CONTINUITY OF A CLASS OF FBI TRANSFORMS ON
SOBOLEV SPACES

S. BERHANU AND JEMAL YESUF

ABSTRACT. We show that a subclass of the generalized FBI transforms that
were introduced in the work [11] are bounded on Sobolev spaces.

1. INTRODUCTION

The classical FBI transform is a nonlinear transform which has the form

Fu(x,§) :/ @ —lElle=yPy () dy, x ¢ € R™ (1.1)

m

where u is a continuous function of compact support in R™ or a distribution
of compact support in which case the integral is understood in a duality sense.
This transform characterizes microlocal analyticity [22], microlocal smoothness
[23], and microlocal Gevrey regularity [12]. It has been used extensively to study
the local and microlocal regularity of solutions of linear and nonlinear partial
differential equations. Among the numerous works where (1.1) or a variant have
been used, we mention [1], [2], [3], [4], [5], [8], [6], [7], [12], [14], [L7], [18&], [19],
[21], and [22].

In [22] (see also [15]) a more general FBI transform was considered where the
phase function behaved much like the quadratic phase if.(z — y) — [£]|z — y|? in
that the real part of the Hessian was required to be negative definite.

The work [11] introduced a class of FBI transforms where the real part of
the Hessian of the phase function was allowed to degenerate. Examples of such
transforms include, for each k =2, ...

Fru(zx,§) :/ eif'(x_y)_m‘x_m%u(y)dy, z, & € R™, (1.2)
Note that when k& > 1, these transforms have a Hessian that degenerates at the
origin. The more general FBI transforms of [11] were shown to characterize mi-
crolocal analyticity and microlocal smoothness. They also characterize microlocal
regularity of Gevrey functions (see [9] and [17]).

This article establishes the boundedness of the transforms (1.2) on Sobolev
spaces. The case when k = 1 was treated in the work [10]. We mention that
the transform (1.2) for k& = 2 was applied in the works [11] and [17] to prove
microlocal CR regularity.
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2. STATEMENTS OF RESULTS

For each k = 1,2,3, ..., we consider the generalized FBI transform Fj.(u, z,§)
defined for u € &'(R™) by

Filua§) = [ st e ugy)y

m

where the integral is understood to be in the duality sense when u is a distribution.

Theorem 2.1. Let ¥ cC Q C R™ be open sets, Q2 bounded. Then for any
ue &),

(@) Il
<o [ [ Adua OPIF 0+ g dedo + Il )
(b) Conversely,
| Rt 0PI 1+ €5 dgde < Cllul

where in both (a) and (b), the constant C' is independent of w.

We recall that a function a(z, &) € C*(2 x R") is said to belong to the symbol
class S 5 s if for every pair of multi-indices o, 5 and every compact subset K C (2,

0708 a(w, )] < (1 + [g])F etV

Given a symbol a(z,§) € 5’25, the corresponding pseudodifferential operator
A(z, D) € Wk ;s is defined by

Az, D)u(z) = / m /Q Doz, uly) dyde, u € E(Q).

If u € £'(Q), one says the point (x4, &%) € 2 x R™\ 0 is not in the H® wavefront
set of u (denoted (xg,&%) & WF,(u)) if for some ¢(x) € C5°(Q), p(xo) # 0, and
an open cone I' C R™ with vertex at the origin and containing ¢°,

/F!@(S)F(l + |€]2)* dE < .

It is well known that (zg, &%) ¢ WF,(u) if and only if whenever P(z, D) is an ellip-
tic pseudodifferential operator of order zero whose support is in a conic neighbor-
hood of (x¢, &%), P(z, D)u € H*. The following theorem is a microlocal version
of Theorem 2.1.

Theorem 2.2. Let (z0,£") € R™ x R™\ {0} and p(z,&) € SY,, with support
in a conic neighborhood 2 x T' of (z0,£°%), Q1 CC Q. Then for any u € E'(QY)
(Q CcC  CC Q), there exist constants Cy,Cy > 0 independent of u such that:

() [|P(x, D)ul |7

<ol [ 17 Pl OPIET (-4 e85 dode + [l )
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! /gm.[;L7k<“’x’fﬂ2ﬂﬂxﬂfﬂ2m¢?<1<+\£P>v+m4ﬁkdxdg
<@@meWm+WWF)

3. PROOFs OF THEOREMS 2.1 & 2.2
Proof of Theorem 2.1. Observe that

| Fr(u ;1:§ // (s—y)—I&l(|lz—y[**+|z—s]2F) uly )@dyds,

which leads to

/Q/m |fk(U,x,§)’2‘£’%(1_’_ ‘€|2)s ded

:// //eif.(s—y)—lﬁ(|z—y|2k+|x—s2k)|§|’§<1+|§|2>su(y)®dyd8d£dx

QJrm JoJo
:/W/Q/Qeig'(sy)Q(%S’f)‘g’g(le‘512)5U(y)@dydsd§,

where

q(y, S, f) = / 6_‘§|(|$—y‘2k+|$_s‘2k) A
Q

Let Q(y,5,€) = a(y, s, )[¢]% (1 + [€*)*. We will show that ¢(y, s, &) € S 2’“1 and
that for any €' C Q" CC €, there exist ¢,b > 0 such that

Qy,y,&) > &2 2 (14 |¢)* fory € Q" €] > b.
We have

m%%e—(éf“wwwﬁmﬁu+m%

= ([ e )igra ey
Q\y

Since 0 € Q \ y for each y € ", by compactness, there exists 6 > 0 such that the
ball B5(0) € Q\ y for every y € Q”. Hence B1(0) C (Q\ y) for every y € Q"

and therefore B, (0) C |¢]25(2\ y) for every y € Q" and all £ € R™ satisfying
€] > 5. It follows that for any y € ", & € R™, [£] > 5,

/ o2t gy _ L / o210l g
Q\y |§’2’“ €12 (2\y)

Z ]_m / 672|v|2kd1)
|£‘ 2 B1(0)

m,c>0

GEE

and so for such y and &,

Qy,y,€) = clg]|2 2 (1 + [¢*)".
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Set b = 52%, and let «, 5,7 be multi-indices. We will show that there is a
constant C, g > 0 such that

O¢ 858;Y (y, s, 5)‘ < Copr(l+ |§|)%—\al+ﬁ(lﬁl+h\)

for y and s in compact subsets and |£| > b.

Consider first 9¢q(y, s,¢§) :

Let h(z,y,s) = |v — y|** + |z — s|?*, F(r) = e7™"@%3) and g(¢) = |¢|. Then
e~ lEh@ys) — F(g(¢)). To estimate Og Fog(§), we will use the multivariate version
of the formula of Fad di Bruno which says that (see [13])

|al

RFog&)= Y DF&))Y > a Hk.l.w

1<A<]af s=1 ps(a,))  j=1

where

pala, A) = {(kr, kil 1) kg > 0,0 <l <10 Y ki =AY |killi = o},
=1 =1

Here, for two multi-indices v = (v4,...,v4) and = (p1, ..., fta), the linear order
v < u means one of the following holds:

) v] < |ul

(ii) |v| = |p|, and vy < pq, or

(iii) |v| = ||, 1 = 1y« vk = g, and vgq < pigyq for some 1 < k < d.

We write v < p if v; < p; for every 1 < j <d.
Fix (ki, ..., ks;ly,...,1ls) € ps(a, A). Then

DF(r) = (~1) (e, y, 5) e ),

(Dg)s is homoge-
j=1 . (1 |)|k | g
neous of degree > %, (1 — [l;])k; = A — |a]. It follows that 8§‘q(y, s,€) is a finite

sum of constant multiples of terms of the type

/ h(z,y,s) e EM@vs) g, (&)dz,
Q

and since g(§) is homogeneous of degree 1, the factor []}

where ¢, () is homogeneous of degree A — |a].
For a multi-index 3, we next consider agagq(y, $,€):
From the form of d¢q(y, s, ) that we have seen, we only need to consider terms

of the form
[ o] o spenena ko, ga,
Q

where ¢ () is homogeneous of degree A — |a| and 1 < A < |a|. We have

/ 35{h(% v, S)Ae_g'h(”’s’}qA(é) da =
Q

5<8

5 (2) [t ben e
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In the latter sum, consider a term

65_5{h(x, y, s)* }35 —l¢ln(z.y.s)
Once again we use Faa di Bruno’s multivariable formula to compute
eI = g F(g(1)),
where g(t) = [t|?* and F(r) = e7"¢l. We have

19|

afeflﬂ\tlzk _ Z (DVF) Z Z 5IH 0 ' Ik T

1<V [<]d] s=1pa(6.N)  j=1

where >0 k=N, >0 |kl =0, and 0 <y < ... <.
Fix X1 < |N| < |0] and (kq,... ks li, ..., 0ls) € ps(6,N). For each 1 < j <
s, Dlig(t) is either 0 or homogenous of degree 2k — |lI;| > 0. Therefore,

ﬁ (Dlg)*s
e K1 (1;0) s
is either 0 or a homogeneous polynomial of degree > 7, k;(2k — |1;]) = 2k — [4].

Thus 636_|£ lle=yI** ig a constant linear combination of terms of the form

g (@ —y)[¢ el

where gy is either 0 or a homogeneous polynomial of degree 2kX — |9]. It follows
that
B—6 5 —|€|h(x,y,s)
/Qay {h(x,y, )t }8 ~lelh@w.s) g (&) da

= /Q 85—5{h(:c,y, S)A}(age—am—ﬁk)e—am—s%%(g) dx

is a constant linear combination of terms of the form

/Qayﬁ_é{h(x, v, S)A}gx(x — )aa(©)|E[N e IR gy

where gy is either 0 or homogeneous of degree 2kN — |§],1 < X < 0], qx(€)
homogeneous of degree A — |a|,1 < A < |a|. The same argument shows that for
any multi-index -, 8?858§q(y, s,€) is a constant linear combination of terms of
the form

J 82“5’85‘5{h<x, 7 sﬁ}gm = s)ow (@ = P)ar©IEP N e da,
Q

|2k

where gy is either 0 or a homogeneous polynomial of degree 2k\" — [0'] > 0, 1 <
N |1 < |yl 6] < 18],1 < A < ||, and gy, and g, are as before. Since
h(z,y,s)" is a polynomial of degree 2k\, we may assume that

Iy — |6 + 18] — |§] < 2kA.
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(Clearly, for some constant C' > 0,

)

077005 vy P | < Oy, o5 e B

and

g (x — 8)gn (@ — )‘ < RN

Thus

33_6/85_5{h($, Y, s))‘}gAu (x — s)g)\/ (a: — y)q)\(g)|§|>‘/+>\”€—|§|h(%y78)
< Cih(z, y, )MV 3B | g PN | g |lal —lelh(@s)

We claim that we may assume A + X + N/ — % ‘Jk‘ > 0. Indeed, this follows
from the fact that unless
Iv| = [0'| + 18] — 0] < 2kd, 2kN > |0] and 2kN" > |0,
the product
8§5l655{h(x, Y, S))‘}g)\//(l' — s)gv(x —y)
would be zero. Thus

h([)’}, v, 8>/\+>\/+>\H— |2[3| Il |§’)\+X )\//’§| \cx| —|€|h(z,y,s)

||

/ " @ =
AN 4A ot o~ (@ y.s) | ¢ L a1 8 h(a,p.5)
= | h(z,y, s)[¢] el 2

< (Y

for some Cy > 0, where we have used the fact that for any d > 0, the function
t?e~* is bounded on [0, 00).
It follows that for some constants C’ > 0,C > 0,

lal =5 h(=,y,s)

£l

aaaﬁav (y7s’€)‘ < C/|§|IBI+\"/I o] / B_Th(fc’y’s) dx
Q

€Oy Ysd

IBHI’Y\ —|a|—

< Cl¢f>

3

We have shown that q(y,s,§) € S| ¥. Let ¢(§) € Cg°(R™), ¢(§) = 1 for [¢] < b
2
and ¢(&) =0 for || > b. We write

/ / [, 2, ) P1€] % (L + [€)° déde = Ay + Ag,
Q m

E‘

where
A= /Q/m | Fi(u, 2, )P (1 = 0(€))€] 7 (1 + [€1)° deda,
and

Ay = /Q/m | Fio(w, 2, €)20(6) €] 2 (1 + |€)7)* dé d.
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We have
5 ) _ % 2N s R
A= / / / (1= 0(©))aly. 5, ¢ (1 + ¢ uly)uls) dydsds
(Tu, u)
where

)= [ [ e p(eatw. s O (L 16 ) dus

mk:f'm
is a pseudodifferential operator in the class \IJ ~ % By the boundedness of

pseudodifferential operators in this class ([H]) there exists C7 > 0 such that
A <Oy

mk m -

The integral As is of the form
Ay = (Su,u),

where S is a smoothing operator and hence for any M > 0 there exists Cy; > 0
such that

Ay < Curllul[3-a.

It follows that for some C' > 0,

[ [ 17t oI 4162 dede < Cllal?, g
(9] m
which establishes part (b) of Theorem 2.1.

To prove part (a), observe that the amplitude of the operator T is
By, s,&) = (1= ¢(&)aly, s, ©)IE]7 (1 + €)%,

and therefore, for any €' C Q" CC (), as we saw before , for some C > 0,

B(y,y.€) = (1= @(&)aly,y. &€= (1 + 1¢%)°

mk—m

> C(L+ ¢+ fory € Q¢ > .
Hence by Garding’s inequality, there exists C' > 0 such that

HUH2 mi—m SAHFCHUH2 mk—m 1 -

1

Therefore, for some C' > 0,

ol s <€ [ [ 1R 0PI 0+ iy

2
mk—m _ 1 9
st71 1

which proves part (a) of Theorem 2.1. O
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Proof of Theorem 2.2. We have

/ /‘7k(u7$,£)!2lp($,€)|2|§\’3(1+!5\2)ded€
R™ JQ

= // //eiE.(s—y)—|§(|9E—y|2k+x—s|2k)|p(x7§)|2|§|?(1+ |§‘2)su(y)mdydsd§dx
aJrm Ja Jo
_ /m/Q/Qei&'“”@l(ﬂ»ﬁ@\ﬂg(l+ (€2) u(y)uls) dydsd,

where

- x—y|?F 4|z —s|?F
a1y, 5, €) = / eIy o) | 6)]2 dir.
Q

For any multi-indices «, 3,7,

(6%
00005, = 3 () [ exogr (e oSyt
<a

We saw in the proof of Theorem 2.1 that for some C' > 0

373585< —[€lR( 1"?;8)) ‘ < C|§|—6+W.
Since [p(z, &)|* € SY 0> for some C” > 0,

3¢ |p(x, )P < C'je[l 1

and hence

(1= 9@)a(y,s,§) €
Write

§"“a-‘§

/R ) /Q [P, 2, ) p(, ) PIEN® (1 + [6) uly)u(s) dudg = Ay + A,

where

A = / ) / / S (1 = o(€))as (3, 5, €)% (1 + €12 uly)uls) dydsde,
and

Aa= [ [ D@ty s. D161 (L € u(o)uG) dydsce

We have A; = (Tyu,u), where

/m/ 91— 0())ar(y, 5,17 (1+ 1€17) uly) dydé.

We recall from the proof of Theorem 2.1 that

= [ [ S0 €t O 1+ 6wl due

where ¢(y, s,§) = fQ e lEllle—y+le=s") qg: Write

= [ [ et uty) dyde.

Tlu
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We observe that if P*(x, D) denotes the adjoint of P(z, D), then the principal
symbol of the composition P* o T o P is the same as that of T}. Indeed, the
principal symbol of T} is given by
(1= @) (y, 5, IENZ (L4 [€1)° = (1= 9(&)) (=, ) Paly, y, O)I€] = (1 + €,
while that of P*oT o P is
Therefore, the difference £ = T; — P* oT o P is a pseudodifferential operator in
25+ mk—m _ 1
the class U, ** 2.
It follows that
Al = <T1u7 u>
= (P*oT o P(u),u) + (Eu,u)
= (T'(Pu), Pu) + (Eu,u).

By Garding’s inequality, there are constants C7, C > 0 such that

4

Re{ (T(Pu). Pu) | 2 CUIPUIP, , my = CHIPUIE

We also have, for some C3 > 0,

Hence for some C7,Cy > 0, since P(x, D) is of order 0,
2 B 2
A > C1||Pu||HS+m;Z;m C2||PU||HS+m/172m

_1-
4

Since A, involves a smoothing operator, the proof of (a) is completed.
(b) follows from the continuity of 7} and the fact that A, involves a smoothing
operator. Il
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