
On Realizing Efficient Deep Learning

Using Serverless Computing
Kevin Assogba†, Moiz Arif†, M. Mustafa Rafique†, Dimitrios S. Nikolopoulosλ

†Rochester Institute of Technology, λVirginia Tech
†{kta7930, ma3890, mrafique}@cs.rit.edu, λdsn@vt.edu

Abstract—Serverless computing is gaining rapid popularity as
it enables quick application deployment and seamless application
scaling without managing complex computing resources. Re-
cently, it has been explored for running data-intensive, e.g., deep
learning (DL), workloads for improving application performance
and reducing execution cost. However, serverless computing
imposes resource-level constraints, specifically fixed memory
allocation and short task timeouts, that lead to job failures. In
this paper, we address these constraints and develop an effective
runtime framework, DiSDeL, that improves the performance of
DL jobs by leveraging data splitting techniques, and ensuring
that an appropriate amount of memory is allocated to containers
for storing application data and a suitable timeout is selected
for each job based on its complexity in serverless deployments.
We implement our approach using Apache OpenWhisk and
TensorFlow platforms and evaluate it using representative DL
workloads to show that it eliminates DL job failures and reduces
action memory consumption and total training time by up to
44% and 46%, respectively as compared to a default serverless
computing framework. Our evaluation also shows that DiSDeL
achieves a performance improvement of up to 29% as compared
to bare-metal TensorFlow environment in a multi-tenant setting.

Index Terms—Data-intensive Computing, Serverless Comput-
ing, Deep Learning, Data Parallelism, OpenWhisk, TensorFlow

I. INTRODUCTION

Function as a service (FaaS), also known as Serverless

Computing, has emerged as a popular computing paradigm

for modern applications. It enables rapid application deploy-

ment and provides a high level of concurrency for faster

executions [1]. The basic unit of computation in serverless

computing is a function or an action, which is executed in

cloud datacenters on behalf of the given workload in response

to an event. An action is defined as a function developed

in a supported language or an executable that is executed to

perform a specific task. The serverless execution is divided into

two main steps, i.e., creation and invocation. The creation step

provides a reference to the action on the serverless platform,

and the invocation step consists of provisioning and initializing

a container for executing the defined function.

The high level of concurrency enabled by serverless

computing has motivated its use in many areas of high-

performance computing (HPC), such as, deep learning

(DL) [2]–[4] and federated computing [5]. Although exist-

ing serverless platforms do not support fork-join operations,

existing software tools for orchestrating parallel workloads

enable more serverless HPC applications. Similarly, existing

resource management efforts to improve data locality and

achieve high scalability [6] have yielded better performance

for HPC workloads [7], [8] over serverless resources. High-

performance big data processing [9], specifically for designing

effective pipelines for data stream processing, also benefits

from serverless computing with fine-tuned resource allocation

and timeout management to eliminate action failures.

Training a DL model is an iterative process and the

completion time of a training job depends heavily on the

available hardware resources. Serverless platforms apply re-

source restrictions on the function execution to ensure that

the underlying resources are efficiently utilized. The amount

of memory allocated for a function execution is capped by

the serverless computing platforms, along with the number of

parallel actions that can be executed by limiting the container

pool memory available to the system. Similarly, a timeout

applies to the function execution to ensure that actions do

not run indefinitely. These restrictions limit the performance

of serverless computing for highly parallel compute and data-

intensive workloads where most jobs run for several hours

and require a large amount of memory to store the input,

intermediate, and output application data. An application can

choose to restart a failed DL job by specifying different mem-

ory and timeout limits, however, identifying correct limits for

the given job is challenging, and retrying with inappropriate

limits leads to a further loss of computation and a higher cost

for the user. The number of concurrent functions invoked on

a serverless platform depends on the total allocated memory,

whereas, there is no such limit in bare-metal systems.

In this paper, we address the challenges of memory

and timeout allocation for data-intensive DL workloads. We

develop a Distributed Serverless Deep Learning (DiSDeL)

framework that improves the performance of DL jobs and

efficiently manages the resource allocation and execution of

training jobs on serverless platforms. Moreover, it eliminates

job failures that occur due to static resource allocations in

serverless platforms. Our memory allocation strategy incorpo-

rates the characteristics of the given DL model and training

dataset to estimate and assign memory resources to the action

container. DiSDeL splits the training data to control the execu-

tion load of each action and handles the timeout configuration

for each DL job using historical execution metadata, i.e.,

training data size, DL model, batch size, number of epochs,

and memory and timeout limits of each action. To demonstrate

the effectiveness of DiSDeL, we integrate it with the open-

source Apache OpenWhisk [10], which is widely used for

conducting research on serverless computing. To the best

of our knowledge, this is the first effort to simultaneously

address memory and timeout constraints for data-intensive DL

workloads in a serverless environment.

1

 0

 200

 400

 600

 800

WSKGCF ADF AWS

T
im

e
 (

s
e
c
)

BS=16 BS=64 BS=128 BS=256

 0

 3

 6

 9

 12

WSKGCF ADF AWS
E

p
o
c
h
s

BS=16 BS=64 BS=128 BS=256

 0

 20

 40

 60

 80

WSKGCF ADF AWS

A
c
c
u
ra

c
y
 (

%
)

BS=16 BS=64 BS=128 BS=256

Fig. 1: Impact of varying batch size and number of epochs on
training time and accuracy using MobileNet over CIFAR100.

 0

 2000

 4000

 6000

 8000

BS=64 BS=128 BS=256 BS=512

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
) Execution without Retries

Execution with Retries

Fig. 2: Impact of retries on the execution time
using MobileNet on CIFAR100; Epochs=15.

 2500

 5000

 7500

 10000

 0 200 400 600 800 1000

M
e

m
o

ry
 U

ti
liz

a
ti
o

n
 (

M
B

)

Batch Size

Fig. 3: Impact of the batch size on memory
using MobileNet on CIFAR10; Epochs=5.

Specifically, we make the following contributions.

• We analyze the use of serverless computing for data-

intensive DL training jobs and explore challenges related

to fixed resource allocation in serverless environments.

• We propose DiSDeL that improves the performance of DL

workloads on serverless platforms by leveraging batch

splitting and identifying appropriate memory and timeout

limits based on the requirements of the submitted jobs.

• We implement and integrate DiSDeL with the Apache

OpenWhisk platform and conduct a thorough evaluation

to study its impact on the TensorFlow platform [11]. Our

evaluation shows that DiSDeL reduces the training time

of DL jobs by up to 46% and 40% as compared to the

Default Serverless TensorFlow and Bare-metal Tensor-

Flow, respectively, and improves the memory utilization

of an action execution by 44% on average as compared

to the Default Serverless TensorFlow while maintaining a

high training accuracy of up to 97%. Moreover, DiSDeL

reduces the training time by 55% and 29% as compared

to Default Serverless TensorFlow and Bare-metal Tensor-

Flow respectively in a shared multi-tenant setting.

II. MOTIVATION

Cloud-based Infrastructure as a Service (IaaS) and FaaS

environments [12], [13] are routinely used for running DL

workloads. IaaS provides virtual machine abstractions but

requires complex resource provisioning, configuration and

workload management, whereas FaaS abstracts stateless func-

tions executions [2] and simplifies resource provision and de-

ployment. Serverless computing reduces the provisioning and

management overhead and provides an easy-to-use, scalable,

flexible, and cost-effective alternative to the traditional server-

centric compute model. It provides short-lived execution en-

vironments, where the cost and resource consumption of DL

jobs is controlled by effectively handling the resource limits on

function execution. It enables simpler application development

and scalable deployment while offering opportunities to reduce

the carbon footprint of DL jobs by scheduling lightweight

functions on low-powered servers and compute and data-

intensive functions on more powerful servers. Distributed DL

on serverless platforms offers better performance for training

DL models as compared to IaaS platforms under the same cost

constraint [2]. Furthermore, serverless computing is suitable

for periodic model training, e.g., continuous learning for incre-

mental learning systems such as recommendation and anomaly

detection systems where a prediction model is periodically

updated after acquiring new data.

DL models consist of several layers and training them

over large datasets requires large memory. The increasing

complexity of DL workloads leads to increasing demand for

higher level of parallelism. While modern GPUs are used

to achieve parallelism, their acquisition requires a signifi-

cant capital investment. Unlike GPUs, CPU-enabled serverless

platforms support the concurrent execution of thousands of

functions at an affordable cost. However, traditional serverless

computing assumes short-lived tasks and enforces limits on

resource utilization. For example, Apache OpenWhisk, AWS

Lambda, Azure Function, and Google Cloud Function have a

default timeout of 300 sec., 900 sec., 600 sec., and 540 sec.,

respectively. We conducted a series of experiments to inves-

tigate the impact of the fixed limits of various serverless

platforms on the total execution time, the number of epochs,

and training accuracy, and report the results in Figure 1. We

use the default timeout values of various serverless platforms

in OpenWhisk to observe these impacts. With the default

limits, successful training is completed for OpenWhisk in

282 sec. for the DL model with a batch size of 64, over two

epochs, to achieve an accuracy of 35%. The first epoch with a

batch size of 16 exceeds the default timeout and results in job

failure. AWS timeout only runs the training for eight epochs

to achieve an accuracy of up to 67% in 896 sec. Subsequent

training epochs fail as the training time exceeds the default

AWS timeout allocated for actions execution. The correlations

between the number of epochs and model accuracy show that

the model accuracy increases as the model training spans

over more epochs at the cost of increased training time.

Therefore, successful execution and training of high-quality

models cannot be guaranteed unless the desired memory and

timeout limits are specified for each action.

It is challenging to accurately estimate the training time,

required memory, and the number of epochs to achieve the

desired accuracy before submitting DL jobs. Allocating lower

resource limits leads to job failures which must be restarted

using a retry strategy with increased memory and timeout lim-

its. Each retry attempt consumes additional time and resources

until suitable limits are used. We implemented a simple retry

strategy that increments the timeout by 240 sec. for failed

actions to train MobileNet [14] over the CIFAR100 [15]

dataset using a batch size of 64, 128, 256, and 512 over fifteen

epochs. Figure 2 shows the results. The total execution time

includes failed retry attempts time as failed actions exceed

the allocated time limits. The retry strategy uses 7 and 5

retry attempts for a batch size of 64 and 128 respectively,

and uses 4 retry attempts for a batch size of 256 and 512

2

Fig. 4: High-level architecture of DiSDeL.

for successfully completing the job. We observe an additional

latency of 5,400 sec. and 2,640 sec. for batch sizes of 64 and

128 respectively, and a latency of 1,620 sec. for batch sizes of

256 and 512. Therefore, retrying with different resource limits

results in longer training times and a loss of compute cycles.

We evaluate the impact of serverless computing on the

performance of a DL job by modifying the batch size. Specif-

ically, we train the MobileNet model for five epochs on the

CIFAR10 [15] dataset to evaluate the memory consumption

and show in Figure 3 that there is a gradual increase in memory

utilization for larger batch sizes because more memory is

allocated to the job to accommodate larger input data. This

behavior advocates the use of data parallelism for DL jobs

to ensure that the dataset is divided into smaller batches for

efficient memory management. Furthermore, training using

large batch sizes leads to memory contentions, which further

promotes the use of serverless computing where training can

be parallelized in small batches such that each batch fits in

the resources allocated for executing an action.

The default resource allocation on serverless platforms leads

to failures due to insufficient resources required for successful

model training. In this paper, we develop DiSDeL to address

the challenges of memory and timeout allocations in serverless

platforms. DiSDeL partitions the input dataset into batches

after incorporating the number of concurrent functions that

can be executed on the underlying serverless platform. Further-

more, DiSDeL seamlessly analyzes workload characteristics to

predict the memory requirement per action and incorporates

this in launching concurrent functions to eliminate job failures.

DiSDeL benefits both users and cloud service providers as suit-

able memory and timeout allocation reduces the training cost,

optimizes job scheduling, and increases resource utilization.

III. SYSTEM DESIGN

In this section, we describe the design objectives of DiSDeL,

and explain its core components and implementation.

A. Design Objectives

DL models are trained over multiple epochs until the

desired accuracy is achieved using gradient descent and hyper-

parameters updates. It requires structured coordination of dif-

ferent units and a well-developed synchronization mechanism

to ensure consistency throughout the training phase. Serverless

computing supports the event-triggered invocation of training

jobs and the composition of sequences of actions, but it

restrains communication between actions and thereby restricts

Fig. 5: Execution flow of our framework for distributed DL using serverless.

broadcasting new parameters to all processing units. This

restriction results in an additional delay in transferring states

of the completed actions to external storage. The resource

limitations enforced by the serverless platforms make DL

jobs prone to unexpected termination, missing updates, and

suboptimal model accuracy. In this paper, we propose DiSDeL

that addresses these limitations with the following objectives:

• Develop an approach to determine the appropriate mem-

ory and timeout limits for executing serverless functions.

• Eliminate function execution failures in FaaS to improve

the utilization of datacenter resources.

• Improve the performance of DL workloads by reducing

their function execution time on serverless platforms.

B. Optimized Serverless Platform for Deep Learning

A high-level architecture of DiSDeL is shown in Figure 4.

The system interacts with two main external components, i.e.,

the core of the serverless system and the container runtime sys-

tem. DiSDeL leverages the open-source Apache OpenWhisk

as a serverless platform because of its popularity and adoption

in the research community. We designed DiSDeL as self-

contained modules and we leave exposing their functionality

e.g., configure, schedule, and process requests, as APIs

for future work. DiSDeL includes two core components, i.e.,

a controller and a job executor, which drive the execution

flow as presented in Figure 5. The user submits a request

containing the DL model name, training dataset, batch size,

and the number of epochs. The controller validates the request,

fetches the dataset attributes, creates a package to wrap the

entire composition, and starts the training process.

We leverage data parallelism to yield fine granularity of de-

ployed actions, reduce the memory requirement per container,

and address the resource constraints of serverless platforms.

Data parallelism is widely used in model training for achieving

a high level of parallelism, improving resource utilization, and

reducing the overall training time. Moreover, it requires less

memory per device which is particularly suitable for serverless

computing paradigm where a function is launched to execute

a fine-grained task. Figure 6 illustrates the composition of

3

Redis

Action
Execution
Data
Transfer

Action
Container

Data

Model

DiSDeL
Controller

5

2
2

2

1

3

4

...

3

3

Fig. 6: Composition of containerized job execution based on data parallelism.

executed actions and is explained as follows. 1 The controller

concurrently launches containers to host serverless functions

to train a given DL model and assigns a subset of the training

dataset to each training action based on the total number

of scheduled containers. 2 Each serverless function reads

the assigned data chunk from the storage and trains the

model using that data. 3 Each function stores its intermediate

weights in an in-memory data store, e.g., Redis [16] after

completing the training. 4 The controller launches a container

to run the aggregation function. 5 The aggregation function

reads intermediate model weights of all functions from the in-

memory store and aggregates them to generate the final model.

The final model is stored back into the in-memory data store.

1) Controller: The controller is the main component of

our framework, and contains three main sub-components, i.e.,

request validator, event manager, and aggregation service.

It coordinates all operations, e.g., validating user requests,

configuring application parameters, and collecting execution

results. Based on the number of required actions, the controller

splits the target dataset into smaller chunks to fit in separate

actions, and requests memory estimation for each action from

the job executor. The input dataset is divided into equal parts

for balanced workload distribution. The number of deployed

containers cd > 1 is initially set to its minimum possible value

2, which is later dynamically adjusted based on the estimated

action memory. Whenever the estimated memory me > M ,

where M represents the configured action memory limit, the

number of containers is increased by ⌈(me −M)/M⌉, and is

resubmitted for memory estimation. Once a valid allocation

scheme is determined, the controller orchestrates fork-join

operations and returns the execution results to the user.

a) Request Validator: The request validator handles all

validation tasks that include checking the validity and com-

pleteness of the submitted request. Once the job request is

submitted, the validator verifies the request parameters, such

as DL model name, training dataset name, batch size, and the

number of epochs. Once the request is validated it is then

forwarded to the Event Manager.

b) Event Manager: The Event Manager coordinates all

events that take place within the controller and the job executor

as illustrated in Algorithm 1. It interacts with other compo-

nents to request, assign and collect responses of different tasks,

Algorithm 1: Execution workflow of Event Manager.

Input: model, data, batch size (bch), #. of epoch (epc).
Output: Status of the execution (Succeeded OR Failed OR Error).

1 begin
2 parse DL job request request
3 if is valid(request) then
4 Retrieve model, data, bch, and epc from request
5 else
6 Return Error
7 Get job execution history from file execution.log
8 if job not in execution.log then
9 Estimate memory ma and timeout etime

10 Determine aggregation scheme agg
11 Get #. of training ntr and #. of aggregation nagg actions
12 else
13 Load ma, etime, and agg from execution.log
14 Invoke ntr training actions concurrently
15 for all cluster ncst ∈ nagg do
16 for all action nidx ∈ ncst do
17 join nidx

18 Invoke aggregation action of cluster ncst

19 Return status Succeeded OR Failed

e.g., estimated memory, assigned timeout, and the number of

containers to launch. It also submits jobs to OpenWhisk and

sends the response back to the user.

c) Aggregation Service: The aggregation service deter-

mines the appropriate number of aggregation actions to launch

in order to meet the memory requirements of training actions.

The procedure starts with level-1 aggregation where the aggre-

gation service determines if one level-1 container is enough to

handle the workload from all level-0 containers. If the memory

requirement to aggregate all level-0 containers exceeds the

allocation of level-1 containers then the service launches two

or more level-1 containers and adds one level-2 container

for all level-1 containers. This process continues until the

entire aggregation process is completed. The launched training

containers are divided into logical clusters based on the total

number of deployed containers and their respective memory

estimates. Each logical cluster is assigned to an aggregation

action that is launched as soon as containers in that cluster

complete the training process. Each aggregation action updates

its copy of the model before the controller launches the highest

level aggregation container to complete the aggregation service

and stores the final trained model in the data storage. This

strategy addresses the challenges caused by large DL models

and provides fault tolerance to DL jobs.

2) Job Executor: DL jobs are memory intensive and would

fail if insufficient memory is available to run the job. To

avoid failures due to memory and timeout allocation, we

have developed a Job Executor that estimates the memory

requirement of each action by considering model and dataset

attributes, determines appropriate timeout, and analyzes failure

scenarios. The Job Executor contains a Memory Estimator,

Timeout Manager, and Failure Manager to perform these tasks.

a) Memory Estimator: The estimation process depends

on the configuration of the serverless platform, i.e., the maxi-

mum action memory, which limits the memory allocation to a

container, and container pool memory, which limits the num-

ber of concurrent actions. Therefore, in addition to parameters

e.g., the batch size and the dimensions of the input data, our

4

TABLE I: Computation of # of parameters and activations.

Layer Type # of Parameters # of Activations

Standard convolution c× s2 × f + f m× n× c

Depthwise convolution c× s2 + c× f + f m× n× c

Fully connected in× out+ out out

memory estimator correlates the action memory and the con-

tainer pool memory limits to ensure that the estimated memory

does not exceed the system memory limit. The batch size,

dimensions of the input data, and model structures are used

to determine the total number of activations and parameters

generated during DL jobs. Each training iteration consists of

a forward and a backward propagation phase. During forward

propagation, each hidden layer processes the input data with

the selected activation function. During backward propagation,

stochastic gradient descent is applied to update all trainable

parameters in the DL model.

Memory required by a DL job depends upon the given DL

model, dataset, runtime environment, and execution logs stored

in the container. If fit denotes the memory required to fit the

DL model, pkg designates the size of the generated runtime

image, dta refers to the memory space consumed by the entire

input dataset on the runtime container, mod represents the size

of the compiled model, and saf is a safety limit to ensure

that enough space is available to hold variables generated by

the main training program and the directories containing logs

and check-pointed data, then the memory consumption of a

training action a ∈ {1, 2, . . . , A} can be estimated using Eq. 1.

ma = fit+ pkg + dta+mod+ saf (1)

The values of pkg and dta correspond to the data in the

filesystem for storing binary image and training datasets. The

value of mod is calculated as the size of the data structure to

store the total number of model parameters. In this work, we

use a fixed value of 256 MB for saf , and leave its optimal

calculation for future work.

The training dataset consists of records of width n and

height m. Each convolution layer takes an input feature map

of size cin × nin × min through f filters of size s and

outputs a feature map of size cout × nout × mout. The fully

connected layers take inputs from a number in of neurons

and provide output using a number out of neurons. This

process is repeated for every mini-batch fed to the neural

network during each epoch. Input datasets are fed into the

network in b mini-batches, and the model is trained over

e epochs. We compute the number of trainable parameters

and the number of activations for each layer type using the

equations in Table I [17]. The number of activation also

depends upon the convolution stride and padding. We use

a convolution stride and padding of one pixel to produce

input with the same height and width dimensions. The total

number of trainable parameters tpar and activations tact are

obtained by aggregating parameters from individual layers. We

estimate the memory utilization of fit using Eq. 2 aggregating

the memory utilization of parameters mpar, activations mact,

and miscellaneous variables mmisc. Weights, activations, and

other variables are represented in 32-bit precision by default

in TensorFlow. Therefore, we multiply our estimation by four

to yield the memory in bytes.

fit = 4× (mpar +mact +mmisc) (2)

Parameters in a neural network mainly consist of weights

and biases and the resulting memory consumption corresponds

to the space used to store these parameters along with the

gradient and momentum variables. The latter consumes the

same memory as weights and biases. Hence, the total memory

utilization of parameters can be evaluated as shown in Eq. 3 as

a product of the total number of parameters (tpar) and z = 4.

mpar = z × tpar (3)

The memory consumption of activations is computed by

correlating the total number of activations (tact) with the

number of propagation (x) in the training process. Training

keeps track of activations throughout both forward and back-

ward propagation consuming twice as much memory space.

Accordingly, tact is multiplied by x = 2 to compute the

memory utilization of activations for a single image. The total

memory used by activations can be calculated using Eq. 4.

mact = x× b× tact (4)

Convolution networks reserve memory space for caching

the training data batches, referred to as miscellaneous memory

reservation, which can be calculated using Eq. 5 by incorpo-

rating the dimensions of input images, i.e., the width m, height

n, number of channels c, and the number of epochs e.

mmisc = m× n× c× e (5)

b) Timeout Manager: The Timeout Manager collects the

execution time of submitted jobs to build execution history.

When a DL job is submitted, the Timeout Manager analyzes

the job and utilizes the historical job execution information to

assign an appropriate timeout limit. This ensures that the job

is executed once without failure due to insufficient timeout.

Nevertheless, in the absence of historical execution data, the

Timeout Manager considers the expected computation cost

ecost provided by the user. ecost is used along with the esti-

mated memory to determine an expected maximum execution

time etime = (ecost/cd)/(µ × me). etime is used during the

creation of training and aggregation actions. This does not

ensure successful execution because the timeout is constrained

by the user’s expected computation cost. If the user does not

provide a computation cost, the Timeout Manager applies the

maximum action timeout of the serverless framework. DL

frameworks, e.g., TensorFlow, provide a mechanism to track

the execution time of each epoch, which can be recorded by

profiling one or two initial epochs and used to estimate the

timeout for a particular job. However, the profiled execution

time varies depending on many factors, such as, the load

on each server [18], and leads to inaccurate estimations.

Moreover, large training jobs require a significant amount

of time for profiling. Our approach avoids this overhead by

estimating timeout before an action’s execution.

5

c) Failure Manager: The Failure Manager collects errors

during execution to detect anomalies where the predicted

memory and timeout allocations result in a job failure. It

analyzes job execution logs along with the physical resource

utilization to identify the cause of a failure, i.e., container out

of memory (OOM) and out of time (OOT) errors. Based on the

actual error, the values for memory and timeout allocations are

adjusted and saved for future executions of the same model.

3) Execution of DL Jobs: After memory estimation, the

Event Manager invokes training actions for the DL job on

the given dataset. To ensure timely completion of DL job

and achieving specified accuracy, we employ a bi-objective

optimization strategy to minimize the loss function cost. We

consider that each action costs µ for the amount of memory

consumed (in GBs) for the duration (in seconds) for its

execution. In our approach of deploying cd containers, the

total memory consumed by a job is calculated as the sum

of the memory consumed by each action, and the execution

duration as the difference between the finish time of the latest

container and the start time of the earliest container. Both

memory consumption and execution time are factored by the

unit cost µ to yield the total cost of the submitted jobs.

Each action runs independently and the performance of

ongoing jobs is evaluated at the end of each epoch to determine

if the required loss is achieved. We implement a custom

callback function to define an early stopping criterion for each

action. At the end of each epoch, training actions check if the

loss value la has reached a certain threshold ǫ. The designed

optimization problem minimizes the total cost fcost and the

mean loss obtained by averaging the loss la of each action.

Next, we apply the ǫ-constraint method [19] incorporating the

average loss objective function as a constraint. The optimiza-

tion problem can be formulated as:

min fcost = µ× (Tmax ×

A∑

a=1

ma) (6)

subject to

e > 1; cd > 1;me ≤ M ; and
1

A
×

A∑

a=1

la ≥ ǫ;

The Event Manager evaluates the objective function to yield

the cost of completed execution and updates the historical

execution logs for the submitted job. The historical information

includes the DL model, training dataset, batch size, number

of epochs, estimated memory, timeout, consumed memory,

training time, and cost budget, and can be used to train the

same model in the future.

C. Implementation

We implemented DiSDeL using approximately 600 lines of

python code and integrate it with the open-source Apache

OpenWhisk platform. We demonstrate the effectiveness of

DiSDeL using an open-source serverless platform, however,

DiSDeL can be integrated with proprietary serverless plat-

forms, e.g., AWS Lambda, Azure Functions, and Google

Cloud Function. DiSDeL exposes a command-line interface

that accepts user requests, handles scheduling, resource al-

location, and invocation of serverless functions. It abstracts

away server management and resource allocation from the user

to improve usability and experience. The intermediate model

weights are stored in Redis, an in-memory data store that we

use for fast insertion and retrieval of data. We also adapted

OpenWhisk deployment to set the maximum concurrency level

from 1 to 10, maximum action memory limit from 512 MB

to 70 GB, and container memory pool from 2 GB to 140 GB.

These values are used to evaluate the performance of serverless

platforms under various conditions. The memory limits for the

container pool and the actions are determined by the model and

dataset. At a minimum, a single action memory limit should

be enough to host the entire model and dataset. To enable

multiple actions to run simultaneously for faster computation

we set the container pool limit to the total system memory.

IV. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of

DiSDeL using representative DL workloads. We use Apache

OpenWhisk as a serverless platform in our evaluation.

A. Evaluation Setup

1) Evaluation Testbed: Our testbed consists of a cluster of

8 bare-metal servers from the Chameleon testbed [20]. Each

server has two Intel Xeon Gold 6126/6240R/6242 processors,

contains 192 GB of main memory, and runs Ubuntu 18.04 LTS

server operating system. We deploy OpenWhisk on a Kuber-

netes cluster along with Docker, OpenWhisk CLI (wsk), and

CouchDB [21]. We also deploy Redis in a Docker container

to store the model weights.
2) DL Models: In our evaluation, we use popular DL mod-

els including InceptionV3 [22], ResNet50/152 [23] and VGG-

16 [24]. InceptionV3 is the third edition of Google’s Inception

Convolutional Neural Network used in computer vision for

object classification. ResNet is an artificial neural network

(ANN) that introduces identity shortcut connections using

skip connections or shortcuts to jump over layers. Several

ResNet variations exist based on the number of layers and

training weights. VGG-16 is a CNN architecture containing

16 layers with about 138 million parameters. We compile

each model with categorical cross-entropy loss function [25]

and Adam optimizer [26]. These models are widely used to

evaluate optimizations made to the TensorFlow platform and

are representative benchmarks for larger DL models.
3) DL Training Datasets: We use three popular datasets

from the TensorFlow catalog. These datasets are:

• MNIST [27]: This dataset, of size 33.55 MB, contains

handwritten digits used for image classification jobs.

• CIFAR10 [15]: This dataset, of size 308.28 MB, contains

images from ten categories, which are commonly used to

train machine learning and computer vision models.

• DMLAB [28]: This dataset, of size 3221.22 MB, is a set

of 360×480 color images used to evaluate the distance

between an agent and objects in a 3D environment.

B. Execution Environments

To the best of our knowledge, Cirrus [29] is the only closely

related open-source effort to DiSDeL that uses serverless com-

puting for DL jobs. Cirrus only supports traditional models,

6

 0

 5

 10

 15

 20

V
G

G
1
6

(M
N

IS
T

)

R
e
s
N

e
t5

0
(M

N
IS

T
)

R
e
s
N

e
t1

5
2

(M
N

IS
T

)

In
c
e
p
ti
o
n

(M
N

IS
T

)

V
G

G
1
6

(C
IF

A
R

1
0
)

R
e
s
N

e
t5

0
(C

IF
A

R
1
0
)

R
e
s
N

e
t1

5
2

(C
IF

A
R

1
0
)

In
c
e
p
ti
o
n

(C
IF

A
R

1
0
)

V
G

G
1
6

(D
M

L
A

B
)

R
e
s
N

e
t5

0
(D

M
L
A

B
)

R
e
s
N

e
t1

5
2

(D
M

L
A

B
)

In
c
e
p
ti
o
n

(D
M

L
A

B
)

 60

 65

 70
M

e
m

o
ry

 U
ti
liz

a
ti
o
n
 (

G
B

)
Bare-metal TensorFlow
Default Serverless TensorFlow
DisDeL

Fig. 7: Memory footprint for the three execution
environments; Batch size=64, Epochs=50.

 0

 200

 400

 600

 800

 1000

V
G

G
1
6

(M
N

IS
T

)

R
e
s
N

e
t5

0
(M

N
IS

T
)

R
e
s
N

e
t1

5
2

(M
N

IS
T

)

In
c
e
p
ti
o
n

(M
N

IS
T

)

V
G

G
1
6

(C
IF

A
R

1
0
)

R
e
s
N

e
t5

0
(C

IF
A

R
1
0
)

R
e
s
N

e
t1

5
2

(C
IF

A
R

1
0
)

In
c
e
p
ti
o
n

(C
IF

A
R

1
0
)

V
G

G
1
6

(D
M

L
A

B
)

R
e
s
N

e
t5

0
(D

M
L
A

B
)

R
e
s
N

e
t1

5
2

(D
M

L
A

B
)

In
c
e
p
ti
o
n

(D
M

L
A

B
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
) Bare-metal TensorFlow

Default Serverless TensorFlow
DisDeL

Fig. 8: Total execution time for the three execution
environments; Batch size=64, Epochs=50.

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300

M
e
m

o
ry

 U
ti
liz

a
ti
o
n
 (

G
B

)

Execution Time (sec)

Bare-metal TensorFlow
Default Serverless TensorFlow
DiSDeL

Fig. 9: Training makespan of InceptionV3 on
MNIST for the three execution environments.

e.g., Sparse Logistic Regression [30], Latent Dirichlet Allo-

cation [31], Softmax [32], and Collaborative Filtering [33],

whereas, DiSDeL focuses on DNNs. Therefore, we use the

following three execution environments to analyze the perfor-

mance of DiSDeL:

• Default Serverless TensorFlow: This is the default Ten-

sorFlow running over the OpenWhisk platform. This

scenario directly executes the user’s request on Open-

Whisk without any optimization or middleware to control

the deployment of action containers. The end-to-end

workflow is managed by Apache OpenWhisk. In our

evaluation, we assume that appropriate memory and time-

out values, which are selected using multiple tries, are

used to successfully execute DL jobs in a single attempt

using one container. We consider this environment as a

baseline serverless environment because this environment

avoids run-time failures due to inadequate memory and

timeout allocation. We deploy Apache OpenWhisk with

maximum container timeout and memory allocation of

120 minutes and 70 GB, respectively.

• DiSDeL: This implementation of OpenWhisk includes

our proposed modules. It dynamically selects suitable

memory and timeout allocation for each action.

• Bare-metal TensorFlow: In this environment, we run DL

jobs on a dedicated bare-metal cluster where no limit

is imposed on the amount of memory, and DL jobs are

allowed to run till completion. This is the ideal scenario

where the entire server is available to run the given DL

job. Distributed Training on a single server uses mirrored

strategy [34] on multiple local CPUs concurrently. Dis-

tributed training on a cluster uses a multi-worker mirrored

strategy [35] that utilizes multiple distributed CPUs.

We quantitatively validate the performance and effectiveness

of DiSDeL by analyzing the memory footprint and total

execution time of each DL job. We run each experiment

five times and report the averages along with the observed

error margins for each environment. On average, we observe

a negligible, i.e., 2.8%, variance between different runs.

C. Performance Results

1) Impact on Memory Footprint and Execution Time:

We train the studied DL models using popular datasets and

report the memory footprint (Figure 7) and the total training

execution time (Figure 8). We show the memory consumption

of a single action for serverless environments.

Figure 7 shows the memory consumption of all execution

environments for the studied models and datasets. DiSDeL

successfully executes the submitted jobs staying within 11.5%

and 8.9% of the total memory consumption of Bare-metal

TensorFlow and Default Serverless TensorFlow approaches,

respectively. Recall that Default Serverless TensorFlow is the

ideal serverless deployment where the entire training runs in a

single container with enough resources to complete the job.

DiSDeL consumes more memory due to the replication of

DL models in each container. Nevertheless, the batch splitting

approach of DiSDeL allows each action to consume less than

half of the total memory of Default Serverless TensorFlow

and Bare-metal TensorFlow. For example, using DiSDeL, the

ResNet50 model is successfully trained with CIFAR10 using

two independent containers and consumes 44% and 39% less

memory as compared to the Default Serverless TensorFlow

and Bare-metal TensorFlow approaches respectively.

Figure 8 shows the total execution time of DL jobs on

our execution environments. DiSDeL completes the DL job

in significantly less time than Bare-metal TensorFlow and

Default Serverless TensorFlow because of the efficiency of

concurrent DL job executions on a serverless platform. The

memory estimation for each action in DiSDeL is fine-tuned

based on the model and dataset type, enabling simultaneous

execution of multiple actions. For example, Bare-metal Tensor-

Flow and Default Serverless TensorFlow trained InceptionV3

model over 60,000 data records of the MNIST dataset, but

DiSDeL launched two concurrent containers for training on

30,000 data records each to reduce the overall training time.

With a reduced data size for processing, containers in DiSDeL

complete data pre-processing within 16 seconds while Bare-

metal TensorFlow and Default Serverless TensorFlow take 30

and 20 seconds respectively to complete the same task. Over-

all, both training actions complete their processing in 143.7

and 144.3 seconds. Despite the additional overhead caused by

the aggregation containers, DiSDeL yields an average training

time reduction of 46% and 40% over Default Serverless

TensorFlow and Bare-metal TensorFlow, respectively.

2) Impact on the Training Makespan: We evaluate the

makespan of a DL training job on the three execution environ-

ments to examine their memory usage as training progresses.

Figure 9 shows, as a data point, the amount of memory used

for three different phases in the training process, i.e., at job

submission, after data pre-processing, and after model fitting.

The values for DiSDeL show an average of all concurrent

training actions. We observe a memory consumption of ap-

proximately 280 MB across all environments at job submission

due to the memory consumption of different software modules,

7

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

A
c
c
u

ra
c
y
(%

) MNIST-Inception

Bare-metal TensorFlow
Default Serverless TensorFlow

DiSDeL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

MNIST-Resnet50

Bare-metal TensorFlow
Default Serverless TensorFlow

DiSDeL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

MNIST-Resnet152

Bare-metal TensorFlow
Default Serverless TensorFlow

DiSDeL
 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

MNIST-VGG16

Bare-metal TensorFlow
Default Serverless TensorFlow

DiSDeL

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

A
c
c
u

ra
c
y
(%

)

Number of Epochs

CIFAR10-Inception

Bare-metal TensorFlow
Default Serverless TensorFlow

DiSDeL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

Number of Epochs

CIFAR10-Resnet50

Bare-metal TensorFlow
Default Serverless TensorFlow

DiSDeL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

Number of Epochs

CIFAR10-Resnet152

Bare-metal TensorFlow
Default Serverless TensorFlow

DiSDeL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

Number of Epochs

CIFAR10-VGG16

Bare-metal TensorFlow
Default Serverless TensorFlow

DiSDeL

Fig. 10: Impact of the serverless computing on the training accuracy; Batch size=64, Epochs=50.

i.e., TensorFlow, TensorFlow Datasets, and Redis. While the

data pre-processing phase completes within the same time and

consumes the same memory for Default Serverless TensorFlow

and Bare-metal TensorFlow, DiSDeL requires less time and

memory due to high parallelism. For all environments, we

observe a significant increase in memory consumption during

the training phase for storing weights, biases, and other hyper-

parameters required by the training process. DiSDeL requires

less memory per action leading to a reduced overall execution

time by using concurrent actions.

3) Impact on Training Accuracy: We examine the impact

of our execution environments on training accuracy. Figure 10

shows the training accuracy of InceptionV3, ResNet50/152,

and VGG16 models on MNIST and CIFAR10 datasets over

50 epochs for each environment. We observe that serverless

platforms are as effective as the Bare-metal TensorFlow envi-

ronment. For example, while Default Serverless TensorFlow

and Bare-metal TensorFlow respectively achieve 97.8% and

98.0% accuracy when training the VGG16 model with CI-

FAR10 dataset, DiSDeL yields an accuracy of 98.7% that is

suitable for many production environments. We observe that

for some models, e.g., Inception and ResNet using CIFAR10

dataset, Default Serverless TensorFlow and DiSDeL reach a

higher accuracy than Bare-metal TensorFlow in early epochs,

but the accuracy converges for all environments as training

continues with more epochs.

4) Impact of Memory Utilization on Execution Time: The

amount of memory available on the system directly impacts

the job execution time. The action memory is restricted at two

levels: first at the action itself and second at the container pool

which is hosting the action’s execution. OpenWhisk assigns a

default memory limit of 2 GB to container pools, which cannot

be adjusted dynamically for each job. However, DL jobs re-

quire much more memory than the default container pool limit.

Figure 11 shows the result of running a DL training job with

DMLAB using four training actions in DiSDeL. The estimated

memory usage of an action is 32 GB, and the container pool

has a maximum memory limit of 70 GB. As soon as the DL job

is submitted, the action container is launched, which brings the

container pool’s memory consumption to 49% of its memory

limit. At this point, another container is launched, bringing the

container pool consumption to 99%, and any further actions

are queued until one of the previous actions is completed. This

shows that defining a smaller container pool limits queues

actions and increases the overall execution time. Increasing

the container pool limit to 140 GB enables more actions

to run concurrently and reduces the total execution time by

52.3%. DiSDeL efficiently allocates the appropriate number of

containers and ensures that the underlying hardware resources

are not exhausted while concurrently running multiple actions.

5) Impact of Batch Jobs on Execution Time: In production

environments, serverless resources are shared between multi-

ple users, and jobs are executed in batches. We evaluate the

behavior of the three execution environments when a batch of

eight DL jobs is submitted and show its impact on memory and

total execution time. We set the action memory limit to 70 GB

and the container pool memory limit to 190 GB to analyze

the performance of DiSDeL when the available memory is the

same as of Bare-metal TensorFlow. In Figure 12, the avail-

ability of ample memory resources allows DiSDeL to deploy

a swarm of serverless actions to execute DL jobs. We observe

a higher variation in the memory footprint using DiSDeL due

to data parallelism that enables concurrent invocation of short-

lived functions. Overall, DiSDeL achieves 55% and 29% faster

execution of batch jobs than Default Serverless TensorFlow

and Bare-metal TensorFlow, respectively. This shows higher

scaling capabilities and confirms the effectiveness of DiSDeL

in a multi-tenant environment as compared to Bare-metal

TensorFlow and Default Serverless TensorFlow.

6) Impact of Scaling Cluster Size on Batch Job Perfor-

mance: We conduct experiments to observe the impact of the

number of cluster nodes on the three execution environments

for executing a batch of eight DL jobs. We vary the cluster size

from 1 to 8 nodes with 4 node increments and report the total

execution time. Figure 13 shows the result. We observe that

the execution time in all three environments decreases as more

servers become available to run DL jobs. The execution time

for DiSDeL is higher than Bare-metal TensorFlow deployment

with Multi-Worker Mirrored distributed strategy as Bare-metal

TensorFlow has access to all resources, whereas, DiSDeL is

limited by the container pool memory. However, as the number

of nodes in the cluster increase, the performance gap decreases

between Bare-metal TensorFlow and DiSDeL which shows the

efficiency of DiSDeL in leveraging the additional computing

8

 0

 30

 60

 90

 120

 0 100 200 300 400

 0

 1

 2

 3
M

e
m

o
ry

 U
ti
liz

a
ti
o
n
 (

%
)

N
u
m

b
e
r

o
f
A

c
ti
o
n
s

Execution Time (sec)

Number of Actions
Used Memory

Fig. 11: Impact of system load on training time of
ResNet152 on DMLAB dataset.

 0

 40

 80

 120

 160

 200

 240

 280

 0 200 400 600 800 1000

M
e
m

o
ry

 U
ti
liz

a
ti
o
n
 (

G
B

)

Execution Time (sec)

Bare-metal TensorFlow
Default Serverless TensorFlow
DiSDeL

Fig. 12: Memory footprint of a batch of eight job
in all three execution environments.

 600

 1200

 1800

 2400

Node=1 Node=4 Node=8

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Bare-metal TensorFlow
Default Serverless TensorFlow
DisDeL

Fig. 13: Impact of the cluster size on job execution
time in a shared multi-tenant environment.

resources to schedule the action containers on the appropriate

nodes. Overall, DiSDeL shows better scalability and reduces

the execution time by 0.4× when the total number of nodes

is doubled from 4 to 8 as compared to Default Serverless

TensorFlow which reduces the execution time by 0.27×.

In summary, these experiments show a clear benefit of dy-

namically adapting resource allocations, specifically, memory

allocation and timeout limits to improve the performance of

DL workloads in serverless environments. Default Serverless

TensorFlow runs actions in parallel to utilize the entire con-

tainer memory pool allocation without considering the impact

on the underlying system resources and leads to over-utilized

and unresponsive servers. DiSDeL launches a limited number

of concurrent containers, leverages batch splitting to assign

less work to the deployed actions with less memory per action

to meet the action memory limit, and reduces the memory

consumption of the container pool.

V. RELATED WORK

Serverless computing provides an efficient, reliable, flexible,

and scalable infrastructure to a variety of HPC applications.

FaaS enables applications development by using granular func-

tions, offering benefits similar to modern workflow manage-

ment systems [36]. This is aligned with recent efforts to design

distributed systems for DL by leveraging data parallelism,

model parallelism, or hybrid strategies [7] to optimize resource

utilization and enable resource sharing in HPC clusters.

Open-source FaaS: The widespread adoption of open-

source software has become a driving force for cloud

computing [37], and many of these systems benefit from

serverless computing which provides simplified deployment

and management for a variety of applications. Open-source

FaaS platforms, e.g., Apache OpenWhisk, Kubeless [38], Fn

Project [39], SAND [40], and funcX [5] offer flexible options

for private deployments. However, these platforms do not

support dynamic memory allocation or timeout adaption.

FaaS for DL Applications: Existing efforts to use server-

less computing for DL applications mainly target lightweight

computations, specifically on edge devices [9] and inference

engines [41]. Lin and Glikson [42] deploy a cat/dog im-

age classification model on Knative [41] for inference using

TensorFlow, while Ishakian et al. [43] use AWS Lambda to

serve large DL models using TensorFlow. Rausch et al. [44]

explore using an Edge AI workflow on serverless platforms

and propose a serverless model using edge devices as cluster

resources for edge-cloud platforms. Palade et al. [9] explore

the hypothesis that incorporating serverless computing into IoT

devices for small tasks reduces processing time.

There is a growing interest to deploy serverless functions for

tensor-parallel operations and for end-to-end model training

to achieve higher parallelism [13], [45]. Feng et al. [46]

argue that serverless is ideal for training small models, and

minimizing data transfer between subsequent actions improves

the performance of the platform. Cirrus [29] expands the

design of serverless architecture to support ML systems.

It integrates a stateless server-side back-end and addresses

challenges of resource constraints and workers’ scalability.

It addresses memory resource limits by streaming batches

of training data from storage, however, jobs are exposed to

failures when training large models. The memory estimation

strategy in DiSDeL addresses this by proactive allocations of

memory before starting model training. Furthermore, Cirrus

cannot run TensorFlow workloads in serverless environments

due to resource constraints, whereas, DiSDeL fully supports

DL training using TensorFlow over serverless platforms.

SIREN [2] proposes a distributed ML framework over

AWS Lambda. It deploys cloud actions at each epoch to

process training jobs and the scheduler selects the number

of actions and handles memory allocation. This approach is

similar to DiSDeL, however, we assigned actions per mini-

batch instead of epoch to eliminate system overload, and

minimize additional data access latency. Moreover, controlling

the number of actions eliminates CPU over/under utilization.

Existing efforts have explored different aspects to ensure

the execution of DL workloads with serverless resources.

These efforts propose problem-specific or job-specific designs

and do not focus on improving the resource utilization of

serverless platforms. In this paper, we address the fundamental

challenges of fixed resource allocations to improve the perfor-

mance of DL training jobs on serverless platforms.

VI. CONCLUSION

Serverless computing cannot efficiently execute distributed

deep learning (DL) workloads due to fixed memory allocation

and static timeout limit of each function execution. In this

paper, we propose Distributed Serverless Deep Learning (DiS-

DeL), which is an efficient runtime framework for running

long-running DL jobs on serverless platforms. DiSDeL en-

sures that the appropriate memory and timeout resources are

allocated for distributed DL applications. DiSDeL improves

performance by leveraging data parallelism for assigning jobs

to concurrent actions, uses an in-memory data store to main-

tain the intermediate states of the training jobs, and aggregates

9

intermediate outputs to generate the final parameters of the

trained model. We integrate DiSDeL with the open-source

Apache OpenWhisk platform and evaluate it using representa-

tive benchmarks. We observe that DiSDeL fully eliminates the

observed high failures in the Default Serverless TensorFlow

environment while reducing the memory consumption of each

container by 44% and training time by up to 46% while

maintaining a high training accuracy of up to 97%. Moreover,

DiSDeL reduces the training time by up to 40% as compared

to Bare-metal TensorFlow. In a shared multi-tenant setting,

DiSDeL reduces the training time by 55% and 29% on average

as compared to Default Serverless TensorFlow and Bare-metal

TensorFlow, respectively. In our future work, we will extend

DiSDeL to reduce the cold start latency of containers, and

extend it to include model parallelism for diverse DL applica-

tions. Moreover, we will explore improving the utilization of

serverless resources by improving the scheduling of DL jobs

in multi-tenant environments.

ACKNOWLEDGMENT

This work is supported in part by the National Science

Foundation under Awards No. 2106634 & 2106635 and by

Cisco Award No. VTF-446663. Results presented in this paper

are obtained using the Chameleon and CloudLab testbeds

supported by the National Science Foundation.

REFERENCES

[1] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
“Serverless computing: Current trends and open problems,” Research

Advances in Cloud Computing, 2017.
[2] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a

serverless architecture,” in Proc. IEEE INFOCOM, 2019.
[3] D. Barcelona-Pons, M. Sánchez-Artigas, G. Parı́s, P. Sutra, and

P. Garcı́a-López, “On the faas track: Building stateful distributed appli-
cations with serverless architectures,” in Proc. ACM Middleware, 2019.

[4] M. S. Kurz, “Distributed double machine learning with a serverless
architecture,” in Proc. ACM/SPEC ICPE, 2021.

[5] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “Funcx: A federated function serving fabric for
science,” in Proc. ACM HPDC, 2020.

[6] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: a scalable and locality-enhanced framework for serverless
parallel computing,” in Proc. ACM SoCC, 2020.

[7] A. Gholami, A. Azad, K. Keutzer, and A. Buluç, “Integrated model
and data parallelism in training neural networks,” arXiv preprint

arXiv:1712.04432, 2017.
[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in Proc. IEEE CVPR, 2009.
[9] A. Palade, A. Kazmi, and S. Clarke, “An evaluation of open source

serverless computing frameworks support at the edge,” in Proc. IEEE

SERVICES, 2019.
[10] Apache OpenWhisk, 10 2021. [Online]. Available: https://openwhisk.

apache.org/
[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proc. USENIX OSDI, 2016.

[12] M. Ribeiro, K. Grolinger, and M. A. Capretz, “Mlaas: Machine learning
as a service,” in Proc. IEEE ICMLA, 2015.

[13] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang, “Towards demystifying serverless machine
learning training,” Proc. ACM SIGMOD, 2021.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.

[15] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Toronto, Tech. Rep., 2009.

[16] RedisLabs - Redis, 10 2021. [Online]. Available: https://redis.io/
[17] S. Kumawat and S. Raman, “Depthwise-stft based separable convolu-

tional neural networks,” CoRR, vol. abs/2001.09912, 2020.
[18] M. Arif, M. M. Rafique, S.-H. Lim, and Z. Malik, “Infrastructure-aware

tensorflow for heterogeneous datacenters,” in Proc. IEEE MASCOTS,
2020.

[19] G. Mavrotas, “Effective implementation of the ǫ-constraint method in
multi-objective mathematical programming problems,” Applied Mathe-

matics and Computation, vol. 213, no. 2, pp. 455–465, 2009.
[20] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,

M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proc. USENIX ATC, 2020.

[21] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: the definitive

guide: time to relax. O’Reilly Media, Inc., 2010.
[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proc. IEEE CVPR,
2016.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, 2016.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] S. Mannor, D. Peleg, and R. Rubinstein, “The cross entropy method for
classification,” in In Proc. ICML, 2005.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015.

[27] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
ATT Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[28] “dmlab.” [Online]. Available: https://www.tensorflow.org/datasets/
catalog/dmlab

[29] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus:
A serverless framework for end-to-end ml workflows,” in Proc. ACM

SoCC, 2019.
[30] J. Liu, J. Chen, and J. Ye, “Large-scale sparse logistic regression,” in

Proc. ACM SIGKDD. Association for Computing Machinery, 2009.
[31] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”

Journal of machine Learning research, 2003.
[32] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for

convolutional neural networks.” in Proc. ICML, 2016.
[33] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative

filtering recommendations,” in Proc. ACM CSCW, 2000.
[34] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with tensorflow: A

review,” J. Educ. Behav. Stat., 2020.
[35] “Distributed training with tensorflow.” [Online]. Available: https:

//www.tensorflow.org/guide/distributed training
[36] E. van Eyk, A. Iosup, S. Seif, and M. Thommes, “The spec cloud

group’s research vision on faas and serverless architectures,” in Proc.

ACM WoSC, 2017.
[37] E. Gorelik, “Cloud computing models,” Ph.D. dissertation, Mas-

sachusetts Institute of Technology, 2013.
[38] “Kubeless,” https://kubeless.io/, accessed: 2021-10-15.
[39] “Fn Project - The Container Native Serverless Framework,” https:

//fnproject.io/, accessed: 2021-10-15.
[40] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,

and V. Hilt, “SAND: Towards high-performance serverless computing,”
in Proc. USENIX ATC, 2018.

[41] Google Cloud - Knative, 10 2021. [Online]. Available: https:
//cloud.google.com/knative

[42] P.-M. Lin and A. Glikson, “Mitigating cold starts in serverless platforms:
A pool-based approach,” arXiv preprint arXiv:1903.12221, 2019.

[43] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning
models in a serverless platform,” in Proc. IEEE IC2E, 2018.

[44] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar,
“Towards a serverless platform for edge AI,” in Proc. USENIX HotEdge,
2019.

[45] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei, K. Vora,
R. Netravali, M. Kim, and G. H. Xu, “Dorylus: Affordable, scalable,
and accurate GNN training with distributed CPU servers and serverless
threads,” in Proc. USENIX OSDI, 2021.

[46] F. Lang, K. Prabhakar, D. S. Dilma, and H. Jiang, “Exploring serverless
computing for neural network training,” in Proc. IEEE CLOUD, 2018.

10

