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Abstract. We show that a subclass of the generalized FBI transforms that
were introduced in the work [11] are bounded on Sobolev spaces.

1. Introduction

The classical FBI transform is a nonlinear transform which has the form

Fu(x, ξ) =

∫

Rm

ei.ξ.(x−y)−|ξ||x−y|2u(y) dy, x, ξ ∈ R
m (1.1)

where u is a continuous function of compact support in R
m or a distribution

of compact support in which case the integral is understood in a duality sense.
This transform characterizes microlocal analyticity [22], microlocal smoothness
[23], and microlocal Gevrey regularity [12]. It has been used extensively to study
the local and microlocal regularity of solutions of linear and nonlinear partial
differential equations. Among the numerous works where (1.1) or a variant have
been used, we mention [1], [2], [3], [4], [5], [8], [6], [7], [12], [14], [17], [18], [19],
[21], and [22].
In [22] (see also [15]) a more general FBI transform was considered where the

phase function behaved much like the quadratic phase iξ.(x− y)− |ξ||x− y|2 in
that the real part of the Hessian was required to be negative definite.
The work [11] introduced a class of FBI transforms where the real part of

the Hessian of the phase function was allowed to degenerate. Examples of such
transforms include, for each k = 2, . . .

Fku(x, ξ) =

∫

Rm

eiξ.(x−y)−|ξ||x−y|2ku(y)dy, x, ξ ∈ R
m, (1.2)

Note that when k > 1, these transforms have a Hessian that degenerates at the
origin. The more general FBI transforms of [11] were shown to characterize mi-
crolocal analyticity and microlocal smoothness. They also characterize microlocal
regularity of Gevrey functions (see [9] and [17]).
This article establishes the boundedness of the transforms (1.2) on Sobolev

spaces. The case when k = 1 was treated in the work [10]. We mention that
the transform (1.2) for k = 2 was applied in the works [11] and [17] to prove
microlocal CR regularity.
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2. Statements of results

For each k = 1, 2, 3, . . . , we consider the generalized FBI transform Fk(u, x, ξ)
defined for u ∈ E ′(Rm) by

Fk(u, x, ξ) =

∫

Rm

eiξ.(x−y)−|ξ||x−y|2ku(y)dy

where the integral is understood to be in the duality sense when u is a distribution.

Theorem 2.1. Let Ω′ ⊂⊂ Ω ⊆ R
m be open sets, Ω bounded. Then for any

u ∈ E ′(Ω′),

(a) ||u||2Ht

≤ C

(∫

Ω

∫

Rm

|Fk(u, x, ξ)|
2|ξ|

m
2 (1 + |ξ|2)t+

m−mk
4k dξdx+ ||u||2

Ht− 1
4

)
;

(b) Conversely,
∫

Ω

∫

Rm

|Fk(u, x, ξ)|
2|ξ|

m
2 (1 + |ξ|2)t+

m−mk
4k dξdx ≤ C||u||2Ht ,

where in both (a) and (b), the constant C is independent of u.

We recall that a function a(x, ξ) ∈ C∞(Ω×R
n) is said to belong to the symbol

class Sk
ρ,δ if for every pair of multi-indices α, β and every compact subset K ⊂ Ω,

|∂β
x∂

α
ξ a(x, ξ)| ≤ (1 + |ξ|)k−ρ|α|+δ|β|.

Given a symbol a(x, ξ) ∈ Sk
ρ,δ, the corresponding pseudodifferential operator

A(x,D) ∈ Ψk
ρ,δ is defined by

A(x,D)u(x) =

∫

Rm

∫

Ω

ei(x−y)·ξa(x, ξ)u(y) dydξ, u ∈ E ′(Ω).

If u ∈ E ′(Ω), one says the point (x0, ξ
0) ∈ Ω×R

m \0 is not in the Hs wavefront
set of u (denoted (x0, ξ

0) /∈ WFs(u)) if for some ϕ(x) ∈ C∞
0 (Ω), ϕ(x0) 6= 0, and

an open cone Γ ⊂ R
m with vertex at the origin and containing ξ0,∫

Γ

|ϕ̂u(ξ)|2(1 + |ξ|2)s dξ < ∞.

It is well known that (x0, ξ
0) /∈ WFs(u) if and only if whenever P (x,D) is an ellip-

tic pseudodifferential operator of order zero whose support is in a conic neighbor-
hood of (x0, ξ

0), P (x,D)u ∈ Hs. The following theorem is a microlocal version
of Theorem 2.1.

Theorem 2.2. Let (x0, ξ
0) ∈ R

m × R
m \ {0} and p(x, ξ) ∈ S0

1,0, with support

in a conic neighborhood Ω1 × Γ of (x0, ξ
0), Ω1 ⊂⊂ Ω. Then for any u ∈ E ′(Ω′)

(Ω1 ⊂⊂ Ω′ ⊂⊂ Ω), there exist constants C1, C2 > 0 independent of u such that:

(a) ||P (x,D)u||2Ht

≤ C1

(∫

Rm

∫

Ω

|Fk(u, x, ξ)|
2|p(x, ξ)|2|ξ|

m
2 (1 + |ξ|2)t+

m−mk
4k dxdξ + ||u||2

Ht− 1
4

)
;
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(b)

∫

Rm

∫

Ω

|Fk(u, x, ξ)|
2|p(x, ξ)|2|ξ|

m
2 (1 + |ξ|2)t+

m−mk
4k dxdξ

≤ C2

(
||P (x,D)u||2Ht + ||u||2

Ht− 1
4

)
.

3. Proofs of Theorems 2.1 & 2.2

Proof of Theorem 2.1. Observe that

|Fk(u, x, ξ)|
2 =

∫

Ω

∫

Ω

eiξ.(s−y)−|ξ|(|x−y|2k+|x−s|2k)u(y)u(s)dyds,

which leads to∫

Ω

∫

Rm

|Fk(u, x, ξ)|
2|ξ|

m
2 (1 + |ξ|2)s dξdx

=

∫

Ω

∫

Rm

∫

Ω

∫

Ω

eiξ.(s−y)−|ξ|(|x−y|2k+|x−s|2k)|ξ|
m
2 (1 + |ξ|2)su(y)u(s) dydsdξdx

=

∫

Rm

∫

Ω

∫

Ω

eiξ.(s−y)q(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)su(y)u(s) dydsdξ,

where

q(y, s, ξ) =

∫

Ω

e−|ξ|(|x−y|2k+|x−s|2k) dx.

Let Q(y, s, ξ) = q(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)s. We will show that q(y, s, ξ) ∈ S

−m
2k

1, 1

2k

and

that for any Ω′ ⊆ Ω′′ ⊂⊂ Ω, there exist c, b > 0 such that

Q(y, y, ξ) ≥ c|ξ|
m
2
− m

2k (1 + |ξ|2)s for y ∈ Ω′′, |ξ| ≥ b.

We have

Q(y, y, ξ) =

(∫

Ω

e−2|ξ||x−y|2kdx

)
|ξ|

m
2 (1 + |ξ|2)s

=

(∫

Ω\y

e−2|ξ||t|2kdt

)
|ξ|

m
2 (1 + |ξ|2)s.

Since 0 ∈ Ω \ y for each y ∈ Ω′′, by compactness, there exists δ > 0 such that the
ball Bδ(0) ⊆ Ω \ y for every y ∈ Ω′′. Hence B1(0) ⊆

1
δ
(Ω \ y) for every y ∈ Ω′′

and therefore, B1(0) ⊆ |ξ|
1

2k (Ω \ y) for every y ∈ Ω′′ and all ξ ∈ R
m satisfying

|ξ| ≥ 1
δ2k

. It follows that for any y ∈ Ω′′, ξ ∈ R
m, |ξ| ≥ 1

δ2k
,

∫

Ω\y

e−2|ξ||t|2kdt =
1

|ξ|
m
2k

∫

|ξ|
1
2k (Ω\y)

e−2|v|2dv

≥
1

|ξ|
m
2k

∫

B1(0)

e−2|v|2kdv

=
c

|ξ|
m
2k

, c > 0,

and so for such y and ξ,

Q(y, y, ξ) ≥ c|ξ|
m
2
− m

2k (1 + |ξ|2)s.
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Set b = 1
δ2k

, and let α, β, γ be multi-indices. We will show that there is a
constant Cα,β,γ > 0 such that

∣∣∣∣∂α
ξ ∂

β
y ∂

γ
s q(y, s, ξ)

∣∣∣∣ ≤ Cα,β,γ(1 + |ξ|)
−m
2k

−|α|+ 1

2k
(|β|+|γ|)

for y and s in compact subsets and |ξ| ≥ b.
Consider first ∂α

ξ q(y, s, ξ) :

Let h(x, y, s) = |x − y|2k + |x − s|2k, F (r) = e−rh(x,y,s) and g(ξ) = |ξ|. Then
e−|ξ|h(x,y,s) = F (g(ξ)). To estimate ∂α

ξ F ◦g(ξ), we will use the multivariate version
of the formula of Faá di Bruno which says that (see [13])

∂α
ξ F ◦ g(ξ) =

∑

1≤λ≤|α|

DλF (g(ξ))

|α|∑

s=1

∑

ps(α,λ)

α!
s∏

j=1

(Dljg)kj

kj!(lj!)|kj |
,

where

ps(α, λ) = {(k1, . . . , ks; l1, . . . , ls) : |kj| > 0, 0 < l1 . . . < ls,

s∑

i=1

ki = λ,

s∑

i=1

|ki|li = α}.

Here, for two multi-indices ν = (ν1, . . . , νd) and µ = (µ1, . . . , µd), the linear order
ν < µ means one of the following holds:

(i) |ν| < |µ|;
(ii) |ν| = |µ|, and ν1 < µ1, or
(iii) |ν| = |µ|, ν1 = µ1, . . . , νk = µk, and νk+1 < µk+1 for some 1 ≤ k < d.

We write ν ≤ µ if νj ≤ µj for every 1 ≤ j ≤ d.
Fix (k1, . . . , ks; l1, . . . , ls) ∈ ps(α, λ). Then

DλF (r) = (−1)λh(x, y, s)λe−rh(x,y,s),

and since g(ξ) is homogeneous of degree 1, the factor
∏s

j=1
(Dlj g)kj

kj !(lj !)
|kj |

is homoge-

neous of degree
∑s

j=1(1− |lj|)kj = λ− |α|. It follows that ∂α
ξ q(y, s, ξ) is a finite

sum of constant multiples of terms of the type
∫

Ω

h(x, y, s)λe−|ξ|h(x,y,s)qλ(ξ)dx,

where qλ(ξ) is homogeneous of degree λ− |α|.
For a multi-index β, we next consider ∂β

y ∂
α
ξ q(y, s, ξ):

From the form of ∂α
ξ q(y, s, ξ) that we have seen, we only need to consider terms

of the form ∫

Ω

∂β
y

{
h(x, y, s)λe−|ξ|h(x,y,s)

}
qλ(ξ)dx,

where qλ(ξ) is homogeneous of degree λ− |α| and 1 ≤ λ ≤ |α|. We have
∫

Ω

∂β
y

{
h(x, y, s)λe−|ξ|h(x,y,s)

}
qλ(ξ) dx =

∑

δ≤β

(
β

δ

)∫

Ω

∂β−δ
y

{
h(x, y, s)λ

}
∂δ
ye

−|ξ|h(x,y,s)qλ(ξ) dx.
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In the latter sum, consider a term

∂β−δ
y

{
h(x, y, s)λ

}
∂δ
ye

−|ξ|h(x,y,s).

Once again we use Faá di Bruno’s multivariable formula to compute

∂δ
t e

−|ξ||t|2k = ∂δ
tF (g(t)),

where g(t) = |t|2k and F (r) = e−r|ξ|. We have

∂δ
t e

−|ξ||t|2k =
∑

1≤|λ′|≤|δ|

(Dλ′

F )(g(t))

|δ|∑

s=1

∑

ps(δ,λ′)

δ!
s∏

j=1

(Dljg)kj

kj!(lj!)|kj |
,

where
∑s

i=1 ki = λ′,
∑s

i=1 |ki|li = δ, and 0 < l1 < . . . < ls.
Fix λ′, 1 ≤ |λ′| ≤ |δ| and (k1, . . . , ks; l1, . . . , ls) ∈ ps(δ, λ

′). For each 1 ≤ j ≤
s, Dljg(t) is either 0 or homogenous of degree 2k − |lj| ≥ 0. Therefore,

s∏

j=1

(Dljg)kj

kj!(lj!)|kj |

is either 0 or a homogeneous polynomial of degree
∑s

j=1 kj(2k−|lj|) = 2kλ′−|δ|.

Thus ∂δ
ye

−|ξ||x−y|2k is a constant linear combination of terms of the form

gλ′(x− y)|ξ|λ
′

e−|ξ||x−y|2k ,

where gλ′ is either 0 or a homogeneous polynomial of degree 2kλ′− |δ|. It follows
that

∫

Ω

∂β−δ
y

{
h(x, y, s)λ

}
∂δ
ye

−|ξ|h(x,y,s)qλ(ξ) dx

=

∫

Ω

∂β−δ
y

{
h(x, y, s)λ

}(
∂δ
ye

−|ξ||x−y|2k
)
e−|ξ||x−s|2kqλ(ξ) dx

is a constant linear combination of terms of the form
∫

Ω

∂β−δ
y

{
h(x, y, s)λ

}
gλ′(x− y)qλ(ξ)|ξ|

λ′

e−|ξ|h(x,y,s) dx,

where gλ′ is either 0 or homogeneous of degree 2kλ′ − |δ|, 1 ≤ λ′ ≤ |δ|, qλ(ξ)
homogeneous of degree λ− |α|, 1 ≤ λ ≤ |α|. The same argument shows that for
any multi-index γ, ∂α

ξ ∂
β
y ∂

γ
s q(y, s, ξ) is a constant linear combination of terms of

the form
∫

Ω

∂γ−δ′

s ∂β−δ
y

{
h(x, y, s)λ

}
gλ′′(x− s)gλ′(x− y)qλ(ξ)|ξ|

λ′+λ′′

e−|ξ|h(x,y,s) dx,

where gλ′′ is either 0 or a homogeneous polynomial of degree 2kλ′′−|δ′| ≥ 0, 1 ≤
λ′′ ≤ |δ′|, |δ′| ≤ |γ|, |δ| ≤ |β|, 1 ≤ λ′′ ≤ |δ′|, and gλ′ , and qλ are as before. Since
h(x, y, s)λ is a polynomial of degree 2kλ, we may assume that

|γ| − |δ′|+ |β| − |δ| ≤ 2kλ.
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Clearly, for some constant C > 0,∣∣∣∣∂γ−δ′

s ∂β−δ
y

{
h(x, y, s)λ

}∣∣∣∣ ≤ Ch(x, y, s)λ−
|γ|
2k

−
|β|
2k

+
|δ′|
2k

+
|δ|
2k ,

and ∣∣∣∣gλ′′(x− s)gλ′(x− y)

∣∣∣∣ ≤ Chλ′−
|δ|
2k

+λ′′−
|δ′|
2k .

Thus ∣∣∣∣∂γ−δ′

s ∂β−δ
y

{
h(x, y, s)λ

}
gλ′′(x− s)gλ′(x− y)qλ(ξ)|ξ|

λ′+λ′′

e−|ξ|h(x,y,s)

∣∣∣∣

≤ C1h(x, y, s)
λ+λ′+λ′′−

|β|
2k

−
|γ|
2k |ξ|λ+λ′+λ′′

|ξ|−|α|e−|ξ|h(x,y,s).

We claim that we may assume λ + λ′ + λ′′ − |β|
2k

− |γ|
2k

≥ 0. Indeed, this follows
from the fact that unless

|γ| − |δ′|+ |β| − |δ| ≤ 2kδ, 2kλ′ ≥ |δ| and 2kλ′′ ≥ |δ′|,

the product

∂γ−δ′

s ∂β−δ
y

{
h(x, y, s)λ

}
gλ′′(x− s)gλ′(x− y)

would be zero. Thus∣∣∣∣h(x, y, s)λ+λ′+λ′′−
|β|
2k

−
|γ|
2k |ξ|λ+λ′+λ′′

|ξ|−|α|e−|ξ|h(x,y,s)

∣∣∣∣

=

(
h(x, y, s)|ξ|

)λ+λ′+λ′′−
|β|
2k

−
|γ|
2k

e−
|ξ|
2
h(x,y,s)|ξ|

|β|+|γ|
2k

−|α|e−|
|ξ|
2
|h(x,y,s)

≤ C2|ξ|
|β|+|γ|

2k
−|α|e−

|ξ|
2
h(x,y,s)

for some C2 > 0, where we have used the fact that for any d ≥ 0, the function
tde−t is bounded on [0,∞).
It follows that for some constants C ′ > 0, C > 0,∣∣∣∣∂α

ξ ∂
β
y ∂

γ
s q(y, s, ξ)

∣∣∣∣ ≤ C ′|ξ|
|β|+|γ|

2k
−|α|

∫

Ω

e−
|ξ|
2
h(x,y,s) dx

≤ C|ξ|
|β|+|γ|

2k
−|α|− m

2k .

We have shown that q(y, s, ξ) ∈ S
− m

2k

1, 1

2k

. Let ϕ(ξ) ∈ C∞
0 (Rm), ϕ(ξ) ≡ 1 for |ξ| ≤ b

2

and ϕ(ξ) ≡ 0 for |ξ| ≥ b. We write
∫

Ω

∫

Rm

|Fk(u, x, ξ)|
2|ξ|

m
2 (1 + |ξ|2)s dξdx = A1 + A2,

where

A1 =

∫

Ω

∫

Rm

|Fk(u, x, ξ)|
2(1− ϕ(ξ))|ξ|

m
2 (1 + |ξ|2)s dξdx,

and

A2 =

∫

Ω

∫

Rm

|Fk(u, x, ξ)|
2ϕ(ξ)|ξ|

m
2 (1 + |ξ|2)s dξ dx.
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We have

A1 =

∫

Rm

∫

Ω

∫

Ω

eiξ.(s−y)(1− ϕ(ξ))q(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)su(y)u(s) dydsdξ

= 〈Tu, u〉,

where

Tu(s) =

∫

Rm

∫

Ω

eiξ.(s−y)(1− ϕ(ξ))q(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)su(y) dydξ

is a pseudodifferential operator in the class Ψ
2s+mk−m

2k

1, 1

2k

. By the boundedness of

pseudodifferential operators in this class ([H]), there exists C1 > 0 such that

A1 ≤ C1||u||
2

H
s+mk−m

4k

.

The integral A2 is of the form

A2 = 〈Su, u〉,

where S is a smoothing operator and hence for any M > 0 there exists CM > 0
such that

A2 ≤ CM ||u||2H−M .

It follows that for some C > 0,
∫

Ω

∫

Rm

|Fk(u, x, ξ)|
2|ξ|

m
2 (1 + |ξ|2)s dξdx ≤ C||u||2

H
s+mk−m

4k

,

which establishes part (b) of Theorem 2.1.

To prove part (a), observe that the amplitude of the operator T is

B(y, s, ξ) = (1− ϕ(ξ))q(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)s,

and therefore, for any Ω′ ⊆ Ω′′ ⊂⊂ Ω, as we saw before , for some C > 0,

B(y, y, ξ) = (1− ϕ(ξ))q(y, y, ξ)|ξ|
m
2 (1 + |ξ|2)s

≥ C(1 + |ξ|2)s+
mk−m

4k for y ∈ Ω′′, |ξ| ≥ b.

Hence by Garding’s inequality, there exists C > 0 such that

||u||2
H

s+mk−m
4k

≤ A1 + C||u||2
H

s+mk−m
4k

− 1
4

.

Therefore, for some C > 0,

||u||2
Hs+mk−m

4

≤ C

(∫

Ω

∫

Rm

|Fk(u, x, ξ)|
2|ξ|

m
2 (1 + |ξ|2)s dξdx+ ||u||2

Hs+mk−m
4

− 1
4

)
,

which proves part (a) of Theorem 2.1. �
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Proof of Theorem 2.2. We have∫

Rm

∫

Ω

|Fk(u, x, ξ)|
2|p(x, ξ)|2|ξ|

m
2 (1 + |ξ|2)s dxdξ

=

∫

Ω

∫

Rm

∫

Ω

∫

Ω

eiξ.(s−y)−|ξ|(|x−y|2k+|x−s|2k)|p(x, ξ)|2|ξ|
m
2 (1 + |ξ|2)su(y)u(s) dydsdξdx

=

∫

Rm

∫

Ω

∫

Ω

eiξ.(s−y)q1(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)su(y)u(s) dydsdξ,

where

q1(y, s, ξ) =

∫

Ω

e−|ξ|(|x−y|2k+|x−s|2k)|p(x, ξ)|2 dx.

For any multi-indices α, β, γ,

∂γ
s ∂

β
y ∂

α
ξ q1(y, s, ξ) =

∑

δ≤α

(
α

δ

)∫

Ω

∂γ
s ∂

β
y ∂

δ
ξ

(
e−|ξ|h(x,y,s)

)
∂α−δ
ξ |p(x, ξ)|2 dx.

We saw in the proof of Theorem 2.1 that for some C > 0,∣∣∣∣∂γ
s ∂

β
y ∂

δ
ξ

(
e−|ξ|h(x,y,s)

)∣∣∣∣ ≤ C|ξ|−δ+
|β|+|γ|

2k .

Since |p(x, ξ)|2 ∈ S
0
1,0, for some C ′ > 0,

∣∣∣∣∂α−δ
ξ |p(x, ξ)|2

∣∣∣∣ ≤ C ′|ξ||δ|−|α|

and hence
(1− ϕ(ξ))q1(y, s, ξ) ∈ S

− m
2k

1, 1

2k

.

Write ∫

Rm

∫

Ω

|Fk(u, x, ξ)|
2|p(x, ξ)|2|ξ|

m
2 (1 + |ξ|2)su(y)u(s) dxdξ = A1 + A2,

where

A1 =

∫

Rm

∫

Ω

∫

Ω

eiξ.(s−y)(1− ϕ(ξ))q1(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)su(y)u(s) dydsdξ,

and

A2 =

∫

Rm

∫

Ω

∫

Ω

eiξ.(s−y)ϕ(ξ)q1(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)su(y)u(s) dydsdξ.

We have A1 = 〈T1u, u〉, where

T1u(s) =

∫

Rm

∫

Ω

eiξ.(s−y)(1− ϕ(ξ))q1(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)su(y) dydξ.

We recall from the proof of Theorem 2.1 that

Tu(s) =

∫

Rm

∫

Ω

eiξ.(s−y)(1− ϕ(ξ))q(y, s, ξ)|ξ|
m
2 (1 + |ξ|2)su(y) dydξ,

where q(y, s, ξ) =
∫
Ω
e−|ξ|(|x−y|2k+|x−s|2k) dx. Write

P (x,D)u(x) =

∫

Rm

∫

Ω

eiξ.(s−y)p(x, ξ)u(y) dydξ.
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We observe that if P ∗(x,D) denotes the adjoint of P (x,D), then the principal
symbol of the composition P ∗ ◦ T ◦ P is the same as that of T1. Indeed, the
principal symbol of T1 is given by

(1− ϕ(ξ))q1(y, y, ξ)|ξ|
m
2 (1 + |ξ|2)s = (1− ϕ(ξ))|p(x, ξ)|2q(y, y, ξ)|ξ|

m
2 (1 + |ξ|2)s,

while that of P ∗ ◦ T ◦ P is

p(x, ξ)(1− ϕ(ξ))q(y, y, ξ)|ξ|
m
2 (1 + |ξ|2)sp(x, ξ).

Therefore, the difference E = T1 − P ∗ ◦ T ◦ P is a pseudodifferential operator in

the class Ψ
2s+mk−m

2k
− 1

2

1, 1

2k

.

It follows that

A1 = 〈T1u, u〉

= 〈P ∗ ◦ T ◦ P (u), u〉+ 〈Eu, u〉

= 〈T (Pu), Pu〉+ 〈Eu, u〉.

By Garding’s inequality, there are constants C ′
1, C

′
2 > 0 such that

Re

{
〈T (Pu), Pu〉

}
≥ C ′

1||Pu||2
H

s+mk−m
4k

− C ′
2||Pu||2

H
s+mk−m

4k
− 1

4

.

We also have, for some C3 > 0,

|〈Eu, u〉| ≤ C3||u||
2

H
s+mk−m

4k
− 1

4

.

Hence for some C1, C2 > 0, since P (x,D) is of order 0,

A1 ≥ C1||Pu||2
H

s+mk−m
4k

− C2||Pu||2
H

s+mk−m
4k

− 1
4

.

Since A2 involves a smoothing operator, the proof of (a) is completed.
(b) follows from the continuity of T1 and the fact that A2 involves a smoothing
operator. �
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