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Abstract: Photoacoustic imaging combines optical excitation with ultrasonic detection to achieve
high-resolution imaging of biological samples. A high-energy pulsed laser is often used for imaging
at multi-centimeter depths in tissue. These lasers typically have a low pulse repetition rate, so to
acquire images in real-time, only one pulse of the laser can be used per image. This single pulse
necessitates the use of many individual detectors and receive electronics to adequately record the
resulting acoustic waves and form an image. Such requirements make many PA imaging systems
both costly and complex. This investigation proposes and models a method of volumetric PA imaging
using a state-of-the-art compressed sensing approach to achieve real-time acquisition of the initial
pressure distribution (IPD) at a reduced level of cost and complexity. In particular, a single exposure of
an optical image sensor is used to capture an entire Fabry-Pérot interferometric acoustic sensor. Time
resolved encoding as achieved through spatial sweeping with a galvanometer. This optical system
further makes use of a random binary mask to set a predetermined subset of pixels to zero, thus
enabling recovery of the time-resolved signals. The Two-Step Iterative Shrinking and Thresholding
algorithm is used to reconstruct the IPD, harnessing the sparsity naturally occurring in the IPD as
well as the additional structure provided by the binary mask. We conduct experiments on simulated
data and analyze the performance of our new approach.

Keywords: Photoacoustic Imaging; Compressed Sensing; Inverse Problems; Compressed Ultrafast
Photography

1. Introduction

Photoacoustic (PA) imaging provides a method of in-vivo non-invasive and high-resolution
molecular imaging at centimeter depth scales [1-4]. In PA imaging, biological tissue is irradiated by
a pulsed laser. The absorption of the laser by endogenous or exogenous chromophores induces a
local increase in temperature, which in turn causes a pressure rise through thermoelastic expansion
of the tissue. Ultrasound receivers placed at the surface of the tissue detect the resulting acoustic
waves. Images of the optical absorption can be reconstructed by solving acoustic and optical inverse
problems [5]. While high-speed data acquisition is possible with PA imaging, the multichannel data
acquisition systems that are available to record this data are expensive [6]. The detection of PA
signals is most commonly accomplished using digital-to-analog converters recording the voltage
connected to piezoelectric transducers, which drastically increase the cost of the imaging system [7].
A well-established alternative to this is a method for optical interferometric detection which utilizes
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a Fabry-Pérot etalon (FPE) [8-10]. The FPE exploits the resonant interference of an interrogating
continuous wave laser between two reflecting surfaces to provide both sensitive detection and large
acoustic bandwidth.

A major limitation to using a FPE for PA signal detection, however, is that detection is performed
only at a single point on the etalon. In practice, the detection laser must be raster scanned along the
surface of the etalon to acquire a volumetric image of the tissue. Thus the PA signal generating laser
must be shot for each position in the raster scan to produce the photoacoustic signal, making the
temporal resolution highly dependent on the pulse repetition rate of the laser. This dependence makes
the imaging system prone to motion artifacts and unable to capture fast dynamic processes.

In order to improve the temporal resolution of the imaging system, recent work has been
done in which a FPE was imaged onto a scrambled Hadamard pattern over multiple sequential
measurements [11,12]. Though the main features of imaging phantoms used were successfully
recovered at compression rates as low as 10%, multiple acquisitions of data were necessary, and
thus the total data acquisition time was still much longer than pulse repetition rate of the laser.

Here, we combine FPE-based PA image detection with compressed ultrafast photography to
further improve the temporal resolution. Compressed ultrafast photography applies core compressed
sensing principles to acquire a sequence of images at a high rate using a single exposure of a camera
[13]. In the original work, a random binary mask is applied to the image, and a streak camera is then
used to scan the image quickly across a sensor [14]. The mask in conjunction with the streak camera
provide enough structure such that the original time-resolved image sequence can be reconstructed.
This has enabled reconstruction of videos with framerates exceeding 10'# frames per second [15]. In
applications that do not require such extreme framerates, the streak camera can be replaced with a
low-cost galvanometer to achieve the spatial shifting of the image [16].

In this work, we design and simulate an optical system that is capable of acquiring the interference
pattern of the entire FPE with a sampling rate of greater than 12 MHz. This optical system utilizes a
digital micromirror device to apply a binary mask to the interference pattern of the FPE. The resulting
masked image is then rapidly swept across an imaging sensor with a galvanometer, thus encoding time
information in the spatial domain. Finally, the PA image is reconstructed using a compressive sensing
approach that iteratively solves a convex optimization problem specifically designed for problems
where data are under-sampled and the true solution has sparse representation in some related domain,
e.g. the gradient domain.

The rest of this paper is organized as follows: In Section 2 we describe the problem and provide
the background in compressed sensing needed in our new approach. The results of the simulations are
presented in Section 3, with a discussion of these findings and some concluding remarks in Section 4.

2. Methods

2.1. Optical Setup

The proposed optical system is depicted in Figure 1. A pulsed laser is applied to the tissue of
interest. Optical absorbers in the tissue then convert the optical energy to heat, inducing a thermoelastic
expansion of the surrounding tissue. The expansion generates broadband ultrasound waves, which
are detected at the surface of the tissue with a FPE. This interaction of the PA waves with the surface of
the FPE results in modulation of the reflected interrogating continuous-wave (CW) laser beam on the
opposite side of the FPE.

The modulated CW laser beam is then imaged onto a DMD via a 4-f optical system. The DMD
consists of a two-dimensional array of mirrors that will either reflect the light along the optical path or
deflect it away from it, resulting in a binary mask on the FPE. A second 4-f optical system then images
the DMD directly onto an imaging sensor array. A galvanometer is placed in the Fourier plane of the
second 4-f system, which rapidly sweeps the image of the masked FPE across the camera during a
single exposure.
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Pulsed Laser b
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Figure 1. The proposed optical system. SMF = single-mode fiber, OI = optical isolator, COL = collimator,
PBS = polarized beam splitter, A /4 = quarter wave plate, L = lens, CAM = camera, DMD = digital
micromirror device, LP = linear polarizer, FPE = Fabry-Pérot etalon.

2.2. Continuous Model

We now seek to build a forward model that transforms a given initial pressure distribution (IPD)
to a camera image based on the proposed optical system. Let d, 7 € R™. We define the function
P(x,y,z,t) on [0,d] X [0,d] X [0,d] X [0, T] to be the pressure distribution at (x, y, z) at time t. The IPD
is then Py := P(x,y,z,0). Acoustic waves then propagate outwards in a manner determined by the
governing equations

ol 1

dp =

5 = PV
P = dp.

Here ii is the acoustic particle velocity, p is the density, pg is the density in the absence of acoustic
waves, and ¢y is the isentropic sound speed [17].

The FPE is placed on the xy-plane and encodes the pressure data P(x,y,0,t). We next define the
binary mask M C R?. The interaction of the light from the FPE with the DMD can be characterized as

P(x,y,0,t) if (x,y) e M
P, 8) :{ (x,5,0,t) if (x,y) O
0 else.
The data then undergoes a shearing operation from the motion of the galvanometer, leading to
Ps(x,y,t) = Py(x — at,y, t), ()

where we assume the galvanometer sweeps with a constant speed & > 0, where a is determined by the
physical limitations of the galvanometer and the focal length of the lenses in the second 4-f system.

Lastly, Ps undergoes a temporal integration operation as it is swept across the camera sensor for
an exposure time equal to the acoustic wave propagation time 7, yielding the camera image

T T
E(x,y):/o Ps(x,y,f)dt:/o Pp(x —at,y, t)dt, )

where Py(x,y,t) is given in (1). This describes the full continuous forward model.
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2.3. Discrete Model

We now move to discretize (3) to enable solving the inverse problem. We first discretize the IPD
into a uniform three-dimensional computational grid of size N X N X N for a given choice of N € Z.
The dimension of each voxel is then 1 X i X h where h = %. We then rearrange the grid elements to
form a single vector u of length N3. Next, we model the propagation of the acoustic waves through
body tissue over time using the k-Wave simulation toolbox in MATLAB [18]. The propagation is also
temporally discretized with time steps At determined by the Courant-Friedrichs-Lewy condition,
which is dependent on ¢y and /. The total number of time steps T € Z is then calculated as T = | 57 ].
The acoustic waves are observed by the FPE located at the base of our computational grid at each time
step. This transformation from the IPD to the sequence of T images of size N x N detected by the FPE
can be modeled by the N>T X N° matrix K, which we construct by simulating the FPE output for each
of the standard basis vectors in RN’

The binary mask M used in (1) is now discretized to form M/, and is defined as

i,j ’ l,]:1,,N (4)

M — 1 if (ih,jh) e M
0 else,

The diagonal matrix M € RN?TXNT jg subsequently formed by reshaping M’ into an N? X 1 vector
and inserting it into M such that M ;n2 12 = M forj=1,..., N?andi=1,...,(T-1).

We then apply the shearing operation, which we write as matrix S, where the sequence of images
is shifted (spatially) along the x-axis as a linear function of time. Since the shearing speed has, in
practice, a significantly greater magnitude than At, we also perform down-sampling during this step.

This is accomplished by calculating the downsize factor s = [ 5; |. For every s entries, we discard all
but one entry so that S is a matrix of size ( EJ +N — 1) N FJ X N2T.

s
Lastly, the light intensity incident to each pixel is summed over time using a left Riemann sum by

the (EJ + N — 1) N X (EJ + N — 1) N EJ matrix I, resulting in our camera image v. Since I, S,
M, and K are matrices, the full forward model can thus be represented as

w=Av+e (5)

where A = ISMK, w is a vector of length NL, and ¢ is a vector of additive white Gaussian noise
with mean zero and covariance matrix I0?. Although we do not construct the matrices I, S, and K,
we can explicitly form A, as will be described in Section 2.5. The parameter L is determined by the
angular velocity of the galvanometer, and with a constant angular velocity, we have from above that

L= EJ + N — 1. Figure 2 indicates how each component of A affects the image.

2.4. Image Reconstruction Via Compressed Sensing

To reconstruct the IPD, we utilize ideas and algorithms from compressed sensing, which is
based on the key notion that a sparse signal can be reconstructed with relatively few measurements.
Following the seminal work in [19,20], many investigations have centered around compressed sensing
algorithms — sometimes with the goal of generally improving the methodology, e.g. its efficiency,
robustness, and accuracy, and in other cases to use the method for a particular application of interest.
For example, compressed sensing has been extensively used in the area of PA image reconstruction,
[21-24].

Compressed sensing requires that the image satisfy certain sparsity and incoherence constraints
[25]. They are (i) the image should contain only a few nonzero values in some domain, known as the
sparse domain, and (ii) the image acquisition domain should not be coherent with the sparse domain.
The original image can then be accurately reconstructed from under-sampled data using an iterative
method that utilizes a data fidelity term and includes a sparsity constraint.
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Mask applied

Figure 2. A pictorial representation of the imaging process as individual forward operations.

As we are attempting to reconstruct a vector of length N3 with one of length NL, where L < N2,
this inverse problem is under-determined. We note that in practice, L < N2, so the compression
ratio is quite high. In this work, we arrive at the L/ N? ratio of 163/4096 ~ 25. We will address this
issue using a compressive sensing approach, which, as noted above, requires that the IPD is sparse in
some domain. Since we anticipate real-world applications to consider IPDs that are approximately
piecewise-constant, we choose our sparsity regularization term as the isotopic discrete total variation
(TV) regularization operator. This leads us to the convex optimization problem

v:argmin1||Az§—w||%+/\<D(zﬁ), (6)
80 2

where A is described in (5), ® is the TV regularization operator, A is the regularization parameter, and
we augment the problem by the physical constraint v > 0.

Many algorithms have been developed to numerically solve (6), and there have also been
numerous investigations into parameter selection [26]. For our simulations we employ the Two-Step
Iterative Shrinkage/Thresholding (TwIST) algorithm to recover v in (6) [27]. This method brings
together the high denoising capabilities of iterative shrinkage/thresholding (IST) and the efficiency
for dealing with ill-posed problems of iterative reweighted shrinkage (IRS) algorithms. IST has good
denoising properties, while IRS is good at handling ill-posed problems, and TwIST aims at keeping
both these advantages. Since we expect the IPD to be nonnegative, we have modified TwIST such that
after each iteration, all negative values are set to zero. While the results obtained using this modified
form of TWIST are consistent and accurate in our experiments, this constrained optimization problem
is not trivial, and additional investigations need to be done to confirm the accuracy and stabiliy of the
revised method. We note that TwIST is commonly used in related applications [12,28].

To compensate for the finite resolution effects and aliasing arising from discretization of the
k-Wave simulation, we normalize the reconstructed IPD prior to quantitative comparison. We
acknowledge that this is not necessarily the best way to treat the error, but the approach is effective in
our experiments. More extensive study is required to identify a better mitigating technique. The two
main criteria we use to quantify the success of the reconstruction are mean square error (MSE) and
multi-scale structural similarity (MS-SSIM) index. The MS-SSIM index incorporates image details at



Version June 3, 2022 submitted to J. Imaging 60of 13

different resolutions to provide an image quality assessment based on the human visual system [29].
For MSE, a smaller number indicates less error, while MS-SSIM is between —1 and 1, with 1 indicating
a perfect reconstruction.

2.5. Simulation Setup and Analysis

In addition to the parameters defined previously, we have several other important parameters
to discuss for our simulations. The size of the computational grid for the k-Wave simulation is
N¢ > N, where we apply a perfectly matched layer absorbing boundary condition to the edges of the
computational grid. The layer occupies a strip of size N, grid points around the outer perimeter of the
computational domain. The speed of sound in the medium containing the IPD is c;, the length of each
voxel is /1, and the center frequency is f.

We now describe how we compute the resulting image from the optical setup given an IPD.
We begin by creating an N3 computational grid on which to run the k-Wave simulation. The FPE is
incorporated as a N? sensor placed parallel to the xy-plane in the extended computational grid with
corner at (ch— N t1, Nf; N t1, NC; N 1-1). We define the speed of sound corresponding to the average
speed of sound in human tissue [30]. The sensor data is stored ina N X N X T array, and we proceed
as described in 2.4. The parameters chosen for our simulations are defined in Table 1.

H Parameter H Description H Value H
N length of IPD grid [pixels] 64
N¢ length of computational grid [pixels] 96
N, width of boundary condition layer [pixels] 15
Cs speed of sound in the medium [m/s] 1540
h pixel width [pm] 122
f center frequency [MHz] 5
T total time steps 400
At time step size [ns] 24
o [pixels-widths/s] 12
s downsize factor 4

Table 1. The parameters used in our simulations and their associated values.

To test our new method we will consider (1) the base case cylinder IPD, (2) the base case cylinder
IPD rotated so that its axis is parallel to the x-axis, and (3) a vessel-like IPD with ten total vessels. We
include the rotated cylinder to analyze how the orientation of the cylinder relative to the direction of
shearing affects reconstruction. In our simulations, the direction of shearing is parallel to the x-axis.
In this analysis, we also vary the probability that a given pixel, m, in the mask is set to one. For this
purpose we define

p = Prob(m =1). (7)

We passed the cylinder through the forward model and then added noise to the final image before
attempting reconstruction. The regularization parameter in (6) was chosen as A = 2.5 - 1073, which
was optimized heuristically for the no noise case. We performed the reconstruction for various levels
of signal-to-noise ratio (SNR), which we define

SNR = 20log,, (g) dB, ®)

where y is the mean of the signal strength in its area of support and ¢ is the standard deviation of the
noise present. We note that y is approximated over the inferred region of support of the image.
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3. Results

3.1. Baseline test

As a baseline test, and to demonstrate that our methods perform as expected, Figure 3 displays
the reconstruction of an IPD of a single impulse; that is, it contains all zeros except for a single voxel
that is set to a value of one. Since the matrix A is constructed by passing each basis vector through the
forward model, this is a good test to see if the reconstruction algorithm is working as expected. We see
in Figure 3 that, as predicted, the reconstruction of the single impulse is spread across neighboring

pixels with a peak at the true impulse pixel.
(a) 1 (b)
30
8 0.8 .
2 0.6 :
24 0.4 :
22 0.2 .
20 0

28 30 32 34 36 28 30 32 34 36

(=)

z [voxels]

x [voxels] X [voxels]
[ d
(c) 1 (d) 1
30
28 0.8 0.8

)

< 26 0.6 0.6

>

o

=,

N 24 0.4 0.4
22 0.2 0.2
20

0 0
22 24 26 28 30 32 28 30 32 34 36

y [voxels] X [voxels]

Figure 3. (a) A cross-section of the ground truth impulse IPD and (b,c,d) cross-sections of a no-noise
reconstruction of the impulse IPD. Here we use regularization parameter A = 2.5 - 10~ in (6).

3.2. Simulated Experiments

Having established our method performs as expected in the simple impulse case, we now consider
two primary types of more realistic IPDs, namely cylindrical IPDs and vessel-like IPDs, each of which
has binary-valued voxels representing either the presence or lack thereof of an initial acoustic impulse
response.

For the base case of the cylindrical IPDs, shown in Figure 4(a), we used a solid cylinder with a
radius of six voxels, including the center voxel, and with axis parallel to the y-axis and centered on the
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xz-plane. The vessel-like IPDs, an example of which is displayed in Figure 4(b), are constructed with a
more random behavior meant to simulate the structure of blood vessels in tissue, including growing
and shrinking as well as branching vessels.

(@) (b)

“//_\—\_\\—_

z [voxels
z [voxels]

60 60
40 40

20 20 40 40

20 20
x [voxels] y [voxels] X [voxels] y [voxels]

Figure 4. (a) The base case cylindrical IPD and (b) an example of a vessel-like IPD.

In our experiments, we used Gaussian noise with mean zero and variance dependent on the
desired SNR parameter given by (8). For each value of SNR we examined, we performed image
reconstruction five times (after adding noise as described in Section 2). We then took the average value
of MS-SSIM and MSE over those five trials. Shown in Figure 5 are the MSE and MS-SSIM results for
the reconstruction of the cylinder IPD parallel to the y-axis, the cylinder IPD parallel to the x-axis, and
the vessel IPD, all for different values of p in (7), as well as one using the normalized time reversal
reconstruction included with the k-Wave toolbox. The k-Wave reconstruction is performed without
compression on the data acquired from the FPE with the appropriate noise added. For SNR greater
than 0 dB, we observe that our method performs consistently better than the k-Wave reconstruction
for p values between 0.2 and 0.9, and the accuracy of the reconstruction tends to increase faster with
our method than with the k-Wave reconstruction as the SNR increases.

—p=01
—p=02

MS-8SIM
MS-SSIM
MS-SSIM

—p=03
—p=04
—p=05
—p =0.6
p=0.7
p=08
p=09
p=1.0
—k-Wave

30 -10 o 10 20

" ’ SNREEB) ? ? " ’ SNR“(EB) 2 ? SNR (dB)
Figure 5. Average MSE (a) and average MS-SSIM (b) of a cylinder IPD with a radius of six perpendicular
to the direction of shearing. Average MSE (b) and average MS-SSIM (c) of a cylinder IPD with a radius
of 6h parallel to the direction of shearing. Average MSE (e) and average MS-SSIM (f) of a vessel IPD
with ten vessels present. Each point is averaged over five trials for each SNR value considered and is
plotted against the SNR value used to calculate the additive Gaussian noise.
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200 We now examine the effects of varying cylinder size on the reconstruction using the base case
210 cylindrical IPD. We fix the amount of noise added so that SNR ~ 27 dB and examine the reconstruction
2 using different values for the radius of the cylinder, including the center voxel, in the cylindrical IPD.
22 The results displayed in Figure 5 suggest that p = 0.3 in (7) is a reasonable choice, and we use it for all
a3 subsequent analyses. Figure 6 displays the MSE and MS-SSIM results.

0.04

0.03
% 0.02
g0

0.01

0.95

MS-SSIM

o
©

0.85

5 10 15 20
Radius (voxel widths)

(b)
5 10 18 20

Radius (voxel widths)

(c)

¥ [woxels]

1m0 20 30 40 50 60 0 20 30 40 50 60
z [voxels] z [voxels]
(d) (9)

¥ [voxels]

1m0 20 30 40 50 60 0 20 30 40 50 60
z [voxels] z [voxels]
(e) (h)

¥ [voxels]
¥ [voxels]

1m0 20 30 40 50 60
z [voxels] z [voxels]

Figure 6. Average MSE (a) and average MS-SSIM (b) of the reconstructed cylinder IPD with varying
radius, averaged over five trials for each radius value considered. A cross section of the ground

truth cylinder with radius of five (c), ten (d) and fifteen (e) voxel widths and a cross section of the

reconstruction of the same cylinder, respectively (f,g,h). Each cylinder considered is orthogonal to the

xz-plane.

214 We next examine the effect of increased complexity on the reconstruction. We fix the amount of
x5 noise so that SNR ~ 25 dB. Using the vessel-like IPDs, we attempt the reconstruction for an increasing
zs number of vessels. These results are displayed in Figure 7.



Version June 3, 2022 submitted to J. Imaging 10 0of 13

(a)
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vy [voxels]

0.03

w -5
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y [voxels]
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0
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=) =
> > - 30
(b)
1
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3 0.8
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07 10
20
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y [voxels] y [voxels]

Figure 7. Average MSE (a) and average MS-SSIM (b) of the reconstructed vessel IPDs with a varying
number of vessels present, averaged over twenty IPDs for each number of vessels considered. Ground
truth projection onto the xy-plane of a four vessel IPD (c), eight vessel IPD (d), and twelve vessel IPD
(e), and the reconstruction of the same IPDs, respectively (f,g,h). In images (c)-(h), hue represents depth
in the z-dimension, with the colorbar indicating pixel lengths away from the FPE, while intensity is
proportional the value of the voxels after being thresholded at 0.15.

An important consideration in these reconstructions is the choice of regularization parameter, A
in (6). While the optimal regularization parameter is a function of the noise present in the system, it is
desirable for the method to be robust in terms of choice of regularization parameter. Figure 8 displays
results for the reconstruction of a cylinder orthogonal to the direction of shearing and of a vessel-like
IPD with ten vessels present for a range of regularization parameters A in (6). Observe that our method
performs consistently for the same choice of regularization parameter across various noise levels for
both the MS-SSIM and MSE metrics. Figure 8 (right) also demonstrates that the method is robust with
respect to the choice of regularization parameter for the vessel-like IPD reconstruction. On the other
hand, the large jump displayed in Figure 8 (left) shows that the method is not as robust with respect to
the choice of the regularization parameter for the single-cylinder case. We speculate that this might be
due to the fact that most of the true underlying image has zero value, making it difficult to tune the
regularization parameter. We do not see this lack of robustness as a practical issue, however, since
real-world applications more closely resemble the multiple vessel case. This issue will be investigated
in future work.
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Figure 8. Average MSE (a) and average MS-SSIM (b) of the reconstructed cylinder IPD as well as
average MSE (c) and average MS-SSIM (d) of the reconstructed vessel-like IPD, averaged over five
trials for each value of the regularization parameter considered. We consider low, medium, and high
values of SNR for comparison.

4. Discussion

In this paper, we modeled a new method for compressed single-shot PA image reconstruction
using various types of DMDs to encode temporal information, and then demonstrated through
simulated experiments that our approach is capable of accurately reconstructing a variety of IPDs.
Moreover, it is robust in the presence of additive Gaussian white noise. We note that while the IPDs
we model here are piecewise constant, the k-Wave toolbox uses methods best-suited for smooth IPDs.
We do not anticipate this presenting issues in real-world applications, since the physical process will
not experience the aliasing that is observed with the k-Wave simulations.

Figure 5 demonstrates that for a range of probabilities, i.e. .2 < p < .8, that a given pixel in the
binary mask that encodes the amount of compressed information is turned on, the performance of
our method is consistently better than the k-Wave reconstruction whenever SNR > 0 dB. This is a
significant improvement given that the k-Wave reconstruction is done with the full time-series data
and that our method experiences approximately 25-fold compression. While the random construction
of the mask was effective in our simulations, there may be other ways to construct the mask leading to
more accurate reconstructions in some cases. This will be the subject of future work.

Figures 6 and 7 demonstrate the effectiveness of the reconstruction as the signal’s intensity
increases in the system, and we note that we are able to achieve accurate reconstructions in the
presence of both large and complex vessel systems.

In future investigations we will assemble the optical system and employ the methods and
techniques discussed here to reconstruct phantoms using images generated by the physical forward
model.
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