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ABSTRACT
Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art method for graph-based learning
tasks. However, training GCNss at scale is still challenging, hindering both the exploration of more sophisticated
GCN architectures and their applications to real-world large graphs. While it might be natural to consider
graph partition and distributed training for tackling this challenge, this direction has only been slightly scratched
the surface in the previous works due to the limitations of existing designs. In this work, we first analyze
why distributed GCN training is ineffective and identify the underlying cause to be the excessive number of
boundary nodes of each partitioned subgraph, which easily explodes the memory and communication costs for
GCN training. Furthermore, we propose a simple yet effective method dubbed BNS-GCN that adopts random
Boundary-Node-Sampling to enable efficient and scalable distributed GCN training. Experiments and ablation
studies consistently validate the effectiveness of BNS-GCN, e.g., boosting the throughput by up to 16.2x and
reducing the memory usage by up to 58%, while maintaining a full-graph accuracy. Furthermore, both theoretical
and empirical analysis show that BNS-GCN enjoys a better convergence than existing sampling-based methods.
We believe that our BNS-GCN has opened up a new paradigm for enabling GCN training at scale. The code is

available at https://github.com/RICE-EIC/BNS-GCN.

1 INTRODUCTION

Graph convolutional networks (GCNs) (Kipf & Welling,
2016) have emerged as the state-of-the-art (SOTA) method
for various graph-based learning tasks, including node clas-
sification (Kipf & Welling, 2016), link prediction (Zhang &
Chen, 2018), graph classification (Xu et al., 2018), and rec-
ommendation systems (Ying et al., 2018). The outstanding
performance of GCNs is attributed to their unrestricted and
irregular neighborhood connectivity, which provides them a
greater applicability to graph-based data than convolutional
neural networks (CNNs) that adopt a fixed regular neigh-
borhood structure. Specifically, given a node in a graph, a
GCN first aggregates the features of its neighbors and then
updates its own feature through a hierarchical feed-forward
propagation. The two dominant operations, aggregate and
update of node features, enables GCNs to take advantage
of the graph structure and thus outperform their structure-
unaware alternatives.

Despite their promising performance, training GCNs at scale
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has been very challenging, thereby hindering the exploration
of more sophisticated GCN architectures and restricting
their real-world applications to large graphs. This is be-
cause as the graph size grows, the sheer number of node
features and the giant adjacency matrix can easily explode
the required memory and communications. To tackle this
challenge, several sampling-based methods have been de-
veloped at a cost of approximation errors. For example,
GraphSAGE (Hamilton et al., 2017) and VR-GCN (Chen
et al., 2018b) reduce a full graph into a mini-batch via neigh-
bor sampling; alternative methods (Chiang et al., 2019; Zeng
et al., 2020) extract sub-graphs as training samples.

In parallel with sampling-based methods, a more recent di-
rection for handling large-graph training is distributed GCN
training, which aims at training a large full-graph over mul-
tiple GPUs without degrading the accuracy. The key idea is
to partition a giant graph into small subgraphs such that each
can fit a single GPU, and train them in parallel with neces-
sary communication. Following this “partition-parallelism”
paradigm, pioneering efforts (NeuGraph (Ma et al., 2019),
ROC (Jia et al., 2020), CAGNET (Tripathy et al., 2020),
Dorylus (Thorpe et al., 2021), and PipeGCN (Wan et al.,
2022)) have demonstrated a promising training performance.
Nonetheless, these works still suffer from heavy communica-
tion traffics, limiting their achievable training efficiency, let
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alone the potentially harmful staleness due to asynchronous
training (Thorpe et al., 2021).

To enable scalable and efficient large-graph GCN training
without compromising the full-graph accuracy, this work
sets out to understand the underlying cause of the communi-
cation and memory explosion in distributed GCNSs training
and finds that distributed GCN training can be ineffective if
it is not designed properly, which motivates us to make the
following contributions:

* We first analyze and identify three main challenges in
partition-parallel training of GCNs: (1) overwhelming
communication volume, (2) prohibitive memory re-
quirement, and (3) imbalanced memory consumption.
We further localize their cause to be an excessive num-
ber of boundary nodes (rather than boundary edges)
associated with each partitioned subgraph, which is
unique to GCNs due to their neighbor aggregation (see
Section 3.1). This finding enhances the understanding
in distributed GCN training and can potentially inspire
further ideas in this direction.

To tackle all above challenges in one shot, we pro-
pose a simple yet effective method dubbed BNS-GCN
which randomly samples features of boundary nodes at
each training iteration and achieves a triple win — ag-
gressively shrinking the communication and memory
requirements while leading to a better generalization
accuracy (see Section 3.2). To the best of our knowl-
edge, this is the first work directly targeting at reducing
the communication volume in distributed GCN training,
without incurring extra computing resource overhead
(e.g., CPU) or hurting the achieved accuracy.

* We further provide theoretical analysis to validate the
improved convergence offered by BNS-GCN (see Sec-
tion 3.3). Extensive experiments and ablation stud-
ies consistently validate the benefit of BNS-GCN in
both training efficiency and accuracy, e.g., boosting
the throughput by up to 16.2x and reducing the mem-
ory usage by up to 58% while achieving the same
or an even better accuracy, over the SOTA methods,
when being applied to Reddit, ogbn-products, Yelp,
and ogbn-papers100M datasets (see Section 4).

2 BACKGROUND AND RELATED WORKS

Graph Convolutional Networks. GCNs take graph-
structured data as inputs and learn feature vectors (embed-
ding) for each node of a graph. Specifically, GCN performs
two major steps in each layer, i.e., neighbor aggregation
and node update, which can be represented as:

20 = ¢ ({p) Juen@)}) ()

P = 60 (49, n{) )

where N (v) denotes the neighbor set of node v in the graph,
hg) denotes the learned feature vector of node wu at the ¢-th
layer, (¥ denotes the aggregation function that takes neigh-
bor features to generate aggregation result zq(,z) for node
v, and finally ¢(©) gets the feature of node v updated. A
famous instance of GCNs is GraphSAGE with a mean ag-
gregator (Hamilton et al., 2017), in which ¢(©) is the mean

function and ¢ is & (W(f) . CONCAT (ng)7 hq(ffl)»,

where W) is the weight matrix and o is a non-linear acti-
vation. While we mainly use this instance for evaluating our
BNS-GCN, our approach can be easily extended to other
popular aggregators and update functions.

Sampling-Based GCN Training. Real-world graphs con-
sist of millions of nodes and edges (Hu et al., 2020), far
beyond the capability of vanilla GCNs. As such, sampling-
based methods were proposed, e.g., neighbor sampling
(Hamilton et al., 2017; Chen et al., 2018b), layer sampling
(Chen et al., 2018a; Huang et al., 2018; Zou et al., 2019),
and subgraph sampling (Chiang et al., 2019; Zeng et al.,
2020), which yet suffer from:

e Inaccurate feature estimation: although most sampling
methods provide unbiased estimation of node features,
the variance of these estimation hurts the model accu-
racy. As (Cong et al., 2020) shows, a smaller variance
is beneficial to improving the accuracy of a sampling-
based method;

e Neighbor explosion: Hamilton et al. (2017) first uses
node sampling to randomly select several neighbors
in the previous layer, but as GCNs get deeper the size
of selected nodes exponentially increases. Chen et al.
(2018Db) further proposes samplers for restricting the
size of neighbor expansion, which yet suffers from
heavy memory requirements;

» Sampling overhead: All sampling-based methods in-
cur extra time for generating mini-batches, which can
occupy 25%+ of the training time (Zeng et al., 2020).

Distributed Training for GCNs. To train GCNs for real-
world large graphs, distributed training leveraging multiple
GPUs to enable full-graph training has been shown to be
promising. Nevertheless, GCNs training is different from
the challenge of classical distributed DNN training where
(1) data samples are small yet the model is large (model
parallelism (Krizhevsky, 2014; Harlap et al., 2018)) and (2)
data samples do not have dependency (data parallelism (Li
et al., 2020; 2018bsa)), both violating the nature of GCNss.
As such, GCN-oriented methods should partition the full
graph into small subgraphs such that each could be fitted
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Figure 1: An illustrative comparison between existing distributed GCN training methods and our BNS-GCN.

into a single GPU memory, and train them in parallel, where
communication across subgraphs is necessary to exchange
boundary node features to perform GCNs’ neighbor aggrega-
tion, which is called vanilla partition parallelism as shown
in Figure 1(a). Following this paradigm, several works
have been proposed. ROC (Jia et al., 2020), NeuGraph (Ma
et al., 2019), and AliGraph (Zhu et al., 2019) partition large
graphs and store all partitions in CPUs and swaps a frac-
tion of each partition to compute in GPUs (see Figure 1(b)).
Their training efficiency are thus compromised due to ex-
pensive CPU-GPU swaps. CAGNET (Tripathy et al., 2020)
and P2 (Gandhi & Iyer, 2021) further split node features
and layers to enable intra-layer model parallelism (see Fig-
ure 1(c)), which however incurs a heavy communication
overhead especially when the feature dimension is large.
Dorylus (Thorpe et al., 2021) improves the vanilla partition
parallelism by pipelining each fine-grain computation oper-
ation in GCN training over numerous CPU threads, which
still suffers from the communication bottleneck.

Distributed Graph Systems. Distributed graph systems
were proposed to solve general graph problems (Gonzalez
et al., 2012; Shun & Blelloch, 2013; Nguyen et al., 2013;
Zhu et al., 2016; Chen et al., 2019). (Lerer et al., 2019) also
proposes a distributed learning system for graph embedding.
However, none of these considers node features and hence
cannot be used for GCN training.

3 THE PROPOSED BNS-GCN
FRAMEWORK

Overview. To address all aforementioned limitations (see
Figure 1(a-c)), we propose partition-parallel training of
GCNs with Boundary Node Sampling, dubbed BNS-GCN,
as shown in Figure 1(d). BNS-GCN partitions a full-graph
with minimized boundary nodes and then further randomly
samples the boundary nodes to shrink both communication
and memory costs, enabling efficient large-graph training

while maintaining the full-graph accuracy. We develop
BNS-GCN by first analyzing the three major challenges in
partition-parallel training of GCNs and then pinpoint their
underlying cause (see Section 3.1). To tackle the cause di-
rectly, we design a simple yet effective sampling strategy
that can simultaneously alleviate all three challenges (see
Section 3.2), while achieving much reduced variances (i.e.,
closer to that of the full-graph one) of feature approximation
as compared to existing sampling methods (see Section 3.3).
We further discuss the difference between BNS-GCN and
other sampling-based methods (see Section 3.4) for better
understanding our new contribution.

3.1 Challenges in Partition-Parallel Training

To enable full-graph training, the original graph can be par-
titioned into smaller subgraphs (i.e., partitions) to be trained
locally on each accelerator/node while communicating de-
pendent node features across subgraphs, which is termed as
partition parallelism. As shown in Figure 2, each subgraph
contains a subset of nodes from the original graph, termed as
an inner node set (see “Inner”). Additionally, each subgraph
holds a boundary node set (see “Boundary’”) containing
dependent nodes from other subgraphs. Such a boundary
node set is dictated by GCNs’ neighbor aggregation from
neighbor subgraphs, e.g., node-5 in Figure 2 requires nodes-
[3,4,6] residing on other subgraphs to perform Equation 1,
creating the boundary nodes associated with the subgraph
hosting node-5. To compute each GCN layer, features of
boundary nodes are communicated or exchanged across
subgraphs (shown in red) before those of inner nodes get
updated (e.g., nodes-[2,5] in blue). The updated features are
again exchanged across subgraphs to compute the next GCN
layer, which is repeated until the final layer. The backward
pass follows a similar process but communicates gradients
of boundary nodes instead of features. Afterwards, the GCN
model gets updated via weight gradient sharing (in green)
among partitions using AllReduce.
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Figure 2: Illustrating vanilla partition parallel training. A large graph is partitioned into smaller subgraphs (see the inner
nodes in black) with each being able to fit into one GPU memory. The key challenge is that excessive boundary nodes (in
orange) associated with each subgraph (due to GCNs’ neighbor aggregation) can lead to a heavy communication overhead,
extra memory cost, and memory imbalance among subgraphs, thus limiting the achievable scalability and efficiency of

distributed GCN training.

Table 1: Comparison between the number of boundary nodes and inner nodes in partitioned Reddit graph (Hamilton et al.,
2017). The standard METIS (Karypis & Kumar, 1998) is used for graph partition.

Partition Index 1 2 3 4 5 6 7 8 9 10

# Inner Nodes 14k 15k 15k 15k 15k 15k 14k 15k 14k 15k

# Boundary Nodes 39k 15k 86k 78k 86k 62k 6k 46k 71k 23k

Ratio of # Boundary to # Inner 2.64 1.00 545 495 549 411 042 3.04 481 152

However, vanilla partition parallelism is neither inefficient
nor scalable due to the following three major challenges:

i Heavy Communication Overhead is resulting from
exchanging boundary nodes across partitions, limiting
the scalability to larger graphs or using more partitions.

ii Prohibitive Memory Requirement is incurred in each
partition to hold both the inner and boundary sets, the
latter of which can overflow a GPU’s memory capacity.

iii Imbalanced Memory Requirements exists across all
partitions, where the memory straggler (i.e., the parti-
tion requiring a significantly larger memory than oth-
ers) not only determines the memory requirement but
also causes under-utilization of other partitions’ GPUs.

We identify that all three challenges above share the same
underlying cause — the overhead of extra boundary nodes
associated with each partition due to distributed partitions.

Communication Cost Analysis of Vanilla Partition Par-
allelism. For a partition G;, its communication volume can
be defined as Vol(G;) = > 5. D(v) where D(v) is the
number of different partitions in which v has at least one
neighbor node, excluding G; (Bulug et al., 2016). This value
quantifies the total amount of features G; needs to send dur-
ing each propagation (Equation 1). As the total number of
received messages equals to the total number of sent mes-
sages, the rotal communication volume equals to the total

number of boundary nodes (instead of boundary edges):
Volow = Y Vol(G;) = > nj))
(1)

where n; ; is the number of boundary nodes in partition G;.

3)

Memory Cost Analysis of Vanilla Partition Parallelism.
For a ¢-th layer, suppose the input feature is of dimension
d®), and the numbers of inner nodes and boundary nodes
in partition G; are ”E;) and n,()fi), respectively. Considering
a general case where all node features and inner nodes’
aggregated features are saved for the back propagation in
both Equation 1 and Equation 2. When using a GraphSAGE
layer with a mean aggregator, the memory cost is:

“4)

As aresult, the memory requirement increases linearly with
the number of boundary nodes (instead of boundary edges).

Mem'9(G;) = (3715:3 + nl()g))d(z)

The challenge is that the number of boundary nodes can
be excessive. Table 1 shows a typical example, where the
number of boundary nodes in each partition can be as high
as 5.5 x of that of inner nodes, leading to both prohibitive
communication and memory overhead.

Memory Imbalance Analysis in Vanilla Partition Par-
allelism. The memory cost can be highly imbalanced
across partitions due to the irregular amounts of bound-
ary nodes despite the balanced amount of inner nodes (see
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Figure 3: The distributions of the boundary-inner ratios
for the ogbn-papers100M dataset under 192 partitions.

Table 1). Furthermore, when scaling up to more partitions,
the memory imbalance becomes more severe. Figure 3
shows such an example where we split a giant graph (ogbn-
papers100M (Hu et al., 2020)) into 192 parts. The memory
straggler (the one with boundary-inner ratio of 8) costs sig-
nificantly more memory than other partitions, which not
only raises the memory requirement but also incurs memory
under-utilization for all other partitions’ GPUs.

3.2 The Proposed BNS-GCN Technique

Graph Partition. As boundary nodes are the cause for the
efficiency bottleneck of partition parallelism, the graph par-
tition has to minimize all boundary node sets to minimize
subsequent communication and memory overheads, dubbed
Goal-1. Besides, the graph partition must also achieve
balanced computation time across all partitions, dubbed
Goal-2, since partition parallelism is a synchronous train-
ing paradigm that requires frequent synchronization at each
layer (again due to GCNs’ neighbor aggregation), under
which unbalanced partition results in stragglers that block
other partitions to proceed.

Prior works (Tripathy et al., 2020; Zheng et al., 2020) aim
at achieving only Goal-2 yet ignore Goal-1, while this work
achieves both. For Goal-2, we approximate the computa-
tional complexity of each node, aiming to balance compu-
tations across all partitions (e.g., when GraphSAGE com-
putation is dominated by Equation 2, the complexity is
proportional to the number of nodes, so we set partitions
with an equal size in this case). Then we optimize the graph
partition algorithm for Goal-1. In this work, the popular
METIS (Karypis & Kumar, 1998) is adopted as the default
graph partition algorithm and its objective is set to minimize
the communication volume, i.e., minimize the number of
boundary nodes (Equation 3). Besides METIS, other par-
titioning algorithms are also compatible with BNS-GCN
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Algorithm 1: Boundary node sampling for partition-
parallel training (per-partition view)

Input: partition number m, partition id ¢, graph partition
G;, boundary node set 3;, node feature X;, label Y7,
sampling rate p, initial model w[0], learning rate 7

Output: trained model w[T'] after T iterations

V; < {nodev € G; : v ¢ B;};

> create inner node set

HO « X;; > initialize input features
fort < 1:7do
U; + randomly pick elements in B; with probability p;
‘H; < node induced subgraph of G; from V; Ul;;
Broadcast U; and Receive [Uy, - -+ ,Up];
[Sit, o Sim] < UL N Vyy o+ U NV
for/{ < 1:Ldo
Send [Héf:l), . ,Hg;;l)] to partition [1, - - - , m)]
and Receive Hb(f;_l);
H¢-1
H® « GCN® <7—l [ (—1) ] ,wit — 1});
Hui
end
fi Zvevi loss(hg,L), Yo )i > calculate loss
gilt] « %; > backward pass
g[t] « AllReduce(g;[t]); > share gradients
wlt] < wit — 1] —n - g[t]; > update model
end
return w7

(see Tables 7-8). Note that the time complexity of METIS
is O(|&]) where & is the set of edges, and only needs to be
performed once during the preprocessing stage, the cost of
which can thus be amortized over numerous training itera-
tions and leads to a negligible overhead. In addition, METIS
is widely adopted in scalable GCN training (Zhu et al., 2019;
Zheng et al., 2020; Fey et al., 2021; Wan et al., 2022) where
the objective function is mostly set as the minimum cut (i.e.,
minimize the number of edges).

Boundary Node Sampling (BNS). Even with an optimal
graph partition, the boundary node issue still remains (see
Table 1), calling for innovative methods to reduce the bound-
ary node volume. An ideal method should achieve three
goals: (1) substantially shrinking the size of boundary node
sets, (2) incurring a minimal overhead, and (3) maintain-
ing the full-graph accuracy. As such, we adopt a random
sampling method called boundary node sampling. The key
idea is to independently select a subset of boundary nodes
from each partition, then to store and communicate merely
those selected ones instead of the full boundary sets, with
a random selection varying from one epoch to another.

Algorithm 1 outlines our proposed BNS-GCN. In the ¢-th
partition, we randomly keep the boundary node set I/; with a
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Table 2: Comparing feature approximation variance be-
tween SOTA sampling methods and BNS-GCN, where
we fix the target node set V; across all methods. Here
v denotes the upper bound of the Lo-norm of intermedi-
ate features, and A~y is the upper bound of the difference
between the embedding feature and its history. We re-
port the variance by ignoring the same factors. Note that
Bi| < INi| < [V

Method Variance = Notation
GraphSAGE O(D~?/s,,) s,: sampled neighbor size
VR-GCN O(DA~?/s,,) D: average degree
FastGCN  O(|V[7?/s;) s,: sampled node set size
LADIES O(|N:|v?/s¢) V, N;, B;: global node set,
BNS-GCN O(|B;|+?/s¢) neighbor set, boundary set

probability p and drop the rest at the beginning of each epoch
(Lines 4-5). These selected nodes’ indices are then broad-
casted among partitions such that each partition “knows”
others’ selections (Line 6) and can also record its local node
S ; that is selected by the other j-th partition (Line 7). Dur-
ing the forward pass of the ¢-th layer, each partition sends
those features [, éi;l) of the previously recorded nodes to
the corresponding j-th partition and meanwhile receives
features Hz(jlfl) of its own selected boundary nodes to per-
form GCN operations (Lines 9-10). For a mean aggregator,
we replace the sent/received feature matrix H with H/p to-
wards an unbiased feature estimation. During the backward
pass of every layer, each partition sends and receives feature
gradients of the selected boundary nodes while generating
GCNs’ weight gradients (Line 13). Lastly, weight gradients
are shared across partitions via AllReduce (Thakur et al.,
2005) to perform weight updates (Lines 14-15).

The proposed BNS-GCN reduces the number of boundary
nodes by a factor of %, achieving a proportional reduction
in both memory and communication costs (Equation 3-4).
Meanwhile, BNS-GCN pays negligible overhead due to
its simplicity, which costs 0%~7% of the training time in
practice'. Note that our BNS-GCN can not only boost the
efficiency and scalability of vanilla partition parallelism, but
also be easily plugged into any partition-parallel training
methods (e.g., ROC and CAGNET) for further improving
their training efficiency.

3.3 Variance Analysis

Theoretically, we study the effect of BNS-GCN on GCNs’
performance by analyzing its feature approximation vari-
ance and comparing it with the SOTA methods. As the
feature approximation variance controls the upper bound
of gradient noise (Cong et al., 2020), a sampling method

"Details can be found in Appendix D.

with a lower approximation variance usually enjoys a better
convergence speed (Gower et al., 2019) and higher accu-
racy. Table 2 summarizes our results, where V, N, and
B; denote the global node set, neighbor set, and boundary
neighbor set, respectively. The detailed variance analysis of
BNS-GCN can be found in Appendix A and variances for
the other methods are based on (Zou et al., 2019). We find
that BNS-GCN enjoys the smallest variance compared with
FastGCN and LADIES, when fixing the number of sampled
nodes, as we strictly have B; C N; C V. To be able to
compare with GraphSAGE, we fix the sampling size (s; =
Sn), then BNS-GCN is strictly better than GraphSAGE, as
BNS-GCN neither samples neighbors within the inner node
sets nor samples the same nodes for multiple times, leading
to |B;| < D|V;|. For VR-GCN, it is not comparable with
BNS-GCN because the variance of VR-GCN is based on
the difference between embedding feature and its history.

3.4 BNS-GCN vs. Existing Sampling Methods

‘We further discuss the difference between BNS-GCN and
existing sampling methods:

* Node Sampling: GraphSAGE (Hamilton et al., 2017)
and VR-GCN (Chen et al., 2018b) adopt node sampling
which is likely to sample the same nodes multiple times
from the previous layers, limiting GCNs’ depth and
training efficiency. Additionally, BNS-GCN does not
sample neighbors within each subgragh, reducing both
the estimation variance and sampling overhead.

e Layer Sampling: BNS-GCN is similar to layer sam-
pling in that nodes within the same partition share
the same sampled boundary nodes in the previous
layer. Unlike FastGCN (Chen et al., 2018a), AS-GCN
(Huang et al., 2018) or LADIES (Zou et al., 2019),
BNS-GCN has much denser sampled layers, poten-
tially leading to a higher accuracy.

e Subgraph Sampling: BNS-GCN could be viewed as
one kind of subgraph sampling that drops boundary
nodes from other partitions. ClusterGCN (Chiang et al.,
2019) and GraphSAINT (Zeng et al., 2020) propose
subgraph sampling, yet their number of selected nodes
are small, i.e., only 1.3% and 5.3% of the total nodes,
respectively, causing a higher variance of gradient esti-
mation.

e Edge Sampling: Applying edge sampling (e.g., DropE-
dge (Rong et al., 2019)) to distributed GCN training is
not efficient, as it does not directly reduce the number
of boundary nodes (see Section 4.3).
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Table 3: Details of the graph datasets.

Dataset #Nodes #Edges #Feat. # Classes Type Train / Val / Test
Reddit (Hamilton et al., 2017) 233K 114M 602 41 inductive  0.66/0.10/0.24
ogbn-products (Hu et al., 2020) 24M 62M 100 47 transductive  0.08 /0.02 / 0.90
Yelp (Zeng et al., 2020) 716K 7.0M 300 100 inductive ~ 0.75/0.10/0.15
ogbn-papers100M (Hu et al., 2020) 111M 1.6B 128 172 transductive  0.78 /0.08 /0.14
- Reddit T ogbn-products = Yelp
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Figure 4: Throughput comparison on Reddit, ogbn-products, and Yelp. Each partition uses one GPU (except CAGNET
(c = 2) uses two). The boundary node sampling rate is denoted by p.

4 EXPERIMENTS

In this section, we first introduce our experiment setups,
then compare with the SOTA baselines, and further provide
ablation studies for a thorough evaluation on BNS-GCN.

Datasets. We evaluate BNS-GCN on four large-scale
datasets: 1) Reddit (Hamilton et al., 2017) for community
prediction based on the posts’ contents and users’ comments,
2) ogbn-products (Hu et al., 2020) for classifing Amazon
products based on customers’ review, 3) Yelp (Zeng et al.,
2020) for predicting the types of business based on reviews
and users’ relationship, and 4) ogbn-papers100M (Hu et al.,
2020) for predicting the category of an arXiv publication
based on its title and abstract. Details of these four datasets
are provided in Table 3.

Models. We adopt a GraphSAGE model with an Adam
optimizer for all datasets. The details are listed below:

* Reddit: We use a 4-layer model with 256 hidden units
and set the learning rate as 0.01 with 3000 epochs and
0.5 dropout rate.

* ogbn-products: We use a 3-layer model with 128 hid-
den units and set the learning rate as 0.003 with 500
epochs and 0.3 dropout rate.

* Yelp: We use a 4-layer model with 512 hidden units
and set the learning rate as 0.001 with 3000 epochs and
0.1 dropout rate.

* ogbn-papers100M: We use a 3-layer model with 128

hidden units and set the learning rate as 0.01 with 100
epochs and 0.5 dropout rate.

Setups. We implement BNS-GCN in DGL (Wang et al.,
2019) and PyTorch (Paszke et al., 2019) with the default
backend of Gloo. We conduct the experiments of Reddit,
ogbn-products and Yelp on a machine with 10 RTX-2080Ti
(11GB), Xeon 6230R@2.10GHz (187GB), and PClIe3x16
connecting CPU-GPU and GPU-GPU. The minimal num-
ber of partitions for full-graph training are 2, 5, 3 for
Reddit, ogbn-products, and Yelp, respectively. For ogbn-
papers100M, the experiment is conducted on 32 machines,
each of which has 6 Tesla V100 (16GB) with IBM Power9
(605GB). To ensure the reproducibility and robustness of
BNS-GCN, we do not tune but fix the hyper-parameters
for BNS-GCN throughout all experiments, and we show
evaluation results based on average of 10 runs.

4.1 Comparison with the SOTA Baselines

Full-Graph Training Speedup. Figure 4 compares the
training throughput of BNS-GCN against the SOTA full-
graph training methods, ROC? (Jia et al., 2020) and
CAGNET? (Tripathy et al., 2020). We observe that BNS-
GCN consistently outperforms both baselines across differ-
ent number of GPUs and boundary node sampling rates p.
For the instance of training GCN on Reddit, BNS-GCN with
p = 0.01 offers a promising throughput improvement of
8.9x~16.2x over ROC and 9.2x ~13.8x over CAGNET

*https://github.com/jiazhihao/ROC
3https://github.com/PASSIONLab/CAGNET



BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Boundary Node Sampling

Table 4: Comparison of test accuracy (%) on Reddit and ogbn-products and of test F1-micro score (%) on Yelp.

Method Reddit ogbn-products Yelp
Sampling-based methods
FastGCN (Chen et al., 2018a) 93.7 60.42 26.5
GraphSAGE (Hamilton et al., 2017) 95.4 78.70 63.4
AS-GCN (Huang et al., 2018) 96.3 OoOM* ooM*
LADIES (Zou et al., 2019) 943 77.46 60.2
VR-GCN (Chen et al., 2018b) 96.3 OOM* 64.0
ClusterGCN (Chiang et al., 2019) 96.6 78.97 60.9
GraphSAINT (Zeng et al., 2020) 96.6 79.08 65.3
BNS-GCN
# Partitions 2 4 8 5 8 10 3 6 10
BNS-GCN (p = 1.0) 97.11 97.11 97.11 | 79.14 79.14 79.14 | 65.26 65.26 65.26
BNS-GCN (p = 0.1) 9717 97.16 97.15 | 7936 7948 79.30 | 6532 6526 65.34
BNS-GCN (p = 0.01) 97.09 9699 9694 | 79.43 79.28 79.21 | 6527 65.31 65.29
BNS-GCN (p = 0.0) 97.03 96.88 96.84 | 78.65 78.83 78.79 | 65.28 65.27 65.23

(¢ = 2) across different number of GPUs. Even when p = 1,
BNS-GCN still improves the throughput by 1.8x~3.7x
over ROC and 1.0x~5.5x over CAGNET (c = 2). The
advantage of BNS-GCN is attributed to not only the reduced
communication overhead with boundary node sampling, but
also no swap between CPU and GPU as ROC nor redun-
dant broadcast and synchronization overhead as CAGNET.
Furthermore, increasing the number of partitions boosts the
performance of BNS-GCN (p < 1) substantially, but not for
other methods, validating BNS-GCN’s advantageous scala-
bility thanks to its effectiveness in reducing communication
overhead by dropping boundary nodes. The advantage of
BNS-GCN is similar for the other two datasets.

Full-Graph Accuracy. Now we show that BNS-GCN main-
tains or even improves the accuracy of full-graph training,
while boosting the training efficiency. Table 4 summarizes
our extensive evaluations of test scores when BNS-GCN
adopts various sampling rates and different numbers of
partitions, and compare with seven SOTA sampling-based
methods (Hu et al., 2020; with Code, 2020; Chiang et al.,
2019; Chen et al., 2018b; Zeng et al., 2020; Hamilton et al.,
2017; Cong et al., 2020; Liu et al., 2022; Zou et al., 2019;
Chen et al., 2020). We observe that full-graph training
(BNS-GCN with p = 1) always achieves a higher or com-
parable accuracy than existing sampling-based methods,
regardless of datasets or number of partitions, which is con-
sistent with the results of ROC (Jia et al., 2020). More
importantly, BNS-GCN always maintains or even increases
the full-graph accuracy, regardless of the sampling rates
(e.g., p = 0.1/0.01), the number of partitions, or different
datasets. For instance, on Reddit, p = 0.1 achieves a test ac-
curacy of 97.15%~97.17% under 2~8 partitions, which are
consistently better than the 97.11% accuracy of full-graph
unsampled training, validating the effectiveness and robust-
ness of BNS-GCN. Meanwhile, we also observe that the

Table 5: Comparison between BNS-GCN (10 partitions)
and sampling-based methods on ogbn-products.

Method Total Train Time Test Acc (%)
ClusterGCN 294.2s 78.97+0.33
NeighborSampling 281.8s 78.70+£0.36
GraphSAINT 157.4s 79.08+0.24
BNS-GCN (p = 1.0) 269.1s 79.14+0.35
BNS-GCN (p = 0.1) 155.3s 79.30+0.36
BNS-GCN (p = 0.01) 142.9s 79.21+0.26

special case of BNS-GCN, p = 0, always suffers from the
worst test score on the three datasets, compared with other
cases (p > 0). We understand that this accuracy/score drop
is due to the full isolation of each partition after completely
removing all boundary nodes, leading to no boundary node
features during neighbor aggregation throughout the end-
to-end training. To the best of our knowledge, BNS-GCN
achieves the best accuracy of training GraphSAGE-layer
based GCNs on all three datasets compared with all exist-
ing works.

Improvement over Sampling-based Methods. Besides
the full-graph training comparison, we also validate BNS-
GCN’s advantage over the SOTA sampling-based methods
(implemented by the OGB team* (Hu et al., 2020)) on ogbn-
products as shown in Table 5. We observe that BNS-GCNs
with p = 0.1 and p = 0.01 outperform all the sampling-
based methods in terms of both efficiency and accuracy
thanks to its lower approximation variance and substantially
higher achieved throughput. More comparisons between
BNS-GCN and sampling-based methods can be found in

“We find these cases run out of memory, which are consistent
with (Zeng et al., 2020).
“https://github.com/snap-stanford/ogb
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node sampled training (p = 0.1/0.01), and isolated training (p = 0) on ogbn-products.

Appendix C.

4.2 Performance Analysis

Training Time Improvement Breakdown. To further un-
derstand the improvement of BNS-GCN, we breakdown the
training time into three major components (local compu-
tation, communication for boundary nodes, and allreduce
on model gradient) as shown in Figure 5. We observe that
communication dominates the training time (up to 67%
and 64% in baselines (p = 1) on Reddit and obgn-products,
respectively). As expected, with boundary node sampling
(p < 1), the communication overhead is substantially re-
duced, thus the total training time is improved. Specifically,

= 0.01 sharply cuts 74%~93% and 83%~91% of the
communication time from that of the baselines on Reddit
and obgn-product, respectively, where this benefit consis-
tently holds as the number of partitions scales. Furthermore,
in addition to single machine training, we also study BNS-
GCN’s benefits for multi-machine training and evaluate the
performance on ogbn-papers100M. Specifically, we sepa-
rate ogbn-papers100M into 192 parts and deploy the training
on 32 machines (6 GPUs per machine), and provide results
in Table 6. We can see that BNS-GCN with p = 0.01 con-
siderably reduce the total training time by 99%, showing
that distributed GCN training with multiple machines suf-
fers from a more severe communication bottleneck and thus
making BNS-GCN more desirable.

Table 6: Epoch time breakdown of ogbn-papers100M.

Method Total Comp. Comm. Reduce
BNS-GCN (p = 1.0) |554.1s 5.3s 5503s 0.8s
BNS-GCN (p=0.1) | 58.7s 1.0s 569s  0.8s
BNS-GCN (p =0.01)| 6.0s 0.6s  4.8s 0.6s

Memory Saving. BNS-GCN’s advantage in terms of mem-
ory usage reduction is shown in Figure 6. We observe that
BNS-GCN consistently reduces the memory usage across
different number of partitions on both graphs. Specifically,
for the denser Reddit graph (with an average node degree
of 984.0), p = 0.01 saves 58% memory usage for 8 GPUs.
Even for the sparser obgn-products graph (with an aver-
age node degree of 50.5), p = 0.01 still saves 27% mem-
ory usage for 10 GPUs. Note that the memory saving of
BNS-GCN scales with the numbers of partition, because
the number of boundary nodes increases with more parti-
tions, indicating BNS-GCN’s scalability to training larger
graphs. Also, we find that BNS-GCN’s memory reduction
is not linear with reduced p, as besides the tensors ana-
lyzed in Equation 4 there are other objects (e.g., caches for
non-linear activations and dropout) occupying the memory
during training.

Generalization Improvement. To understand the effect of
BNS-GCN’s generalization capability, we also evaluate the
test-accuracy convergence in Figure 7. Here ogbn-products
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Table 7: Test score (%) of BNS-GCN on top of random partition, where +/- shows the accuracy difference from BNS-GCN

on top of METIS in Table 4.

Method Reddit (8 partitions) | ogbn-products (10 partitions) Yelp (10 partitions)
Random+BNS (p = 1.0) 97.11 +0.00 79.14 +0.00 65.26 +0.00
Random+BNS (p = 0.1) 96.95 -0.20 79.57 +0.27 65.18 -0.16
Random+BNS (p = 0.0) 93.37 -3.47 75.39 -3.40 64.92 -0.31

Table 8: Training efficiency improvement of BNS-GCN (p = 0.1) on top of different partition methods.

Dataset Throughput Memory # Boundary Nodes
METIS Random METIS Random METIS Random
Reddit (8 partitions) 3.1x 5.0% 0.47x 0.36x 460k 1,016k
ogbn-products (10 partitions) 3.4x% 7.3% 0.75x% 0.31x 1,848k 16,797k
Yelp (10 partitions) 3.1x 5.1x 0.83x 0.49x 649k 2,026k
o0 ° o —T severe memory imbalance, where one straggler increases
g the memory requirement by around 20% and more than
35 o8 = three-fourths partitions occupy less than 60% memory. By
CE; contrast, with boundary node sampling, p = 0.1/0.01 bal-
£ 061 ances the memory usage and thus better utilizes memory
] . o
s resource, i.e., all partitions leverage more than 70% mem-
T 0.4 ory.
I 1
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’ p=1.0 p=01 p=0.01 the effectiveness of BNS-GCN and whether it relies on the
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Figure 8: Normalized per-partition memory usage on
ogbn-papers100M (192 partitions). The normalization
is against the highest memory partition and is separated
for different sampling rates p of BNS-GCN.

is adopted as the study case because the distribution of its
test set largely differs from that of its training set (Hu et al.,
2020). From Figure 7, we observe that full-graph training
without boundary node sampling (p = 1) or completely
isolated training (p = 0) can overfit rapidly, regardless of
different number of partitions. With boundary node sam-
pling (p = 0.1/0.01), this overfitting issue is mitigated,
i.e., both the convergence and the optimality are improved
substantially and consistently across different number of par-
titions. This is because BNS-GCN randomly modifies the
graph throughout end-to-end training. More convergence
curves on other datasets can be found in Appendix B.

Balanced Memory Usage. To validate the benefit of BNS-
GCN in balancing memory usage across partitions, we mea-
sure per-partition memory usage of ogbn-papers100M with
192 partitions and show their box plots in Figure 8. We
observe that the unsampled case (p = 1.0) suffers from a

adopted METIS partitioner, we conduct an ablation study
by replacing METIS with random partition (i.e., randomly
assign nodes to each partition without optimization) and
provide the resulting accuracy in Table 7. We observe that
when p = 0.1, i.e., sampling normally, random partition
plus BNS-GCN still offers a comparable performance (-
0.20~+0.27) as the original METIS plus BNS-GCN, thus
showing that the proposed BNS-GCN is orthogonal to the
adopted graph partitioning technique and is not necessarily
limited to METIS. We further study whether BNS-GCN
consistently improves training efficiency on top of different
partition algorithms, and demonstrate the result in Table 8.
We observe that random partition gains more benefits in
throughput improvement and memory saving from BNS-
GCN (p = 0.1) than the METIS, because the former parti-
tioner creates more boundary nodes.

The Special Case p = 0. The special case of the proposed
boundary node sampling, p = 0, is not recommended to use
in practice. First, p = 0 always suffers from the worst test
accuracy/score (compared with other cases (p > 0)) on all
datasets and with different partition methods (see Table 4
and Table 7). Specifically, with random partition, p = 0
drops the test accuracy on Reddit from 97.11% (p = 1) to
93.37% (lower than FastGCN (Chen et al., 2018a)). This
drop is due to the absolute isolation of each partition af-
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Table 9: Comparison between BNS-GCN and edge sampling methods, DropEdge and Boundary Edge Sampling (BES).

Dataset Method Epoch Comm (MB) Epoch Time (sec) Test Score (%)
. DropEdge 301.3 0.613 97.12
o ;‘;ﬁi‘éns) BES 207.9 0.484 97.16
BNS-GCN 304 0.319 97.17
ogbn-products DropEdge 1364.0 0.938 79.38
(5 partitions) BES 521.1 0.551 79.31
BNS-GCN 138.7 0.388 79.36
Yelp DropEdge 718.7 0.606 65.30
(3 partitions) BES 195.3 0.328 65.30
BNS-GCN 75.7 0.270 65.32

ter completely removing all boundary nodes, leading to no
boundary node features during neighbor aggregation (Equa-
tion 1) throughout the end-to-end training. Second, p = 0
also suffers from the slowest convergence regardless of dif-
ferent numbers of partitions or different datasets. Third,
p = 0 overfits severely (see Figure 7). Therefore, we sug-
gest a small but non-zero sampling rate (p = 0.1/0.01).
More discussion regarding the choice of sampling rate can
be found in Appendix E.

BNS-GCN vs. Boundary Edge Sampling. As many
works (Zhu et al., 2019; Zheng et al., 2020; Fey et al., 2021)
assume that communication overhead of distributed GCN
training is caused by the inter-partition edges (rather than
boundary nodes) and thus pursuing a minimal edge cut, one
could reduce communication overhead by cutting edges us-
ing sampling techniques like DropEdge (Rong et al., 2019)
or even an enhanced version that samples only the boundary
edges (rather than at a global scale). To understand this, we
implemented the enhanced version, dubbed Boundary Edge
Sampling (BES), and apply both BES and DropEdge to the
partition-parallel training. Table 9 compares their perfor-
mance with BNS-GCN. For a fair comparison, all methods
drop the same number of edges with BNS-GCN (p = 0.1)
over the full graph. We observe that edge-based sampling
methods are ineffective. For Reddit, DropEdge and BES
cause 10x and 7x communication overhead of BNS-GCN,
and thus 2.0x and 1.4x the overall training time. This
is because, in real-world graphs, multiple boundary edges
can connect to the same boundary nodes. Even if we drop
some of those edges, the remaining undropped edges still
demand communicating the connected boundary nodes to
satisfy neighbor aggregation of GCNs. Obviously, to erad-
icate such communication costs, boundary nodes should
be directly targeted and dropped, instead of using bound-
ary edges. For ogbn-products and Yelp, the advantage of
BNS-GCN still holds, where BNS-GCN reduces up to 90%
communication volume and speeds up training time by up
to 2.4x. Analytically, we’ve shown that the communication
cost of distributed GCN training is only proportional to the
number of boundary nodes (see Equation 3).

Table 10: Epoch training time speedup on GAT.

BNS-GCN Reddit ogbn-products Yelp
p=1 |1.00x (0.84s) 1.00x (0.71s) 1.00x (0.33s)
p=20.1 1.53 % 1.78 % 1.83x
p=0.01 1.58 % 1.91x 2.06 %
p=20 1.68 % 2.03 % 2.20x

BNS-GCN Benefit on GAT. To validate the general appli-
cability of BNS-GCN across different types of GCN models
(i.e., not just GraphSAGE), we train GAT (Velic¢kovi¢ et al.,
2017) with BNS-GCN and provide the improvement for a
2-layer GAT with 10 partitions in Table 10. We observe
that BNS-GCN is consistently effective and speedups the
training by 58%~106%, despite GAT being more computa-
tionally intensive than GraphSAGE.

5 CONCLUSION

While training GCNSs at scale is challenging and increasingly
important, existing methods for distributed GCN training
are still limited in their achievable performance and scala-
bility. This work takes the initial effort to analyze the three
major challenges in distributed GCN training and then iden-
tify their underlying cause. On top of that, we propose an
efficient and scalable method for full-graph GCN training,
BNS-GCN, and then validate its effectiveness through both
theoretical analysis and extensive empirical evaluations. We
believe that these findings and the proposed method have
provided a better understanding of distributed GCN training
and will inspire further innovations in this direction.
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A THE VARIANCE ANALYSIS

In this section, we derive the variance of embedding approximation when using our proposed BNS-GCN method, of which

the result is listed in Table 2 of the main content.

For a given graph G = (V, £) with an adjacency matrix A, we define the propagation matrix P as P = D-1/2AD~1/2,
where A=A+ 1,D,, =), Au.. One GCN layer performs one step of feature propagation (Kipf & Welling, 2016) as
formulated below:

7O — pgE-Dy -1 (5)
HO — & (Zw))

where H©), W) and Z® denote the embedding matrix, the trainable weight matrix, and the intermediate embedding
matrix in the ¢-th layer, respectively, and o denotes the non-linear function. Without loss of generality, we provide our
analysis for one layer of GCNs and drop the superscripts of (¢) and (¢ — 1) in the reminder of the discussion for simplicity.

For distributed GCN training using partition-parallelism, if denoting the inner node set and the boundary node set of the i-th
partition as V; and B;, respectively, the operations of the i-th partition for calculating Equation 5 are as follows:

Hy.
Zvi’* = [Pv'ivvi PVi,Bi] |:HV“ :| w

is*

In BNS-GCN, Zy, . is approximated as Zvi,* due to its boundary node sampling, i.e.,

ZVi,* = [PV,;,V,; PVi,Z/{,;] S |:HV“ :| w

Z/{i,*

where U; denotes the sampled boundary node set, p denotes the sampling rate, and S is a diagnal matrix with its elements
being defined as:

e w> (il

Similar to the variance analysis in (Chen et al., 2018b) and (Zou et al., 2019), our goal is to compute the average variance of
the approximated embedding for one GCN layer, which can be defined as Ey/[||Z — Z||%]/|V|. In our analysis, we adopt the
same assumption as that in (Zou et al., 2019), which bounds the matrix product HW as follows:

Assumption A.1. We assume that the Lo-norm of each row in HW is upper bounded by a constant, i.e., there exists a
constant vy such that || H,, Wl < forallu € |V)|.

Next, we calculate the total variance of the embedding approximation for the ¢-th partition:

HV,;,* HV7*

Eui[”ZVm* - ZV1*||2F] = ]El/lz: H [PVmVi PVz‘,Z/{i] S |:Hbli,*:| W — [PVi,Vi PVz‘,BJ |:HBi,*:| w

|

2
] (6)
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where the step of Equation 6 removes the common factor Py, y, Hy, .V and the step of Equation 7 uses the fact that the
selection of nodes in B; are independent.

Based on Assumption A.1, we have || H, .W ||, <. As aresult, the above upper bound can be further written as:

Eui [HZV'h* - ZVM*

BEEDIDI A

veEV; ueB;

2
F

1
= 772 ||PVi7Bi
p

Thus, the total variance of the embedding approximation for the i-th partition is O(|B;|v?/s¢) as shown in Table 2 of the
main content, where s, denote the size of the sampled node set.

Finally, the global average variance can be calulated as:

EulllZ = ZI3] _ YiBuill Zvi — Zv, | 7]
V| V|
72 Zz | Py, 5, f,
- |V
< YIPIIE
pV|
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B CONVERGENCE SPEEDUP (ADDITIONAL EXPERIMENTS)

Figure 9 shows convergence speedups of BNS-GCN on more datasets under the same setting of Figure 7 of the main content.
The observations from the main content still hold. Especially, boundary node sampling at a high rate (p = 0.1) achieves
the best convergence regardless of different numbers of partitions or different datasets. A lower rate (p = 0.01) still remains
a close convergence as p = 0.1. The special case p = 0 suffers from not only the worst convergence but also increased
convergence gap between p = 0 and p = 0.1 as more partitions are involved, because of complete removal of boundary
node information. Lastly, p = 1 and p = 0 can still overfit (see Yelp) but boundary node sampling (p = 0.1/0.01) mitigates
the overfitting by random modification of the graph throughout training.
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Figure 9: Convergence comparison between unsampled full-graph training (BNS-GCN with p = 1), boundary-node
sampled training (0 < p < 1), and isolated training (p = 0) on Reddit and Yelp.
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C EFFICIENCY COMPARISON WITH SAMPLING-BASED METHODS

Table 11 compares the training efficiency between the popular sampling-based methods and BNS-GCN under the same
settings of the main content. As can be seen, BNS-GCN outperforms the sampling-based methods with a great margin,
while achieving a higher accuracy (see Table 4 of the main content).

Table 11: Comparison of training efficiency on Reddit, where BNS-GCN with various boundary sampling rates under 8
partitions are shown.

Method GraphSAGE FastGCN VR-GCN ClusterGCN BNS-GCN(1) BNS-GCN(0.1) BNS-GCN(0.01)

Train time
per epoch
Speedup Ix 1.22x 1.61x 4.59% 8.0x 31.3x 41.3x

6.20s 5.08s 3.85s 1.35s 0.777s 0.198s 0.150s
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D OVERHEAD OF BOUNDARY NODE SAMPLING

In this section, we evaluate the overhead introduced by the boundary node sampling of BNS-GCN under different sampling
rates and number of partitions, and also compare it with the overhead of the state-of-the-art sampling methods. Table 12
summarizes the results. We observe that node, edge, and random walk sampling can introduce a non-trivial overhead,
which is up to 24% of training time (Zeng et al., 2020). By contrast, boundary node sampling incurs only a negligible
overhead, i.e., 0%~7.3%, because it only needs to perform sampling on the boundary region instead of the whole graph as
used in the state-of-the-art methods. Also, the light weightiness of boundary nodes sampling lies in its parallizability across
partitions, instead of requiring sequential processing. Besides, we also compare BNS-GCN with the graph-level sampling
method such as ClusterGCN (Chiang et al., 2019). We find that the overhead of boundary node sampling is still much lower
than ClusterGCN, because ClusterGCN needs to merge multiple subgraphs into one cluster with a sampling time roughly
proportional to the number of edges in the whole graph. By contrast, boundary node sampling only needs to modify those
boundary edges of selected boundary nodes, and its sampling time is proportional only to the number of boundary edges,
which is only a fraction of ClusterGCN.

Table 12: Comparison of BNS-GCN’s sampling overhead with the state-of-the-art methods in GraphSAINT (Zeng et al.,
2020) on Reddit, where the overhead percentage is calculated by the sampling time divided by the training time.

The state-of-the-art samplers

Node 23%
Edge 20%
Random walk 24%
BNS-GCN sampler
# Partitions 2 4 8
p = 1.00 0%
p=0.10 1.7% 32% 6.6%
p=0.01 1.3% 3.0% 7.3%
p = 0.00 0%
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E THE CHOICE OF p

In this section, we discuss how to choose the boundary node sampling rate p in practice for maximizing the efficiency
of GCN training. Empirically, p = 0.1 combines the best of all worlds: throughput boosting, communication reduction,
memory saving, convergence speedup, and final accuracy, as well as sampling overhead, across different number of partitions
and different datasets, according to our extensive experiments. To further validate this, we compare the test accuracy of p
between 0.1 and 1 and summarize the results in Table 13. We can see that the advantage of p = 0.1 still holds, i.e., offering
similar accuracy but less communication/memory compared with higher p values.

Table 13: Test accuracy of BNS-GCN with a sampling rate p between 0.1 and 1.

Dataset p=01 p=03 p=05 p=08 p=1.0
Reddit (2 partitions) 97.17% 97.18% 97.15% 97.13% 97.11%
ogbn-product (5 partitions) | 79.36% 79.30% 79.34% 79.24% 79.14%
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F ARTIFACT APPENDIX
F.1 Abstract

Our artifact contains the full source code of BNS-GCN. It includes both the baseline (vanilla partition-parallel training) and
the proposed boundary-node-sampled training for GCNs on various datasets. Running the code requires a machine (at least
120 GB host memory) with multiple (at least five) Nvidia GPUs (at least 11GB each). Software is provided with our docker
image. With the aforementioned hardware and software, running our provided scripts will validate the main experiments in
the paper, such as per-epoch training time, training time breakdown, memory usage, and accuracy.

F.2 Artifact check-list (meta-information)

* Algorithm: Graph Convolutional Network (GCN), Distributed Training, Random Sampling

» Data set: Reddit, ogbn-products, Yelp (all included in our docker or software setup)

* Run-time environment: Ubuntu 18.04, Python 3.8, CUDA 11.1, PyTorch 1.8.0, DGL 0.7.0, OGB 1.3.0
* Hardware: A X64-CPU machine with at least 120 GB host memory, at least five Nvidia GPUs (at least 11GB each).
* Execution: Bash scripts, Running each experiment takes less than 1 hour.

* Metrics: Training time, training time breakdown, memory usage, accuracies

* Output: Console, and log file

* How much disk space required (approximately)?: 50GB

* How much time is needed to prepare workflow (approximately)?: 30 minutes

* How much time is needed to complete experiments (approximately)?: 10 hours

* Publicly available?: yes

* Code licenses (if publicly available)?: MIT License

Archived (provide DOI)?: 10.5281/zenodo.6079700

F.3 Description
F.3.1 How delivered
* Source code in the archival repository for ACM badges: https://doi.org/10.5281/zenodo.6079700.

 Latest source code in GitHub repository: https://github.com/RICE-EIC/BNS-GCN.
* Docker image: https://hub.docker.com/r/cheng1016/bns-gcn.

* Approximate disk space: S0GB, used for large datasets

F.3.2 Hardware dependencies
* A X86-CPU machine with at least 120 GB host memory

¢ Atleast five Nvidia GPUs (at least 11 GB each)

F3.3  Software dependencies

All provided in our docker image:

e Ubuntu 18.04
e Python 3.8
« CUDA 11.1
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» PyTorch 1.8.0
¢ customized DGL 0.7.0
* OGB 1.3.0

F.3.4 Data sets

All dataset (Reddit, ogbn-products, Yelp) are either included in our docker image or to be downloaded by our scripts.

F.4 Installation

Detailed instructions are provided in README .md in our GitHub repository. For example, just run docker pull
chengl016/bns—gcn followed by docker run --gpus all —-it chengl016/bns-gcn.

F.5 Experiment workflow

The workflow involves invoking top-level main . py which then drives other modules for distributed GCN training. All
“one-click-to-run” scripts to reproduce main experiments in the paper are provided in the scripts/+ . sh in our GitHub
repository.

F.6 Evaluation and expected result

All steps are in scripts/*.sh in our GitHub repository.

F.7 Experiment customization

We provide a detailed guide for customization in README . md in our GitHub repository. Hyper-parameters and configura-
tions can be customized by the options fed to main. py, e.g., allowing users to choose the number of training epochs, the
number of graph partitions (or GPUs), different partitioning methods, and even extending training to multiple machines with
multiple GPUs.

F.8 Notes

For the hyper-scale dataset ogbn-papers100M, the experiment was conducted on 32 machines, each of which has 6 Tesla
V100 (16GB) with IBM Power9 (605GB).



