

CONTINUITY OF A CLASS OF FBI TRANSFORMS ON SOBOLEV SPACES

S. BERHANU AND JEMAL YESUF

ABSTRACT. We show that a subclass of the generalized FBI transforms that were introduced in the work [11] are bounded on Sobolev spaces.

1. INTRODUCTION

The classical FBI transform is a nonlinear transform which has the form

$$\mathcal{F}u(x, \xi) = \int_{\mathbb{R}^m} e^{i\xi \cdot (x-y) - |\xi||x-y|^2} u(y) dy, \quad x, \xi \in \mathbb{R}^m \quad (1.1)$$

where u is a continuous function of compact support in \mathbb{R}^m or a distribution of compact support in which case the integral is understood in a duality sense. This transform characterizes microlocal analyticity [22], microlocal smoothness [23], and microlocal Gevrey regularity [12]. It has been used extensively to study the local and microlocal regularity of solutions of linear and nonlinear partial differential equations. Among the numerous works where (1.1) or a variant have been used, we mention [1], [2], [3], [4], [5], [8], [6], [7], [12], [14], [17], [18], [19], [21], and [22].

In [22] (see also [15]) a more general FBI transform was considered where the phase function behaved much like the quadratic phase $i\xi \cdot (x-y) - |\xi||x-y|^2$ in that the real part of the Hessian was required to be negative definite.

The work [11] introduced a class of FBI transforms where the real part of the Hessian of the phase function was allowed to degenerate. Examples of such transforms include, for each $k = 2, \dots$

$$\mathcal{F}_k u(x, \xi) = \int_{\mathbb{R}^m} e^{i\xi \cdot (x-y) - |\xi||x-y|^{2k}} u(y) dy, \quad x, \xi \in \mathbb{R}^m, \quad (1.2)$$

Note that when $k > 1$, these transforms have a Hessian that degenerates at the origin. The more general FBI transforms of [11] were shown to characterize microlocal analyticity and microlocal smoothness. They also characterize microlocal regularity of Gevrey functions (see [9] and [17]).

This article establishes the boundedness of the transforms (1.2) on Sobolev spaces. The case when $k = 1$ was treated in the work [10]. We mention that the transform (1.2) for $k = 2$ was applied in the works [11] and [17] to prove microlocal CR regularity.

2010 *Mathematics Subject Classification.* Primary 32A07; Secondary 32D10, 32D15.

Key words and phrases. FBI transform, Microlocal regularity.

S. Berhanu was supported in part by NSF DMS 1855737. Jemal Yusuf was supported by a grant from ISP of Sweden to Addis Ababa University.

2. STATEMENTS OF RESULTS

For each $k = 1, 2, 3, \dots$, we consider the generalized FBI transform $\mathcal{F}_k(u, x, \xi)$ defined for $u \in \mathcal{E}'(\mathbb{R}^m)$ by

$$\mathcal{F}_k(u, x, \xi) = \int_{\mathbb{R}^m} e^{i\xi \cdot (x-y) - |\xi| |x-y|^{2k}} u(y) dy$$

where the integral is understood to be in the duality sense when u is a distribution.

Theorem 2.1. *Let $\Omega' \subset\subset \Omega \subseteq \mathbb{R}^m$ be open sets, Ω bounded. Then for any $u \in \mathcal{E}'(\Omega')$,*

$$(a) \quad \begin{aligned} & \|u\|_{H^t}^2 \\ & \leq C \left(\int_{\Omega} \int_{\mathbb{R}^m} |\mathcal{F}_k(u, x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^{t + \frac{m-mk}{4k}} d\xi dx + \|u\|_{H^{t-\frac{1}{4}}}^2 \right); \end{aligned}$$

(b) *Conversely,*

$$\int_{\Omega} \int_{\mathbb{R}^m} |\mathcal{F}_k(u, x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^{t + \frac{m-mk}{4k}} d\xi dx \leq C \|u\|_{H^t}^2,$$

where in both (a) and (b), the constant C is independent of u .

We recall that a function $a(x, \xi) \in C^\infty(\Omega \times \mathbb{R}^n)$ is said to belong to the symbol class $S_{\rho, \delta}^k$ if for every pair of multi-indices α, β and every compact subset $K \subset \Omega$,

$$|\partial_x^\beta \partial_\xi^\alpha a(x, \xi)| \leq (1 + |\xi|)^{k - \rho|\alpha| + \delta|\beta|}.$$

Given a symbol $a(x, \xi) \in S_{\rho, \delta}^k$, the corresponding pseudodifferential operator $A(x, D) \in \Psi_{\rho, \delta}^k$ is defined by

$$A(x, D)u(x) = \int_{\mathbb{R}^m} \int_{\Omega} e^{i(x-y) \cdot \xi} a(x, \xi) u(y) dy d\xi, \quad u \in \mathcal{E}'(\Omega).$$

If $u \in \mathcal{E}'(\Omega)$, one says the point $(x_0, \xi^0) \in \Omega \times \mathbb{R}^m \setminus \{0\}$ is not in the H^s wavefront set of u (denoted $(x_0, \xi^0) \notin \text{WF}_s(u)$) if for some $\varphi(x) \in C_0^\infty(\Omega)$, $\varphi(x_0) \neq 0$, and an open cone $\Gamma \subset \mathbb{R}^m$ with vertex at the origin and containing ξ^0 ,

$$\int_{\Gamma} |\widehat{\varphi u}(\xi)|^2 (1 + |\xi|^2)^s d\xi < \infty.$$

It is well known that $(x_0, \xi^0) \notin \text{WF}_s(u)$ if and only if whenever $P(x, D)$ is an elliptic pseudodifferential operator of order zero whose support is in a conic neighborhood of (x_0, ξ^0) , $P(x, D)u \in H^s$. The following theorem is a microlocal version of Theorem 2.1.

Theorem 2.2. *Let $(x_0, \xi^0) \in \mathbb{R}^m \times \mathbb{R}^m \setminus \{0\}$ and $p(x, \xi) \in S_{1,0}^0$, with support in a conic neighborhood $\Omega_1 \times \Gamma$ of (x_0, ξ^0) , $\Omega_1 \subset\subset \Omega$. Then for any $u \in \mathcal{E}'(\Omega')$ ($\Omega_1 \subset\subset \Omega' \subset\subset \Omega$), there exist constants $C_1, C_2 > 0$ independent of u such that:*

$$(a) \quad \begin{aligned} & \|P(x, D)u\|_{H^t}^2 \\ & \leq C_1 \left(\int_{\mathbb{R}^m} \int_{\Omega} |\mathcal{F}_k(u, x, \xi)|^2 |p(x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^{t + \frac{m-mk}{4k}} dx d\xi + \|u\|_{H^{t-\frac{1}{4}}}^2 \right); \end{aligned}$$

$$(b) \int_{\mathbb{R}^m} \int_{\Omega} |\mathcal{F}_k(u, x, \xi)|^2 |p(x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^{t + \frac{m-mk}{4k}} dx d\xi \\ \leq C_2 \left(\|P(x, D)u\|_{H^t}^2 + \|u\|_{H^{t-\frac{1}{4}}}^2 \right).$$

3. PROOFS OF THEOREMS 2.1 & 2.2

Proof of Theorem 2.1. Observe that

$$|\mathcal{F}_k(u, x, \xi)|^2 = \int_{\Omega} \int_{\Omega} e^{i\xi \cdot (s-y) - |\xi|(|x-y|^{2k} + |x-s|^{2k})} u(y) \overline{u(s)} dy ds,$$

which leads to

$$\begin{aligned} & \int_{\Omega} \int_{\mathbb{R}^m} |\mathcal{F}_k(u, x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s d\xi dx \\ &= \int_{\Omega} \int_{\mathbb{R}^m} \int_{\Omega} \int_{\Omega} e^{i\xi \cdot (s-y) - |\xi|(|x-y|^{2k} + |x-s|^{2k})} |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) \overline{u(s)} dy ds d\xi dx \\ &= \int_{\mathbb{R}^m} \int_{\Omega} \int_{\Omega} e^{i\xi \cdot (s-y)} q(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) \overline{u(s)} dy ds d\xi, \end{aligned}$$

where

$$q(y, s, \xi) = \int_{\Omega} e^{-|\xi|(|x-y|^{2k} + |x-s|^{2k})} dx.$$

Let $Q(y, s, \xi) = q(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s$. We will show that $q(y, s, \xi) \in S_{1, \frac{1}{2k}}^{\frac{-m}{2k}}$ and that for any $\Omega' \subseteq \Omega'' \subset \subset \Omega$, there exist $c, b > 0$ such that

$$Q(y, y, \xi) \geq c |\xi|^{\frac{m}{2} - \frac{m}{2k}} (1 + |\xi|^2)^s \text{ for } y \in \Omega'', |\xi| \geq b.$$

We have

$$\begin{aligned} Q(y, y, \xi) &= \left(\int_{\Omega} e^{-2|\xi||x-y|^{2k}} dx \right) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s \\ &= \left(\int_{\Omega \setminus y} e^{-2|\xi||t|^{2k}} dt \right) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s. \end{aligned}$$

Since $0 \in \Omega \setminus y$ for each $y \in \Omega''$, by compactness, there exists $\delta > 0$ such that the ball $\mathbb{B}_{\delta}(0) \subseteq \Omega \setminus y$ for every $y \in \Omega''$. Hence $\mathbb{B}_1(0) \subseteq \frac{1}{\delta}(\Omega \setminus y)$ for every $y \in \Omega''$ and therefore, $\mathbb{B}_1(0) \subseteq |\xi|^{\frac{1}{2k}}(\Omega \setminus y)$ for every $y \in \Omega''$ and all $\xi \in \mathbb{R}^m$ satisfying $|\xi| \geq \frac{1}{\delta^{2k}}$. It follows that for any $y \in \Omega'', \xi \in \mathbb{R}^m, |\xi| \geq \frac{1}{\delta^{2k}}$,

$$\begin{aligned} \int_{\Omega \setminus y} e^{-2|\xi||t|^{2k}} dt &= \frac{1}{|\xi|^{\frac{m}{2k}}} \int_{|\xi|^{\frac{1}{2k}}(\Omega \setminus y)} e^{-2|v|^2} dv \\ &\geq \frac{1}{|\xi|^{\frac{m}{2k}}} \int_{\mathbb{B}_1(0)} e^{-2|v|^2} dv \\ &= \frac{c}{|\xi|^{\frac{m}{2k}}}, \quad c > 0, \end{aligned}$$

and so for such y and ξ ,

$$Q(y, y, \xi) \geq c |\xi|^{\frac{m}{2} - \frac{m}{2k}} (1 + |\xi|^2)^s.$$

Set $b = \frac{1}{\delta^{2k}}$, and let α, β, γ be multi-indices. We will show that there is a constant $C_{\alpha, \beta, \gamma} > 0$ such that

$$\left| \partial_{\xi}^{\alpha} \partial_y^{\beta} \partial_s^{\gamma} q(y, s, \xi) \right| \leq C_{\alpha, \beta, \gamma} (1 + |\xi|)^{-\frac{m}{2k} - |\alpha| + \frac{1}{2k}(|\beta| + |\gamma|)}$$

for y and s in compact subsets and $|\xi| \geq b$.

Consider first $\partial_{\xi}^{\alpha} q(y, s, \xi)$:

Let $h(x, y, s) = |x - y|^{2k} + |x - s|^{2k}$, $F(r) = e^{-rh(x, y, s)}$ and $g(\xi) = |\xi|$. Then $e^{-|\xi|h(x, y, s)} = F(g(\xi))$. To estimate $\partial_{\xi}^{\alpha} F \circ g(\xi)$, we will use the multivariate version of the formula of Faá di Bruno which says that (see [13])

$$\partial_{\xi}^{\alpha} F \circ g(\xi) = \sum_{1 \leq \lambda \leq |\alpha|} D^{\lambda} F(g(\xi)) \sum_{s=1}^{|\alpha|} \sum_{p_s(\alpha, \lambda)} \alpha! \prod_{j=1}^s \frac{(D^{l_j} g)^{k_j}}{k_j! (l_j!)^{|k_j|}},$$

where

$$p_s(\alpha, \lambda) = \{(k_1, \dots, k_s; l_1, \dots, l_s) : |k_j| > 0, 0 < l_1 \dots < l_s, \sum_{i=1}^s k_i = \lambda, \sum_{i=1}^s |k_i| l_i = \alpha\}.$$

Here, for two multi-indices $\nu = (\nu_1, \dots, \nu_d)$ and $\mu = (\mu_1, \dots, \mu_d)$, the linear order $\nu < \mu$ means one of the following holds:

- (i) $|\nu| < |\mu|$;
- (ii) $|\nu| = |\mu|$, and $\nu_1 < \mu_1$, or
- (iii) $|\nu| = |\mu|$, $\nu_1 = \mu_1, \dots, \nu_k = \mu_k$, and $\nu_{k+1} < \mu_{k+1}$ for some $1 \leq k < d$.

We write $\nu \leq \mu$ if $\nu_j \leq \mu_j$ for every $1 \leq j \leq d$.

Fix $(k_1, \dots, k_s; l_1, \dots, l_s) \in p_s(\alpha, \lambda)$. Then

$$D^{\lambda} F(r) = (-1)^{\lambda} h(x, y, s)^{\lambda} e^{-rh(x, y, s)},$$

and since $g(\xi)$ is homogeneous of degree 1, the factor $\prod_{j=1}^s \frac{(D^{l_j} g)^{k_j}}{k_j! (l_j!)^{|k_j|}}$ is homogeneous of degree $\sum_{j=1}^s (1 - |l_j|) k_j = \lambda - |\alpha|$. It follows that $\partial_{\xi}^{\alpha} q(y, s, \xi)$ is a finite sum of constant multiples of terms of the type

$$\int_{\Omega} h(x, y, s)^{\lambda} e^{-|\xi|h(x, y, s)} q_{\lambda}(\xi) dx,$$

where $q_{\lambda}(\xi)$ is homogeneous of degree $\lambda - |\alpha|$.

For a multi-index β , we next consider $\partial_y^{\beta} \partial_{\xi}^{\alpha} q(y, s, \xi)$:

From the form of $\partial_{\xi}^{\alpha} q(y, s, \xi)$ that we have seen, we only need to consider terms of the form

$$\int_{\Omega} \partial_y^{\beta} \left\{ h(x, y, s)^{\lambda} e^{-|\xi|h(x, y, s)} \right\} q_{\lambda}(\xi) dx,$$

where $q_{\lambda}(\xi)$ is homogeneous of degree $\lambda - |\alpha|$ and $1 \leq \lambda \leq |\alpha|$. We have

$$\int_{\Omega} \partial_y^{\beta} \left\{ h(x, y, s)^{\lambda} e^{-|\xi|h(x, y, s)} \right\} q_{\lambda}(\xi) dx = \sum_{\delta \leq \beta} \binom{\beta}{\delta} \int_{\Omega} \partial_y^{\beta-\delta} \left\{ h(x, y, s)^{\lambda} \right\} \partial_y^{\delta} e^{-|\xi|h(x, y, s)} q_{\lambda}(\xi) dx.$$

In the latter sum, consider a term

$$\partial_y^{\beta-\delta} \left\{ h(x, y, s)^\lambda \right\} \partial_y^\delta e^{-|\xi| h(x, y, s)}.$$

Once again we use Fa  di Bruno's multivariable formula to compute

$$\partial_t^\delta e^{-|\xi||t|^{2k}} = \partial_t^\delta F(g(t)),$$

where $g(t) = |t|^{2k}$ and $F(r) = e^{-r|\xi|}$. We have

$$\partial_t^\delta e^{-|\xi||t|^{2k}} = \sum_{1 \leq |\lambda'| \leq |\delta|} (D^{\lambda'} F)(g(t)) \sum_{s=1}^{|\delta|} \sum_{p_s(\delta, \lambda')} \delta! \prod_{j=1}^s \frac{(D^{l_j} g)^{k_j}}{k_j! (l_j!)^{|k_j|}},$$

where $\sum_{i=1}^s k_i = \lambda'$, $\sum_{i=1}^s |k_i| l_i = \delta$, and $0 < l_1 < \dots < l_s$.

Fix λ' , $1 \leq |\lambda'| \leq |\delta|$ and $(k_1, \dots, k_s; l_1, \dots, l_s) \in p_s(\delta, \lambda')$. For each $1 \leq j \leq s$, $D^{l_j} g(t)$ is either 0 or homogenous of degree $2k - |l_j| \geq 0$. Therefore,

$$\prod_{j=1}^s \frac{(D^{l_j} g)^{k_j}}{k_j! (l_j!)^{|k_j|}}$$

is either 0 or a homogeneous polynomial of degree $\sum_{j=1}^s k_j (2k - |l_j|) = 2k\lambda' - |\delta|$.

Thus $\partial_y^\delta e^{-|\xi||x-y|^{2k}}$ is a constant linear combination of terms of the form

$$g_{\lambda'}(x-y) |\xi|^{\lambda'} e^{-|\xi||x-y|^{2k}},$$

where $g_{\lambda'}$ is either 0 or a homogeneous polynomial of degree $2k\lambda' - |\delta|$. It follows that

$$\begin{aligned} & \int_{\Omega} \partial_y^{\beta-\delta} \left\{ h(x, y, s)^\lambda \right\} \partial_y^\delta e^{-|\xi| h(x, y, s)} q_{\lambda}(\xi) dx \\ &= \int_{\Omega} \partial_y^{\beta-\delta} \left\{ h(x, y, s)^\lambda \right\} \left(\partial_y^\delta e^{-|\xi||x-y|^{2k}} \right) e^{-|\xi||x-s|^{2k}} q_{\lambda}(\xi) dx \end{aligned}$$

is a constant linear combination of terms of the form

$$\int_{\Omega} \partial_y^{\beta-\delta} \left\{ h(x, y, s)^\lambda \right\} g_{\lambda'}(x-y) q_{\lambda}(\xi) |\xi|^{\lambda'} e^{-|\xi| h(x, y, s)} dx,$$

where $g_{\lambda'}$ is either 0 or homogeneous of degree $2k\lambda' - |\delta|$, $1 \leq \lambda' \leq |\delta|$, $q_{\lambda}(\xi)$ homogeneous of degree $\lambda - |\alpha|$, $1 \leq \lambda \leq |\alpha|$. The same argument shows that for any multi-index γ , $\partial_{\xi}^\alpha \partial_y^{\beta-\delta} \partial_s^\gamma q(y, s, \xi)$ is a constant linear combination of terms of the form

$$\int_{\Omega} \partial_s^{\gamma-\delta'} \partial_y^{\beta-\delta} \left\{ h(x, y, s)^\lambda \right\} g_{\lambda''}(x-s) g_{\lambda'}(x-y) q_{\lambda}(\xi) |\xi|^{\lambda'+\lambda''} e^{-|\xi| h(x, y, s)} dx,$$

where $g_{\lambda''}$ is either 0 or a homogeneous polynomial of degree $2k\lambda'' - |\delta'| \geq 0$, $1 \leq \lambda'' \leq |\delta'|$, $|\delta'| \leq |\gamma|$, $|\delta| \leq |\beta|$, $1 \leq \lambda'' \leq |\delta'|$, and $g_{\lambda'}$ and q_{λ} are as before. Since $h(x, y, s)^\lambda$ is a polynomial of degree $2k\lambda$, we may assume that

$$|\gamma| - |\delta'| + |\beta| - |\delta| \leq 2k\lambda.$$

Clearly, for some constant $C > 0$,

$$\left| \partial_s^{\gamma-\delta'} \partial_y^{\beta-\delta} \left\{ h(x, y, s)^\lambda \right\} \right| \leq C h(x, y, s)^{\lambda - \frac{|\gamma|}{2k} - \frac{|\beta|}{2k} + \frac{|\delta'|}{2k} + \frac{|\delta|}{2k}},$$

and

$$\left| g_{\lambda''}(x-s) g_{\lambda'}(x-y) \right| \leq C h^{\lambda' - \frac{|\delta|}{2k} + \lambda'' - \frac{|\delta'|}{2k}}.$$

Thus

$$\begin{aligned} & \left| \partial_s^{\gamma-\delta'} \partial_y^{\beta-\delta} \left\{ h(x, y, s)^\lambda \right\} g_{\lambda''}(x-s) g_{\lambda'}(x-y) q_\lambda(\xi) |\xi|^{\lambda'+\lambda''} e^{-|\xi| h(x, y, s)} \right| \\ & \leq C_1 h(x, y, s)^{\lambda + \lambda' + \lambda'' - \frac{|\beta|}{2k} - \frac{|\gamma|}{2k}} |\xi|^{\lambda + \lambda' + \lambda''} |\xi|^{-|\alpha|} e^{-|\xi| h(x, y, s)}. \end{aligned}$$

We claim that we may assume $\lambda + \lambda' + \lambda'' - \frac{|\beta|}{2k} - \frac{|\gamma|}{2k} \geq 0$. Indeed, this follows from the fact that unless

$$|\gamma| - |\delta'| + |\beta| - |\delta| \leq 2k\delta, \quad 2k\lambda' \geq |\delta| \text{ and } 2k\lambda'' \geq |\delta'|,$$

the product

$$\partial_s^{\gamma-\delta'} \partial_y^{\beta-\delta} \left\{ h(x, y, s)^\lambda \right\} g_{\lambda''}(x-s) g_{\lambda'}(x-y)$$

would be zero. Thus

$$\begin{aligned} & \left| h(x, y, s)^{\lambda + \lambda' + \lambda'' - \frac{|\beta|}{2k} - \frac{|\gamma|}{2k}} |\xi|^{\lambda + \lambda' + \lambda''} |\xi|^{-|\alpha|} e^{-|\xi| h(x, y, s)} \right| \\ & = \left(h(x, y, s) |\xi| \right)^{\lambda + \lambda' + \lambda'' - \frac{|\beta|}{2k} - \frac{|\gamma|}{2k}} e^{-\frac{|\xi|}{2} h(x, y, s)} |\xi|^{\frac{|\beta| + |\gamma|}{2k} - |\alpha|} e^{-\frac{|\xi|}{2} h(x, y, s)} \\ & \leq C_2 |\xi|^{\frac{|\beta| + |\gamma|}{2k} - |\alpha|} e^{-\frac{|\xi|}{2} h(x, y, s)} \end{aligned}$$

for some $C_2 > 0$, where we have used the fact that for any $d \geq 0$, the function $t^d e^{-t}$ is bounded on $[0, \infty)$.

It follows that for some constants $C' > 0, C > 0$,

$$\begin{aligned} \left| \partial_\xi^\alpha \partial_y^\beta \partial_s^\gamma q(y, s, \xi) \right| & \leq C' |\xi|^{\frac{|\beta| + |\gamma|}{2k} - |\alpha|} \int_\Omega e^{-\frac{|\xi|}{2} h(x, y, s)} dx \\ & \leq C |\xi|^{\frac{|\beta| + |\gamma|}{2k} - |\alpha| - \frac{m}{2k}}. \end{aligned}$$

We have shown that $q(y, s, \xi) \in S_{1, \frac{1}{2k}}^{-\frac{m}{2k}}$. Let $\varphi(\xi) \in C_0^\infty(\mathbb{R}^m)$, $\varphi(\xi) \equiv 1$ for $|\xi| \leq \frac{b}{2}$ and $\varphi(\xi) \equiv 0$ for $|\xi| \geq b$. We write

$$\int_\Omega \int_{\mathbb{R}^m} |\mathcal{F}_k(u, x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s d\xi dx = A_1 + A_2,$$

where

$$A_1 = \int_\Omega \int_{\mathbb{R}^m} |\mathcal{F}_k(u, x, \xi)|^2 (1 - \varphi(\xi)) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s d\xi dx,$$

and

$$A_2 = \int_\Omega \int_{\mathbb{R}^m} |\mathcal{F}_k(u, x, \xi)|^2 \varphi(\xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s d\xi dx.$$

We have

$$\begin{aligned} A_1 &= \int_{\mathbb{R}^m} \int_{\Omega} \int_{\Omega} e^{i\xi \cdot (s-y)} (1 - \varphi(\xi)) q(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) \overline{u(s)} dy ds d\xi \\ &= \langle Tu, u \rangle, \end{aligned}$$

where

$$Tu(s) = \int_{\mathbb{R}^m} \int_{\Omega} e^{i\xi \cdot (s-y)} (1 - \varphi(\xi)) q(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) dy d\xi$$

is a pseudodifferential operator in the class $\Psi_{1, \frac{1}{2k}}^{2s + \frac{mk-m}{2k}}$. By the boundedness of pseudodifferential operators in this class ([H]), there exists $C_1 > 0$ such that

$$A_1 \leq C_1 \|u\|_{H^{s+\frac{mk-m}{4k}}}^2.$$

The integral A_2 is of the form

$$A_2 = \langle Su, u \rangle,$$

where S is a smoothing operator and hence for any $M > 0$ there exists $C_M > 0$ such that

$$A_2 \leq C_M \|u\|_{H^{-M}}^2.$$

It follows that for some $C > 0$,

$$\int_{\Omega} \int_{\mathbb{R}^m} |\mathcal{F}_k(u, x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s d\xi dx \leq C \|u\|_{H^{s+\frac{mk-m}{4k}}}^2,$$

which establishes part (b) of Theorem 2.1.

To prove part (a), observe that the amplitude of the operator T is

$$B(y, s, \xi) = (1 - \varphi(\xi)) q(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s,$$

and therefore, for any $\Omega' \subseteq \Omega'' \subset \subset \Omega$, as we saw before, for some $C > 0$,

$$\begin{aligned} B(y, y, \xi) &= (1 - \varphi(\xi)) q(y, y, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s \\ &\geq C(1 + |\xi|^2)^{s+\frac{mk-m}{4k}} \text{ for } y \in \Omega'', |\xi| \geq b. \end{aligned}$$

Hence by Garding's inequality, there exists $C > 0$ such that

$$\|u\|_{H^{s+\frac{mk-m}{4k}}}^2 \leq A_1 + C \|u\|_{H^{s+\frac{mk-m}{4k}-\frac{1}{4}}}^2.$$

Therefore, for some $C > 0$,

$$\|u\|_{H^{s+\frac{mk-m}{4}}}^2 \leq C \left(\int_{\Omega} \int_{\mathbb{R}^m} |\mathcal{F}_k(u, x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s d\xi dx + \|u\|_{H^{s+\frac{mk-m}{4}-\frac{1}{4}}}^2 \right),$$

which proves part (a) of Theorem 2.1. \square

Proof of Theorem 2.2. We have

$$\begin{aligned} & \int_{\mathbb{R}^m} \int_{\Omega} |\mathcal{F}_k(u, x, \xi)|^2 |p(x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s dx d\xi \\ &= \int_{\Omega} \int_{\mathbb{R}^m} \int_{\Omega} \int_{\Omega} e^{i\xi \cdot (s-y) - |\xi|(|x-y|^{2k} + |x-s|^{2k})} |p(x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) \overline{u(s)} dy ds d\xi dx \\ &= \int_{\mathbb{R}^m} \int_{\Omega} \int_{\Omega} e^{i\xi \cdot (s-y)} q_1(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) \overline{u(s)} dy ds d\xi, \end{aligned}$$

where

$$q_1(y, s, \xi) = \int_{\Omega} e^{-|\xi|(|x-y|^{2k} + |x-s|^{2k})} |p(x, \xi)|^2 dx.$$

For any multi-indices α, β, γ ,

$$\partial_s^\gamma \partial_y^\beta \partial_\xi^\alpha q_1(y, s, \xi) = \sum_{\delta \leq \alpha} \binom{\alpha}{\delta} \int_{\Omega} \partial_s^\gamma \partial_y^\beta \partial_\xi^\delta \left(e^{-|\xi| h(x, y, s)} \right) \partial_\xi^{\alpha-\delta} |p(x, \xi)|^2 dx.$$

We saw in the proof of Theorem 2.1 that for some $C > 0$,

$$\left| \partial_s^\gamma \partial_y^\beta \partial_\xi^\delta \left(e^{-|\xi| h(x, y, s)} \right) \right| \leq C |\xi|^{-\delta + \frac{|\beta| + |\gamma|}{2k}}.$$

Since $|p(x, \xi)|^2 \in \mathbb{S}_{1,0}^0$, for some $C' > 0$,

$$\left| \partial_\xi^{\alpha-\delta} |p(x, \xi)|^2 \right| \leq C' |\xi|^{\delta - |\alpha|}$$

and hence

$$(1 - \varphi(\xi)) q_1(y, s, \xi) \in \mathbb{S}_{1, \frac{1}{2k}}^{-\frac{m}{2k}}.$$

Write

$$\int_{\mathbb{R}^m} \int_{\Omega} |\mathcal{F}_k(u, x, \xi)|^2 |p(x, \xi)|^2 |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) \overline{u(s)} dx d\xi = A_1 + A_2,$$

where

$$A_1 = \int_{\mathbb{R}^m} \int_{\Omega} \int_{\Omega} e^{i\xi \cdot (s-y)} (1 - \varphi(\xi)) q_1(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) \overline{u(s)} dy ds d\xi,$$

and

$$A_2 = \int_{\mathbb{R}^m} \int_{\Omega} \int_{\Omega} e^{i\xi \cdot (s-y)} \varphi(\xi) q_1(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) \overline{u(s)} dy ds d\xi.$$

We have $A_1 = \langle T_1 u, u \rangle$, where

$$T_1 u(s) = \int_{\mathbb{R}^m} \int_{\Omega} e^{i\xi \cdot (s-y)} (1 - \varphi(\xi)) q_1(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) dy d\xi.$$

We recall from the proof of Theorem 2.1 that

$$T u(s) = \int_{\mathbb{R}^m} \int_{\Omega} e^{i\xi \cdot (s-y)} (1 - \varphi(\xi)) q(y, s, \xi) |\xi|^{\frac{m}{2}} (1 + |\xi|^2)^s u(y) dy d\xi,$$

where $q(y, s, \xi) = \int_{\Omega} e^{-|\xi|(|x-y|^{2k} + |x-s|^{2k})} dx$. Write

$$P(x, D) u(x) = \int_{\mathbb{R}^m} \int_{\Omega} e^{i\xi \cdot (s-y)} p(x, \xi) u(y) dy d\xi.$$

We observe that if $P^*(x, D)$ denotes the adjoint of $P(x, D)$, then the principal symbol of the composition $P^* \circ T \circ P$ is the same as that of T_1 . Indeed, the principal symbol of T_1 is given by

$$(1 - \varphi(\xi))q_1(y, y, \xi)|\xi|^{\frac{m}{2}}(1 + |\xi|^2)^s = (1 - \varphi(\xi))|p(x, \xi)|^2q(y, y, \xi)|\xi|^{\frac{m}{2}}(1 + |\xi|^2)^s,$$

while that of $P^* \circ T \circ P$ is

$$\overline{p(x, \xi)}(1 - \varphi(\xi))q(y, y, \xi)|\xi|^{\frac{m}{2}}(1 + |\xi|^2)^s p(x, \xi).$$

Therefore, the difference $E = T_1 - P^* \circ T \circ P$ is a pseudodifferential operator in the class $\Psi_{1, \frac{1}{2k}}^{2s + \frac{mk-m}{2k} - \frac{1}{2}}$.

It follows that

$$\begin{aligned} A_1 &= \langle T_1 u, u \rangle \\ &= \langle P^* \circ T \circ P(u), u \rangle + \langle Eu, u \rangle \\ &= \langle T(Pu), Pu \rangle + \langle Eu, u \rangle. \end{aligned}$$

By Garding's inequality, there are constants $C'_1, C'_2 > 0$ such that

$$\operatorname{Re} \left\{ \langle T(Pu), Pu \rangle \right\} \geq C'_1 \|Pu\|_{H^{s + \frac{mk-m}{4k}}}^2 - C'_2 \|Pu\|_{H^{s + \frac{mk-m}{4k} - \frac{1}{4}}}^2.$$

We also have, for some $C_3 > 0$,

$$|\langle Eu, u \rangle| \leq C_3 \|u\|_{H^{s + \frac{mk-m}{4k} - \frac{1}{4}}}^2.$$

Hence for some $C_1, C_2 > 0$, since $P(x, D)$ is of order 0,

$$A_1 \geq C_1 \|Pu\|_{H^{s + \frac{mk-m}{4k}}}^2 - C_2 \|Pu\|_{H^{s + \frac{mk-m}{4k} - \frac{1}{4}}}^2.$$

Since A_2 involves a smoothing operator, the proof of (a) is completed.

(b) follows from the continuity of T_1 and the fact that A_2 involves a smoothing operator. \square

REFERENCES

- [1] Z. Adwan and S. Berhanu, On microlocal analyticity and smoothness of solutions of first order nonlinear PDEs, *Math. Annalen*, **352**, Number 1 (2012) 239-258.
- [2] M. S. Baouendi and L.P. Rothschild, Normal forms for generic manifolds and holomorphic extension of CR functions, *J. of Diff. Geom.*, **25** (1987) 431-467.
- [3] M. S. Baouendi, C. H. Chang and F. Treves, Microlocal hypo-analyticity and extension of CR functions, *J. Differential. Geom.* **18** (1983), 331-391.
- [4] M. S. Baouendi and F. Treves, A microlocal version of Bochner's tube theorem, *Indiana University. Math. J.* **31** (1982), 885-895.
- [5] M. S. Baouendi and F. Treves, About the holomorphic extension of CR functions on real hypersurfaces in complex Euclidean space, *Duke Math. J.* **51** (1984), 77-107.
- [6] R. F. Barostichi and G. Petronilho, Gevrey micro-regularity for solutions to first order nonlinear PDE, *J. Differential Equations* **247**(2009), 1899-1914.
- [7] R. F. Barostichi and G. Petronilho, Existence of Gevrey approximate solutions for certain systems of linear vector fields applied to involutive systems of first-order nonlinear pdesmicro-regularity for solutions to first order nonlinear PDE, *Journal of Mathematical Analysis and Applications* **382**(2011), 248-260.
- [8] S. Berhanu, On microlocal analyticity of solutions of first-order nonlinear PDE, *Ann. Inst. Fourier*, **59**(2009), 1267-1290.

- [9] S. Berhanu and Abraham Hailu, Characterization of Gevrey regularity by a class of FBI transforms, *Novel methods in Harmonic Analysis*, **2**(2017) Springer -Verlag (Birkhauser) 451-482.
- [10] S. Berhanu and S. Chanillo, Boundedness of the FBI transform on Sobolev Spaces and propagation of singularities, *Comm. Part. Diff. Equations*, **16**(1991), 1665-1686.
- [11] S. Berhanu and J. Hounie, A class of FBI transforms, *Comm. Part. Diff. Equations*, **37** (2012), 38-57
- [12] M. Christ, Intermediate Gevrey exponents occur, *Comm. Part. Diff. Equations*, **22**(1997), 359-379
- [13] G.M. Constantine and T.H. Savits, A multivariate Faa di Bruno formula with applications, *Transactions of the AMS*, **348** (1996), 503-520.
- [14] M. G. Eastwood and C. Robin Graham, Edge of the wedge theory in hypo-analytic manifolds, *Comm. Partial Differential Equations*, **28** (2003), 2003-2028.
- [15] P. Gerard, Moyennisation et régularité deux-microlocale, *Ann. Scient. É. Norm. Sup.* (1990), 89-121.
- [16] N. Hanges and F. Treves, On the analyticity of solutions of first-order nonlinear PDE, *Trans. Amer. Math. Soc.* **331** (1992) 627-638.
- [17] G. Hoepfner and R. Medrado, The FBI transforms and their use in microlocal analysis, *Journal of Functional Analysis*, **275** (2018), 1208-1258.
- [18] G. Hoepfner and Andrew Raich, Microglobal regularity and the global wavefront set, *Math Z.*, to appear.
- [19] G. Hoepfner and Andrew Raich, Global L^q Gevrey functions, Paley-Weiner theorems, and the FBI transform, *Indiana Univ. Math. J.*, to appear.
- [20] L. Hörmander, On the L^2 continuity of pseudodifferential operators, *Comm. Pure Appl. Math.*, **24** (1971), 31-50..
- [21] N. Lerner, Y. Morimoto and Y. Xu, Instability of the Cauchy-Kovalevskaya solution for a class of nonlinear systems, *American J. Math.*, **132** (2010), 99-123.
- [22] J. Sjöstrand, Singularités analytiques microlocales, *astérisque* **95**, Société Mathématique De France. 1982, 1-166.
- [23] F. Treves, *Hypo-Analytic structures*, (1992), Princeton University Press, Princeton.

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PA 19122, USA
E-mail address: berhanu@temple.edu

DEPARTMENT OF MATHEMATICS, ADDIS ABABA UNIVERSITY, ETHIOPIA
E-mail address: jemalyesuf@su.edu.et