Note that Theorems 6 and 7 apply only to convex functions, or in the neighborhoods of local
minimizers where the objective function is locally convex. In nonconvex landscapes, the Newton
direction may point towards saddle points [32], which is undesirable; however, since Theorems 6
and 7 do not apply in this situation, these results do not imply that LSGD has harmful behavior.
For nonconvex problems, our intuition is that many candidate leaders lie in directions of negative
curvature, which would actually lead away from saddle points, but this is significantly harder to
analyze since the set of candidates is unbounded a priori.

4 Experimental Results
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method ensuring stable conver-
gence. The experiments were 0 200 400 600  eo0 1000 e 200 at':? " 60 s00 1000

performed using the CIFAR-10 o econd .
data set [33] on three benchmark Figure 2: CNN7 on CIFAR-10. Test error for the center variable

architectures: 7-layer CNN used ~ Versus wall-clock time (original plot on the left and zoomed on
in the original EASGD paper the right). Test loss is reported in Figure 10 in the Supplement.

(see Section 5.1. in [1]) that we refer to as CNN7, VGG16 [34], and ResNet20 [35]; and ImageNet
(ILSVRC 2012) data set [36] on ResNet50.

*Note that I (z,M1) D Ip(x, A2) for A1 < Ao, so the limit is well-defined.
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During training, we select the ¢
leader for the LSGD method s
based on the average of the train- _
ing loss computed over the last -
10 (CIFAR-10) and 64 (Ima-=
geNet) data batches. At testing, =
we report the performance of the 1
center variable for EASGD and
LSGD, where for LSGD the cen- o 00
ter variable is computed as the
average of the parameters of all
workers. [Remark: Note that we
use the leader’s parameter to pull
to at training and we report the averaged parameters at testing deliberately. It is demonstrated in our
paper (e.g.: Figure 1) that pulling workers to the averaged parameters at training may slow down
convergence and we address this problem. Note that after training, the parameters that workers
obtained after convergence will likely lie in the same valley of the landscape (see [37]) and thus their
average is expected to have better generalization ability (e.g. [27, 38]), which is why we report the
results for averaged parameters at testing.] Finally, for all methods we use weight decay with decay
coefficient set to 10—, In our experiments we use either 4 workers (single-leader LSGD setting) or
16 workers (multi-leader LSGD setting with 4 groups of workers). For all methods, we report the
learning rate leading to the smallest achievable test error under similar convergence rates (we rejected
small learning rates which led to unreasonably slow convergence).

We use GPU nodes interconnected with Ethernet. Each GPU node has four GTX 1080 GPU processors
where each local worker corresponds to one GPU processor. We use CUDA Toolkit 10.0° and NCCL
24, We have developed a software package based on PyTorch for distributed training, which will be
released (details are elaborated in Section 9.4).

1500 2000 a 500 1500 2000

1000

1000

Figure 3: VGG16 on CIFAR-10. Test error for the center variable
versus wall-clock time (original plot on the left and zoomed on
the right). Test loss is reported in Figure 12 in the Supplement.

Data processing and prefetching are discussed in the Supplement. The summary of the hyperparame-
ters explored for each method are also provided in the Supplement. We use constant learning rate for
CNNY7 and learning rate drop (we divide the learning rate by 10 when we observe saturation of the
optimizer) for VGG16, ResNet20, and ResNet50.
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Figure 4: ResNet20 on CIFAR-10. Test error for the center vari-
able versus wall-clock time (original plot on the left and zoomed
on the right). Test loss is reported in Figure 11 in the Supplement.

3https://developer.nvidia.com/cuda-zone

*https://developer.nvidia.com/nccl



the same error. At the same time it outperforms significantly DOWNPOUR in terms of convergence
speed and obtains a slightly better solution.

The experimental results ob- _ # workers = 4 -
tained using ResNet20 and *| =7~ "ot o]
CIFAR-10 for the same setting ol
of communication period and z3{ s s em s e e 2
number of workers as in case ]| Bl
of CNN7 are shown in Figure 4.2 | | “al
On 4 workers we converge © 18]
comparably fast to EASGD but 8
recover better test error. For this *1;= .= =25 s===r oo 0= ] ol

. . . U 20 -‘D ﬁﬂ BO '.IDD iZD lﬂﬂ ]60 EBD
experiment in Figure 5 we show

the switching pattern between Figure 5: ResNet20 on CIFAR-10. The 1dent1ty of the worker that
the leaders indicating that LSGD ¢ recognized as the leader (i.e. rank) versus iterations (on the left)

indeed takes advantage of all ;4 the number of times each worker was the leader (on the right).
workers when exploring the

landscape. On 16 workers we converge roughly 2 times faster than EASGD and obtain significantly
smaller error. In this and CNN7 experiment LSGD (as well as EASGD) are consistently better than
DONWPOUR and SGD, as expected.

Remark 1. We believe that these two facts together — (1) the schedule of leader switching recorded
in the experiments shows frequent switching, and (2) the leader point itself is not pulled away from
minima — suggest that the ‘pulling away’ in LSGD is beneficial: non-leader workers that were pulled
away from local minima later became the leader, and thus likely obtained an even better solution
than they originally would have.

Finally, in Figure 6 we report the # workers = 4 __# workers = 4 (zoomed)
empirical results for ResNet50 ' asco LA

run on ImageNet. The num- & '\ —
ber of workers was set to 4 and " .
the communication period 7 was = | \"M ., | € '1 |
set to 64. In this experiment N\ \_"'\'h'| | 2 '\'l

—— DOWNPOUR 45 —— DOWNPOUR |
EASGD
— L5GD

= 40
our algorithm behaves compa-~ = 30

rably to EASGD but converges = L T R e e
much faster than DOWNPOUR. 0 500 1000 1500 2000 2500 ;0;:;;0' 0 500 1000 1500 2000 2500 3000 3500
Also note that for ResNet50 on minutes

ImageNet, SGD is consistently  pjgyre 6: ResNet50 on ImageNet. Test error for the center variable
worse than all reported methods  yergys wall-clock time (original plot on the left and zoomed on

(training on ImageNet with SGD (e right). Test loss is reported in Figure 13 in the Supplement.
on a single GTX1080 GPU until

convergence usually takes about a week and gives slightly worse final performance), which is why
the SGD curve was deliberately omitted (other methods converge in around two days).

5 Conclusion

In this paper we propose a new algorithm called LSGD for distributed optimization in non-convex
settings. Our approach relies on pulling workers to the current best performer among them, rather
than their average, at each iteration. We justify replacing the average by the leader both theoretically
and through empirical demonstrations. We provide a thorough theoretical analysis, including proof
of convergence, of our algorithm. Finally, we apply our approach to the matrix completion problem
and training deep learning models and demonstrate that it is well-suited to these learning settings.
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