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Abstract

A key property of human cognition is its ability to generate
novel predictions about unfamiliar situations by completing a
partially-specified relation or an analogy. Here, we present a
computational model capable of producing generative
inferences from relations and analogs. This model, BART-
Gen, operates on explicit representations of relations learned
by BART  (Bayesian  Analogy  with  Relational
Transformations), to achieve two related forms of generative
inference: reasoning from a single relation, and reasoning from
an analog. In the first form, a reasoner completes a partially-
specified instance of a stated relation (e.g., robin is a type of
). In the second, a reasoner completes a target analog
based on a stated source analog (e.g., sedan:car :: robin: ).
We compare the performance of BART-Gen with that of
BERT, a popular model for Natural Language Processing
(NLP) that is trained on sentence completion tasks and that
does not rely on explicit representations of relations. Across
simulations and human experiments, we show that BART-Gen
produces more human-like responses for generative inferences
from relations and analogs than does the NLP model. These
results demonstrate the essential role of explicit relation
representations in human generative reasoning.

Keywords: relational reasoning, analogy, cognitive modeling,
embeddings

Introduction

Human reasoners are remarkably sensitive to structural
similarities. For example, despite the superficial differences
between generational wealth accumulation and blood
clotting, a brief elaboration of each reveals a clear analogy.
In the first case, initial financial success allows a family to
pass on wealth to the subsequent generation, which then
grants that new generation access to social resources enabling
its own financial success, affording further wealth to pass
onto future generations. In the second case, an initial injury
attracts blood platelets to cling to the injured site. Upon
recognizing even this hint of a shared relational structure
across these two processes, a reasoner can more easily map
entities playing corresponding roles, such as wealth and
blood platelets. Crucially, the reasoner could also generate
the inference that the presence of blood platelets would then
attract yet more blood platelets to the injured site.
Computational models of such relational reasoning have
been developed both in cognitive science (e.g., Falkenhainer,
Forbus, & Gentner, 1989; Hummel & Holyoak, 1997; Lu,
Ichien, & Holyoak, 2022) and in artificial intelligence (e.g.,

Battaglia et al., 2018; Santoro et al., 2017; Shanahan et al.,
2020). Models of analogical reasoning developed in
cognitive science typically include explicit representations of
relations, such that a relation is distinct from, but bound to,
the entities it relates. This property supports the recognition
of structural similarity by enabling a direct comparison of the
relations constituting each analog. Crucially, explicit relation
representations can also prompt the generation of predictions
about a target analog based on the source. Indeed, the
generative capacity afforded by relation representations is the
core of analogical inference, which human reasoners can
exploit in everyday problem solving (Gick & Holyoak, 1980;
1983), technological innovation (Kittur et al., 2019), and
scientific discovery (Gentner, 2002; Holyoak & Thagard,
1995; Nersessian, 1992).

Here we introduce a new computational model of
generative relational and analogical inference. We then
present the results from three simulations, in which we
examine the model’s ability to capture the human capacity to
reason from a relation (Simulations 1a and 1b) and from an
analog (Simulation 2). In addition, we compare the
performance of the model to that of a leading model of
Natural Language Processing (NLP).

The model presented here, BART-Gen, operates on
explicit relation representations generated by BART
(Bayesian Analogy with Relational Transformations) (Lu,
Chen, & Holyoak, 2012; Lu, Wu, & Holyoak, 2019; see also
Chen, Lu, & Holyoak, 2017), a model of relation learning that
acquires representations of relations from unstructured vector
representations of individual word meanings. Many previous
analogy models have relied on representations that are hand-
coded by the modeler, and thus bypass the problem of relation
acquisition altogether (see Chalmers, French, & Hofstadter,
1992, for an early critique of such models). In contrast,
BART deals directly with the problem of learning relations
from non-relational inputs, taking as inputs embeddings for
individual words produced by machine-learning algorithms.
BART’s relation representations have been used to predict
human judgments of relational similarity among word pairs
(Ichien, Lu, & Holyoak, 2021), to support human-like
analogical reasoning on simple four-term verbal problems
(e.g., artificial : natural :: friend : enemy) (Lu et al., 2019),
and to predict patterns of similarity in neural responses to
relations during analogical reasoning (Chiang, Peng, Lu,
Holyoak, & Monti, 2021). BART also can support analogical



mapping in problems requiring finding correspondences
between multiple entities across complex relational systems
(e.g., mapping the solar system to atomic structure) (Lu et al.,
2022).

We first provide an overview of BART’s relation learning
algorithm, and then detail how BART-Gen uses the
representations learned by BART to perform generative
relational and analogical inference.

Relation representation in BART

BART! learns explicit representations of the semantic
relations between word pairs from unstructured vector
representations of individual word meanings (Lu et al., 2012;
2019). In the present simulations, BART’s input consists of
concatenated pairs of word vectors from Word2vec?
(Mikolov et al., 2013) and uses supervised learning with
positive and negative examples to acquire each relation
representation individually. For example, a vector formed by
concatenating the individual vectors for old and young would
constitute a positive example for the relation X'is the opposite
of Y and might also serve as a negative example of the relation
X is a synonym of Y. After learning, BART computes a
relation vector consisting of the posterior probability that a
word pair instantiates each of the learned relations.

The BART model uses a three-stage process to learn a
broad range of semantic relations. In its first stage, BART
uses difference-ranking operations to partially align
relationally important features. The model generates a ranked
feature vector based on the same difference values as the raw
feature vector, but ordering those values according to their
magnitude. Augmenting the raw semantic features with
ranked features addresses the issue that across instances
different semantic dimensions may be relevant to a relation.
This first stage culminates in the generation of a 1200-
dimension augmented feature vector for each word pair,
consisting of the concatenation of raw and ranked feature
vectors for each word in the pair.

In the second stage, BART uses logistic regression with
elastic net regularization to select a subset of important
feature dimensions across word pairs fs. In the third stage,
BART uses Bayesian logistic regression with fsto estimate
weight distributions w for representing a particular relation R
by applying Bayes rule as:

P(w|fs,R) < P(R|fs,w)P(w). (1)
The first term is the likelihood defined by a logistic function
on w and fs (selected in the second stage), mﬁ The

second term is the prior distribution of w, defined as a
multivariate normal distribution, N (¢y, 2y), with a mean
vector U, = (B,-B), consisting of the B values of weights
estimated in the second stage of logistic regression.

We trained BART by combining two datasets of human-
generated word pairs, each chosen as an example of a specific
semantic relation. The first dataset (Jurgens, Mohammed,
Turney, & Holyoak, 2012) consists of at least 20 word pairs

Thttps://cvl.psych.ucla.edu/wp-
content/uploads/sites/162/2021/04/BART2code.zip

(e.g., bird:robin) instantiating each of 79 semantic relations
(e.g., X is a type of Y) taken from a taxonomy proposed by
Bejar, Chaffin, and Embretson (1991), which includes 10
major relation categories (e.g., class inclusion). The second
dataset consists of at least 10 word pairs instantiating each of
56 additional semantic relations (Popov, Hristova, Anders,
2017). Across both datasets, BART acquired 135 semantic
relations via supervised learning. Since BART’s learned
weights w can be expressed as two separate halves (i.e., those
associated with the first relational role, w;, and those
associated with the second relational role, w,), BART can
automatically generate representations of the converse of
each learned relation by swapping the relation weights
associated with each individual relational role. Thus, upon
learning a representation of X is a type of Y, BART can also
learn a representation of its converse, Y is a superordinate of
X, the same relation but with the roles flipped. This operation
effectively doubles BART’s pool of learned relations from
135 to 270 in total.

After learning weight distributions associated with selected
feature dimensions across word pairs in its training set f;,R;,
BART can estimate how likely any novel pair of words A and
B instantiates a learned relation R;, P(R;|fs, fz) by
marginalizing the weight distribution for that relation:

P(Ri\fa, f5) = [ P(Ri|fa, fo, W)P(WIfy, R)dw. (2)
Hence, given any pair of words A: B, BART can perform this
operation for each of its learned relations and then generate a
relation vector R,p, in which the value of each element is a
posterior probability reflecting how good an example A and
B are of that particular relation. For example, given that old
and young constitute a good example of the relation X is the
opposite of Y but a poor example of the relation X causes Y,
Roia:young Would have a high value for the dimension
corresponding to the first relation, but a low value for the
dimension corresponding to the second dimension. Ichien et
al. (2021) added a power transformation to these relation
vectors, raising each relation dimension to a power of 5, and
found that adding this transformation (“winners take most™)
improves the model’s ability to capture human judgments of
relational similarity. Accordingly, we incorporated the same
power transformation in the present simulations.

Generative inference in BART-Gen

BART-Gen uses the relation representations acquired by
BART to perform generative relational and analogical
inference. We first detail its algorithm for reasoning from a
relation, and then describe the extended algorithm for
generative reasoning via analogy.

Reasoning from a relation in BART-Gen. Recall that the
second stage of BART’s learning algorithm uses logistic
regression with elastic net regularization to select a subset of
informative feature dimensions of a word pair, f. Given the
individual words combined within that word pair, these
selected feature dimensions can be separated into those

2 https://code.google.com/archive/p/word2vec/



corresponding to one word C, f,, and those corresponding
to the other word D, f,. Given C, and the hypothesis that a
relation R holds between € and some predicted D, BART-
Gen generates a probability distribution of fg , using the
following inference:

P(f:?DlR’f:?c) x P(R = 1|f5c'fSD)P(fSD |f;c) (3)
The likelihood term, P(R = 1|f;,, fs, ), is the probability that
R holds for the predicted f;, and the known f; . As with
Equation 1, the likelihood term P(R = 1| fser st) is defined
using a logistic function:

P(R= 1l fw) = — 7

ey v
In Equation 4, learned weights w are written as two separate
halves: those associated with C’s relational role, w,, and
those associated with D’s relational role, wp.
Correspondingly, the selected feature dimensions of a given
word pair fs are rewritten as those corresponding to C, f;,.,
and D, f;, .

The prior term, P(f;,|fs.), follows a multivariate normal
distribution conditional on f; ., which is defined as:

P(foplfic) = N(fser 02D ©)
BART-Gen uses the semantic embedding of word C as a
starting point for generating D, in that the means of the prior
P(st | fSC) are the feature values of C, reflecting the
assumption that D is semantically associated with C. The
prior term also assumes equal variance g2 for semantic
features of word D. ¢? is a free parameter that controls the
degree to which the predicted D is semantically associated
with Cin the prior. Larger values of o2 correspond to a
weaker degree of semantic association in the prior. The
BART-Gen inference balances the likelihood guided by
relation representation and the prior guided by semantic
similarity to the query word, so as to generate maximum a
posteriori (MAP) estimates of feature values for D words on
selected dimensions, fSD. Based on initial test simulations we
set the variance parameter at 50 for all simulations reported
below.

Note that f; is only a subset of all feature dimensions
along which D is represented, fp. In order to generate
semantic embedding for D along the feature dimensions that
were not selected by BART’s learning algorithm, BART-Gen
simply copies over the corresponding feature values for
C, fusc- Hence, by combining the generated feature values for
selected dimensions and copying values for unselected
feature dimensions, BART-Gen specifies a complete
prediction for f;, for a specific query word C and a relation:

o= {fnsc' f:s‘D}- (6)
Reasoning from an analog in BART-Gen. Solving a
generative analogy problem, 4.8 :: C:?, requires generating
a D word such that the word pair formed by C and generated
D instantiate the same relations as the source word pair
consisting of 4 and B. To solve this task, BART-Gen needs
to perform relation identification on the word pair 4:B, and
then use the inferred relations and word C to generate the

missing D word. The model generates the D word by
marginalizing all possible relations:
P(fpl fe, far f8) = Zr P( |7, fOP(r| fa, f5)- (7)

BART-Gen relies on a distributed vector representation of
the relation holding between a pair of concepts A and B, R4p,
which consists of a set of posterior probability each
corresponding to a distinct relation learned by BART (see
Equation 2). BART-Gen iterates through each of these
relations, using the algorithm described in the previous
section to compute a specific prediction of word embedding
for D from the learned relation corresponding to that
dimension. That is, BART-Gen repeats its algorithm for
reasoning from a relation, using each relation for which
BART has learned an explicit representation. Given 270
learned relations, BART-Gen generates 270 distinct
predictions of word embeddings for D. Then according to
Equation 7, BART-Gen computes a weighted average of the
set of generated D embeddings, scaled by the normalized
relation vector. Thus, predictions from the particular relations
for which A and B constitute a good example contribute
much more to the final prediction of D than those relations
for which A4 and B constitute a poor example.

Baseline model: BERT for generative inference
without explicit relations

For comparison with BART-Gen, we also derived generative
inferences from a major NLP model, Bidirectional Encoder
Representations from Transformers (BERT; Devlin et al.,
2019), developed in artificial intelligence (AI) research.
BERT (no relation to BART!) is a prominent example of a
transformer architecture. Like other similar NLP models,
BERT is trained to predict words in sequence within a huge
text corpus. Given an incomplete sentence such as “A robin
is a type of " BERT is trained to predict words that
would complete that sentence with the highest probability.
Importantly, BERT and similar models routinely solve
generation tasks without any explicit relation representations,
instead relying solely on the statistics of word usage in their
training corpora.

Recent evidence supports the possibility that BERT
captures important aspects of human conceptual knowledge.
Bhatia and Richie (in press) have shown that a version of
BERT fine-tuned to complete sentences related to human-
generated semantic feature norms (e.g., “Cat is a four-footed
animal”) can model several phenomena characteristic of
human semantic cognition: predicting semantic verification
times, typicality judgments, feature distribution judgments,
and semantic similarity judgments.

BERT thus provides an impressive model of human verbal
behavior that (unlike BART) does not rely on explicit relation
representations. Moreover, the basic training regime for
BERT is based on massive experience with sentence
generation tasks, which make the model a natural candidate
to predict human performance in generative inference tasks
with relations and analogies. In the simulations reported here,
we use BERT as a non-relational model to predict the pattern
of human generative inferences from relations and analogs.



We used Transformer Models for MATLAB toolbox®, a
default bert-base model pre-trained on the BooksCorpus
(800M words) (Zhu et al., 2015) and the English Wikipedia
corpus (2,500M words) (Devlin et al., 2019).

Reasoning from a Single Relation

In the first simulations, we test BART-Gen’s ability to reason
from a single relation. We operationalize this capacity as
generating a word D (e.g., bird) that best instantiates a known
relation R (e.g., is a type of) with a query word C (e.g., robin);
i.e., completing relational sentences such as "A robin is a type
of  .” Werestrict our analyses to those relations for which
BART has learned an explicit representation, comparing the
performance of BART-Gen with that of BERT.

Simulation 1a: SemEval 2012 Task 2 Dataset

We compared model performance using a series of problems
derived from statements consisting of three components: a
word pair and a semantic relation that that word pair was
generated to instantiate, in the form wordI-relation-word?2
(e.g., robin is a type of bird). To construct these problems, we
used the dataset of human-generated word pairs used to train
BART (Jurgens et al., 2012), thus ensuring that BART-Gen
had an explicit representation of each relation instantiated in
these statements. We generated statements using the 20 most
typical word pairs for each of the 79 semantic relations from
Jurgens et al. (2012), yielding 1,580 statements in total.
Relation completion problems (BART-Gen). Each
statement yielded two relation completion problems, which
omitted either the first word in its word pair (e.g., bird) or the
second word (e.g., robin), yielding 3,160 of these problems
with which to evaluate BART-Gen. Solution to each of these
problems involved generating the omitted word.

Relation sentence completion problems (BERT). To
construct corresponding sentence completion problems with
which to test BERT, we used relation descriptions (e.g., Y is
a type of X) provided by Bejar et al. (1991). We embedded
either one of the words in each word pair (e.g., bird.robin)
into its relation description to generate a problem either
omitting the first word of the word pair (e.g., “Robin is a type
of  ”)orthe second word (e.g., “  isa type of bird”).
As with the relation completion problems, each statement
yielded two sentence completion problems, yielding a total of
3,160 problems to evaluate BERT.

Results and discussion. Across all problems, each model
generated a set of words ranked according to the model’s
confidence in the corresponding prediction (i.e., first-ranked
word among a model’s set of predictions represented the
word for which the model was most confident). In order to
evaluate models, we took each model’s ranking of the most
typical answer provided in the Jurgens et al. (2012) dataset,
which was defined as the correct answer. In computing
rankings, we excluded any strings containing non-letter
symbols (e.g., #, !, /) (sometimes generated by BERT). A
lower ranking for the correct answer on a particular problem

3 https://github.com/matlab-deep-learning/transformer-models

indicates more accurate model performance. Because each
model’s predicted words were generated from that model’s
dictionary, these rankings were sensitive to the overall size of
each model’s dictionary, such that smaller dictionaries may
systematically yield lower (i.e., better) rankings. Given that
BERT’s dictionary was considerably smaller (30,522 words)
than the Word2vec dictionary used by BART-Gen (929,022
words), our analyses favored BERT due to the smaller size of
its dictionary.

Despite this difference in dictionary size, BART-Gen
outperformed BERT, consistently generating a lower rank for
the correct answer across relations. Figure 1 shows the
median ranks of correct answers, broken down according to
the 10 relation categories defined by Bejar et al. (1991).
These results demonstrate superior performance of BART-
Gen relative to BERT as a model of generative relational
inference. BERT constitutes a demonstration that explicit
relation representations are not necessary for generating
predictions on this relation completion task; however,
BART-Gen, which is guided by such representations, proved
much more successful in generating human-like completions
preferred by humans.

BART-Gen BERT
Wi w2 Wi w2

Figure 1. Results from Simulation 1a with generative relation
problems (e.g., robin is a type of ?) for 10 relation categories
(lower ranks indicate better performance). W1 represents
problems for which models were tasked with generating the
first word of each word pair, given the second word and
relation; W2 represents problems for which models were
tasked with generating the second word, given the first word
and relation. Error bars indicate interquartile range in this
paper. The y-axis is represented on a log (base 2) scale.

Note that BART-Gen was exposed to all of the word pairs
used to construct each of the relation completion problems
during explicit relation learning. To ensure that BART-Gen’s
superior performance is not due to its exposure to word pairs
during relation learning in BART, we further tested a version
of BERT that was similarly exposed to these word pairs: For
each relation completion problem (e.g., “Robin is a type of
"), we provided BERT with 19 complete relational
phrases based on all the other word pairs that were used to
instantiate the same relation (e.g., “Spear is a type of weapon
and oak is a type of tree and pig is a type of animal...robin is
a type of 7). Providing this input improved BERT’s
performance; however, across all 10 relational categories,
BART-Gen’s median rank for the correct answer (median



rank = 21) was still considerably lower than that achieved by
this input-rich BERT (median rank = 181).

Notably, the problems used in Simulation la were
constructed using a dataset for which human reasoners
provided intact word pairs as examples of various semantic
relations (Jurgens et al., 2012). Thus, although these word
pairs were indeed human-generated, the task within which
human reasoners provided these word pairs differed slightly
from the task that models reproduced in the simulation. In
particular, we defined the “correct” response as that which
people rated as most typical of a relation, rather than a
response that people directly generated. In order to better
evaluate model performance, in Simulation 1b we directly
measured human responses in the generative inference task.

Simulation 1b: Human experiment

We collected human responses on a selection of sentence
completion problems used in Simulation 1a. These problems
were generated from 16 statements, each consisting of a
different relation and a word pair that was highly typical of
the relation. These relations were evenly divided among four
relation categories from Bejar et al. (1991): class inclusion,
part-whole, case relation, and cause-purpose. Since each
statement was used to generate two problems (differing in
which word was omitted), we acquired responses to 32
problems in total.

We separated these problems into two 16-problem lists,
counterbalanced and presented in randomized orders across
participants. Each list consisted of a single problem generated
from each statement. Procedure and analyses were pre-
registered on AsPredicted (#84748).

Participants. Participants were 100 MTurk workers (Mg =
39.06, SDyg. = 9.19; 45 female, 55 male) who completed our
tasks online for payment of $2. The study was approved by
the Institutional Review Board at UCLA. Participants had a
minimum education level of a U.S. high school graduate, and
were sampled from the following English-speaking
countries: Australia, Canada, Ireland, New Zealand, South
Africa, the United Kingdom, and the United States. We
excluded data from 2 participants who reported having
trouble paying attention while completing the study, as well
as 2 other participants who provided nonsensical responses.
Since each participant completed 16 out of the total 32
problems, roughly 50 participants provided responses for
each problem.

Results and discussion. Across problems, participants
generated a variety of responses, which were largely sensible.
Figure 2 shows the proportions of human-generated
responses for two sentence completion problems constructed
out of the same statement. The most frequent human
responses matched the ‘correct’ response included in the
Jurgens et al. (2012) norms for 24 out of the 32 problems.
When human responses yielded asymmetries between the
two problems generated from the same statement (i.e., easier
to perform the completion task for one query word than the
other), BART-Gen’s predictions were consistent with human
responses (67% of the cases) more often than were BERT’s

(33% of the cases). For the present simulations, we evaluated
model performance by finding the rank of the most frequent
human-generated response among all human-generated
responses, aggregated across all problems. As shown in
Figure 3, BART-Gen outperformed BERT for all relation
categories, consistently ranking the most frequent human
response in top ten, lower than BERT did.

Bread is made out of . is made out of flour.

bread
wheat

powder
biscuit

Figure 2. Proportion of human-generated responses to two
sentence completion problems, constructed from the same
statement. These statements are based on the word pair
bread.flour and the relation X is made out of Y.
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Figure 3. Results from Simulation 1b with generative relation
problems (e.g., robin is a type of ?), showing median ranks
for the most frequent human-generated response, among all
human-generated responses across the task (lower ranks
indicate better performance).

The results of Simulations 1a and 1b indicate that BART-
Gen shows considerable promise as a model of generative
relational inference. In outperforming BERT across
simulations, BART-Gen generated more human-like
predictions than did BERT for the type of sentence
completion task on which BERT had been originally trained.
The present results are consistent with other evidence
supporting the importance of explicit relation representations
in accounting for human-like relational reasoning (e.g.,
Ichien et al., 2021; Lu et al., 2019).

Reasoning from an Analog

In the final simulation, we shift focus from inference based
on a single relation to solving analogy problems based on
untrained relations for BART. We operationalize the capacity
to reason from analogs as the ability to generate a word D
(e.g., bird) that, when linked to a given word C (e.g., robin),
is most analogous to another pair of words 4 (e.g., sedan) and
B (e.g., car). We compared the performance of BART-Gen
with that of BERT on the task of completing analogical



sentences such as, “Sedan is related to car, just as robin is
related to .’

Simulation 2: Peterson et al. (2020) Exp. 1a

For Simulation 2 we used a set of 80 four-term analogy
problems developed by Green et al. (2010) and adapted for
generative analogical inference by Green et al. (2012). Half
of these problems consist of near analogies, in which the 4
and B terms are semantically associated with the C and D
terms (e.g., answer:riddle :: solution:problem). The other
half consists of far analogies in which the corresponding
terms are semantically distant (e.g., answer:riddle
key:lock). In general, human reasoners have greater difficulty
solving far than near problems (Green et al., 2010; 2012).
Importantly, this set of problems is based on very specific
relations that BART had not acquired during training; hence
this dataset constitutes a strong test of generalization for
BART’s relation representations, as well as a natural basis for
evaluating BART-Gen’s algorithm for generating relational
inferences from any analog.

To create generation problems, the fourth term of each

analogy problem was removed (e.g., answer:riddle ::
key:lock becomes answer.riddle :: key:?). We compared the
performance of BART-Gen with that of BERT, which
completed matched analogical sentences, such as "Answer is
related to riddle, just as key is related to _ .” In order to
evaluate both models, we compared their responses to
human-generated responses collected by Peterson et al.
(2020, Experiment 1a).
Results and discussion. As in Simulation 1b, we evaluated
model performance by finding the rank of the most frequent
human-generated response to each problem among all
human-generated responses across all problems. As shown in
Figure 4, BART-Gen outperformed BERT, generating lower
ranks for the most frequent human responses across
problems. These results reveal that BART-Gen can produce
human-like responses on a generative analogy task.
Moreover, BART-Gen (but not BERT) proved robust to
variations in the semantic distance of analogies in terms of
accounting for human judgments in generative analogical
inference, emphasizing the importance of explicit relation
representation for human-like analogical generalization.

General Discussion

We introduce BART-Gen, a new model capable of two
related forms of generative inference: reasoning from a single
relation, and reasoning from an analog. In the first form, a
reasoner completes a partially-specified instance of a stated

relation (e.g., robin is a type of ). In the second, a
reasoner completes a target analog based on a stated source
analog (e.g., sedan:car :: robin: ). BART-Gen operates

on explicit representations of relations learned from non-
relational inputs (word embeddings produced by Word2vec).

We compared BART-Gen to a widely used NLP model,
BERT (Devlin et al., 2019). BERT lacks explicit relation
representations, but nevertheless appears to produce human-
like behavior on several verbal reasoning tasks after fine-

tuning on human-generated feature norms (Bhatia & Richie,
in press). Across simulations, BART-Gen approximated
inferences produced by humans more closely than did
completions generated by BERT. This advantage for BART-
Gen was obtained even though the tasks we simulated are
formally equivalent to the basic sentence-completion task on
which BERT was originally trained, or the tasks involving
relations that were not trained for BART. Our results thus
support the importance of explicit relation representations in
human reasoning (Ichien et al., 2021; Lu et al., 2019, 2022).
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Figure 4. Results from Simulation 2 with generative analogy
problems (e.g., answer:riddle :: key:?) across semantically
near and far analogies. Lower ranks indicate better
performance.

Although BART-Gen tended to rank the “best” analogical
completion relatively low in the comparison set of potential
responses, the model’s choice usually was not ranked first by
humans. One way to potentially improve BART-Gen’s
performance on analogy problems would be to employ a
“generate-test” strategy: given a limited number of lower-
ranked choices produced by BART-Gen, the BART model
itself could be used to evaluate the similarity of the 4:B and
C:D in analogy. The model’s final choice of the best D term
would be whichever lower-ranked option maximizes
relational similarity.

The present work has focused exclusively on completion
of semantic relations, presented either alone (Simulations la
and 1b) or as part of a four-term analogy problem (Simulation
2). In more general analogical reasoning and problem solving
(e.g., Gick & Holyoak, 1980, 1983), inferences are generated
on the basis of more complex systems of relations, each
involving more than two entities and higher-order causal
relations (e.g., Yuille & Lu, 2007). An important future
direction will be to extend a model of analogical mapping
based on vector representations (e.g., Lu et al., 2022) to
include mechanisms for generative inferences, as well as the
induction of more general relational schemas.
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