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Abstract—Tile-based streaming has been widely used in 360◦
video streaming to adapt to varying network conditions. However,
downloading and processing many small tiles consumes a large
amount of energy on mobile devices. To address this issue, we
propose techniques to encode video by considering the viewing
popularity, where the tiles requested by users of similar interests
are encoded as a large tile (called Ptile). When encoding Ptiles,
we propose to further save energy by reducing the insignificant
frames in each video segment, i.e., reducing the frame rate to save
energy while satisfying some QoE constraint. Based on real video
traces, we model the impact of video features (i.e., video bitrate,
frame rate) and user behavior (i.e., view switching) on QoE,
and model the impact of video features on power consumption.
Based on the QoE model and the power model, we formulate the
energy-efficient and QoE-aware 360◦ video streaming problem
as an optimization problem, and propose a control theory based
algorithm to solve it. Through extensive evaluations based on
real traces, we demonstrate that the proposed algorithm can
significantly reduce the energy consumption (49.7%) and improve
the QoE (7.4%).

I. INTRODUCTION

360◦ video, a.k.a. panoramic or immersive video, becomes
increasingly popular on video platforms such as Facebook
and YouTube [1, 2]. 360◦ video is created by capturing
scenes in all directions (i.e., panoramic views), and it provides
immersive experience to users by allowing them to freely
change the viewing orientation during video playbacks. As
360◦ video is much larger than conventional video [3, 4],
streaming 360◦ video over wireless networks with limited
bandwidth usually results in very poor Quality of Experience
(QoE). To address this problem, tile-based streaming [5] has
been widely used in 360◦ video streaming. In this approach,
the video is divided into a sequence of video segments. Each
segment has the same time duration, and it is further divided
into independently decodable tiles. For each tile, multiple
versions are constructed by encoding the video content at
different quality levels. Then, based on the network condition,
the client can dynamically select tiles covering user’s viewing
area and determine the right quality level for each tile, such
that the video can be successfully downloaded and played back
to maintain good QoE.

Although tile-based 360◦ video streaming can improve QoE
with limited wireless bandwidth, downloading and processing
the tiles on mobile devices result in high energy consumption.
The energy consumption for video streaming is related to
the amount of video data to be downloaded. In tile-based

360◦ video streaming, dividing the video (i.e., the viewing
area) into small sized tiles reduces the efficiency of video
encoding. This is because video encoding relies on information
related to other forward and backward video frames in most
video compression techniques such as H.264 and H.265.
If a video is divided into many small tiles, there is less
opportunity for video compression (i.e., removing temporal
and spatial redundancy) within each tile, and then reducing
the compression efficiency. As a result, each encoded tile has
more data, and more energy will be consumed to download
the tiles.

During video processing, multiple independently encoded
tiles covering the viewing area have to be decoded in time. To
achieve this, a common method is to use multiple decoders
to concurrently decode the tiles of the same video segment
[3, 4]. However, using a number of decoders to concurrently
decode the tiles leads to significant energy consumption. This
is because applying many concurrent decoders makes the video
decoding pipeline much more complex, which involves tedious
CPU context switches and then high computational overhead.

To reduce energy consumption, we propose to encode
the video by considering the viewing popularity, i.e., users
may have similar viewing interests (i.e., viewing areas) when
watching the same video. Specifically, by encoding the tiles
requested by users of similar interests as a large tile (called
Ptile), high compression efficiency can be achieved, and the
total amount of downloaded data is reduced. Then, compared
to existing approaches which download multiple small tiles,
using Ptile can reduce the amount of data to be downloaded
and reduce the energy consumption of data communication.
Moreover, with Ptile, only one decoder is needed, which
reduces the computational overhead and the energy consump-
tion for video processing. To construct Ptiles, we exploit the
historical viewing data from users watching the same video.
Due to their common interests, the users have similar viewing
areas, and their viewing centers are close to each other. We
first identify these viewing centers and cluster them together,
based on which we then identify and construct the Ptiles.

When encoding the Ptile, we propose to further save energy
by reducing the insignificant frames in each video segment,
i.e., reducing the frame rate to save energy while satisfying
some QoE constraint. During fast view switching, high frame
rate may not necessarily lead to high improvement on QoE,
since the user has blurred vision when viewing a fast moving
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Fig. 2: (a) The energy consumption of data transmission. (b) Time and power consumed for decoding a video segment
(conventional tile-based scheme). (c) The energy consumption of video processing.

Fig. 1: The video is divided into 4 rows and 8 columns.

object [6, 7]. Thus, the frame rate is less critical to QoE during
fast view switching, and can be reduced to save energy. More-
over, for Ptile with highly redundant content (i.e., consecutive
frames with high similarity), dropping these redundant frames
can save energy. Based on these observations, we propose
to exploit user behavior and video content for frame rate
adaptation. Based on real video traces, we model the impact of
video features (i.e., video bitrate, frame rate) and user behavior
(i.e., view switching) on QoE, and model the impact of video
features on power consumption. Based on the QoE model
and the power model, we formulate the energy-efficient and
QoE-aware 360◦ video streaming problem as an optimization
problem, and propose a control theory based algorithm to solve
it.

The main contributions of this paper are as follows.
• Through real measurements, we identify the energy inef-

ficiency problem of tile-based 360◦ video streaming and
propose to encode the requested tiles as a Ptile to save
energy.

• We formulate the energy-efficient and QoE-aware 360◦

video streaming problem as an optimization problem, and
propose a control theoretic approach to solve it.

• We evaluate the performance of the proposed algorithm
with real head movement data traces. Evaluation results
show that the proposed algorithm can significantly reduce
the energy consumption and improve the QoE.

The rest of the paper is organized as follows. We introduce
the background and motivation in Section II. Section III
presents the video, QoE, and power models. In Section IV,
we formalize and solve the energy-efficient and QoE-aware
360◦ video streaming problem. In Section V, we present
the evaluation results. Section VI discusses related work and
Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

Although tile-based 360◦ video streaming can improve QoE
with limited wireless bandwidth, downloading and processing

the tiles on mobile devices consume a large amount of energy.
To identify the energy inefficiency of tile-based approach and
the reason behind it, we conducted experiments based on the
head movement traces of users watching a 360◦ video [8].
The video has 4K resolution (i.e., 3840x2160) with 30fps
frame rate. The video is divided into a sequence of video
segments. Each segment contains one second of video, which
is further divided into 4 rows and 8 columns, a common
setting used in the literature [9, 10]. As shown in Fig. 1,
each dot represents the viewing center of one user, and each
dashed block represents the viewing area of the corresponding
user (i.e., the same color), respectively. The viewing area
is determined by the viewing center and the Field-of-View
(FoV) of the device, which is considered to be 100 degrees
horizontally and vertically [11, 12]. In tile-based 360◦ video
streaming, the tiles covering the viewing area are downloaded
and processed in sequence on the mobile device. The exper-
iments were performed using a Google Pixel 3 phone. The
energy consumption is calculated using the power models that
will be detailed in Section III-B.

The energy consumption for data transmission is related to
the amount of downloaded data. Fig. 2(a) shows the energy
consumption for data transmission of the Ptile scheme, normal-
ized based on the conventional tile-based approach. Compared
to conventional tile-based approach, the Ptile scheme can save
the energy consumption of data transmission by 35%. This is
because encoding the video area covered by the FoV tiles as
one tile (i.e., the Ptile, the red block in Fig. 1) can achieve
high compression efficiency, leading to less amount of data to
be downloaded and less energy consumption.

The energy consumption for processing 360◦video includes
the energy for video decoding and view generation. In existing
tile-based approach, to accelerate video decoding, multiple
decoders are used to concurrently decode the tiles of the
same segment. Fig. 2(b) shows the decoding time and power
consumption when decoding the FoV tiles (night tiles) in
existing tile-based approach. In this experiment, hardware-
accelerated media codec (i.e., MediaCodec in Android) is
used to support real-time decoding. The power consumption
of video decoding is measured over the period of decoding a
video segment, by subtracting the idle system power from the
total power. As shown in Fig. 2(b), when more decoders are
used, the decoding time decreases, but the power consump-
tion significantly increases. This is because applying many
concurrent decoders makes the video decoding pipeline much



complex, which leads to tedious CPU context switches and
then high computational overhead on the mobile device. For
example, as the number of decoders increases from 1 to 9, the
total decoding time reduces from 1.3 sec to 0.5 sec (around
2.5X), but the power consumption increases from 241mW to
846mW (around 3.5X). In contrast, the Ptile uses only one
decoder which can achieve both low decoding time (0.24sec)
and low power consumption (287mW).

Fig. 2(c) compares the energy consumption of video pro-
cessing (i.e., video decoding and view generation), normalized
based on the conventional tile-based scheme using one de-
coder. After decoding, based on the coordinate mapping, the
view is generated by drawing the pixel values onto the display.
The energy consumption for view generation is calculated
using the power models that will be detailed in Section III-B.
As can be seen in Fig. 2(c), compared to using four concurrent
decoders (the best scheme here) to process conventional tiles,
the Ptile scheme can save the processing energy by 41%.

To construct Ptiles, we exploit the historical viewing data
from users watching the same video. Users with similar
viewing interests will most likely have similar viewing areas,
and then their viewing centers will be close to each other. By
identifying and clustering these viewing centers, we can con-
struct Ptiles. The detail of Ptile construction will be presented
in Section IV-A.

III. VIDEO, POWER AND QOE MODELS

In this section, we introduce the video, power, and QoE
models.

A. Video Model

On the server side, the video is broken into a sequence of
video segments and each segment contains L seconds of video.
Each segment is further divided into C tiles (e.g., 4 rows and
8 columns). Each tile is encoded into V copies corresponding
to V different bitrates. In addition, M Ptiles are constructed,
and the details will be described in Section IV-A. Each Ptile is
encoded with V different bitrates and F different frame rates
(i.e., indexed as 1, 2, ..., F, with F being the highest).

360◦ video streaming can be viewed as a sequence of data
downloading tasks. Based on the network condition, the client
requests the segment (i.e., the tiles) at the right quality level
from the server. More specifically, the video streaming process
is modeled as N data transmission tasks, corresponding to
downloading N video segments. Let Tk denote the kth task
which downloads the kth video segment. Let T v,fk denote the
kth task where the FoV tiles are encoded with bitrate level
v (v ∈ {1, 2, ..., V }) and frame rate f (f ∈ {1, 2, ..., F}).
In each task, the client requests the FoV tiles with the right
quality and the tiles outside the FoV with the lowest quality
[13]. Let Bk denote the video length of the downloaded but
not yet viewed video in the buffer, in terms of seconds, when
the client requests the kth segment. To avoid stall events (or
rebufferings), the tiles of the segment should be completely
downloaded before the buffer is drained out by the video
player at the client side.

Fig. 3: Experimental setup for measuring power consumption.

B. Power Model

Based on real measurements, we model the impact of frame
rate on power consumption, and we consider three parts of
power consumption, namely data transmission (Pt), video
decoding (Pd), and view rendering (Pr). We build the power
models for various types of phones, including LG Nexus
5X, Google Pixel 3, and Samsung Galaxy S20. Since the
battery connectors on the smartphone are very tiny, it is very
challenging to connect them to the power monitor. To solve
this problem, we design a battery interceptor based on Flex
Printed Circuit Boards. The interceptor is connected to the
smartphone’s motherboard through the corresponding battery
connector, and uses a custom designed circuit to modify the
battery connection. As shown in Fig. 3, by using this intercep-
tor, the smartphone can be connected to the Monsoon power
monitor, which can directly supply power to the smartphone
and accurately measure the power consumption.

To measure the power consumption of the wireless interface
Pt, we conduct a set of experiments with a wget daemon
running in the background (the screen is off) to download data
from the server. To model Pd and Pr, we watch videos with
4K resolution (i.e., 3840x2160) based on the dataset [8] which
have been locally cached in the smartphone. We consider the
following three cases. In case 1 (i.e., the baseline case), the
video player is turned on but no video is played. In case 2
(i.e., the decoding case), the video is decoded but no view is
generated, i.e., the output buffer containing the decoded video
is sent to the codec immediately after decoding a video frame,
and the decoded data is not forwarded to the render engineer.
The power difference between case 2 and case 1 represents the
power consumption for video decoding (i.e., Pd). In tile-based
streaming, similar to [3, 4], four decoders are used to decode
the tiles in parallel. In Ptile streaming, only one decoder is
needed. In case 3 (i.e., local video playback), after decoding
the video, the player retrieves the head orientation, based on
which the video is rendered. The power difference between
case 3 and case 2 represents the power consumption for view
rendering (i.e., Pr). Note that we do not consider the power
consumption of the screen (i.e., the screen is turned on for all
the cases), since it depends on the screen size of the specific
smartphone and the screen brightness set by the user.

The power models for different tiling schemes, which are
used for evaluations in Section V-A, are summarized in Table
I, where f is the frame rate and the power is in mW. Although
bitrate is an important factor in vdieo streaming and it affects
the amount of data to be transmitted, it is not considered
in Pd and Pr. This is because the bitrate only affects the



TABLE I: The power models.

State Nexus 5X Pixel 3 Galaxy S20
Data
trans. Pt = 1709.12± 33.56 Pt = 1429.08± 24.31 Pt = 1527.39± 31.75

Video
decoding

Ctile: Pd(f) = 1160.41 + 16.53f
Ftile: Pd(f) = 832.45 + 15.31f

Nontile: Pd(f) = 447.17 + 14.51f
Ptile: Pd(f) = 210.65 + 5.55f

Pd(f) = 574.89 + 15.46f
Pd(f) = 386.45 + 13.23f
Pd(f) = 209.92 + 10.95f
Pd(f) = 140.73 + 5.96f

Pd(f) = 798.99 + 16.49f
Pd(f) = 658.41 + 14.69f
Pd(f) = 305.55 + 11.41f
Pd(f) = 152.72 + 6.13f

View
rendering Pr(f) = 79.46 + 11.74f Pr(f) = 57.76 + 4.19f Pr(f) = 108.21 + 3.98f

quantization level and thus the perceived quality, while the
video processing complexity mainly depends on the resolution
and the frame rate of the video, which significantly affects the
power consumption of Pd and Pr [4].

Based on the power models, we can calculate the energy
consumption of 360◦ video streaming, by summing up the
energy consumption of all video segments. The energy con-
sumed to download and process a video segment is calculated
as follows

E(T v,fk ) = Et(T
v,f
k ) + Ed(T

v,f
k ) + Er(T

v,f
k ) (1)

where Et(T
v,f
k ), Ed(T

v,f
k ), and Er(T

v,f
k ) are the energy

consumption for downloading, decoding, and rendering the kth

segment with the FoV tile encoded at bitrate level v and frame
rate f . Et(T

v,f
k ) can be calculated as Et(T

v,f
k ) = Pt ·

S(Tv,f
k )

Rk
,

where Pt is the data transmission power, as shown in Table I,
S(T v,fk ) is the segment data size, and Rk is the network
bandwidth used to download video segment k. Ed(T

v,f
k ) and

Er(T
v,f
k ) are related to the duration of each video segment L,

i.e., Ed(T
v,f
k ) = Pd(f) · L and Er(T

v,f
k ) = Pr(f) · L.

C. QoE Model

For each video segment k, the QoE model quantifies the user
perceived quality by considering the following metrics: video
quality, quality variation, and rebuffering. The QoE model is
as follows:

Q = Qo − ωvIv − ωrIr (2)

where Qo is the “original” video quality without considering
any quality impairment, Iv is the quality impairment caused
by quality variation between two consecutive segments (i.e.,
Iv = |Qko − Qk−1o |), Ir is the quality impairment caused by
rebuffering event (i.e., Ir = max(Sk/Rk−Bk,0)

Bk
Qko), where Sk

is the segment data size and R is the downloading throughput),
and ωv and ωr are the weights for quality variation and
rebuffering, respectively.

To model the perceived quality Qo, we consider both
content features and video bitrate (i.e., encoding quantization).
As suggested by ITU-T [14], we model Qo with a logistic
function:

Qo =
100

1 + e−(c1+c2·SI+c3·TI+c4·b)
(3)

where c1, c2, c3, c4 are the model parameters, b is the video
bitrate, and SI and TI are the spatial and temporal perceptual
information of the video, respectively. SI and TI capture the
content complexity and motion features of the video [15].

(a) (b)
Fig. 4: (a) Spatial and temporal information of the videos. (b)
The ”original” quality (i.e., Eq. 3) of a video as a function of
SI, TI, and bitrate.

TABLE II: Parameters in the QoE model.

Coefficient c1 c2 c3 c4
Value -0.2163 0.0581 -0.1578 0.7821

1) Determining the Parameters of Qo: To determine pa-
rameters c1, c2, c3, c4 in Eq. 3, we conducted assessment
experiments using a public 360◦ video dataset [8], which
contains the head movement data traces of 48 users watching
18 videos. Each video is divided into one second segments,
ten of which are uniformly selected for training the model Qo.
Fig. 4(a) shows the SI and TI values of the video segments,
where a video with higher TI value has more changing scenes,
and a video with higher SI has more spatial details in video
frames. As can be seen, the selected videos cover a wide range
of genres.

We adopt the perceptual quality metric, Video Multimethod
Assessment Fusion (VMAF) [16] to model Qo. VMAF has
been widely used in the literature [17]. The VMAF scores
range from 0 (lowest) to 100 (highest), thus the numerator
in Eq. 3 is set to 100. Considering both spatial and temporal
quality perceptions, VMAF presents a strong correlation with
the subjective experiment result (i.e., mean opinion score) [18].
Recent research [17, 19] has validated that the VMAF metric
can be successfully used to measure the perceived quality in
360◦ video streaming.

For different video segments, by changing SI, TI, and
bitrate, we obtain the Qo in terms of VMAF. Then, we can fit
the model in Eq. 3 and obtain the parameters c1, c2, c3, c4. We
use nonlinear least-squares regression (i.e., nlinfit in Matlab) to
fit the model in Eq. 3, as shown in Fig. 4(b). The fitted model
has a large Pearson correlation value (i.e., 0.9791), which
implies that the model captures the training data accurately.
The parameters of the Qo model are summarized in Table II.



Fig. 5: The distribution of view switching speed.

2) Modeling the Impact of Frame Rate on Qo: Although
streaming 360◦ video at a higher frame rate can lead to better
perceived video quality (i.e., Qo in Eq. 3), more energy will be
consumed for downloading and processing the video frames.
We propose to reduce the frame rate to save energy while
satisfying some QoE constraint. During fast view switching,
high frame rate may not necessarily lead to high improvement
on QoE, since the user has blurred vision when viewing a
fast moving object [6, 7]. Thus, the frame rate is less critical
to QoE during fast view switching, and can be reduced to
save energy. Moreover, for Ptile with highly redundant content
(i.e., consecutive frames with high similarity), dropping these
redundant frames can save energy. Based on these observa-
tions, we propose to exploit user behavior and video content
for frame rate adaptation.

Similar to [20, 21], we model the impact of frame rate on the
perceived quality using an inverted exponential function. Then,
the Qo in Eq. 3 is reduced by a factor (1− e−α∗f/fm)/(1−
e−α), where f is the reduced frame rate, fm is the original
maximum frame rate. Parameter α characterizes how fast the
perceived quality drops as the frame rate decreases, where a
larger α indicates a slower falling rate, and vice versa.

To determine the parameter α, we exploit the historical
viewing data from users watching the same video. Specifically,
α is related to the viewing behavior and the video content. For
example, the user is more interested in the new view that he
will switch to. Taking a soccer game as an example, the user
would focus on a fixed view where two players are grabbing
the ball from each other. When the ball is passing through
a wide range, the user’s attention will switch and track the
ball until it reaches another view. Thus, the frame rate is less
critical to QoE during fast view switching, and can be reduced
to save energy. Moreover, as mentioned before, dropping the
redundant frames in Ptile also reduces the energy consumption.

By considering fast view switching and video content sim-
ilarity, α is defined as follows.

α =
Sfov
TI

(4)

where Sfov is the view switching speed (degrees per second),
and TI is the motion feature of the video. With a larger Sfov
(i.e., the user is exploring the video), α is larger and reducing
the frame rate has negligible impact on the perceived quality.
Similarly, with a smaller TI (i.e., the video content is more
static), reducing the frame rate has insignificant impact on the
perceived quality. We calculate the view switching speed based
on the timestamp and the orientation vectors of the viewing
centers. Specifically, the view switching speed when a user

(a) (b)
Fig. 6: Ptile construction. (a) Ptile is too large. (b) Split a large
Ptile into two Ptiles (represented by two different colors).

watches video from time ti−1 to ti is expressed as follows.

Sfov =
arccos(

~Oi−1·~Oi

‖~Oi−1‖‖~Oi‖
)

ti − ti−1
(5)

where ~Oi−1 and ~Oi are the orientation vectors of the viewing
center at time ti−1 to ti, and ‖ ~Oi−1 ‖ and ‖ ~Oi ‖ are the
magnitude of ~Oi−1 and ~Oi, respectively.

Fig. 5 shows the distribution of view switching speed, when
48 users watch 18 360◦ videos [8]. View switching speed can
affect the user’s perceived quality, i.e., the user will become
less sensitive to quality distortion when viewing switching
speed becomes faster. Research has shown that when the view
switching speed exceeds 10 degree/s, users can tolerate 50%
more quality distortion than they would have if the viewpoint
was static [7]. As can be seen in Fig. 5, users change their
views over 10 degree/s for more than 30% of time, which
means there is a large chance to reduce frame rate to save
energy, with insignificant impact on the perceived quality.

IV. ENERGY-EFFICIENT AND QOE-AWARE 360◦ VIDEO
STREAMING

In this section, we first describe how to construct Ptiles,
then formalize and solve the energy-efficient and QoE-aware
360◦ video streaming problem.

A. Ptile Construction

When watching a 360◦ video, users with similar viewing
interests will more likely have similar viewing areas, and then
their viewing centers are close to each other. By identifying
and clustering these viewing centers, we can construct Ptiles.
The challenge is that we do not have any knowledge on the
number of clusters (Ptiles) to construct before hand, and then
many clustering algorithms such as k-means clustering are
not suitable. One solution is to use non-parametric clustering
algorithms like the density-based clustering algorithm [22].
Although such solution can address the challenges of not
knowing the number of clusters before hand, it introduces
another problem, i.e., the cluster may grow too large and
then losing the benefits of Ptile such as energy efficiency.
Fig. 6(a) shows an example based on a video trace (i.e.,
Freestyle Skiing) [8], where each dot presents the viewing
center of a user. The dashed purple, cyan, green and yellow
blocks represent the viewing areas of the leftmost, rightmost,
down-most, and up-most users with similar viewing interests,
respectively. As can be seen in the figure, clustering nearby
viewing centers together can lead to a large cluster spanning



Algorithm 1: Clustering Users’ Viewing Centers
Input: a set of nodes U , δ, σ
Output: a list of clusters Π

1 Nu = {n |n ∈ U ∧ n 6= u ∧ dist(u, n) ≤ δ} for u∈U
2 while U 6= ∅ do
3 Uj , U ← ClusterFunc(U)
4 if argmaxu,n∈Uj

dist(u, n) > σ then
5 Uj1, Uj2 ← kmeans(Uj , k = 2)
6 add Uj1 and Uj2 to the list Π
7 else
8 add Uj to the list Π
9 end

10 end
11 return Π
12
13 function ClusterFunc(U):
14 u = argmaxu∈U |Nu|
15 Uj = ∅
16 Uj = Uj ∪ {u} // initiate the cluster
17 Q = ∅ // first-in first-out queue
18 ENQUEUE(Q, u) // push node into queue
19 while Q 6= ∅ do
20 u = DEQUEUE(Q) // pop node from queue
21 foreach n ∈ Nu do
22 if n 6∈ Uj then
23 Uj = Uj ∪ {n} // add node n to Uj

24 U = U \ {n} // remove n from U
25 ENQUEUE(Q,n)
26 end
27 end
28 end
29 return Uj , U
30 end

a large area, and then the constructed Ptile (the red block
in Fig. 6(a)) is too large. Then, it is better to split the large
Ptile into two Ptiles (the red block and the green block), as
illustrated in Fig. 6(b).

We design a new algorithm which can cluster nearby
viewing centers and make sure that the constructed Ptile for
each cluster is not too large. The algorithm is based on two
important parameters, δ and σ. δ determines if two viewing
centers should be in a cluster based on their distance, and
they belong to the same cluster if their distance is less than or
equal to δ. The clustering performance will be affected by δ.
If δ is too small, some viewing centers may not be clustered
together although they should. If δ is too large, the cluster
may include viewing centers faraway, i.e., users with different
viewing interests are clustered together. The size of a cluster is
determined by σ, that is, the distance between any two viewing
centers in the cluster should not be farther than σ. If σ is too
large, the cluster may grow too large. On the other hand, if σ
is too small, too many clusters may be constructed. In Section
V-B, we will set up δ and σ based on experiments.

Let U denote a set of nodes, where each node (u ∈ U )
represents the viewing center of a user. Let dist(u, n) denote
the Euclidean distance between two nodes u and n. Let
Nu = {n | n ∈ U ∧ n 6= u ∧ dist(u, n) ≤ δ} denote u’s
close neighbors. As detailed in Algorithm 1, the cluster is
initiated with node u which has the maximum number of
close neighbors (line 14), and then the cluster expands by

adding nodes that are close to any node inside the cluster
(lines 19-28). The cluster expanding continues until no more
nodes can be added, and the nodes that have been clustered
will be removed from U (line 24). Then, if the maximum
distance between any two nodes within the cluster is larger
than σ, the k-means clustering algorithm is applied to split
the cluster (line 4-9). The algorithm repeats the above process
until U = ∅.

For each cluster, a Ptile is constructed by encoding the
conventional tiles that cover the viewing areas of users in this
cluster. Then, downloading the Ptile will provide better QoE
for most users compared to downloading conventional tiles.
However, if a user is interested in a different area from the
downloaded Ptile, the video may stall due to re-buffering. To
address this problem, similar to existing work [13, 23], besides
downloading the Ptile with high quality, the remaining video
content outside of the Ptile is downloaded with low quality.
Specifically, the remaining area is partitioned into large blocks
along the Ptile’s upper and lower horizontal lines, which can
be encoded with better compression efficiency. These blocks
are encoded at the lowest quality, and will be downloaded
along with the Ptile. Because the video blocks are encoded
with the lowest quality level, and the compression efficiency
is high, the system does not sacrifice too much bandwidth for
downloading them, but can minimize the QoE drop when the
user viewing interest suddenly changes during video playback.

B. Energy-efficient and QoE-Aware Video Streaming

For video streaming, the client first predicts the user’s
viewing area for each video segment, and then prefetches the
corresponding video at the right quality. The ridge regression
model is applied to better predict the user’s viewing area
(i.e., the viewing center), since it is more robust to deal with
overfitting. When a user watches 360◦ video, his viewing
centers, represented by (x, y) coordinates, are recorded by
the sensors embedded in the headset, The viewing center
coordinates are recorded at a fixed sampling rate (e.g., 50
Hz), and then the recorded x and y coordinates collected at
different times will form a stream of time series data. Such data
can be used to train the model and predict the future. More
specifically, taking x coordinates as an example, the user’s
most recent video watching history can be used to predict the
x coordinate of the user’s viewing center of the video segment
that will be downloaded. Since the video player buffer is
very small, the coordinates of the most recent viewed segment
have strong correlation with the segment to be downloaded.
Thus, the ridge regression model can better predict the viewing
center of the downloading segment, and then predict the user’s
viewing area.

With the predicted viewing area, the client verifies if this
area can be covered by a Ptile. If there is no such Ptile, the
client will download conventional tiles with the best possible
quality based on the current network condition. Otherwise, the
client determines the right quality level and frame rate for the
Ptile to minimize the energy consumption under some QoE
constraints.



For a video segment k, the client determines a tuple of
quality level and frame rate, i.e., (v, f), for downloading it. In
360◦ video streaming, video segments are fetched into a video
buffer before playback. The duration of the downloaded but
not yet viewed video evolves dynamically as video segments
are downloaded and played. The time for downloading a
segment depends on the segment data size and the network
bandwidth. In the meantime, the length of the buffered video
decreases as it is being played. After downloading segment k,
the length of the buffered video becomes

Bk+1 = max(Bk −
S(T v,fk )

Rk
, 0) + L−4tk, (6)

where S(T v,fk ) is the data size of video segment k encoded at
quality level v and frame rate f , L is the length of the video
segment, and 4tk is the waiting time. If the buffered video
data after downloading previous segment k − 1 reaches the
buffer threshold β, the player waits for 4tk before requesting
segment k, i.e., 4tk = max(Bk − β, 0). To avoid rebuffering
events, the constraint is to bound the buffered video at each
downloading task, as expressed in Eq. 7.

0 < Bk+1 (7)

To formalize the energy-efficient and QoE-aware 360◦ video
streaming problem, we introduce a binary variable Xv,f

k for
bitrate and frame rate selection, where Xv,f

k = 1 if the
Ptile in task Tk is downloaded at bitrate index v and frame
rate index f , i.e., T v,fk ; otherwise, Xv,f

k = 0. Since only
one quality version is selected for each downloading task,∑V
v=1

∑F
f=1X

v,f
k = 1. Let vm and fm denote the highest

possible bitrate level and frame rate for the Ptile such that
the Ptile encoded at this quality version can be successfully
downloaded. Let Q(v, f) denote the QoE of the video segment
with quality level v and frame rate f. Then, the energy-
efficient and QoE-aware 360◦ video streaming problem can be
formulated as an ε-constraint optimization problem as follows:

min
N∑
k=1

E(T v,fk ) (8)

s.t. Eq. 6, 7 (8a)
V∑
v=1

F∑
f=1

Xv,f
k = 1 for ∀k (8b)

(1− ε) ·Q(vm, fm) ≤ Q(v, f) (8c)
where constraint (8a) is to ensure that the video data can be
successfully downloaded before its playback, constraint (8b)
states that only one quality version (i.e., specific bitrate level
and frame rate) of a Ptile is downloaded, and constraint (8c)
specifies the loss tolerance (i.e., ε = 5%) on the perceived
video quality if selecting lower bitrate level and frame rate.

C. Model Predictive Control based Algorithm

Ideally, if the future bandwidth for downloading each video
segment is known, the optimization problem in Eq. 8 can be
solved, and the optimal (v, f) tuple can be obtained for each
segment. However, it is impossible in practice to have such

perfect knowledge. Instead, we can achieve a sub-optimal so-
lution, i.e., we can predict the network bandwidth for multiple
segments in the future, based on which we choose a better
bitrate. Next, we propose an online solution using the Model
Predictive Control (MPC) based optimization framework [24],
which is widely used to optimize a complex control objective
in a dynamical system with constraints. Using MPC, the
algorithm is able to smooth out the bandwidth prediction error
by optimizing the video adaptation over several segments, i.e.,
a large estimation error for one specific segment will not have
significant impact on the overall performance.

We use the harmonic mean of the downloading throughput
of the past several segments to estimate the network band-
width. Since the network condition may vary widely during
video streaming, some downloading throughput can be much
higher or lower than others among the past several segments.
The harmonic mean is used to eliminate the impacts of these
fluctuations. More bandwidth estimation methods can be found
in [25, 26], which is out of the scope of this paper.

For initialization, the metadata for the first H video seg-
ments are downloaded during the startup period such that the
client can always know the content features of H segments in
advance. For each video segment k, the MPC based algorithm
works as follows.
(a) Obtain current buffer Bk and the metadata for video

segments k to k +H − 1.
(b) Predict bandwidth Rk,..., Rk+H−1.
(c) Solve the optimization problem in Equation 8 over video

segments k to k +H − 1.
(d) Request video segment k encoded at bitrate level v and

frame rate f , obtained from the previous step.
(e) Move the optimization window forward to [k+1, k+H]

to determine the optimal (v, f) for segment k + 1.
To find the solution in step (c), we propose a dynamic

programming based algorithm. The algorithm simulates the
process of downloading the next H video segments with index
of [k, k + H − 1]. When downloading video segment i ∈
[k, k+H−1], the buffer size (i.e., the length of downloaded but
not yet viewed video) can be in different states Bi−1 ∈ [0, β],
depending on how segment i − 1 was downloaded. In this
paper, we discretize the buffer state at a granularity of 500
milliseconds, i.e., for β = 3 seconds, there are six buffer states.
Based on Eq. 6, Bi−1 is the buffer state after downloading
segment i − 1. Let U?(Bi−1, vi−1, fi−1) denote the mini-
mum amount of energy spent on reaching buffer state Bi−1,
i.e., the minimum amount of energy spent on downloading
segments 1 to i-1. When requesting segment i with quality
(vi, fi), E(T vi,fii ) is consumed, as calculated with Eq. 1.
Then, the Bellman equation for the dynamic programming is
U?(Bi, vi, fi) = minvi,fi{U?(Bi−1, vi−1, fi−1)+E(T vi,fii )}.
That is, for each buffer state Bi, there is at most one path
achieving minimum energy U?(Bi, vi, fi) by picking the op-
timal quality version (v?i , f

?
i ).

After H rounds, the algorithm finds the minimum en-
ergy to reach each possible buffer state. Then, the algo-
rithm finds the minimum energy to reach all possible buffer



states, U?(Bk+H−1, vk+H−1, fk+H−1), and determines the
right quality level and frame rate for downloading segment
k by back tracking the sequence of the optimal solution from
the last segment {(v?k+H−1, f?k+H−1), ..., (v?k, f?k )}. The time
complexity of the algorithm is O(HV F ).

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the pro-
posed energy-efficient and QoE-aware 360◦ video streaming
algorithm.

A. Experiment Setup

The evaluation is based on the head movement traces of
48 users watching eight 360◦ videos [8]. Table III gives the
details of these videos, which cover various scenarios such
as performance, sports, etc. For each video, forty users are
randomly selected and their head movement traces are used to
construct the video tiles (and Ptiles), and the remaining traces
are used for evaluation.

There are two main parts in the 360◦ video streaming
system: the server and the client. On the server side, similar to
[3, 7], each video is divided into a sequence of video segments.
Each segment contains one second of video, which is further
divided into tiles (and Ptiles). The video tiles (and Ptiles) are
encoded with the FFmpeg using the x264 encoder. There are
five quality levels (1 to 5, with 1 being the lowest quality)
for video encoding, which can be obtained by changing the
constant rate factor (CRF) to different values, ranging from
38 to 18 with an interval of 5 [3]. On the client side, the FoV
of the mobile device is set to be 100 degrees horizontally and
vertically. For the QoE model, similar to [3, 13], the weights
are set to (ωv , ωr) = (1, 1). The power models are built based
on real measurements using three phones, including a LG
Nexus 5X, a Google Pixel 3, and a Samsung Galaxy S20,
as shown in Section III-B.

In the evaluation, to simulate the network traffic, we use
a LTE network throughput trace [27], which has varying
patterns. To consider different network conditions in the per-
formance evaluation, the trace is linearly scaled to generate
two different traces, called trace 1 and trace 2, where the
network throughput of trace 1 is twice that of trace 2. In trace
2, the average throughput is 3.9 Mbps and it varies between
2.3 Mbps and 8.4 Mbps.

We compare the performance of the following approaches.
• Ctile: The conventional tile-based 360◦ video streaming

approach, where each video segment is divided into
fixed size tiles, i.e., 4 rows and 8 columns. The client
downloads video tiles for each segment in sequences
and processes these tiles using multiple decoders. This
approach has been used in many existing video streaming
solutions [9, 10].

• Ftile: Each video segment is divided into a fixed number
of tiles which may have different sizes. Similar to [12],
each segment is first divided into 450 small blocks (i.e.,
15 rows and 30 columns), which are then clustered into
ten tiles based on users’ views.

TABLE III: The test videos.

ID Length Content ID Length Content
1 6:01 Basketball Match 5 4:52 Moving Rhinos
2 2:52 Showtime Boxing 6 2:44 Football Match
3 6:13 Festival Gala 7 3:25 Tahiti Surf
4 4:38 Idol Dancing 8 3:21 Freestyle Skiing

• Nontile: This is the 360◦ video streaming scheme com-
monly used in video platforms such as YouTube, where
the video is not divided into tiles and the player always
downloads the whole video.

• Ours: Our proposed energy-efficient and QoE-aware
360◦ video streaming algorithm. For each Ptile, three
versions of reduced frame rates are constructed, i.e.,
reducing {10%, 20%, 30%} frame rate of the original
video.

• Ptile: This is one variation of Ours. Different from Ours,
each Ptile is only encoded at the frame rate of the original
video. It is similar to the Ctile approach, but the tiles
covering the FoV are encoded into one large tile.

B. Performance of the Ptile Construction

We empirically set the parameter σ to be the width of
a conventional tile and δ = σ/4. To avoid constructing
unnecessary Ptiles that cover too few users, a Ptile is only
constructed if it covers at least five users (i.e., 10% of the
users in the dataset).

1) Ptile Coverage: Fig. 7 evaluates the performance of
our Ptile construction algorithm, as the users watch different
videos [8] listed in Table III. These 8 videos are under different
settings. Users are instructed to focus on the video content for
videos 1 to 4, but not for videos 5 to 8 so that they can exhibit
their unique behavior patterns. From Fig. 7(a), we can see that
over 95% video segments need only one Ptile for videos 2 to
4, because users have similar viewing interests and they are
instructed to focus on the video content in these videos. In
video 1 (basketball match), although users’ gazing directions
frequently move, more than 96% video segments only require
one or two Ptiles. For videos 5 to 8 where users are free to
explore, more Ptiles are needed. Even under this setting, over
92% video segments only require one or two Ptiles on average.

Fig. 7(b) shows the percentage of users covered by the
Ptiles. For videos 1, 2, 3, and 4, 88.4%, 94.6%, 90.3%, and
94.1% users can be served by the Ptiles, respectively. Even for
videos 5 to 8 where users are free to explore, more than 80%
of users can be served by the Ptiles. Since the viewing areas
of most users are covered by the Ptiles, most of them only
need to download these Ptiles to save bandwidth and energy.

2) Ptile vs. Ctile: To see the benefit of encoding the FoV
tiles as a Ptile, we compare the data size of the Ptile and that
of the conventional tiles covering the same area when both are
encoded at the same quality level. Fig. 8 shows the data size
CDFs of using the Ptile for each video segment, normalized
based on the data size of the corresponding conventional tiles.
From the figure, we can see that using Ptile can significantly
reduce the data size, since higher compression efficiency
can be achieved by using larger Ptiles instead of smaller



(a) (b)
Fig. 7: (a) The number of Ptiles constructed in different videos.
(b) The percentage of users covered by Ptiles.

(a) Video 4 (b) Video 5
Fig. 8: CDFs of the normalized data size for a Ptile. Only two
representative videos are shown to save space.

conventional tiles. As detailed in Fig. 8(a), with Ptile, the
median data size is 62%, 57%, 47%, 35%, and 27% of that of
conventional tiles when the video encoding quality is 5, 4, 3,
2, and 1, respectively. That is, using Ptiles can save bandwidth
by 38% (i.e., 1-0.62=0.38), 43%, 53%, 65%, and 73% when
the video encoding quality is 5, 4, 3, 2, and 1, respectively.

C. Performance Comparisons

We evaluate the performance of our energy-efficient and
QoE-aware 360◦ video streaming algorithm using user’s head
movement data trace. Similar to [3, 7], the playback buffer is
set to three seconds.

1) Energy Comparison: The energy consumption is calcu-
lated based on the power models shown in Section III-B. Fig.
9 compares the energy consumption of different approaches
under different network conditions using a Pixel 3 phone.
Specifically, Fig. 9 (a) and (b) show the detailed energy
consumption of eight videos under network trace 1 and trace 2.
Fig. 9 (c) shows the energy consumption, normalized based on
Ctile, of different approaches. To further evaluate the proposed
algorithm, different types of smartphones are also used for
performance evaluations. Fig. 10 shows the energy consump-
tion, normalized based on Ctile, of different approaches when
using a LG Nexus 5x and Samsung Galaxy S20 phone. In
general, our algorithm has the lowest energy consumption, and
Ptile has the second lowest energy consumption, both of them
significantly outperform Ctile, Ftile and Nontile.

As shown in Fig. 9(c), compared to Ctile, the energy saving
of Ptile and Ours is 30.3% and 49.7% on average. By using
Ptiles, Ours and Ptile can achieve high compression efficiency
and reduce the amount of data to be downloaded, and hence
reducing the energy consumption of data communication.
Moreover, with Ptile, only one decoder is needed, which re-
duces the computational overhead and the energy consumption
of video processing. In contrast, for Ctile and Ftile, multiple
decoders are needed to decode the video tiles in time and cause
high energy consumption. By removing insignificant frames in

(a) Network trace 1 (b) Network trace 2

(c) Overall energy consumption (d) Three parts of energy consumption
Fig. 9: Comparison of different approaches on energy con-
sumption (Pixel 3).

(a) Energy consumption (Nexus 5X) (b) Energy consumption (Galaxy S2)
Fig. 10: Comparison of different approaches on energy con-
sumption for Nexus 5X (a) and Galaxy S20 (b).

the Ptiles, Ours can further reduce the energy consumption by
around 20% compared to Ptile.

Taking video 8 under network trace 2 as an example,
Fig. 9(d) shows the energy consumption of data transmission
and the energy consumption of video processing. As can
be seen, compared to Ctile, Ptile and Ours can save 26.1%
and 47.7% energy for data transmission, respectively. The
energy consumption of video processing includes the energy
consumption for video decoding and view generation. As can
be seen, compared to Ctile, Ptile and Ours can reduce the
energy consumption for video decoding by 50.1% and 53.5%.
Since the view generation process only involves reading
the pixel values from the memory based on the coordinate
mapping (i.e., projection), the energy consumption of view
generation is much less than that of video downloading and
video decoding in 360◦ video streaming. This is different from
interactive virtual reality (VR) gaming applications, where new
frames (i.e., video content) need to be rendered based on user
interactions in real time, which imposes heavy computation
overhead. In contrast, the video content in 360◦ video has
already been recorded.

The energy consumption of Nontile depends on the network
condition. When more bandwidth is available (trace 1), more
data will be transmitted, i.e., besides the video data in FoV,
video data in other areas are also transmitted in high quality.
Thus, it consumes much more energy than other approaches.
When less bandwidth is available (trace 2), less amount of
data is downloaded, and the video quality has to be reduced.



(a) Network trace 1 (b) Network trace 2

(c) Overall QoE (d) Three metrics of QoE
Fig. 11: Comparison of different approaches on QoE.

As a result, the energy consumption is close to Ctile, but at a
cost of lower QoE, as shown in Fig. 11.

2) QoE Comparison: Fig. 11 compares the QoE of different
approaches under different network conditions. Specifically,
Fig. 11 (a) and (b) show the detailed QoE of eight videos under
two network traces. Fig. 11 (c) shows the QoE, normalized
based on Ctile, of different approaches. In general, Ours and
Ptile can achieve higher QoE than Ctile, Ftile and Nontile.

As shown in Fig. 11 (c), Nontile has the worst QoE because
it does not differentiate videos inside the FoV and other areas,
and hence has to reduce the video quality of the whole video
when network bandwidth is limited. By using tiles, the other
three approaches can maintain higher video quality within
FoV under the same bandwidth constraint, and hence have
higher QoE. Compared to Ctile, Ours can improve the QoE
by 7.4% for network trace 1 and 18.4% for network trace 2. By
encoding the video as Ptiles, Ours achieves high compression
efficiency and the data size of encoded video becomes much
smaller than Ctile. Then, under the same network condition,
a user can download a Ptile encoded at higher quality, instead
of Ctiles or Ftiles encoded with lower quality, and thus the
QoE can be improved. In Ftile, it is inefficient to cluster users’
views into a fixed number of clusters. This is because the video
area viewed by many users (i.e., the area covered by a Ptile)
is divided into unnecessary number of small tiles, reducing
video compression efficiency. Moreover, dividing the video
area outside of a Ptile reduces the encoding efficiency and thus
causes high bandwidth demand. Compared to Ptile, Ours has a
little bit lower QoE, which still satisfies the QoE constraint. By
trading off a little bit of QoE, Ours further reduces the energy
consumption compared to Ptile. For example, compared to
Ptile, Ours reduces the energy consumption by 27.7% for
network trace 2 (Fig. 9(c)), but only reduces the QoE by 4.6%
(Fig. 11(c)).

Taking video 8 under network trace 2 as an example, Fig. 11
(d) shows the three metrics of the QoE (as in Eq. 2): average
video quality, quality variation, and rebuffering. As can be
seen, compared to Ctile, Ours and Ptile achieve higher average
video quality, lower quality variation, and lower rebuffering
effect. Since Nontile downloads the whole video and has to

reduce the video quality when less bandwidth is available,
the average video quality achieved by Nontile is much lower
than that of Ctile. Due to network variations, Ctile, Ftile and
Nontile have more rebuffering events since they request video
segments encoded at high quality but the network throughput
suddenly drops. In contrast, with Ptiles, Ours does not generate
any rebuffering events.

VI. RELATED WORK

Tile-based streaming has been widely used in 360◦ video
streaming to adapt to varying network conditions. By cutting
the video segment into tiles, only tiles covering users’ viewing
area are downloaded with high quality, and other tiles are
downloaded with low quality to save bandwidth. In the lit-
erature, a large amount of research focuses on encoding video
with fix sized tiling [4, 13, 11], while others focus on dividing
the video into tiles with different sizes [12, 5]. Chen et al. [28]
proposed technique to construct tiles to reduce the bandwidth
consumption; however, they did not consider energy issues
and did not consider the impact of frame rate reduction on
energy consumption and QoE. Although tile-based 360◦ video
streaming can improve QoE with limited wireless bandwidth,
downloading and processing tiles consume more energy on
mobile devices.

There has been considerable research on reducing the en-
ergy consumption of traditional non-360◦ video streaming.
Some researchers proposed to reduce the power consumption
of the wireless interface during video streaming [29, 30].
Hu et al. [29] proposed techniques to save energy based on
whether the user tends to watch video for a long time, skip,
or early quit. Wu et al. [30] designed an energy efficient
video streaming scheme over heterogeneous networks. Other
researchers proposed to reduce the energy consumption of
video processing on mobile devices [31, 32, 33]. Yang et al.
[31] proposed to save energy for video streaming by adaptively
adjusting the CPU frequency. Chen et al. [34] proposed to
save energy by considering the context (environment) of video
streaming. However, the issue of saving energy for tile-based
360◦ video streaming is much more challenging, since dividing
the video into tiles can make the video processing pipeline
much more complex and lead to high computation overhead
on mobile devices. Different from them, we identify the energy
inefficiency problem of tile-based 360◦ video streaming and
propose a Ptile approach, which can reduce the energy con-
sumption of video downloading and the energy consumption
of video processing.

VII. CONCLUSIONS

In this paper, we identified the energy inefficiency problem
of tile-based 360◦ video streaming, and proposed an energy-
efficient and QoE-aware 360◦ video streaming algorithm to
minimize the energy consumption under some QoE constraint.
We proposed to encode the video by considering the viewing
popularity, where the tiles requested by users of similar
interests are encoded as a large Ptile. To construct Ptiles,
we exploit the historical viewing data from users watching



the same video. By considering user behavior and video
content, we proposed to further save energy by reducing the
insignificant frames when encoding Ptiles. Based on real video
traces, we modeled the impact of video features and user
behavior on QoE, and modeled the impact of video features on
power consumption. Based on the QoE model and the power
model, we formulated the energy-efficient and QoE-aware
360◦ video streaming problem as an optimization problem,
and proposed a MPC based algorithm to solve it. Through
extensive trace-driven experiments, we demonstrated that the
proposed algorithm can reduce the energy consumption by
49.7% and improve the QoE by more than 7.4%.
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