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alone the potentially harmful staleness due to asynchronous

training (Thorpe et al., 2021).

To enable scalable and efficient large-graph GCN training

without compromising the full-graph accuracy, this work

sets out to understand the underlying cause of the communi-

cation and memory explosion in distributed GCNs training

and finds that distributed GCN training can be ineffective if

it is not designed properly, which motivates us to make the

following contributions:

• We first analyze and identify three main challenges in

partition-parallel training of GCNs: (1) overwhelming

communication volume, (2) prohibitive memory re-

quirement, and (3) imbalanced memory consumption.

We further localize their cause to be an excessive num-

ber of boundary nodes (rather than boundary edges)

associated with each partitioned subgraph, which is

unique to GCNs due to their neighbor aggregation (see

Section 3.1). This finding enhances the understanding

in distributed GCN training and can potentially inspire

further ideas in this direction.

• To tackle all above challenges in one shot, we pro-

pose a simple yet effective method dubbed BNS-GCN

which randomly samples features of boundary nodes at

each training iteration and achieves a triple win – ag-

gressively shrinking the communication and memory

requirements while leading to a better generalization

accuracy (see Section 3.2). To the best of our knowl-

edge, this is the first work directly targeting at reducing

the communication volume in distributed GCN training,

without incurring extra computing resource overhead

(e.g., CPU) or hurting the achieved accuracy.

• We further provide theoretical analysis to validate the

improved convergence offered by BNS-GCN (see Sec-

tion 3.3). Extensive experiments and ablation stud-

ies consistently validate the benefit of BNS-GCN in

both training efficiency and accuracy, e.g., boosting

the throughput by up to 16.2× and reducing the mem-

ory usage by up to 58% while achieving the same

or an even better accuracy, over the SOTA methods,

when being applied to Reddit, ogbn-products, Yelp,

and ogbn-papers100M datasets (see Section 4).

2 BACKGROUND AND RELATED WORKS

Graph Convolutional Networks. GCNs take graph-

structured data as inputs and learn feature vectors (embed-

ding) for each node of a graph. Specifically, GCN performs

two major steps in each layer, i.e., neighbor aggregation

and node update, which can be represented as:

z(ℓ)v = ζ(ℓ)
({

h(ℓ−1)
u | u ∈ N (v)

})

(1)

h(ℓ)
v = ϕ(ℓ)

(

z(ℓ)v , h(ℓ−1)
v

)

(2)

where N (v) denotes the neighbor set of node v in the graph,

h
(ℓ)
u denotes the learned feature vector of node u at the ℓ-th

layer, ζ(ℓ) denotes the aggregation function that takes neigh-

bor features to generate aggregation result z
(ℓ)
v for node

v, and finally ϕ(ℓ) gets the feature of node v updated. A

famous instance of GCNs is GraphSAGE with a mean ag-

gregator (Hamilton et al., 2017), in which ζ(ℓ) is the mean

function and ϕ(ℓ) is σ
(

W (ℓ) · CONCAT
(

z
(ℓ)
v , h

(ℓ−1)
v

))

,

where W (ℓ) is the weight matrix and σ is a non-linear acti-

vation. While we mainly use this instance for evaluating our

BNS-GCN, our approach can be easily extended to other

popular aggregators and update functions.

Sampling-Based GCN Training. Real-world graphs con-

sist of millions of nodes and edges (Hu et al., 2020), far

beyond the capability of vanilla GCNs. As such, sampling-

based methods were proposed, e.g., neighbor sampling

(Hamilton et al., 2017; Chen et al., 2018b), layer sampling

(Chen et al., 2018a; Huang et al., 2018; Zou et al., 2019),

and subgraph sampling (Chiang et al., 2019; Zeng et al.,

2020), which yet suffer from:

• Inaccurate feature estimation: although most sampling

methods provide unbiased estimation of node features,

the variance of these estimation hurts the model accu-

racy. As (Cong et al., 2020) shows, a smaller variance

is beneficial to improving the accuracy of a sampling-

based method;

• Neighbor explosion: Hamilton et al. (2017) first uses

node sampling to randomly select several neighbors

in the previous layer, but as GCNs get deeper the size

of selected nodes exponentially increases. Chen et al.

(2018b) further proposes samplers for restricting the

size of neighbor expansion, which yet suffers from

heavy memory requirements;

• Sampling overhead: All sampling-based methods in-

cur extra time for generating mini-batches, which can

occupy 25%+ of the training time (Zeng et al., 2020).

Distributed Training for GCNs. To train GCNs for real-

world large graphs, distributed training leveraging multiple

GPUs to enable full-graph training has been shown to be

promising. Nevertheless, GCNs training is different from

the challenge of classical distributed DNN training where

(1) data samples are small yet the model is large (model

parallelism (Krizhevsky, 2014; Harlap et al., 2018)) and (2)

data samples do not have dependency (data parallelism (Li

et al., 2020; 2018b;a)), both violating the nature of GCNs.

As such, GCN-oriented methods should partition the full

graph into small subgraphs such that each could be fitted
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Table 2: Comparing feature approximation variance be-

tween SOTA sampling methods and BNS-GCN, where

we fix the target node set Vi across all methods. Here

γ denotes the upper bound of the L2-norm of intermedi-

ate features, and ∆γ is the upper bound of the difference

between the embedding feature and its history. We re-

port the variance by ignoring the same factors. Note that

|Bi| ≪ |Ni| ≪ |V|.

Method Variance Notation

GraphSAGE O(Dγ2/sn) sn: sampled neighbor size

D: average degreeVR-GCN O(D∆γ2/sn)
FastGCN O(|V|γ2/sℓ) sℓ: sampled node set size

V,Ni,Bi: global node set,

neighbor set, boundary set

LADIES O(|Ni|γ
2/sℓ)

BNS-GCN O(|Bi|γ
2/sℓ)

probability p and drop the rest at the beginning of each epoch

(Lines 4-5). These selected nodes’ indices are then broad-

casted among partitions such that each partition ªknowsº

others’ selections (Line 6) and can also record its local node

Si,j that is selected by the other j-th partition (Line 7). Dur-

ing the forward pass of the ℓ-th layer, each partition sends

those features H
(ℓ−1)
Si,j

of the previously recorded nodes to

the corresponding j-th partition and meanwhile receives

features H
(ℓ−1)
Ui

of its own selected boundary nodes to per-

form GCN operations (Lines 9-10). For a mean aggregator,

we replace the sent/received feature matrix H with H/p to-

wards an unbiased feature estimation. During the backward

pass of every layer, each partition sends and receives feature

gradients of the selected boundary nodes while generating

GCNs’ weight gradients (Line 13). Lastly, weight gradients

are shared across partitions via AllReduce (Thakur et al.,

2005) to perform weight updates (Lines 14-15).

The proposed BNS-GCN reduces the number of boundary

nodes by a factor of 1
p , achieving a proportional reduction

in both memory and communication costs (Equation 3-4).

Meanwhile, BNS-GCN pays negligible overhead due to

its simplicity, which costs 0%∼7% of the training time in

practice1. Note that our BNS-GCN can not only boost the

efficiency and scalability of vanilla partition parallelism, but

also be easily plugged into any partition-parallel training

methods (e.g., ROC and CAGNET) for further improving

their training efficiency.

3.3 Variance Analysis

Theoretically, we study the effect of BNS-GCN on GCNs’

performance by analyzing its feature approximation vari-

ance and comparing it with the SOTA methods. As the

feature approximation variance controls the upper bound

of gradient noise (Cong et al., 2020), a sampling method

1Details can be found in Appendix D.

with a lower approximation variance usually enjoys a better

convergence speed (Gower et al., 2019) and higher accu-

racy. Table 2 summarizes our results, where V , Ni, and

Bi denote the global node set, neighbor set, and boundary

neighbor set, respectively. The detailed variance analysis of

BNS-GCN can be found in Appendix A and variances for

the other methods are based on (Zou et al., 2019). We find

that BNS-GCN enjoys the smallest variance compared with

FastGCN and LADIES, when fixing the number of sampled

nodes, as we strictly have Bi ⊆ Ni ⊆ V . To be able to

compare with GraphSAGE, we fix the sampling size (sℓ =

sn), then BNS-GCN is strictly better than GraphSAGE, as

BNS-GCN neither samples neighbors within the inner node

sets nor samples the same nodes for multiple times, leading

to |Bi| ≤ D|Vi|. For VR-GCN, it is not comparable with

BNS-GCN because the variance of VR-GCN is based on

the difference between embedding feature and its history.

3.4 BNS-GCN vs. Existing Sampling Methods

We further discuss the difference between BNS-GCN and

existing sampling methods:

• Node Sampling: GraphSAGE (Hamilton et al., 2017)

and VR-GCN (Chen et al., 2018b) adopt node sampling

which is likely to sample the same nodes multiple times

from the previous layers, limiting GCNs’ depth and

training efficiency. Additionally, BNS-GCN does not

sample neighbors within each subgragh, reducing both

the estimation variance and sampling overhead.

• Layer Sampling: BNS-GCN is similar to layer sam-

pling in that nodes within the same partition share

the same sampled boundary nodes in the previous

layer. Unlike FastGCN (Chen et al., 2018a), AS-GCN

(Huang et al., 2018) or LADIES (Zou et al., 2019),

BNS-GCN has much denser sampled layers, poten-

tially leading to a higher accuracy.

• Subgraph Sampling: BNS-GCN could be viewed as

one kind of subgraph sampling that drops boundary

nodes from other partitions. ClusterGCN (Chiang et al.,

2019) and GraphSAINT (Zeng et al., 2020) propose

subgraph sampling, yet their number of selected nodes

are small, i.e., only 1.3% and 5.3% of the total nodes,

respectively, causing a higher variance of gradient esti-

mation.

• Edge Sampling: Applying edge sampling (e.g., DropE-

dge (Rong et al., 2019)) to distributed GCN training is

not efficient, as it does not directly reduce the number

of boundary nodes (see Section 4.3).
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Table 4: Comparison of test accuracy (%) on Reddit and ogbn-products and of test F1-micro score (%) on Yelp.

Method Reddit ogbn-products Yelp

Sampling-based methods

FastGCN (Chen et al., 2018a) 93.7 60.42 26.5

GraphSAGE (Hamilton et al., 2017) 95.4 78.70 63.4

AS-GCN (Huang et al., 2018) 96.3 OOM∗ OOM∗

LADIES (Zou et al., 2019) 94.3 77.46 60.2

VR-GCN (Chen et al., 2018b) 96.3 OOM∗ 64.0

ClusterGCN (Chiang et al., 2019) 96.6 78.97 60.9

GraphSAINT (Zeng et al., 2020) 96.6 79.08 65.3

BNS-GCN

# Partitions 2 4 8 5 8 10 3 6 10

BNS-GCN (p = 1.0) 97.11 97.11 97.11 79.14 79.14 79.14 65.26 65.26 65.26

BNS-GCN (p = 0.1) 97.17 97.16 97.15 79.36 79.48 79.30 65.32 65.26 65.34

BNS-GCN (p = 0.01) 97.09 96.99 96.94 79.43 79.28 79.21 65.27 65.31 65.29

BNS-GCN (p = 0.0) 97.03 96.88 96.84 78.65 78.83 78.79 65.28 65.27 65.23

(c = 2) across different number of GPUs. Even when p = 1,

BNS-GCN still improves the throughput by 1.8×∼3.7×
over ROC and 1.0×∼5.5× over CAGNET (c = 2). The

advantage of BNS-GCN is attributed to not only the reduced

communication overhead with boundary node sampling, but

also no swap between CPU and GPU as ROC nor redun-

dant broadcast and synchronization overhead as CAGNET.

Furthermore, increasing the number of partitions boosts the

performance of BNS-GCN (p < 1) substantially, but not for

other methods, validating BNS-GCN’s advantageous scala-

bility thanks to its effectiveness in reducing communication

overhead by dropping boundary nodes. The advantage of

BNS-GCN is similar for the other two datasets.

Full-Graph Accuracy. Now we show that BNS-GCN main-

tains or even improves the accuracy of full-graph training,

while boosting the training efficiency. Table 4 summarizes

our extensive evaluations of test scores when BNS-GCN

adopts various sampling rates and different numbers of

partitions, and compare with seven SOTA sampling-based

methods (Hu et al., 2020; with Code, 2020; Chiang et al.,

2019; Chen et al., 2018b; Zeng et al., 2020; Hamilton et al.,

2017; Cong et al., 2020; Liu et al., 2022; Zou et al., 2019;

Chen et al., 2020). We observe that full-graph training

(BNS-GCN with p = 1) always achieves a higher or com-

parable accuracy than existing sampling-based methods,

regardless of datasets or number of partitions, which is con-

sistent with the results of ROC (Jia et al., 2020). More

importantly, BNS-GCN always maintains or even increases

the full-graph accuracy, regardless of the sampling rates

(e.g., p = 0.1/0.01), the number of partitions, or different

datasets. For instance, on Reddit, p = 0.1 achieves a test ac-

curacy of 97.15%∼97.17% under 2∼8 partitions, which are

consistently better than the 97.11% accuracy of full-graph

unsampled training, validating the effectiveness and robust-

ness of BNS-GCN. Meanwhile, we also observe that the

Table 5: Comparison between BNS-GCN (10 partitions)

and sampling-based methods on ogbn-products.

Method Total Train Time Test Acc (%)

ClusterGCN 294.2s 78.97±0.33

NeighborSampling 281.8s 78.70±0.36

GraphSAINT 157.4s 79.08±0.24

BNS-GCN (p = 1.0) 269.1s 79.14±0.35

BNS-GCN (p = 0.1) 155.3s 79.30±0.36

BNS-GCN (p = 0.01) 142.9s 79.21±0.26

special case of BNS-GCN, p = 0, always suffers from the

worst test score on the three datasets, compared with other

cases (p > 0). We understand that this accuracy/score drop

is due to the full isolation of each partition after completely

removing all boundary nodes, leading to no boundary node

features during neighbor aggregation throughout the end-

to-end training. To the best of our knowledge, BNS-GCN

achieves the best accuracy of training GraphSAGE-layer

based GCNs on all three datasets compared with all exist-

ing works.

Improvement over Sampling-based Methods. Besides

the full-graph training comparison, we also validate BNS-

GCN’s advantage over the SOTA sampling-based methods

(implemented by the OGB team4 (Hu et al., 2020)) on ogbn-

products as shown in Table 5. We observe that BNS-GCNs

with p = 0.1 and p = 0.01 outperform all the sampling-

based methods in terms of both efficiency and accuracy

thanks to its lower approximation variance and substantially

higher achieved throughput. More comparisons between

BNS-GCN and sampling-based methods can be found in

*We find these cases run out of memory, which are consistent
with (Zeng et al., 2020).

4https://github.com/snap-stanford/ogb
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Table 9: Comparison between BNS-GCN and edge sampling methods, DropEdge and Boundary Edge Sampling (BES).

Dataset Method Epoch Comm (MB) Epoch Time (sec) Test Score (%)

Reddit

(2 partitions)

DropEdge 301.3 0.613 97.12

BES 207.9 0.484 97.16

BNS-GCN 30.4 0.319 97.17

ogbn-products

(5 partitions)

DropEdge 1364.0 0.938 79.38

BES 521.1 0.551 79.31

BNS-GCN 138.7 0.388 79.36

Yelp

(3 partitions)

DropEdge 718.7 0.606 65.30

BES 195.3 0.328 65.30

BNS-GCN 75.7 0.270 65.32

ter completely removing all boundary nodes, leading to no

boundary node features during neighbor aggregation (Equa-

tion 1) throughout the end-to-end training. Second, p = 0
also suffers from the slowest convergence regardless of dif-

ferent numbers of partitions or different datasets. Third,

p = 0 overfits severely (see Figure 7). Therefore, we sug-

gest a small but non-zero sampling rate (p = 0.1/0.01).

More discussion regarding the choice of sampling rate can

be found in Appendix E.

BNS-GCN vs. Boundary Edge Sampling. As many

works (Zhu et al., 2019; Zheng et al., 2020; Fey et al., 2021)

assume that communication overhead of distributed GCN

training is caused by the inter-partition edges (rather than

boundary nodes) and thus pursuing a minimal edge cut, one

could reduce communication overhead by cutting edges us-

ing sampling techniques like DropEdge (Rong et al., 2019)

or even an enhanced version that samples only the boundary

edges (rather than at a global scale). To understand this, we

implemented the enhanced version, dubbed Boundary Edge

Sampling (BES), and apply both BES and DropEdge to the

partition-parallel training. Table 9 compares their perfor-

mance with BNS-GCN. For a fair comparison, all methods

drop the same number of edges with BNS-GCN (p = 0.1)

over the full graph. We observe that edge-based sampling

methods are ineffective. For Reddit, DropEdge and BES

cause 10× and 7× communication overhead of BNS-GCN,

and thus 2.0× and 1.4× the overall training time. This

is because, in real-world graphs, multiple boundary edges

can connect to the same boundary nodes. Even if we drop

some of those edges, the remaining undropped edges still

demand communicating the connected boundary nodes to

satisfy neighbor aggregation of GCNs. Obviously, to erad-

icate such communication costs, boundary nodes should

be directly targeted and dropped, instead of using bound-

ary edges. For ogbn-products and Yelp, the advantage of

BNS-GCN still holds, where BNS-GCN reduces up to 90%

communication volume and speeds up training time by up

to 2.4×. Analytically, we’ve shown that the communication

cost of distributed GCN training is only proportional to the

number of boundary nodes (see Equation 3).

Table 10: Epoch training time speedup on GAT.

BNS-GCN Reddit ogbn-products Yelp

p = 1 1.00× (0.84s) 1.00× (0.71s) 1.00× (0.33s)

p = 0.1 1.53× 1.78× 1.83×
p = 0.01 1.58× 1.91× 2.06×
p = 0 1.68× 2.03× 2.20×

BNS-GCN Benefit on GAT. To validate the general appli-

cability of BNS-GCN across different types of GCN models

(i.e., not just GraphSAGE), we train GAT (VeličkoviÂc et al.,

2017) with BNS-GCN and provide the improvement for a

2-layer GAT with 10 partitions in Table 10. We observe

that BNS-GCN is consistently effective and speedups the

training by 58%∼106%, despite GAT being more computa-

tionally intensive than GraphSAGE.

5 CONCLUSION

While training GCNs at scale is challenging and increasingly

important, existing methods for distributed GCN training

are still limited in their achievable performance and scala-

bility. This work takes the initial effort to analyze the three

major challenges in distributed GCN training and then iden-

tify their underlying cause. On top of that, we propose an

efficient and scalable method for full-graph GCN training,

BNS-GCN, and then validate its effectiveness through both

theoretical analysis and extensive empirical evaluations. We

believe that these findings and the proposed method have

provided a better understanding of distributed GCN training

and will inspire further innovations in this direction.
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A THE VARIANCE ANALYSIS

In this section, we derive the variance of embedding approximation when using our proposed BNS-GCN method, of which

the result is listed in Table 2 of the main content.

For a given graph G = (V, E) with an adjacency matrix A, we define the propagation matrix P as P = D̃−1/2ÃD̃−1/2,

where Ã = A+ I, D̃u,u =
∑

v Ãu,v . One GCN layer performs one step of feature propagation (Kipf & Welling, 2016) as

formulated below:

Z(ℓ) = PH(ℓ−1)W (ℓ−1) (5)

H(ℓ) = σ
(

Z(ℓ)
)

where H(ℓ), W (ℓ), and Z(ℓ) denote the embedding matrix, the trainable weight matrix, and the intermediate embedding

matrix in the ℓ-th layer, respectively, and σ denotes the non-linear function. Without loss of generality, we provide our

analysis for one layer of GCNs and drop the superscripts of (ℓ) and (ℓ− 1) in the reminder of the discussion for simplicity.

For distributed GCN training using partition-parallelism, if denoting the inner node set and the boundary node set of the i-th
partition as Vi and Bi, respectively, the operations of the i-th partition for calculating Equation 5 are as follows:

ZVi,∗ =
[

PVi,Vi
PVi,Bi

]

[

HVi,∗

HBi,∗

]

W

In BNS-GCN, ZVi,∗ is approximated as Z̃Vi,∗ due to its boundary node sampling, i.e.,

Z̃Vi,∗ =
[

PVi,Vi
PVi,Ui

]

S

[

HVi,∗

HUi,∗

]

W

where Ui denotes the sampled boundary node set, p denotes the sampling rate, and S is a diagnal matrix with its elements

being defined as:

Su,u =

{

1, u ≤ |Vi|

1/p, u > |Vi|

Similar to the variance analysis in (Chen et al., 2018b) and (Zou et al., 2019), our goal is to compute the average variance of

the approximated embedding for one GCN layer, which can be defined as EU [∥Z̃ −Z∥2F ]/|V|. In our analysis, we adopt the

same assumption as that in (Zou et al., 2019), which bounds the matrix product HW as follows:

Assumption A.1. We assume that the L2-norm of each row in HW is upper bounded by a constant, i.e., there exists a

constant γ such that ∥Hu,∗W∥2 ≤ γ for all u ∈ |V|.

Next, we calculate the total variance of the embedding approximation for the i-th partition:

EUi
[∥Z̃Vi,∗ − ZVi,∗∥

2
F ] = EUi

[

∥

∥

∥

∥

[

PVi,Vi
PVi,Ui

]

S

[

HVi,∗

HUi,∗

]

W −
[

PVi,Vi
PVi,Bi

]

[

HVi,∗

HBi,∗

]

W

∥

∥

∥

∥

2

F

]

= EUi

[

∥

∥

∥

∥

1

p
PVi,Ui

HUi,∗W − PVi,Bi
HBi,∗W

∥

∥

∥

∥

2

F

]

(6)

=
∑

v∈Vi

EUi





∥

∥

∥

∥

∥

∑

u∈Ui

1

p
Pv,uHu,∗W − Pv,Bi

HBi,∗W

∥

∥

∥

∥

∥

2

2




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=
∑

v∈Vi

1

p

∑

u∈Bi

∥

∥

∥

∥

Pv,uHu,∗W −
1

|Bi|
Pv,Bi

HBi,∗W

∥

∥

∥

∥

2

2

(7)

=
∑

v∈Vi

1

p

(

∑

u∈Bi

∥Pv,uHu,∗W∥22 − ∥Pv,Bi
HBi,∗W∥22

)

≤
1

p

∑

v∈Vi

∑

u∈Bi

∥Pv,uHu,∗W∥22

where the step of Equation 6 removes the common factor PVi,Vi
HVi,∗W and the step of Equation 7 uses the fact that the

selection of nodes in Bi are independent.

Based on Assumption A.1, we have ∥Hu,∗W∥2 ≤ γ. As a result, the above upper bound can be further written as:

EUi
[∥Z̃Vi,∗ − ZVi,∗∥

2
F ] ≤

1

p

∑

v∈Vi

∑

u∈Bi

P 2
v,uγ

2

=
1

p
γ2 ∥PVi,Bi

∥2F

Thus, the total variance of the embedding approximation for the i-th partition is O(|Bi|γ
2/sℓ) as shown in Table 2 of the

main content, where sℓ denote the size of the sampled node set.

Finally, the global average variance can be calulated as:

EU [∥Z̃ − Z∥2F ]

|V|
=

∑

i EUi
[∥Z̃Vi,∗ − ZVi,∗∥

2
F ]

|V|

≤
γ2
∑

i ∥PVi,Bi
∥2F

p|V|

≤
γ2∥P∥2F
p|V|
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C EFFICIENCY COMPARISON WITH SAMPLING-BASED METHODS

Table 11 compares the training efficiency between the popular sampling-based methods and BNS-GCN under the same

settings of the main content. As can be seen, BNS-GCN outperforms the sampling-based methods with a great margin,

while achieving a higher accuracy (see Table 4 of the main content).

Table 11: Comparison of training efficiency on Reddit, where BNS-GCN with various boundary sampling rates under 8

partitions are shown.

Method GraphSAGE FastGCN VR-GCN ClusterGCN BNS-GCN(1) BNS-GCN(0.1) BNS-GCN(0.01)

Train time

per epoch
6.20s 5.08s 3.85s 1.35s 0.777s 0.198s 0.150s

Speedup 1× 1.22× 1.61× 4.59× 8.0× 31.3× 41.3×
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D OVERHEAD OF BOUNDARY NODE SAMPLING

In this section, we evaluate the overhead introduced by the boundary node sampling of BNS-GCN under different sampling

rates and number of partitions, and also compare it with the overhead of the state-of-the-art sampling methods. Table 12

summarizes the results. We observe that node, edge, and random walk sampling can introduce a non-trivial overhead,

which is up to 24% of training time (Zeng et al., 2020). By contrast, boundary node sampling incurs only a negligible

overhead, i.e., 0%∼7.3%, because it only needs to perform sampling on the boundary region instead of the whole graph as

used in the state-of-the-art methods. Also, the light weightiness of boundary nodes sampling lies in its parallizability across

partitions, instead of requiring sequential processing. Besides, we also compare BNS-GCN with the graph-level sampling

method such as ClusterGCN (Chiang et al., 2019). We find that the overhead of boundary node sampling is still much lower

than ClusterGCN, because ClusterGCN needs to merge multiple subgraphs into one cluster with a sampling time roughly

proportional to the number of edges in the whole graph. By contrast, boundary node sampling only needs to modify those

boundary edges of selected boundary nodes, and its sampling time is proportional only to the number of boundary edges,

which is only a fraction of ClusterGCN.

Table 12: Comparison of BNS-GCN’s sampling overhead with the state-of-the-art methods in GraphSAINT (Zeng et al.,

2020) on Reddit, where the overhead percentage is calculated by the sampling time divided by the training time.

The state-of-the-art samplers

Node 23%

Edge 20%

Random walk 24%

BNS-GCN sampler

# Partitions 2 4 8

p = 1.00 0%

p = 0.10 1.7% 3.2% 6.6%

p = 0.01 1.3% 3.0% 7.3%

p = 0.00 0%
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E THE CHOICE OF p

In this section, we discuss how to choose the boundary node sampling rate p in practice for maximizing the efficiency

of GCN training. Empirically, p = 0.1 combines the best of all worlds: throughput boosting, communication reduction,

memory saving, convergence speedup, and final accuracy, as well as sampling overhead, across different number of partitions

and different datasets, according to our extensive experiments. To further validate this, we compare the test accuracy of p
between 0.1 and 1 and summarize the results in Table 13. We can see that the advantage of p = 0.1 still holds, i.e., offering

similar accuracy but less communication/memory compared with higher p values.

Table 13: Test accuracy of BNS-GCN with a sampling rate p between 0.1 and 1.

Dataset p = 0.1 p = 0.3 p = 0.5 p = 0.8 p = 1.0
Reddit (2 partitions) 97.17% 97.18% 97.15% 97.13% 97.11%

ogbn-product (5 partitions) 79.36% 79.30% 79.34% 79.24% 79.14%
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F ARTIFACT APPENDIX

F.1 Abstract

Our artifact contains the full source code of BNS-GCN. It includes both the baseline (vanilla partition-parallel training) and

the proposed boundary-node-sampled training for GCNs on various datasets. Running the code requires a machine (at least

120 GB host memory) with multiple (at least five) Nvidia GPUs (at least 11GB each). Software is provided with our docker

image. With the aforementioned hardware and software, running our provided scripts will validate the main experiments in

the paper, such as per-epoch training time, training time breakdown, memory usage, and accuracy.

F.2 Artifact check-list (meta-information)

• Algorithm: Graph Convolutional Network (GCN), Distributed Training, Random Sampling

• Data set: Reddit, ogbn-products, Yelp (all included in our docker or software setup)

• Run-time environment: Ubuntu 18.04, Python 3.8, CUDA 11.1, PyTorch 1.8.0, DGL 0.7.0, OGB 1.3.0

• Hardware: A X64-CPU machine with at least 120 GB host memory, at least five Nvidia GPUs (at least 11GB each).

• Execution: Bash scripts, Running each experiment takes less than 1 hour.

• Metrics: Training time, training time breakdown, memory usage, accuracies

• Output: Console, and log file

• How much disk space required (approximately)?: 50GB

• How much time is needed to prepare workflow (approximately)?: 30 minutes

• How much time is needed to complete experiments (approximately)?: 10 hours

• Publicly available?: yes

• Code licenses (if publicly available)?: MIT License

• Archived (provide DOI)?: 10.5281/zenodo.6079700

F.3 Description

F.3.1 How delivered

• Source code in the archival repository for ACM badges: https://doi.org/10.5281/zenodo.6079700.

• Latest source code in GitHub repository: https://github.com/RICE-EIC/BNS-GCN.

• Docker image: https://hub.docker.com/r/cheng1016/bns-gcn.

• Approximate disk space: 50GB, used for large datasets

F.3.2 Hardware dependencies

• A X86-CPU machine with at least 120 GB host memory

• At least five Nvidia GPUs (at least 11 GB each)

F.3.3 Software dependencies

All provided in our docker image:

• Ubuntu 18.04

• Python 3.8

• CUDA 11.1
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• PyTorch 1.8.0

• customized DGL 0.7.0

• OGB 1.3.0

F.3.4 Data sets

All dataset (Reddit, ogbn-products, Yelp) are either included in our docker image or to be downloaded by our scripts.

F.4 Installation

Detailed instructions are provided in README.md in our GitHub repository. For example, just run docker pull

cheng1016/bns-gcn followed by docker run --gpus all -it cheng1016/bns-gcn.

F.5 Experiment workflow

The workflow involves invoking top-level main.py which then drives other modules for distributed GCN training. All

ªone-click-to-runº scripts to reproduce main experiments in the paper are provided in the scripts/*.sh in our GitHub

repository.

F.6 Evaluation and expected result

All steps are in scripts/*.sh in our GitHub repository.

F.7 Experiment customization

We provide a detailed guide for customization in README.md in our GitHub repository. Hyper-parameters and configura-

tions can be customized by the options fed to main.py, e.g., allowing users to choose the number of training epochs, the

number of graph partitions (or GPUs), different partitioning methods, and even extending training to multiple machines with

multiple GPUs.

F.8 Notes

For the hyper-scale dataset ogbn-papers100M, the experiment was conducted on 32 machines, each of which has 6 Tesla

V100 (16GB) with IBM Power9 (605GB).


