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ABSTRACT. We make explicit an argument of Heath-Brown concerning large
and small gaps between nontrivial zeroes of the Riemann zeta-function, {(s).
In particular, we provide the first unconditional results on gaps (large and
small) which hold for a positive proportion of zeroes. To do this we prove
explicit bounds on the second and fourth power moments of S(t + h) — S(t),
where S(t) denotes the argument of {(s) on the critical line and h < 1/logT.
We also use these moments to prove explicit results on the density of the
nontrivial zeroes of ((s) of a given multiplicity.

1. INTRODUCTION

Let ((s) = >.,2,n~* be the Riemann zeta-function, and write its nontrivial
zeroes as p = 3 + iy, where B,y € R. Let 0 <3 <9 <--- <7, <--- denote the
ordinates of the nontrivial zeros of {(s) in the upper half-plane. Since

T
N(T):= 1~ o~ logT
o<y<T

as T' — oo, the gap between consecutive zeroes v,11 — ¥n is 27/ log~y, on average.
Following [CGG85], define
DT (a) :=limsup D(a,T) and D~ (a):= liTm inf D(e, T),
—00

T—o0

where

D(a,T) := NT) > 1.
0<yn <T
Yn+1—Vn<27ma/log T
Note that if D~ (u) > 0 for some p < 1, then a positive proportion of the gaps
between consecutive zeroes have length less than p times the average spacing. On
the other hand, if DT (X) < 1 for some A > 1, then a positive proportion of the gaps
between consecutive zeroes have length greater than A times the average spacing.
Selberg [Sel46] was the first to obtain unconditionally that such pu, A exist, how-
ever he never published his proof. Fujii [Fuj75] also made this observation, and
Heath-Brown gives a proof in [Tit86, Section 9.26]. See the introduction of [CT18§]
for a discussion concerning this history. Since Selberg’s and Fujii’s observations,
there have been numerous explicit values computed regarding small and large gaps
between zeroes of ((s). Let us mention only the most recent results. Define

. . o Un+l T Tn . Tn+1 — In
= liminf ———— and MAg:=limsup ———
Ho n—oo 2w/ log vy 0 THOOp 27/ log vy’
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and note that, trivially, ug < 1 < Ag. It is conjectured that py = 0 (via Mont-
gomery’s pair correlation conjecture) and Ay = oo (via random matrix theory).
Selberg’s and Fujii’s observations imply pg < 1 < Ag. On the Riemann Hypothesis
(RH), Preobrazhenskii [Prel16] proved that po < 0.515396; Bui-Milinovich [BM18]
proved that on RH! Ao > 3.18. These are the current best results that hold for infin-
itely many pairs of zeroes under RH. Regarding results that hold for a positive pro-
portion of zeroes, Wu [Wul4] improved previous results by Conrey et al. [CGG85]
and Soundararajan [Sou96], that on RH one can take A\g > 1.6989 and 1o < 0.6553.
Results holding for a positive proportion of zeroes under additional assumptions
can be found in recent work of Chirre et al. [CHdL20].

The main goal of this paper is to provide the first explicit unconditional results
for pp and Ag.

Theorem 1. We have
o >A=1+10"0" DT\ <1-10"210",

and

1073-1013 . 1073-1013.

DO =

po <p=1- » D7 (p) =

To prove Theorem 1, we make explicit the argument of Heath-Brown [Tit86,
Section 9.26] which allows one to relate consecutive gaps v,4+1 — ¥ to intervals of
[T, 2T free of zeroes. To our knowledge this is the first use of this method to obtain
explicit results on gaps. The key inserts are explicit bounds on the first, second,
and fourth power moments of S(t + h) — S(t), where S(t) denotes the argument of
¢(s) on the critical line and h < 1/logT'. Here, for t € R distinct from the ordinate
of any zero of ((s),

1 1.
S(t) = ;arg( (2 +1t>,
and

S(t) = lim % (S(t+e)+ S(t—¢)),

otherwise, where arg ((1/2 + it) is defined by the continuous extension of arg ((s)
along straight lines connecting s = 2, s = 2+ it, s = 1/2 + it, and oriented in this
direction, where arg((2) = 0. Furthermore, S(t) is a piecewise smooth function
with only discontinuities at the imaginary parts of p, on every interval of continuity
is decreasing, and at a point of discontinuity S(¢) makes a jump equal to the sum
of the multiplicities of the zeros on the line o + it,1/2 < o < 1. It is also known
that S(t) = O (logt) and

T
S1(T) = / S(t)dt = O (logT) . (1)
0
Define the n-power moment of S(t + h) — S(t) by
T+H
Tu(H, ) = / IS (t+ ) — S()|" dt.
T

Tsang has given the following estimate for Jox(H, h).

IThe large gaps result in [BM18] can be stated unconditionally if one restricts the analysis to
those zeroes already known to be on the critical line.
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Theorem 2 (Tsang, [Tsa86, Theorem 4]). Leta >1/2, T* < H<T and0 < h <
1. For any positive integer k we have

2k)!
Jor(H, h) = 72’57r2’)“k!H10gk(2 + hlogT)
+0 (H(ck)k (kk +1og""% (2 + hlog T))) :

where ¢ is a positive constant.

This slightly improves previous bounds obtained by Fujii, see [Fuj74] and [Fuj81].
To prove Theorem 1, we require an explicit version of Tsang’s result for Jo(T,h)
and J4(T, h). In particular, we prove that

30.76

Theorem 3. Let M = %ee and 1 < X\ < 2. Then there exists Ty > 0 such
that

27 M 97 M 97 M
g (1,28 A > MT, Jo(T,2" A > M, T, Ju (T, 2" A < MyT,
log T logT logT

for all T > Ty, where My 1= e*3, My := ?249 and M3 := €887,

The moments of S(t 4+ h) — S(t) are also intimately connected with the density
of the nontrivial zeroes of given multiplicity. We show the following.

Theorem 4. Let N;(T) be the number of p with 0 < v < T and multiplicity j > 1.
Then there exists Ty > 0 such that
N;(T)
N(T)
for every j e N and T > Tj.

< 1.014 - 64591077

It is conjectured that all of the zeroes of the zeta-function are simple. This has
been confirmed for at least 40.75% of zeroes, that is liminfr_, o N1(T)/N(T) >
0.4075, see [PRZZ20, p. 11]. From this it follows that

N;(T) _ 1-0.4075
N ST )

for all 7 > 1. While some improvements on (2) are possible by considering uncon-
ditional bounds on distinct zeroes of {(s), see [Far95] for example, we remark that
Theorem 4 gives the first explicit improvement upon (2) when j > 2.8 - 107.

The outline of this paper is as follows. In Section 2 we use the method of
Selberg and Fujii as described by Heath-Brown [Tit86] to prove Theorem 1 under
the assumption of Theorem 3. In Section 3 we give an explicit approximation of
S(t) by means of a trigonometric polynomial. This is used in Section 4 to give
explicit bounds for moments of S(t+ h) — S(t) which leads to the proof of Theorem
3. Finally, in Section 5 we combine results from Sections 3 and 4, to give the proof
of Theorem 4.

2. PROOF OF THEOREM 1

Assuming the validity of Theorem 3 we may prove Theorem 1 using the method
of Selberg and Fujii as described by Heath-Brown in [Tit86, Section 9.26]. Define

21 A
D;\F(T) = {n EN: T <p, <2T,Yp41 — Y = 107ng}

and
2mp

D (T) := N:T <90 <27 Yg1 — Y < — 2
w (1) {ne < Y0 < 2T, Yng1 — log(2T)}
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For technical reasons which will become clear in the proof, we divide 2w by log 2T
in the definition of D (T') so that

D (.27 = L EN: 0 <9 <27 5011 =90 < 2mp/ log 2T} | [P (7))
St N(2T) = N(2T)

Heath-Brown shows that there exists A > 1 such that Dy (T) > N(T), from which
the large gaps result follows. Using the existence of such A, he then obtains the
small gaps result by proving that there exists 0 < p < 1 such that D, < N (7).
To prove Theorem 1, we show the existence of A > 1, u < 1, ¢; > 0, and ¢2 > 0
such that | DY (T)| /N(2T) > ¢1 and |D,, (T)| /N(2T) > c».

Remark 1. While we wish to explore an explicit result on gaps between zeroes, we
have the luxury of performing all of these calculations for T' sufficiently large. For
example, if we write T+ O(T/logT) > T(1 — ¢) for sufficiently small € we are
spared the ordeal of computing the implied constant in the O(-) notation. To ease
exposition, these €’s may not necessarily be the same in each step in what follows,
and we shall not repeat the condition that 7" be sufficiently large.

2.1. Proof of large gaps result. Let A > 1, and let I be a subset of [T, 27] on
which N(t + 27A/logT) = N(t) and thus free of zeroes of {(s). In [T,2T], the
average gap between consecutive zeroes is 27/log T, so if such a subset I exists
with A > 1, it follows that there exists a pair of consecutive zeroes vy, ¥n+1 Whose
difference is at least 2w\/logT, i.e., larger than the average spacing. The bridge
connecting m(I), the measure of I, and |D (T')| begins with the observation that

< Y G =)+ O(L). (3)

n€DY (T)
This is true because we have

cryu | o)
n€DY (T)

for the first v in [T, 2T, gaps between zeroes are bounded,?, and therefore v — T =
O(1). We now build off of (3) in two directions. The first and more delicate step
is to obtain an explicit lower bound on m([I) of size T. Note that on I we have
N(t+27A/logT) — N(t) = 0. Therefore, to understand m(I) we will study how
the difference N (¢t + 27A/logT) — N(t) varies for ¢ € [T,2T]. We can reframe this
in terms of S(¢), the argument of ((s) on the critical line, via the Riemann-von
Mangoldt formula

1 1+ log2m 7
N(t) = g-tlogt — —— >t + £ +5(t) + R(1), (4)
where R(t) = O(1/t) as t — oco. If t € [T,2T] and 0 < h < 1/logT, then (4) gives

hlogT 1
N —N(t) — = — .
(t+h) (t) 5 St+h)—St)+0 (logT> (5)
With the left-hand side of (5) in mind, set
2w A

a(t, N 'N<t+logT> — N(t) — A, (6)

and note that for any A, the function §(¢, \) gives the discrepancy between the actual
number of zeroes in (¢,t + 2w\/logT) and the expected number. The estimation

2Indeed7 see [Sim18] for a proof that the gap between the first two zeroes v1 = 14.13... and
v2 = 21.02... is the largest of all gaps between consecutive zeroes.
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of averages of §(t,\) will be critical in establishing our main result. Note that?

2 if I
160t 0] < S(t, A) + 27 ?te )
S(t,A) £ 202, iftel,
which implies
2T 2T
/ B NE< [ 506Nt + (22— 2T + 2m(1). (M)
T T

Let h = 27AM/logT with M as in Theorem 3, and observe that

hlogT = 2rmA
N(t+h) — N(t) — ;gr :Z(S<t+lzng,)\).

m=0

Integrating both sides and performing a change of variable, we have

oT M—1
2rmA
/ Z 5 <t—|— Tm ,)\)
T m—0 IOgT

/2T+27rm)\/ logT

dt

2T
N(t+h) — N(t) - hlng‘dt:/T

M-1
<

m=0

2T
_ M/T 15(¢, \)[dt + 0(1).

On the other hand, by Theorem 3 we have

/2T  hlogT
T

where M is given in the statement of Theorem 3. Thus

162, \)|dt
T+42mmA/logT

N(t+h) — N(t)

’dtZ (leé')T,

2T
(My — )T < M/ 156, V)] dt +0(1).
T

Rearranging, and taking into account the O(1), we find

2T
/T 150, A)]dt > (]‘fj - s> T (8)
By (7) and (8), we have
]\41 2T
(M —5) T< . O(t, N)dt + (2A — 2)T + 2m(I). 9)

Recalling the definition (6) of §(¢,A) and applying (5) and (1), we have that the
first term on the right-hand side of (9) is < T'/logT. It follows that
M
H>—=—-(AA-1)—¢|T.
m(n) = (- -1 —e)

Therefore, by (3), we have
M
(21\} -(A=1)— 5) T< Z (Yn+1 — 1) + O(1). (10)
neDY (T)
Squaring both sides of (10) and applying Cauchy—Schwarz, it follows that

72 (Ml —(A—1)— 5) <2ADE(T)| > (1 —m)*+O(1). (11)

2M
ne€DY (T)

S3For t ¢ I, note that N(T +h) — N(T) > 1, and then consider separately the cases N(T +h) —
N(T) > X and N(T +h) — N(T) < A.
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Korolév [Kor08] has shown that

N(T
D T e (12)
T/2<7n <T &
where K = 872¢99-%. Combining (11) with (12) we finally have
DY) _ = (M ’
> —(—=+1-X) —e=:c¢1. 13
N@T) < 2K (2M+ > cTa (13)

Hence, to ensure the positivity of ¢1, we can take A < 1+ M;/(2M) — ¢, e.g., we
may take A =1+ 10—9-9310" " This guarantees ¢y > 10210 Note that the size
of X\ does not depend on the constant K in Korolév’s result, however the size of the
proportion of such large-gaps does.

2.2. Proof of small gaps result. A unique feature of this method (compared, for
example, to the method of [MO81] and [CGG84]) is that the result on small gaps
is a consequence of the result on large gaps. Similar to (3), the starting point is to

consider the sum
Z (7n+1 - 'Yn)'
T<vn<2T

In this case the telescoping sum is taken over all zeroes in [T, 27, and thus equals
T 4 O(1). On the other hand, take 0 < p < 1 constant and note that

Z (’YnJrl - 'Yn) > Z (’VnJrl - 'Yn>

T<yn<2T 'Yn+1*7n>bg27{72“7~)

T<yn<2T

Z Z + Z (’7n+1 - 'Vn)
10?{72‘})<"/n+1—7n<% 'Yn+17"/712%
T<vn<2T T<yn<2T
_ 2 (N(2T) — N(T) — |D, (T)| = | DI (T)|) + 27X |Df (T)|

- log(2T)

Since N(2T) — N(T) = 5=Tlog (2T) + O(T), we find

us

2mp _ 2m(A — p) T
TZMT_WHDN(T)’—’_W“);‘F(T” +O<1og(2T))'

Using ¢y, defined in (13), recalling the convention T+ O(T/log (2T)) = T'(1 — ¢),
and rearranging, we find
Dy (D A= l-pte  (1-2e)p+2he -1

NeT) = 1 T oul—e) 2%

€ =!I Cq.

Thus, to assure positivity of co, we can take

2()\ — 1)01

>1—
H 1— 20

The value for A\ and lower bound for ¢; from the previous section implies we may
take, e.g., =1 — 107299310 Thig in turn gives ¢y > (1/2) - 10~2993:10",
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2.3. Limitations of the method. It is natural to ask whether we could improve
substantially on the bounds given in Theorem 1. We note that the critical quantity
for X is My /M. That M is forced to be so large is a direct consequence of the size
of a constant appearing in the proof of Theorem 3, namely Cs in (43). A thorough
reworking of some of the lemmas in [KK05] and [KKO06] may yield some further
improvements.

The exact limit of such improvements is not clear. A best-possible scenario
(almost certainly too good to be true) is one in which there are no error terms in
Theorem 6: that is, where Co = C3 = 0. It therefore follows that we may take

M =1 and
M, — [log(1 + 277/\). (14)
32

We can therefore solve for the condition A < 14 M7 /2, where M; is in (14). This
shows that one may take any A\ < 1.1286.... The actual limit of our method is, in
all likelihood, much smaller than this.

We conclude by noting that any improvement on the value of L in the zero-
density estimate in (15) has only a minimal effect on the value of A. For example,
on RH we have L = 0, which is not enough to improve the bound on A to 1+4+10710",

3. EXPLICIT APPROXIMATION OF S(t) BY SEGMENTS OF A DIRICHLET SERIES

Let N(o,T) be the number of the nontrivial zeroes p = 8 + iy of ((s) with
B >0>1/2and 0 <y <T. Nontrivial bounds for N(o,T) are called zero density
estimates. The main result of this section is the following theorem, which will be
instrumental in the proofs of Theorem 3 and Theorem 4.

Theorem 5. Let k € N, 0 < e <1/88 and xg > el%. Assume that

N(0,2T) — N(0,T) < L-T'"(7=3) 1og T (15)
for T > Ty > 2e'% 5 €[1/2,1] and L > 0. Then we have
2k
2T -
1 sin (¢ log p)
S@t) + = SRVORPI gt < O (e k,x0) T 16
JREURED YRS (e, k. 0) (16)
p<T k

for T > max {x§/€7 2T0}, where

C (e, k,mg) == 6'\(5,57 k,xo), (17)
4 2k
—~ 1 ~ 12 k
C(€1,52,]€,$0) = 6 <1+ R, (51,]@,150)) < az (1'0) Z4 (x0752a )k> ) (18)
n=1 2
Here,
By (e b z0) 8aoL (802 (2K)! +( 3¢ )”“ (13+ 1 )
E,R, T = & ok 9
! ‘ k2k—1 2mag (x0) as (2o, e, k) V2k 18%

N B (12¢)%a;e
R2 (5, k,l’o) T \/ﬁ <a2 (:170) a4 (xO; €, k) \/E>

~ 24e2e 2 8aoL (8e\** (4k)!
Ry (e b, ) i Ws( ) 1+ <) oLy
3 o) may (o) ag (zo, e, k) Vk € e? kAk—1

o3 60/15 2k SaoL Ak (4k)'
Ru (e, k,z0) :== V13 ( > \/1 + 8 ’
! o) ay (z0) ag (zo, e, k) VE (8¢) pAk—1
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and
ag 1= 1.5453,
a == 13—&—120—(;4-%, (19)
ag(l‘o)lzg 110—87r % 10;@)(52—&—&—1—?326), (20)
< B o

5 10g2 as (.’K())
k) =1+ — ’
a4 (:EOvE’ ) + k (logxo + mT™az (Z‘O)

For fized k and xq, each function R, (e, k,xq) is strictly increasing in €. For fized e
and xg, each function R, (e,k,x9) = 0 as k — oo. In particular, C (e1,€2,k, 2g) <

—

C (e, eh, k,x0) if e1 < &) and e > €}y, and when k — oo

_ 1/12 E) k2
0(617527]971'0) ~ 6 < a2 (xO) 022(1'07527 ) > .

Selberg proved in [Sel46, Theorem 1] that there exist Tp > 0 and L > 0 such that
(15) is true for all T > Tp and o € [1/2,1]. The next lemma provides an explicit
version of his result, and improves Karatsuba and Korolév’s zero density estimate
[KK05, Theorem 1] used in the proof of their version of Theorem 5.

Lemma 1. Let T > e'% and o € [1/2,1]. Then the inequality (15) is true for
L > Lo := 642.86.

Proof. By [Sim20, Theorem 1] the inequality (15) with L > Lg is true for T' >
10?37 and o € [1/2,0.646]. Let o > 0.646. Using Ramaré’s zero density estimate
[Ram16] as corrected in [KLN18, Equation 1.5] guarantees that

N(0,T) < 965(37)5 "~ log® " T + 51.5log” T.
From this we get
N(0,2T) — N(0,T) < (965 60944 1) T50-0) log® 708 (2T)
<82 LoT3(1-7) 1o T

Observe that (580 — 37) /24 > 0.0195. The proof is now complete since 8.2 log® T' <
79019 i true for T > 1408, [ |

Lemma 1 asserts that (16) is true for T > xlg/e, where we can set L = Ly in
functions R;. We note that L could be improved, at the very least by using the
new height to which RH has been verified [PT20] in the work of [KLN18]. Since the
main contribution in (18) is due to (20), which comes from Lemma 2, improvements
upon L would not give significantly better estimates for (16), not even on RH, i.e.,
L=0.

We now consider integrals similar to those in (16), except that now we allow small
translations in the variable ¢t. Both results are needed in the proof of Theorem 6.

Corollary 1. Let 0 < h < 1. Then, in the notation of Theorem 5, we have
2k

2T .
/T S(t+h)+% Z Sm((tt/g)logp) A< C (e hz0) T, (22)

p<T%
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where
_E\ —~
C/ (E,k,xo) = (1+.CL‘0 E)C g, E,k/a ]{,‘,.CL‘Q (23)
ET
1+ klggazg
Proof. The integral in (22) is not greater than
2%k
2(T+h) 1 in (1
/ s+ Ly snltloen)) g,
T+h m VP

3¢’
p<(T+h)F

where &’ := elogT/log (T + h). By Theorem 5, this integral is bounded above by
(T +1)C (¢',k,mp) for 0 < &’ < 1/88 and xg > €' since T + h > max {xlg/s ,2T0}.

Observe that € > &’ > ¢/ (1 + aacgk/s/ (klog aco)). Now the result follows from the
last part of Theorem 5. |

Selberg investigated (16) in [Seld6, Equation 5.3], for € = (a — 1/2) /20 where
the integration goes from 7 to T+ H with T* < H < T and 1/2 < a < 1. The
motivation for this was to obtain lower bounds for a number of sign changes of
S(t), as well as to study Q-results for S(¢) and Si(t). Selberg did not provide
the bound O(H) uniformly in k. Ghosh in [Gho81, Lemma 5] carefully examined
Selberg’s proof and obtained an estimate < (Ak)**H. Tsang in his thesis [Tsa84]
demonstrated that better bound < (Ak)?* H is possible, by refining [Gho81, Lemma
2] — see also [Trull] for a brief discussion of this problem. In fact, the proof is the
same as that of Lemma 12 in [Sel46], see also Lemma 3 below.

Very little work was done in the explicit setting. Karatsuba and Korolév provide
in [KK06, Lemma 7 on p. 440] the estimate

T+H
;

where 0 < & < 1073, H = T8 1 < k < (elogT) /1920, T=/(40k) < 5 < T/ (10k)
and T > Ty for sufficiently large Tj. Summing up to 27, their result implies that

we can take
372 k
1 = v
(1+e) ((305)%2)

instead of C'(e, k) in Theorem 5, where 0 < ¢ < %10*4 and 1 < k < (elogT) /640.
For k = 1 this bound is at least 1024, and for k = 2 it is at least 10%°.

We can observe that, for fixed k and zg, the function C (e, k,z¢) decreases in
e. This means that we would obtain the best bounds by choosing ¢ = 1/88. We
also choose xq sufficiently large such that the resulting bounds are close to their
limiting values. This is not an issue because for Corollary 1 we need only bounds
for sufficiently large T. Observe also that our values are much smaller than what
Karatsuba—Korolév’s estimates give.

2k

() + 1 Z sin (tlog p)

3712 k
dt < (e > H,
7Tp<z \/13

edm?

Corollary 2. Let e = 1/88 and zo = ¢>19". Then we have C (¢,1,z0) < 1.44161 -
10 and C (g,2,20) < 2.69927 - 10!, with the same values also for C'. Define
wo = 12847 For all positive integers k we have C (g, k,xq) < (wok)%, with the

same bound also for C’.
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Before proceeding to the proof of Theorem 5, we need some preliminary defini-
tions and results. Let 2 < 2 < t2 and n be a positive integer. Define

1
log z

1
Ot ::5—1—2 ma {‘5

3s-1|
[t—y|<z los=

and
A(n), 1<n<uz,
O 2 3 n O, Iz n
N )
log? 3/n) 2 3
A(n) TTogTr x* <n <z
Observe that A, (n) < A(n). Define also

CUEDI- 2

n<z3

The following lemma is an explicit version of Selberg’s approximation formula for
S(t), see [Sel46, Theorem 2].

Lemma 2. Let ¢'% < xg < x < t2. Then

S+ 1 Z A, (n)sin (tlogn) < (gm — ;) (ay |r(z,t)| + ag (z0)log|t]),

T n=tlogn
n<x3 8

where a1 and az (xg) are defined by (19) and (20), respectively.
Proof. This follows from the proof of Theorem 1 in [KKO05]. |

Setting 29 = €' in Lemma 2 provides bounds a; < 15 and a3 (z¢) < 15. With
the value 15, this is original statement of Theorem 1 in [KKO05], but our formulation
provides slightly better bounds in Corollary 2.

Lemma 3. Letx > 2, T > 2Ty > 61408, 1<¢< 2% and x3§2 < TY8 Then

2T 1 v
[ (o) et e o (24)
with
logz\" logT
T = V¢Wew + Lag2* T3 2
C(z,T.&v) €77 + Lag <logT> og s (25)

where L and ag are from Theorem 5, and v is a positive integer.

Proof. Let o C (T,2T] be a set of those ¢ for which |8 — 1/2| < 1/logx for
all the nontrivial zeroes p = 8 + iy that satisfy [t — | < 238=1/2 /log 2. Define
oty = (T,2T) \ «1. Denote by Z; and Z, the integration of the integrand in (24)
through the sets @7 and 4%, respectively, whence the integral in (24) is Z; + Z5.
If t € oA, then 0,4 —1/2 = 2/logx. This implies that
T
log”

T, < 27gwis
If t € o, then there exists a zero p with |t — | < 231=1/2/log x and

<am )5"“——245 1/2|7g2P1/2l,
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Since 2318=1/21 < 23/2 < TV/16_ it means that v € (a,b], where a := T — T/16 and
b:= 2T + T'/16. Therefore, we obtain

:c

’Y+ logz 11/ 1 2
we 3 [ ey s

a<vy<b T logz a<y<b

2u+2 1 1 v 1 v—1
< —2) logT -
< 810gx/§ <<a 2) ogT + 8v (0’ 2) X
x (N(0,b) — N(o,a)) T5("~2)do,

where the reader is advised to consult [KKO06, p. 438] for details on the derivation
of the third inequality. Further,

N(o,b) — N(o,a) < (N (0,401T) — N (0,201T)) + (N (0,201T) — N (0,1 T)) ,

where oy 1= % + %6_1320. Because oy T > Ty > %61408, we have in the notation of

Theorem 5 the following estimate

7 log (2 1
N(o,b) — N(o,a) < L (alg + 2a1) (1 + Oglz(loogél)) 7i-5(-3) logT

< LagT?~3(e=%) log T,

valid for o € [1/2,1]. Applying this bound to the last inequality for Z,, making a
change of variable v — o — 1/2 and then integrating, we obtain

Qv +2 ® u”log T + Svu’~! log T’ T
Zs < Lag TlogT/ w08 T v du = La0&24”+3yliu.
8logx 0 Tsw log x log” T

Now the result easily follows. ]

Let e'6 < 2y < 2 < t2. By Lemma 2 we have

sin (¢ lo 1 0
n=1

p<a3

where

Ay = ZS w sin (tlog p),

AT(p) 1_ .
Ay = E —— (1 —p279* ) sin (tlogp),
’ o’ \/;Blogp( ) (tlog )

2
Ay = 1 Z As (1) (1 —p'~27=) sin (2tlog p),

2 paara plogp
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We trivially have

A < Ra(at) = | Y Wpit . 26)

Next,

AI() 3Oz,
[4a] < ;3 \/Plogp (1—]9 )pt

Ox,t AI Ot r 1 R AI 1
S/l Z pa’(—piz do’ :/l % 72 /U’ r27° Z 7@)0?‘3@])) do|do’

2 p<x3 2 p<zx3 p
S\/ > xo'lfé‘/ x%*ﬂ' Z Am(p)logt(mp) do_do_/
1 o/ po-_l
2 p<zx3
1 > A, (p)log (z
< (am,t - 2> :c"”ﬂvf*%/l 22y % do =: Ry(z,t).  (27)
2 p<axd
Also

1 1 — pl=20e 1
|A3| S 5 Z pi S g (O—x,t - 2) log$7

p<x3/2
where we used 1 — pt=2%=t < 2 (0gr —1/2)logp, and
1
3 EP clogx (28)
p<X p

for X > 1, see [RS62, Equation 3.24]. Next,

1 Ag (pQ) 2i
|Ay| < Ry(z,t) == = ———pHt (29)
2 p;/z plogp
and
1 1 2.12
45| < = — <3 < ==
Because
Z ﬁz(?r)lt S Z Ax(p) (1 7p%701’t)pit + Az(p
n<x3 neet p<z3 \/I) p<az3 \/I)
A, (p2) 1 log p
+ — |+ = _,
p;ﬂ p2o'z_’t+21t 3 ; P (\/]5 _ 1)
we have

3aim 1 2.48a1m 1
|A6|§R3+R5+21(Uz,t—2> logx + 31 (Ua:,t_)>
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where
1\° o AL (p)l 1
R3(.’13,t) =am (ax,t_ ) xamvt*%/ Jjéia Z x(p) OgEJip) OgP dO'7 (30)
2 1 / pa i
2 p<ax3
1 Aa:(p) it
Rs(z,t) ==a17m | 05t — = —=p"|. 31
5<>1(t2)p§“@ 1)

In conclusion,

sin (tlo log |t 1 o
TS(t) + Z (\/ﬁg‘p) < <a3+a27rlogg|xl> (met — 2> loga:JrZRn.

prS n=1

Applying the inequality

m ! m
(Z un> <m'! Z ul, (32)
n=1 n=1

which simply follows from Hoélder’s inequality, finally gives the following.

Proposition 1. Let k € N and el < xo <z <T2. Assume that there exists b > 0
such that log (2T) < blogx. Then we have
2k

= 1 sin (tlogp) 1 as ok

T p<ax3
x/2T< 1>%dt
g t T 5
T o2

( )Qki/ Rk (z, t)dt,  (33)

where Ry(z,t),..., Rs(x,t) are given by (26), (27), (30), (29), and (31), respec-
tively, and as (z9) and as (xg) are given by (20) and (21), respectively.

By Lemma 3, the first term on the right-hand side of (33) is not greater than

2k
é<6a2b (1+ 4 )> C(x,T,1,2k) - T, (34)

Tasb

where T > 2T, > 1408 16 < 30 < 2 < TY/24 and the function C is defined by
(25). We are now ready to estimate the remaining integrals in (33).

3.1. Estimate for the integrals R;(z,t). We are now ready to estimate the
remaining integrals in (33).

3.1.1. Estimate for the integrals Ri(x,t). We have

2%k
2T T
R%(x,t)dt :/ L(p)pi" du,
~/T ! 0 pgs \/ﬁ
where A
as(p) == <1 - 1I(p)> pT.
ogp

If p <z, then as(p) = 0. Let x < p < 2%. By definition of A,(n) we then have

Aulp) _ ;1 (logp 1>27

logp log x
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which implies that |as(p)| < (3/2)logp/logz3. Take 22 < p < x3. Then
Aalp) _ 1 (4 logp ?
logp 2 logz ) '
which also implies |as(p)| < (3/2)logp/logx3. Thus we can use [KK06, Lemma 3]
to obtain

1T 9 \*
— t)dt < 13| =k
T/T Rl (.’ﬂ, ) — 3<2 ) ’ (35)
where i
z=T%, T>exp (max{er/cheg/cl}), 0<ec <1.

3.1.2. Estimate for the integrals with Ra(x,t) and Rs(x,t). Define
2T 2k(n+1)
1
I(n) = (alw)2nk/ (O’m,t — ) w2h(ee0=3)
T 2
2%

* i, Ay (p) log (wp)log" p
X /l x? Z ot do dt.

We need to obtain bounds on I(0) and I(1). By the Cauchy-Schwarz inequality we

have I(n) < (a17)*™ \/j1(n)\/j2(n), where
2T 4k(n+1)
Ji(n) == / (Um,t - 1) 272 at,

T 2
2k

2T 0 n
Ja(n) ::/ / i | 3 Aeploalon)logp] g ) g,

o—it
T 2 p<ax? P

Holder’s inequality with p = 4k/(4k — 1) and ¢ = 4k, and Fubini’s theorem imply

that
4k

fe%e) T

. (14n)+1 —u Clﬁ(p) jv

ja2(n) < (log a:)4k / x / ——p dvdu,
0 0 pga;" \/ﬁ

where

As(p)log (zp)log"p ir

ptlog? ™ P
Because A, (p) < logp, we have |ag(p)| < 12-3"logp/log 3. Then [KK06, Lemma
3] implies

CLG(p) =

ja(n) <13 (576 - 32k)** (log ) * TV T (36)
where
x:Tg%, T > exp (maX{Qezk/02,eg/02}), 0<ecy <1 (37)
By Lemma 3 we have
ji(n) <C (z,T,2* 4k(n + 1)) (log z) "k (38)
where
2 < < TS, T > max {2T0, 28(8’”3)} L Ty > 5614"8. (39)

The bounds for j;(n) and j3(n) in (36) and (38) give us

1 2T

2k
7| BN )+ B (@, 0)dt < VI3 (24\/E) C (x, T, 2% 4k)
T
2k
+13 (727m1\/E> C(x,T, %, 8k), (40)
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where  and T are subject to (37) and (39).

3.1.3. Estimate for the integral with R4(z,t). We have

2k

2T T k
/ Rﬁ’“(x,t)dt:r?k/ > C’mem dt < (ik) T, (41)

T 0 |, <z8/2 p

where az(p) := A, (p?) p**'/logp, since |az(p)| < 1 and then the last inequality
follows by [KKO06, Lemma 3]. Inequality (41) is valid for

T = T%i7 T > exp (max {e2k/03,e3/03}), 0<c3 <.
3.1.4. Estimate for the integral with Rs(x,t). By the Cauchy—Schwarz inequality
we have

1
4k 2

/2T R2*(z,t)dt < (aymlogz)** /2T <a’ . — 1>4k dt /T Z a8(P)pit dt
T ° ' a T * 2 0 \/ﬁ )

p<w?

where ag(p) := A, (p)p'T /logz. By Lemma 3 and [KK06, Lemma 3] we obtain

1 2T 2k
T/ R2*(z,t)dt < V13 (6m1\/%) VC (x, T, 1,4F), (42)
T
valid for = and T satisfying 2 < = < TY/?*, T > 2T} > '8 and (37).
3.2. Proof of Theorem 5. Let o = T/%, 25 > e!6 and T, > 1%, Combining

all restrictions on x and T previously obtained in the above sections, we have

klog x¢ k
<e< ,
logT —  — 8(8k+3)

k 2e%k 2e3
T > exp (max {log (2Ty), - log zg, gT’ 3—68,8(8k +3) log2}>.

From the first condition we get ¢ < 1/88, which implies ke~!logxo > 1408k and
consequently T' > max {mg/ c, 2T0}. This means that the conditions in Theorem 5

k log 2
b= (1422 ),
€ klog xq
Such b satisfies the condition in Proposition 1. We observe that the largest con-

tribution to the final bound comes from (34). Therefore, the term 1 + Ry in (18)
comes from (34), (35) and (41), while the remainder comes from (40) and (42).

are satisfied. Define

4. EXPLICIT SECOND AND FOURTH POWER MOMENTS OF S(t + h) — S(t) AND
THE PROOF OF THEOREM 3

The main goal of this section is to prove Theorem 3, which we will see is a
consequence of the following, explicit version of Theorem 2 for k € {1,2} and
H = T. We note that the role of o in what follows is not of much importance
and shows that the choices o = 3 and a = 2 by Fujii and Tsang, respectively, are
arbitrary and do not come from the method of the proof.
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Theorem 6. Let 0 < h <1,0<e<3/8 and 1< a < 7/(10). ForT > Ty >

6
max {m0/6,2To}, where xg and Ty are from Theorem 5, we have

T 1
T2 (T, h) — = log (o + hlogT)‘ < CyTlog? (o + hlogT),

3T
Ja(T, h) — = log? (o + hlogT)‘ < C3Tlog? (a+ hlogT),
™

where
Ei+D
Coi=2E By + ———2 2L
log? (a+ hlogT)
6y F Fy + Do 4Y/FF3 F

Cs =4/ F3Fy + — ‘ ’
1 logf (a + thgT) ]og (a + hlog T) log% (a + hlogT)

with

1 D1 3 D2

ST S © NS -
7r2+log(oz+hlogT)’ ! 7r4+log(a+hlogT)’
Ey:=2(C(g/3,1,20) + C' (¢/3,1,20)), Fy:=8(C(g/3,2,x0)+ C'(g/3,2,20)),
and functions Dy, Do, C and C' are defined by (48), (49), (17) and (23), respec-
tively.

E1 =

We will see that Theorem 5 is a key insert in the proof of Theorem 6. Assuming
for the moment that Theorem 6 holds, we can quickly prove Theorem 3.

4.1. Proof of Theorem 3. Take a = 1, ¢ = 3/88 and h = 2aM\/logT. Using
the trivial bound log (27 M) <log (1 4+ 2w M \), Theorem 6 asserts that there exists
To > 0 such that

7 <T 27TM)\>  log (2§M) (1 _ ”202) T (43)

" logT @ V/1og (2 M)

for all T' > Ty.

We seck the smallest value of M such that the lower bound in (43) is positive.
Choosing log(log(2mM)) = 30.76 works, but the slightly smaller value of 30.75 fails.
This gives the value of M. To estimate Mz we use the inequality log(1 + x) < z,
and that fact that A < 2 to deduce that

log(1+ 27 M) < log(2nrM) + 0.7.

This could ultimately be improved with our final choice of A but this makes no
difference to the calculations. We therefore obtain Mjs. Finally, the choice of M,
follows from Hélder’s inequality, since then we can take My := /M3 /Ms.

4.2. Preliminary results. It remains to prove Theorem 6. The next two lemmas
are explicit versions of Lemmas 1 and 2 of [Tsa86]. Note that the first lemma is a
generalization of Preissmann’s refinement of Hilbert’s inequality, namely

2

15 .
[ ant] dt = (@ = 1) 3 Janl’| < 30m0 Y- mlaal®s (40)

Tt |n<x n<X n<X
where X > 2, T and T, are real numbers, {an}nS y Is a sequence of complex

numbers, and mg = 4/1+ %\/é . Inequality (44) easily follows from [Pre84] after
observing that [log (n/m)| > 2/(3n) for positive and distinct integers n and m.



EXPLICIT AND UNCONDITIONAL RESULTS ON GAPS BETWEEN ZEROES OF ¢ 17

Lemma 4. Let X > 2, and {an},cx and {b,},<x be two sequences of complex

numbers. Define
= Z ann”it, g(t) == Z b,n

n<X n<X
Then
f() g(O)dt — (Tp = T1) Y anby| < 3wmo [ Y nlanl? [ nlba2,
! n<X n<X n<X

where T1 and Ty are real numbers.

Proof. The proof is the same as in [Tsa86, p. 373], except that we used (44) at the
appropriate places in Tsang’s proof. |

Lemma 5. Let X > 2 and {ap}p<X be a sequence of complex numbers with prime
indices p, and k a positive integer. Then

2k k
T>
a Ty —
[Teiy et a-g ()Zw ol <o [ okl .
T p<X p<X
where

Culh) = 37rm02<2k) oy

m=0
and p = {(p1,,---.p) 1o, <X, .o S XY}, ap == ay, c-ap, , and |p| is the
number of permutations of py,,...,Dpi,-

Proof. The proof is the same as in [T'sa86, pp. 374-375], except that we used
Lemma 4. ]

Notice that

Oy (k) = 37”"“ (2h)! Z < >§3ﬂmo@v(2k)!§6ﬁm0kk, (45)

where we used Stirling approximation n! < 2v/2n(n/e)” for positive integers n.
Let X > 2. Lemma 5 implies
2

2T
a T
/ 3 g =S Y e’ < Ci() Y plagl” (46)

plt
T p<X p<X p<X

where Cy (1) = 3mmg (14 v2) /2. Since

2 2 4
Z |ap,ap,, |~ [{p1, pm}! =2 Z |ap| - Z lap|”,

PLpm <X p<X p<X

it also implies that
2

2T a, ! 3T .
RO A R DN sjzm
p<X

plt
T p<X p<X

+Ci2) [ Yo plal |, (47)

p<X
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where C1(2) = 9mmyg (1 + \/6) /4.
Lemma 6. Let X > 2. Iflog2/log X < h <1, then
1-— hl
log (hlog X) — Y 1= cos(hlogp)| y355, 3
ax p log® X
If 0 < h <log2/log X, then

1— 1
yo Locosthlogn) _pgyy 3
p log” X

p<X

Proof. By partial summation we have

X _ X
5 = [ L0, 2O SO X)) 40,

+

= 5 logy log 2 log X dy log(y)
for a differentiable function f(y), see [RS62, Equation 4.14]. We will apply this
equation on f(y) :=y ! (1 — cos (hlogy)). Then
RELC )dy = Cin(hlog X) — Cin(hlog 2),
2 logy
where

Cin(z):/ ﬂdt
0 t

is one of the cosine integrals. Since Cin(z) is a positive function for z € RY, it
follows that 0 < Cin (log2) — Cin(hlog2) < Cin (log2). Integration by parts gives

1
|Cin (hlog X) — Cinlog2 — log (hlog X)| < |loglog 2|+ 2 + Toga’

This implies

X
log (hlog X) —/ {(—y)dy < 3.927.
2 1ogy

If hlog X < log2, then

X fy)
o logy

By [RS62, Equations 3.15 and 3.16] and numerical verification up to X < 41, we
have |#(X) — X| < 3X/ (2log X) for all X > 2. This implies

X
/ O(y) — y) L W) dy‘<3/ 72+310gyd < 9.62,
2 2

—=dy| < Cin(log2) < 0.118.

dy log( ) T2 ylog®y
‘f X)-X)|_ 3
= 2 .
IOgX log X
We also have
2f(2 1-— log 2
/) coslog2) _ 355
log 2 log 2
In the case hlog X < log2 we further have
X 0o
d f(y 3 0.6737 + 0.2308 log y
/ () —y) W) gyl <2 / dy < 1.56.
2 dy log(y) 2 Js ylog’y
All bounds give the final estimates from the lemma. |

The next proposition may be regarded as an uniform version of Lemma 6.
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Proposition 2. Let X >2,0< h <1 and0<a<7/10. Then

1 —cos (hlogp)
p

10g(a+hlogX)—Z < A,

p<X

1— h1l
log? (a + hlog X) — ZCOSZEng) < 2A|log (a + hlog X)| + A%
p<X

where
3

A(a, X) = |loga| + 13.88 + log (1 + a> + —=.
log” X

log 2
Proof. Observe that

[log (a + hlogz) — log (hlog z)| < log (1 + 1(:;2)

if hlogx > log 2, and
[log (@ + hlog x)| < max {|logal,|log (a + log2)|} = |logal

if hlogz < log2. Now the first bound follows from Lemma 6. The second bound
easily follows from the first bound. |

4.3. Proof of Theorem 6. Define

1 sin (t1o 1 ~3
Q=S+ 2 3 O — s -2 57 s{ppit }

p<Th p<THh
Lo —ih _
AUEED s{W} = Qult) — S(t) + S(t+h) — Qu(t + h).
p<TF

Take a, := 7~ 'p~1/2 (p~ —1). Then |a,|* = 27~ 2p~" (1 — cos (hlogp)), pla,|* <
2 4 4 _
(2/m)* and |a, " < (2/m)* ™.
Let X =T° and a = ae. Inequality (46) and Proposition 2 give

2T
1
PE(t)dt — —Tlog (a + hlogT)| < D1iT,
T ™
where
1 4C4(1
Dy == <logf3| + A(ae,TY) + 11(5)) . (48)
us T,

Let X = T°/? and a = ae/2. Similarly, by (47) and Proposition 2 we also have

2T
3
Py (t)dt — —4Tlog2 (a4 hlogT)| < DT log (a+ hlogT),
T

T

where
6 .
15;24?;04(95 Tf)—%hq;%b

2 )
3 as =\2 31t 1601(2)

A T? — . (49
+7r4log(a+hlogT) ( ( ’ 1) * + ! (49)
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Define AS(t) := S(t + h) — S(t) and AQg(t) := Qi(t + h) — Qx(t). Because
AS(t) = Pe(t) + AQk(t), we have by the Cauchy—Schwarz inequality

2T
| 1as@P - proa
T

2T
< / AQ: (1) dt

T

+2 (/:T Pf(t)dt) 2 </T2T IAQ: () dt)

Similarly, by Holder’s inequality we also obtain

2T
< /T IAQo ()" dt

2T % 2T
44 (/T P24(t)dt> </T |AQ2(t)|4dt>
+6 (/2T Pé(t)dt) ' </2T IAQo (1) dt)
T T
2T % 2T
+4 (/T P24(t)dt> (/T |AQ2(t)|4dt>

Inequality (32) guarantees, together with Theorem 5 and Corollary 1, that we have

N

2T
/ AS(1)[* — Pt
T

I

=

[

N

2T 2T
/ IAQL(1)? dt < BoT, / IAQo (1) dt < BT,
T T

Because
2T 2T
P2(t)dt < E\Tlog (a + hlogT), P}(t)dt < FiTlog® (a + hlogT),
T T

the proof now easily follows.

5. THE DENSITY OF ZEROES OF A GIVEN MULTIPLICITY AND THE PROOF OF
THEOREM 4

Theorem 5, together with Lemma 5, enables us to prove the following upper
bound for the density of the nontrivial zeroes p of given multiplicity j > 1 with
T < S {p} < 2T, where T is sufficiently large.

Theorem 7. There exists Ty > 0 such that
N;(2T) — N;(T)
N(@2T)—- N(T)

forevery j > 1 and T > Ty.

< 1.01395 - ¢~ 6:459-1077;

Fujii [Fuj75] applied general bounds for Jor (7T, k) to obtain that the number of
zeroes p with 0 < ${p} < T and multiplicity at least j > jo for some jo > 1 is
at most e~ AVIN(T) for some positive constant A. Later, he improved this result
to e N(T), see [Fuj81, Theorem 3]. Karatsuba and Korolév [KK06, Theorem 7]
proved that

NI+ H) = N(D) _ oy (_ 2z j)
N(T+H) - N(T) — eV10e377-2" )’
where 0 < ¢ < 1073, H = T%“, j > 1, and T is sufficiently large. This estimate

gives a bound as in Theorems 4 and 7, but with worst constants. Our improvement
upon the constant in the exponent comes from the second part of Corollary 2, while
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a suitable choice for h in Jor(T,h) allows to reduce the factor e”? significantly.
Otherwise our proof follows the same ideas outlined in [KKO06].

Lemma 7. Let n > (5w0)71 with wy as in Corollary 2, and define

h(T,n) = 2n <1og ;;) o (50)

Then there exists Ty > 0 such that Joj, (T,2h (T,n)) < (3wok)*™ T for 1 < k <
(176 -10%) ' log T and T > Tp.

Proof. Take T sufficiently large such that h = h(T,n) € [0,1/2]. Note that this
is independent of 7 since this quantity is bounded below by a fixed constant. Let
¢ = 3/88. Using the same notation as in the proof of Theorem 6, from Theorem 5,
Corollary 1, and Corollary 2 we obtain

Tono (T, 21) < /T (P()] + |Qu(t + 20)] + |Qu(H))** dt

2k
2T

2 k a
< S T3t [Tl 3 S a
p<TF

for 1 <k < (176 1()4)_1 log T. By Lemma 5 and the inequality (45) we also have

2k k k

2T

a 2 2

/T R} E p—i’; dt < k* g la)® | T+ 67mok” g playl ,
p<TH p<TH p<TH

where we used the simple bound

k! (2K
< k! < kF.
4k<k)_k =k

;2 ( hlogp
|a |2_ <2>2 Sin (72 )< <h>210g2p
pl = E— > )
™

b ™ p

Because

we obtain

> play* < 2 toe T 2T%
plap| > 7T/€g ,

£
p<Tk

h lo 2
S o< (1) Soer 3 82 < (M)
p<TF p<TH

by (28). This implies

2k

2T 2%k
3h 1
32k—1/ ) I b dr < (51 gT) T < = (3wok)®*
T . P ™k -3
p<T*k
for sufficiently large T'. This concludes the proof of the lemma. |

In what follows, we are going to use |S(T)| < tlogT and N(2T) — N(T) >
% log %7 both valid for sufficiently large T, see, e.g., Theorem 1 and Corollary 1
in [Truld]. Also, denote by m (-) the measure of a subset in R.
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Lemma 8. For A > 0 define the set
D) :={t e [T,2T): |S(t+2h(T,n)) — S(t)| > A},
where h (T,n) is defined by (50). Then there exists Ty > 0 such that
2
D(N)<T 4— A
(D) < Texp (4 322

for T > Ty, with wg as in Corollary 2.

Proof. Write h = h (T,n) € [0,1/2]. We are going to consider three different cases:
A > %logT, 0 < X < bewy, and bewy < A < %logT. In the first case we have
m (D(X\)) = 0 since
[S(t+2h) — S()| < glogT+ glog2 + L < 1logT
) 5 5T 2

for sufficiently large T'. In the second case we obtain the trivial bound m (D())) <
T. Moving to the third case, define k := | A/ (3ewy)|. Such k satisfies the conditions
of Lemma 7, which implies that we have

muxw)gx2ﬂéQﬁsu+mw—smfkw

30.)0

o 2k  (3ewok 2k
<A Tk (T, 2R) < Tk T= b\ T exp (—2k)

for sufficiently large 7. Because 3ewpk/A < 1 and —2k < 2—2X/ (3ewy), the stated
inequality from the lemma is also true in this case. The proof is thus complete. B

Lemma 9. Let v be an ordinate of a nontrivial zero of ((s), such that
T'<y—h(T,n) <y<2T,

where h (T, n) is defined by (50), and let the interval (v — h (T, n) ,7] contain exactly
v ordinates of zeroes of multiplicities j > 1. Then the inequality

S@+%Hmﬁ—ﬂQEW—%—s

holds for any t € (v — 2h (T, n),v — h (T,n)], where T > Tp(e) > 0 and £ > 0.

Proof. The proof is the same as in [KK06, Lemma 16], just with H = T and our
definition of h. ]

5.1. Proof of Theorem 7. Define k := 2/ (3ewp). Let § > 1. We are going to
consider three different cases: j > %log T,0<j<k tlogd,and k 'logé < j <
1logT. In the first case we claim that N;(T) = N;(2T) = 0. For, suppose not,
and let p = S +i7v, v < 2T, be a zero of multiplicity j. Then

1
j=S(y+e)=5(y—¢e) <;logT,
which is in contradiction with the first condition. In the second case we obtain
N;(21) = Ny(T) < 8 (N(2T) = N(T)) ™.

Moving to the third case, let us assume that N;(21") — N;(T") > 0 since otherwise
the stated inequality is trivial. Also h = h (T, n) € [0,1/2]. Let ;1 be the largest
value among the ordinates of the nontrivial zeroes p with T < S {p} < 2T and
multiplicity at least j. Let & := (v — h,71], and denote by 7, the largest value
among the ordinates of the nontrivial zeroes p with T < S{p} < v — h and
multiplicity at least j, if such value exists, and put & := (72 — h,v2]. We continue
this process with quantities 73,74, ... and the intervals £3, &y, ... until there are no
ordinates of zeroes with the above property on the interval (T, — h] or we obtain
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an ordinate v, € [T,T 4+ h). Such intervals are pairwise disjoint, have the same
length h, and their union covers all ordinates of p with multiplicity at least j. We
partition these intervals into classes &1, &5, ..., &y by taking into &, those intervals
containing exactly n ordinates of p with multiplicity at least j. Then we must have

N
N;(2T) = Ny(T) < Y nlél.

Suppose that & belongs to &,. Taking &, := &, — h = (v — 2h, v — h], it follows
by Lemma 9 that S (t + 2h) — S(t) > nj —2/n — ¢ for any ¢ € &;. In the notation
of Lemma 8 this means that &, C D (nj —2/n — ¢). Because this is true for every
shifted interval which belongs to &,,, and these intervals are pairwise disjoint having
the same length h, we obtain by Lemma 8 that

2 2
h|£’n|§m<D <nj——s>) STGXP(4+’€+€I€—HI€]').
n n

Because N (2T) — N(T) > T/ (hn) for sufficiently large T, the previous two inequal-

ities imply

1 exp <4—|— 27]—"‘ +5n)
(1—er)?

—kKj

W < nexp (4+ 2; +€I€) ;ne_””j =
7 exp (4+ 27” +EI<L)

(1—-1/6)°
where we used also the condition k™! logd < j. The choice 7 = 2k, which minimizes
the numerator in the above fraction, satisfies the condition in Lemma 7. Because

the appropriate solution of the equation 2e’k = 6 (1 — 1/(5)2 is § ~ 1.013943, and
Kk > 6.459 - 1077, the inequality of Theorem 7 now easily follows.

7,‘&]'
Y

5.2. Proof of Theorem 4. After dyadic partition and using the bound j < logT
proved above, Theorem 7 implies that

10=7
N (2Tp) T6-459-10 ) 64591077
N(T)

< (1.01395 +

for T' > 2T}, where T is fixed constant from Theorem 7. But N(T) ~ % log T,
which means that the fraction in the above parentheses can be made arbitrarily
small after taking T sufficiently large. This finishes the proof of Theorem 4.
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