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We calculate STM signatures of correlated ground-states at integer filling of the magic angle
twisted bilayer graphene narrow bands. First, we compute the fully-interacting TBG spectral func-
tion at ±4 electrons/moiré unit cell and show that it can be used to experimentally validate the
strong-coupling approach. Although variation exists in the data, we find experimental evidence for
the strong-coupling regime. For all other integer fillings of the flat bands, we consider the spatial
features of the corresponding spectral functions of many states in the large degenerate ground-state
manifold, and assess the possibility of Kekulé distortion (KD) emerging at the graphene lattice
scale. Remarkably, we find that coupling the two opposite graphene valleys in the intervalley-
coherent (IVC) TBG insulators does not always result in KD. As an example, we show that the
K-IVC state and its nonchiral U (4) rotations do not exhibit any KD, while T-IVC does. We analyze
14 different many-body correlated states and show that their combined STM/Chern number signal
can be used to uniquely determine the nature of the many-body ground-state. Their STM signal
and features are obtained over a large range of energies and model parameters.

Introduction. Near the first magic angle [1–3], twisted
bilayer graphene (TBG) features a wealth of supercon-
ducting and correlated insulating phases, as seen in both
transport [4–18] and spectroscopy [19–28] experiments,
sparking considerable theoretical effort towards their un-
derstanding [29–73]. Owing to nearly dispersionless ac-
tive bands, the physics of the system near an integer fill-
ing ν was argued to be in the strong coupling regime i.e.
dictated by the interaction-only Hamiltonian projected
onto the almost-flat bands [42, 43, 58, 63, 68]. In strong
coupling, the enlarged continuous spin-valley symmetries
[U (4) and U (4)×U (4)] [42, 43, 58, 74] have rendered a
low-energy manifold of its many-body eigenstates exactly
solvable at integer fillings with −4 ≤ ν ≤ 4 electrons per
moiré unit cell [42, 43, 58, 63, 68]. Following analytical
arguments [42, 58, 68, 74], which were numerically val-
idated [55, 58, 69], the resulting eigenstates of the pro-
jected TBG interaction Hamiltonian were shown to be
energetically-competitive candidates for the TBG ground
states, if not the actual ground states of the system, for
a large range of parameters. In addition, Refs. [63, 75]
have shown that the exact many-body excitations with
n additional particles on top of the integer-filled exact
eigenstates can be computed in the strong-coupling limit
as an (n− 1)-body problem.

The goal of this paper is to identify spectroscopic sig-
natures of the various competing states by building upon
the mentioned theoretical advances. With the many-
body electron and hole excitations at hand [63, 75], the
exact spectral functions for the various integer-filled TBG
insulators can be computed analytically for relatively
large system sizes (i.e. much larger than achievable with
exact diagonalization [30, 51, 69, 76]). The differential
conductance measured in scanning tunneling microscopy
(STM) experiments is in turn proportional to the spec-

tral function [77]. We find that the STM features of
the proposed correlated states – particularly the presence
or absence of a Kekulé distortion (KD) at the graphene
lattice scale (i.e. the modulation of the STM signal at
wavevectors connecting the two graphene valleys) – to-
gether with the knowledge of their Chern number, can
distinguish among the candidate many-body states. The
ability to use the STM to directly visualize broken sym-
metry states, including valley-polarized or Kekule order
due to many-body interactions in a low-density flat band
system, has recently been demonstrated in probing such
states forming in the zeroth Landau level of monolayer
graphene [78–80]. These findings and the techniques
developed for directly measuring the order parameters
of various phases using local phase-sensitive analysis of
Fourier-transformed STM conductance maps can also be
used to verify the nature of many-body ground states we
examine here for TBG.

The competing correlated states of TBG at an integer
filling ν can be characterized by their Chern number C
and valley polarization, in that they can be valley polar-
ized (VP) or inter-valley coherent (IVC). Furthermore,
even for C = 0, IVC states may either spontaneously
break time reversal symmetry (K-IVC) or preserve it (T-
IVC) [42, 43, 58, 74]. Some of these states can be stabi-
lized by magnetic field [12, 15, 17, 25, 26, 81]. In this pa-
per, we show, analytically and confirm numerically, that:
a) all VP states at any filling and C do not exhibit a KD;
b) ν = −1, C = 1 (a state with two occupied IVC bands
and one valley polarized Chern band), ν = −2, 0, C = 0
K-IVC states, and ν = −4, C = 0 (correlated band in-
sulator) do not exhibit a KD; c) ν = −3, C = 1 IVC,
ν = −2, C = 0 T-IVC, and ν = −2, C = 2 IVC, exhibit
a KD. At positive fillings, the same conclusions apply,
by particle-hole symmetry [74]. Furthermore, we show
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that the strong versus weak coupling nature of the sys-
tem can be uniquely inferred from the spectral function
at the band insulator filling ν = ±4: while the weak cou-
pling approach gives an almost symmetric peak structure,
the strong coupling approach, whose excitations [63, 75]
are strongly particle-hole asymmetric around fixed filling,
gives a markedly different peak structure, which, more-
over varies dramatically as the STM tip moves from the
AA to AB moiré region. While the experimental data ex-
periences large sample-to-sample and STM tip position
variation, some data sets are uniquely compatible with
strong coupling, which shows large variations in the local
density of states (LDOS) from the AA to AB regions of
the same sample. We furthermore provide analytic ex-
pressions for the LDOS, exactly and in different approxi-
mations, and analyze numerically the LDOS over a wide
range of parameter regimes of the Bistritzer-MacDonald
model [1] at both AA and AB regions.
Model. Near the first magic twist angle, the kinetic en-

ergy of the two active bands of TBG (per spin and per
valley) is quenched [1–3], and hence neglected in a strong-
coupling description. The physics of the system is domi-
nated by the repulsive Coulomb interaction Hamiltonian
projected in the almost-flat bands near charge neutral-
ity [42, 58, 74] (see Appendix [A 2])

HI =
1

2ΩTBG

∑
q∈MBZ

∑
G∈Q0

O−q−GOq+G. (1)

where ΩTBG is the area of the TBG sample, MBZ and
Q0 respectively denote the moiré Brillouin zone (MBZ)
and reciprocal lattice, while

Oq+G =
∑
k,η,s

n,m=±1

√
V (q + G)Mη

mn (k,q + G)

×
(
ĉ†k+q,m,η,sĉk,n,η,s −

1

2
δq,0δm,n

)
(2)

are proportional to the flat-band-projected density op-
erators. In particular, ĉ†k,n,η,s is the electron creation
operator for the TBG conduction (n = +1) and va-
lence (n = −1) flat bands from valley η = ± and spin
s =↑, ↓, while Mη

mn (k,q + G) are the TBG form fac-
tors. The Fourier-transformed screened Coulomb poten-
tial is V (q) = 2πUξξ

2
(
1− e−2ξq

)
/ (ξq), where we take

Uξ = 8 meV and ξ = 30 nm (unless mentioned otherwise),
corresponding to the typical single-gate arrangement of
the TBG sample in an STM experiment [25].

At the single-particle level, the TBG Hamiltonian fea-
tures a series of discrete symmetries (see Appendix [A 1]):
the C2z, C3z, T , and C2x commuting symmetries, as
well as an approximate unitary particle-hole P anti-
commuting symmetry [74, 82–85]. The latter enlarges
the valley-spin-charge U (2) × U (2) rotation symmetry
of HI to the so-called nonchiral-flat U (4) symmetry [42,
43, 58, 74], henceforth denoted by Unc (4) . Addition-
ally, when the inter-layer tunneling amplitude at the AA
stacking centers (w0) is neglected compared to the one

at AB stacking centers (w1) – in the so-called chiral limit
(w0/w1 = 0) – the single-particle Hamiltonian enjoys an
additional anti-commuting chiral C symmetry [74, 86],
which further enlarges the symmetry group of HI to the
chiral-flat U (4)× U (4) group [58, 74]. Recombining the
active TBG bands into Chern-number eY bands with op-
erators d̂†k,eY ,η,s = 1√

2

(
ĉ†k,+1,η,s + ieY ĉ

†
k,−1,η,s

)
, the 32

generators the chiral-flat U (4)×U (4) group correspond
to independent valley-spin rotations within each Chern
sector. Away from the chiral limit the U (4)×U (4) gen-
erators get combined into the 16 Unc (4) generators such
that Unc (4) intervalley (intravalley) rotations act on the
two Chern sectors in the same (opposite) way [74].

The presence of enlarged symmetries renders some of
the eigenstates of HI exactly solvable at integer fillings
with ν additional electrons per moiré unit cell (−4 ≤ ν ≤
+4). Both analytical and numerical works have shown
that, up to rotations Û belonging to the symmetry group
of HI , the TBG ground states are Slater determinants
obtained by populating the active TBG bands one Chern-
valley-spin sector

(
eYj , ηj , sj

)
at a time [42, 55, 58, 68,

69, 74, 75]

|ϕ〉 = Û
∏
k

ν∏
j=1

d̂†k,eYj ,ηj ,sj
|0〉 . (3)

In the chiral limit, |ϕ〉 is an exact eigenstate of HI for
any choice of the filled Chern-valley-spin sectors and Û ∈
U (4) × U (4) [68]. Away from the chiral limit, only the
insulators from Eq. (3) with fully-filled or fully-empty
valley-spin flavors and Û ∈ Unc (4) are exact, with the
rest being perturbative eigenstates of HI [68].
Spectral function. For a given state |ϕ〉 from Eq. (3),

an STM experiment allows for the direct measurement of
its spectral function [77]

A (r, ω) =
∑
ξ,s

[∣∣∣〈ξ∣∣∣ψ̂†s (r)
∣∣∣ϕ〉∣∣∣2δ (ω − Eξ + Eϕ)

+
∣∣∣〈ξ∣∣∣ψ̂s (r)

∣∣∣ϕ〉∣∣∣2δ (ω + Eξ − Eϕ)

]
.

(4)

where ψs (r) denotes the electron field annihilation op-
erator corresponding to spin s =↑, ↓, and a summation
is performed over all the many-body eigenstates |ξ〉 of
HI with energy Eξ (see Appendix [C]). The two con-
tributions to A (r, ω) correspond respectively to electron
and hole excitations. Expressing the field operators in
the TBG energy-band basis ψ̂†s (r) =

∑
η,n Vr,knη ĉ

†
k,n,η,s

(where the factors Vr,knη depend on the carbon pz or-
bitals and the TBG flat band wave-functions), we find
that

A (r, ω) =
∑

k∈MBZ,
n,η,n′,η′

c=±

[
Mc

ϕ (ω)
]
knη,kn′η′

[B (r)]knη,kn′η′ . (5)

In Eq. (5), we have introduced the spatial factor matrix
[B (r)]knη,k′n′η′ = Vr,knηV

∗
r,k′n′η′ (which depends only on
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the TBG single-particle Hamiltonian) and the spectral
function matrices (which depend on the state |ϕ〉)[

Mc
ϕ (ω)

]
knη,kn′η′

=
∑
λ−c,s

〈λ+|ĉk,n′,η′,s|λ−〉

×
〈
λ−

∣∣∣ĉ†k,n,η,s∣∣∣λ+

〉
δ
(
ω − Eλ− + Eλ+

)
,

(6)

where |λc〉 = |ϕ〉 and we assumed no breaking of
the moiré translation symmetry. Since a ĉ†k,n,η,s op-
erator acts in one single-layer graphene (SLG) valley,
[B (r)]knη,kn′η is only modulated at the level of the SLG
and TBG lattices. In contrast, [B (r)]knη,kn′(−η) contains
an additional modulation corresponding to wave-vectors
linking the two Dirac points of the same graphene layer,
which manifests in real space as a KD of the SLG.

As shown in Eqs. (5) and (6), computing the TBG
spectral function requires exact eigenstates of HI con-
taining an extra electron/hole compared to |ϕ〉 (i.e. the
charge-one excitations). Despite HI being a quartic
Hamiltonian, the exact charge-(±)one excitations on top
of |ϕ〉 can be computed as a zero-body problem using the
charge-one commutation relations [63, 75]. The electron
commutation relation reads as[

HI − µN̂, ĉ†k,n,η,s
]
|ϕ〉 =

∑
m

Rηmn (k) ĉ†k,m,η,s |ϕ〉 (7)

where µ denotes the chemical potential, N̂ is the total
fermion number operator and the matrix R (k) depends
on ν, the active TBG wave-functions and the Coulomb
repulsion potential (see Appendix [B]). A similar expres-
sion holds for the hole commutation relation. As such,
the ĉ†k,n,η,s and the ĉk,n,η,s operators can be recombined
into exact electron and hole excitations, allowing for the
exact calculation of the spectral function of |ϕ〉 (see Ap-
pendix [D]).
Signatures of strong correlation. We first analyze the

spectral function of the ν = −4 (ν = +4) TBG insulator
from Eq. (3), for which the active TBG bands are fully-
empty (fully-filled). Because these states are invariant
under any U (4) × U (4) rotations, no ambiguity in the
choice of ground-state arises at these fillings. Moreover,
unlike at other integer fillings, at ν = ±4, the insula-
tors Eq. (3) are exact eigenstates of the full projected
TBG Hamiltonian including the kinetic energy term. As
shown in Fig. 1, the strong coupling and weak coupling
spectral functions at ν = ±4 are markedly different. This
difference stems from large interaction induced disper-
sion of single particle excitations in the strong coupling
regime[63, 75] (see the insets from Fig. 1 b and e) as
compared to a small (flat band) dispersion in the weak
coupling regime, as well as from different van-Hove sin-
gularities and Dirac points.

In what follows, we will discuss the ν = −4 insulator
(shown in Fig. 1a-c), with the ν = +4 insulator (de-
picted in Fig. 1d and e) following analogously from the
many-body charge-conjugation symmetry of TBG [74].

Details about the experimental measurements are pro-
vided in Appendix [F]. For ν = −4, we focus on positive-
energy biases (ω−µ ≥ 0), such that the electrons tunnel
from the STM tip into the fermion states corresponding
to the active TBG bands, which are combined into the
charge-one excitations computed according to Eq. (7).
The signal normalization based on tip height is explained
in Appendix [C]. The electron excitation energies (Epk
for 1 ≤ p ≤ 8, see inset of Fig. 1 b) are comprised
of four sets of two-fold [spin SU (2)] degenerate bands,
which are further paired by the approximate C2zP sym-
metry of HI into two sets of almost four-fold degenerate
bands [63, 75, 82, 84]. For both the AA and AB regions
and small bias, the electrons start tunnelling into the re-
gions at the bottom of the excitation bands away from
any high-symmetry points (e.g. halfway between the ΓM
and MM points of the MBZ), giving rise to the peak
near ω − µ ≈ 0 meV in the spectral function. Upon in-
creasing the bias to about ω−µ ≈ 20 meV, the electrons
tunnel into the almost-flat regions near the boundary of
the MBZ, giving rise to two close peaks in the theoretical
spectral function, which merge into one in the experimen-
tal STM signal. For larger biases, the spectral function
decreases as the electron tunnel in the strongly-dispersive
bands near ΓM .

The variation of the spatial factor [B (r)]knη,kn′η′
across the MBZ at the AA and AB sites (depicted in
Fig. 1f) explains the change in the STM signal between
the two stacking centers: at the AA site, the spatial
factor has roughly the same magnitude in the MBZ for
the two almost-flat regions of the excitation bands, re-
sulting in similar magnitudes for the LDOS peaks at
ω − µ ≈ 0 meV, 20 meV. At the AB site, the spatial fac-
tor has a larger amplitude on the boundary of the MBZ,
diminishing the intensity of the peak at ω − µ ≈ 0 meV
compared to the one at ω − µ ≈ 20 meV. A similar
decrease is also present in the experimental data from
Fig. 1a, while clearly absent in the weak-coupling LDOS
Fig. 1c, which is computed by neglecting the Coulomb
repulsion, and assuming only the single-particle TBG
Hamiltonian. Moreover, the width (∆ω) of the spectral
function is much narrower in the non-interacting case
(∆ω ∼ 4 meV, comparable the the active TBG band-
width) than in the experiment and the strong-coupling
prediction (∆ω ∼ 45 meV comparable to Uξ). While the
STM signal is sample dependent and may vary from dif-
ferent AA or AB sites (see Appendix [F]), this data set
indicates evidence of strong correlations governing the
physics of TBG near charge-neutrality.
Discriminating correlated insulating phases. We now

investigate the LDOS of the integer −4 < ν < 4 corre-
lated insulator states of different Chern numbers and val-
ley polarization/coherence. We first consider the effects
of inter-valley coherence in the state |ϕ〉 on the spatial
variation of A (r, ω). Intuitively, in an IVC state, cou-
pling the two valleys of a graphene layer should lead to
the appearence of KD in the STM signal. Mathemati-
cally, to obtain the electron (hole) excited states neces-
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FIG. 1. The TBG spectral function for the ν = ±4 insulator. For ν = −4 (ν = +4), we compare the experimentally-measured
STM signal in a) [d)] with the spectral function computed from the charge-one excitation of HI in b) [e)]]. For reference, the
TBG spectral function at ν = −4 derived from the single-particle TBG Hamiltonian is given in c). The signal at the center of
the AA (AB) site is shown in blue (orange). All signals are normalized by their maxima in the energy range at that particular
location. The theoretically-computed spectral function is averaged over three SLG unit cells. The inset in b) [e)] shows the
electron [hole] excitation dispersion Epk (Ẽpk) computed from Eq. (7) (the red vertical lines are a guide for eye pointing the
minima of the dispersion). f) provides the spatial factor at the AA and AB sites along the high symmetry line. The red lines
indicate the position of dispersion minima. Note that we have used Uξ = 24 meV for b) and e).

sary for the evaluation ofM±ϕ from Eq. (6), the charge-
one excitation matrices from Eq. (7), must be diagonal-
ized in the subspace of empty (occupied) bands of |ϕ〉.
Assuming that |ϕ〉 is IVC, the charge-one excitation oper-
ators must themselves be IVC. In turn, this implies from
Eq. (6) that M±ϕ have non-vanishing valley off-diagonal
terms. As the valley-off-diagonal elements of the spatial
factor B (r) are modulated by wave-vectors connecting
the two Dirac points of a graphene layer, KD is expected
to appear in the STM signal of |ϕ〉.

Our detailed analytical calculations in Appendix [E]
show that breaking valley U (1) symmetry does not guar-
antee the emergence of KD in the STM patterns, as a re-
sult of discrete symmetries of TBG. For instance, Fig. 2
shows the simulated STM patterns for two fully IVC
TBG insulators at ν = −2, the Kramers IVC (K-IVC)
state and the T -symmetric invervalley-coherent (T-IVC)
state [58, 68]

|K-IVC〉 =
∏
k

∏
eY =±1

d̂†k,eY ,+,↑ + eY d̂
†
k,eY ,−,↑√

2
|0〉

|T-IVC〉 =
∏
k

∏
eY =±1

d̂†k,eY ,+,↑ + d̂†k,eY ,−,↑√
2

|0〉

(8)

The K-IVC (T-IVC) state is obtained by starting from a
fully-filled valley-spin flavor and rotating the two Chern
bands in the xz valley plane in opposite (identical) direc-
tions, as depicted by the valley Bloch spheres in Figs. 2c)

and f). Remarkably, while the STM patterns of the T-
IVC state show clear signs of KD, no KD emerges for the
K-IVC state.

The counter-intuitive absence of KD in the ν = −2
K-IVC state is part of a more general exact result (see
Appendix [E 1]), relying on the C2z, T , and P symmetries
of TBG: a VP even-ν insulator with only fully-filled and
fully-empty valley-spin flavors and all its Unc (4) rota-
tions have identical spectral functions, without exhibit-
ing KD. Note that these are precisely the theoretically-
proposed exact ground states of HI at even filling and
away from the chiral limit [42, 58, 68, 69]. Moreover,
even when the P symmetry is broken, we find that the
C2z and T symmetries of TBG are enough to guarantee
the exact absence of KD in the K-IVC state, although
not necessarily in its general Unc (4) rotations (see Ap-
pendix [E 4]).

When |ϕ〉 is not a Unc (4) rotation of an insulator
with only fully-filled or fully-empty valley-spin flavors,
intervalley-coherence can lead to the emergence of KD,
but fine-tuned counter examples do exist. While a com-
plete treatment of all states |ϕ〉 for general U (4)×U (4)
rotations is beyond the scope of this work, we can de-
rive simple rules for the maximally-spin polarized states
(see Appendix [E 3 b]): 1) Filling a single IVC Chern
band will give rise to KD; 2) An exact cancellation of
the KD signal occurs upon filling a pair of Chern bands
with opposite Chern numbers whose valley polarization
projections in the valley xy plane of the Bloch sphere



5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Kekulé distortion and intervalley-coherence. (a) and
(b) [(d) and (e)] respectively illustrate the real-space spectral
function and its Fourier transform for the ν = −2 K-IVC (T-
IVC) TBG insulator. The presence of KD in the K-IVC state
appears as three-fold enlargement of the SLG unit cell and as
a signal at the K and K’ points of the SLG Brillouin zone. In
the valley Bloch sphere from (c) [(f)] the valley polarizations
of the two Chern bands of the K-IVC (T-IVC) state shown in
red and blue have are rotated in opposite (identical) direction
in the xz plane by an angle φ = π/2.

are nonzero and cancel out (as shown for the K-IVC in
Fig. 2 c). In Fig. 3, we provide four additional examples
of insulators as an illustration of these rules for Chern
number states, which at odd filling are the theoretical
ground-states, while at even filling are the ground-states
in-field [12, 15, 17, 25, 26, 81]. The ν = −2 valley polar-
ized C = 2 Chern insulator and the ν = −1 fully valley
polarized C = 3 Chern insulator trivially have no KD.
The ν = −2 IVC C = 2 Chern insulator does exhibit KD
since the valley polarizations of the two bands projected
in the xy plane of the valley Bloch sphere do not cancel
out. Finally, the ν = −1 partially valley-coherent C = 1
Chern insulator has one VP filled Chern band and a pair
of filled IVC Chern bands, satisfying rule 2 and therefore
it does not display any KD. Between states showing no
KD, further LDOS differences exist because the Chern
band operators d̂†k,eY ,η,s are primarily located on a single
SLG sublattice, depending on eY η = ±1. In the ν = −2,
C = 2 state, two Chern bands with eY = +1 are occu-
pied in the same valley η = + (and two spin sectors),
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FIG. 3. Real-space spectral function, its Fourier transform
and the valley Bloch sphere for four TBG insulators. We use
the same conventions as in Fig. 2. a), b) and c) ν = −2 VP
C = 2 Chern insulator. d), e) and f) ν = −2 IVC C = 2
Chern insulator. g), h) and i) ν = −1 fully VP C = 3 Chern
insulator. j), k) and l) ν = −1 partially IVC C = 1 Chern
insulator.

leading to the appearance of a triangular lattice in the
STM signal from Fig. 3 a). To obtain the VP ν = −1,
C = 3 (IVC ν = −1, C = 1) state, a Chern band with
η = −, eY = +1 (η = +, eY = −1) is added, which
is polarized primarily on the other graphene sublattice.
Hence two inter-penetrating triangular lattices of weight
2 : 1 appear in the LDOS patterns from Fig. 3 g) and j).
Conclusion. In the current letter we analyzed the spec-

troscopic signal of a multitude of the predicted candi-
dates for the correlated insulators in TBG. We showed
that, surprisingly, the Chern zero celebrated KIVC state
at ν = ±2, along with other KIVC states at ν = 0 do
not exhibit a KD pattern, while other IVC states, in-
cluding the TIVC and the Chern 2 state at ν = ±2
do exhibit KD. We analytically obtain the LDOS sig-
nal for a large number of correlated insulator states, and
show which IVC states do not/do have KD patterns.
We identify the LDOS signal from the correlated insu-
lators and show how it can be used to differentiate be-
tween the ground-states. Furthermore we show that at
band-insulator filling ν = ±4, where the ground-state
is known without ambiguity, the strong coupling LDOS
differs dramatically from the weak coupling one due to
the fundamentally different nature of the quasiparticle
dispersion. We identified several additional signatures of
strong coupling regime, including a specific variation of
the LDOS signal from AA to AB sites. Although exper-
imental data varies from sample to sample, we present
STM data which fits the overall aspects of the predicted
signal while being in contradiction with a weak-coupling
picture.
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Appendix A: Review of notation

This appendix provides a short review of the single-particle and interacting twisted bilayer graphene (TBG) Hamilto-
nians. We will follow the same conventions as those employed in Refs. [68, 69, 74, 75, 84, 87], to which the interested
reader is referred for more details. After briefly discussing the Bistritzer-MacDonald model of the single-particle
Hamiltonian [1], we outline the discrete symmetries of TBG, which were extensively discussed in Refs. [74, 82, 84–86],
as well as the gauge-fixing procedure used throughout this work [74]. We then review the TBG interaction Hamilto-
nian [42, 43, 58, 74] and its enlarged continuous symmetries arising under various limits [42, 43, 58, 63, 74]. These
will be used extensively in our analytical proofs of the LDOS signal.

1. Single-particle Hamiltonian

a. Fermion operators on the moiré lattice

TBG consists of two graphene layers rotated at an angle θ relative to one another. We define Rθ,l to be the matrix
implementing the rotation transformation corresponding to the graphene layer l = ± (where l = + denotes the top
layer, while l = − denotes the bottom layer) relative to a reference (i.e. unrotated) coordinate system

Rθ,l =

(
cos
(
θl
2

)
− sin

(
θl
2

)
sin
(
θl
2

)
cos
(
θl
2

) ) . (A1)

Within layer l, we define â†R,α,s,l to be the microscopic fermion operator creating an electron of spin s =↑, ↓ in the
unit cell indexed by R (but located at Rθ,lR) and graphene sublattice α = A,B. R belongs to the reference single
layer graphene (SLG) lattice, i.e. R ∈ Za1 + Za2, where

a1 = a0

(
1

3
,

1√
3

)T
, a2 = a0

(
1

3
,− 1√

3

)T
(A2)

are the primitive SLG lattice vectors, with a0 being the length of a carbon-carbon bond, as shown in Fig. 4. We also
define the displacement vectors for the two graphene sublattices relative to the SLG unit cell origin according to

tA =
2

3
a1 +

1

3
a2, tB =

1

3
a1 +

2

3
a2. (A3)

Using Eqs. (A1) to (A3), we can write the Fourier transformation of the â†R,α,s,l operators over the SLG Brillouin
Zone BZl corresponding to layer l as

â†R,α,s,l =
1√
N0

∑
p∈BZl

â†p,α,s,le
−ip·Rθ,l(R+tα). (A4)

In Eq. (A4), N0 represents the number of unit cells in each graphene layer, and the momentum p is measured from
the Γ point of BZl. It is also useful to introduce the reciprocal lattices corresponding to the two graphene layers.
More precisely, we let Gl = Zgl,1 + Zgl,2 be the reciprocal lattice corresponding to layer l, generated by the reciprocal
vectors gl,i = Rθ,lgi, where the reference or unrotated reciprocal lattice vectors gi are given by

g1 =
2π

a0

(
3

2
,

√
3

2

)T
, g2 =

2π

a0

(
3

2
,−
√

3

2

)T
. (A5)

Focusing on TBG, we define Kl = 1
3 (gl,1 + gl,2) as the K point of the SLG Brillouin Zone BZl. K+ and K− differ

by a twist angle θ. We take K± to be along the direction with an angle ±θ/2 to the x̂ axis. Each graphene layer
contains two valleys K and K ′, labeled by η = ± and located at momenta ηK±, corresponding to the two (decoupled)
valleys of the moiré single-particle Hamiltonian.

Introducing the two-dimensional momenta

q1 = (K+ −K−) = kθ (0, 1)
T
, q2 = C3zq1 = kθ

(
−
√

3

2
,−1

2

)T
, q3 = C2

3zq1 = kθ

(√
3

2
,−1

2

)T
, (A6)
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FIG. 4. The reference single layer graphene (SLG) lattice. The corresponding triangular lattice is generated by the lattice
vectors a1 and a2. Within each unit cell, we denote the carbon atoms belonging to the two sublattices A and B by orange and
blue circles, respectively. The nearest-neighbor distance between two carbon atoms is given by a0. Additionally, tA and tB
respectively denote the displacements corresponding to sublattices A and B. The top (l = +1) and bottom (l = −1) graphene
layers of TBG are obtained by rotating the reference lattice by an angle lθ/2.

where kθ = |K− −K+| = 2|K+| sin(θ/2), we can define the moiré Brillouin Zone (MBZ) for the (triangular) TBG
moiré lattice Q0 = ZbM1 + ZbM2, which is generated by the reciprocal vectors

bM1 = q3 − q1 , bM2 = q3 − q2. (A7)

Additionally, we introduce two shifted momentum lattices Q+ = q1 +Q0 and Q− = −q1 +Q0, which together form
a honeycomb lattice. This allows us to define the low-energy TBG fermion operators as

ĉ†k,Q,η,α,s ≡ â
†
ηKl+k−Q,α,s,l, for Q ∈ Qηl, (A8)

with k ∈ MBZ and k = 0 representing the ΓM point (i.e. the Γ point of the MBZ).

b. Hamiltonian and the energy band basis

The Bistrizer-MacDonald model [1] for the single-particle TBG Hamiltonian reads as [74, 84, 87]

Ĥ0 =
∑

k∈MBZ

∑
η,α,β,s

∑
Q,Q′∈Q±

[
h

(η)
Q,Q′ (k)

]
αβ
ĉ†k,Q,η,α,sĉk,Q′,η,β,s, (A9)

where the first-quantized TBG Hamiltonian in valley η, h(η)
Q,Q′ (k), is independent on spin as a consequence of the

absence of spin-orbit coupling in SLG. In valley η = +, it takes the form

h
(+)
Q,Q′ (k) = vF δQ,Q′ (k−Q) · σ − λvF

θ

2
ζQδQ,Q′ (k−Q)× σ +

3∑
j=1

TjδQ,Q′±qj , (A10)

where vF is SLG Fermi velocity, θ is the twist angle, σ = (σx, σy), ζQ is the sublattice factor

ζQ =

{
+1 if Q ∈ Q+

−1 if Q ∈ Q−
, (A11)

and the Tj ’s represent the inter-layer tunneling matrices defined according to

Tj = w0σ0 + w1

[
σx cos

2π (j − 1)

3
+ σy sin

2π (j − 1)

3

]
, for j = 1, 2, 3 (A12)

For small angles θ, the second term in Eq. (A10) is suppressed in magnitude with respect to the first one and is usually
neglected [82, 84]. We will investigate its effects through the parameter λ = 0, 1. For λ = 0 the TBG Hamiltonian
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features a unitary particle-hole symmetry, which is only slightly broken in the case λ = 1 [82, 84]. The tunneling
matrices Tj (1 ≤ j ≤ 3) depend on two parameters, w0 ≥ 0 and w1 ≥ 0, which are the inter-layer hoppings at the
AA and AB stacking centers of the two graphene sheets, respectively. Generically, in realistic systems w0 < w1 due
to lattice relaxation and corrugation effects [84, 88–91]. For the numerical calculations in this paper, we will use
θ = 1.05◦, w1 = 110 meV, vF = 5.944 eVÅ, |K+| = 1.703Å−1, and explore multiple values of the ratio w0/w1 ≤ 1.
Finally, we note that the first-quantized Hamiltonian in valley η = − is obtained through

h
(−)
Q,Q′ (k) = σxh

(+)
−Q,−Q′ (−k)σx. (A13)

The TBG Hamiltonian in Eq. (A9) can be diagonalized as follows

Ĥ0 =
∑

k∈MBZ

∑
η,n,s

εn,η (k) ĉ†k,n,η,sĉk,n,η,s, (A14)

where

ĉ†k,n,η,s =
∑

Q∈Q±,α

uQα;nη (k) ĉ†k,Q,η,α,s, (A15)

are the energy band operators. We define uQα;nη (k) to be the eigenstate wave functions of energy band n of the first
quantized single-particle TBG Hamiltonian [74]∑

β

∑
Q′∈Q±

[
h

(η)
Q,Q′

]
αβ
uQ′β;nη (k) = εn,ηuQα;nη (k) . (A16)

For each valley and spin, we will use the integer n > 0 to denote the n-th conduction band and use the integer n < 0
to label the |n|-th valence band. Throughout this paper, we will be concerned exclusively with the active TBG bands
(corresponding to n = ±1). Finally, we note that the completeness of the TBG eigenstate wave functions allows us
to express the moiré lattice operators from Eq. (A8) in the energy band basis as

ĉ†k,Q,η,α,s =
∑
n

u∗Qα;nη (k) ĉ†k,n,η,s. (A17)

c. Discrete symmetries of TBG

We now briefly review the discrete symmetries of TBG which have been derived and extensively discussed in
Refs. [74, 82, 84–86]. Since graphene has zero spin-orbit coupling, we can define a set of spinless symmetry transfor-
mations for TBG: the spinless unitary discrete symmetries C2z, C3z, C2x, and the spinless anti-unitary time-reversal
symmetry T . In addition to the above symmetry operators which commute with the many-body projected Hamiltonian
of TBG (H), one can also define a unitary particle-hole transformation P [82, 84], as well as a chiral transformation
C [86]. The particle-hole transformation is an anticommuting symmetry of the single-particle TBG Hamiltonian from
Eq. (A9) for λ = 0, and remains an approximate symmetry of the model for λ = 1 [82, 84]. In the first chiral
limit, when the inter-layer AA-hopping w0 can be neglected (w0 = 0), the chiral transformation C also denotes an
anticommuting symmetry of Ĥ0 [74, 86]. It is worth noting, that the first chiral limit always implies the presence of
particle-hole symmetry, as the second term in Eq. (A10) can be gauged away [86, 92].

We denote the action of any symmetry transformation operator g on the moiré lattice fermions to be

gĉ†k,Q,η,α,sg
−1 =

∑
Q′,η′,β

[D (g)]Q′η′β,Qηα ĉ
†
gk,Q′,η′,β,s, (A18)

where D (g) is the representation matrix of the symmetry operator g in the space of indices {Q, η, α} of the ĉ†k,Q,η,α,s
fermion operators. We denote gk to be the momentum obtained after acting the transformation g on momentum k.
In particular Tk = Pk = −k, while Ck = k. The representation matrices for the discrete symmetries of TBG are
given by [74, 82, 84]

[D (C2z)]Q′η′β,Qηα = δQ′,−Qδη′,−η (σx)βα , (A19)

[D (C3z)]Q′η′β,Qηα = δQ′,C3zQδη′,η

(
eiη

2π
3 σz

)
βα
, (A20)
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[D (C2x)]Q′η′β,Qηα = δQ′,C2xQδη′,η (σx)βα , (A21)

[D (T )]Q′η′β,Qηα = δQ′,−Qδη′,−ηδβ,α, (A22)

[D (P )]Q′η′β,Qηα = δQ′,−Qδη′,ηδβ,αζQ, (A23)

[D (C)]Q′η′β,Qηα = δQ′,Qδη′,η (σz)βα , (A24)

where in Eq. (A23), we have employed the sublattice factor ζQ defined in Eq. (A11).

d. Gauge-fixing the single-particle spectrum

The symmetries presented in Appendix [A 1 c] yield certain relations between single-particle TBG eigenstates, which
will prove instrumental in deriving the properties of the TBG spectral function. Here, we briefly review the gauge-
fixing conditions for the TBG single-particle eigenstates defined in Eq. (A15) which were introduced in Refs. [74, 84].

For brevity, we will consider the wave function uQα;nη (k) as a column vector unη (k) in the space of indices {Q, α}.
Furthermore, when a representation matrix D (g) of an operation g defined in Eq. (A18) acts on a wave function
unη′ (k), we denote the resulting wave function in valley η for short as

∑
η′ [D(g)]ηη′ unη′ (k), the components of

which are given by
∑

Q′βη′ [D (g)]Qαη,Q′βη′ uQ′β;nη′ (k). Namely, we suppress the indices {Q, α} of the representation
matrix D (g) to streamline notation.

When g is a commuting (anticommuting) symmetry operator of the single-particle TBG Hamiltonian, if unη′(k)
is an eigenstate wave function at momentum k, the wave function

∑
η [D (g)]ηη′ unη′ (k) (an additional complex

conjugation is needed if g is anti-unitary) must also be an eigenstate wave function at momentum gk at the same
(opposite) single-particle energy. This allows us to define a sewing matrix corresponding to the symmetry operator g
and the eigenstates unη′(k)

[D (g)]ηη′ unη′ (k) =
∑
m

[Bg (k)]mη,nη′ umη (gk) . (A25)

In the energy band basis defined in Eq. (A15), a symmetry g acts as

gĉ†k,n,η′,sg
−1 =

∑
m,η

[Bg (k)]mη,nη′ ĉ
†
gk,m,η,s. (A26)

The gauge-fixing of the TBG energy band operators was discussed at length in Refs. [74, 84]. We will first consider
the particle-hole symmetric case (λ = 0). We will only summarize the results here and refer the reader to Refs. [74, 84]
for complete proofs. All sewing matrices are closed within the pair of bands n = ±1. Therefore, for the bands with
band index n = ±1, we will use ζa and τa (a = 0, x, y, z) to denote the identity and Pauli matrices in the energy band
n = ±1 and the valley spaces, respectively. For all the symmetries that leave k invariant, the following k-independent
gauge-fixings will be adopted in this paper

BC2zT (k) = ζ0τ0, BC2zP (k) = ζyτy, BC (k) = ζyτz, (A27)

where the sewing matrix corresponding to the chiral symmetry operator C is only applicable in the first chiral limit
(w0/w1 = 0) [74, 86]. Additionally, we will further fix the relative gauge between wave functions at momenta k and
−k by fixing the sewing matrices of C2z and P .

BC2z (k) =

{
ζ0τx k 6= kMM

−ζ0τx k = kMM

BT (k) =

{
ζ0τx k 6= kMM

−ζ0τx k = kMM

BP (k) =

{
−iζyτz k 6= kMM

iζyτz k = kMM

, (A28)

where kMM
denotes any one of the three equivalent MM points in the MBZ

kMM
∈
{

1

2
bM1,

1

2
bM2,

1

2
bM1 +

1

2
bM2

}
. (A29)

The reason for the additional minus sign of the sewing matrix BP (k) at k = kMM
was explained in Ref. [74]. In

addition to the gauge-fixing conditions given in Eqs. (A27) and (A28), we fix the relative sign between the single-
particle wave functions u+,η (k) and u−,η (k) imposing [87]

lim
q→0

∣∣∣u†nη (k + q)unη (k)− u†−nη (k + q)u−nη (k)
∣∣∣ = 0. (A30)
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By fixing the sewing matrix of the C2zT transformation according to Eq. (A28), as well as the continuous gauge
condition from Eq. (A30), we can introduce the Chern band basis [74, 84, 93] within the two active bands in each
valley-spin flavor

d̂†k,eY ,η,s =
1√
2

(
ĉ†k,+1,η,s + ieY ĉ

†
k,−1,η,s

)
=
∑
n

WeY ,nĉ
†
k,n,η,s, (A31)

where eY = ±1 and the unitary matrix W is given by

W =
1√
2

(
1 i
1 −i

)
(A32)

As proven in Refs. [74, 84], the operator d̂†k,eY ,η,s for k ∈ MBZ and fixed eY , η, and s corresponds to a Chern band
carrying Chern number eY . To numerically determine the gauge-fixed TBG wave functions, we follow the procedure
employed in Ref. [69].

In the case λ = 1, P is no longer an exact symmetry of Ĥ0 in Eq. (A10), and a different approach is needed. We
start by diagonalizing the first-quantized TBG Hamiltonian from Eq. (A10) in valley η = +, fix the sewing matrix
of C2zT according to Eq. (A27), and impose the continuous gauge condition from Eq. (A30). These conditions are
enough to guarantee the existence of the Chern band basis as defined in Eq. (A31) [84] for valley η = +. At the same
time, for each k, we are free to transform the wave functions according to

un+ (k) =
∑
m=±1

Unm (k)um+ (k) , (A33)

where the 2× 2, momentum-dependent matrix U (k) obeys

U (k) = ±1 if ε+1,η (k) 6= ε−1,η (k) ,

U (k) ∈ SO (2) if ε+1,η (k) = ε−1,η (k)
. (A34)

Ref. [84] showed that even when λ = 1, one still has

1−
∣∣∣u†−nη (−k) [D(P )]ηη unη (k)

∣∣∣2 . 0.04, (A35)

meaning that the particle-hole symmetry breaking is small even when λ = 1. We choose U (k) in such a way as to
ensure that ∥∥∥[D(P )]++ un+ (k)−

[
BP (k)

]
−n+,n+

u−n+ (k)
∥∥∥ is minimized. (A36)

To find the wave functions in the η = − valley, we then use the C2z symmetry of TBG and impose the corresponding
sewing matrix from Eq. (A28). By approximately fixing the sewing matrix of the particle-hole transformation in the
λ = 1 case according to Eq. (A36), we ensure that this case is smoothly connected to the λ = 0 one. At the same
time, Eq. (A36) guarantees that even when λ = 1, Eq. (A26) still holds approximately for g = P .

2. Interaction Hamiltonian

a. Form factor matrices

After discussing the single-particle wave functions of TBG, we now briefly review the Coulomb interaction Hamil-
tonian, which has been derived and discussed at length in Refs. [68, 74]. We let V (r) denote the interaction potential
between two electrons within the TBG sample, and define V (q) as its Fourier transformation. For the time be-
ing, we will keep V (r) generic and only require that it denotes a repulsive interaction (V (q) ≥ 0). It was shown
in Ref. [42, 58, 74] that the interaction Hamiltonian projected in the active TBG bands is a positive semi-definite
operator and reads as

HI =
1

2ΩTBG

∑
q∈MBZ

∑
G∈Q0

O−q−GOq+G, (A37)
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where ΩTBG is the area of the TBG sample, and we have introduced the operators

Oq+G =
∑
k,η,s

∑
n,m=±1

√
V (q + G)Mη

mn (k,q + G)

(
ĉ†k+q,m,η,sĉk,n,η,s −

1

2
δq,0δm,n

)
. (A38)

In Eq. (A38) we have employed the wave function overlap matrix (also known as the form factor matrix) which is
defined in terms of the active TBG wave functions as [74]

Mη
mn (k,q + G) =

∑
α

∑
Q∈Q±

u∗Q−Gα;mη (k + q)uQα;nη (k) . (A39)

The symmetries of the single-particle TBG Hamiltonian impose a series of constraints on the form factors matri-
ces, through the gauge-fixing conditions from Appendix [A 1 d] [74]. Letting g be a symmetry of Ĥ0 as defined in
Appendix [A 1 c], Eq. (A25) implies that∑

η,n′,m′

[Bg(k)]n′η′,nη [Bg(k + q)]
∗
m′η′,mηM

η′

m′n′ (gk, gq + gG)

=
∑

η,n′,m′

∑
α

∑
Q∈Q±

[Bg(k + q)]
∗
m′η′,mη u

∗
gQ−gGα;m′η′ (gk + gq) [Bg(k)]n′η′,nη ugQα;n′η′ (gk)

=
∑
η

∑
α

∑
Q∈Q±

[
[D(g)]η′η umη (k + q)

]∗
Q−Gα

[
[D(g)]η′η unη (k)

]
Qα

=
∑
α

∑
Q∈Q±

u∗Q−Gα;mη (k + q)uQα;nη (k) , (A40)

with an additional complex conjugation when g is anti-unitary. Written in matrix form, Eq. (A40) reads as

B†g(k + q)M (∗) (gk, gq + gG)Bg(k) = M (k,q + G) , (A41)

where (∗) denotes an additional complex conjugation when g is anti-unitary. Additionally, the form factor matrix
obeys the following Hermiticity condition

M∗ηmn (k,q + G) = Mη
nm (k + q,−q−G) , (A42)

which can be readily checked from its definition from Eq. (A39).
Under the gauge-fixing conditions outlined in Appendix [A 1 d] and as a consequence of Eq. (A41), the C2zT

symmetry imposes a reality condition for both the λ = 0 and λ = 1 cases [74]. As such, the form factor matrix can
be generically parameterized as

M (k,q + G) =ζ0τ0α0 (k,q + G) + ζxτzα1 (k,q + G) + iζyτ0α2 (k,q + G) + ζzτzα3 (k,q + G)

+ζ0τzα4 (k,q + G) + ζxτ0α5 (k,q + G) + iζyτzα6 (k,q + G) + ζzτ0α7 (k,q + G) . (A43)

When λ = 0, the presence of the anti-commuting C2zP symmetry enforces αi (k,q + G) = 0 for all 4 ≤ i ≤ 7, leading
to the following parameterization in the band and valley subspaces [74]

M (k,q + G) = ζ0τ0α0 (k,q + G) + ζxτzα1 (k,q + G) + iζyτ0α2 (k,q + G) + ζzτzα3 (k,q + G) . (A44)

It is worth noting that, because the P anti-commuting symmetry (and hence the C2zP anti-commuting symmetry) is
only slightly broken even in the λ = 1 case [84], we generically find that in Eq. (A43)

|αi (k,q + G)| � |αj (k,q + G)|, for 0 ≤ i ≤ 3 and 4 ≤ j ≤ 7, (A45)

provided that Eq. (A36) is imposed. Finally, we note that in the first chiral limit (w0 = 0), the single-particle wave
functions at a given momentum are additionally constrained by the chiral symmetry operator C. As shown in Ref. [74],
this implies that the form factors are further restricted to the parameterization

M (k,q + G) = ζ0τ0α0 (k,q + G) + iζyτ0α2 (k,q + G) . (A46)
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FIG. 5. Schematic of the typical experimental setup considered. The TBG sample is is located in between a gate plate and
the scanning tunneling microscopy (STM) tip, with ξ denoting the distance between the gate and the sample and zp being the
height of the STM tip. The two graphene monolayers are located at heights zl (l = ±) with the inter-layer TBG separation
obeying |z+ − z−| � ξ.

b. Coulomb interaction potential

With the general form of the projected interaction TBG Hamiltonian at hand, we now turn to the electron-electron
repulsion potential. We consider the experimental setup shown schematically in Fig. 5, corresponding to a single-gate
arrangement for scanning tunneling microscopy (STM) experiments. The potential between two electrons separated
by r in the plane of the TBG sample includes a contribution from the image charge formed on the gate located at a
distance ξ below the sample

V (r) =
e2

ε

(
1

r
− 1√

r2 + (2ξ)2

)
. (A47)

Using the identity ∫
d2q

(2π)2

e−αq+iq·r

q
=

1

2π

1√
r2 + α2

, (A48)

we find that the Fourier transformation of the single-gate potential reads

V (q) =
2πe2

ε

1− e−2ξq

q
= 2πUξξ

2 1− e−2ξq

ξq
. (A49)

In Eq. (A49), e represents the electron charge, ε is the dielectric constant, q = |q|, and Uξ = e2/ (εξ). In this work
and unless stated otherwise, we use Uξ = 8 meV and ξ = 30 nm.

c. Continuous symmetries of the projected interaction Hamiltonian

Throughout this paper, we will work exclusively in the flat limit, as defined by Refs. [68, 74], implying that
the TBG Hamiltonian H is given solely by the projected interaction Hamiltonian from Eq. (A37), i.e. H = HI .
Refs. [68, 69] have found that owing to its enlarged continuous symmetries (which will be discussed below), HI

features a large manifold of degenerate ground states. This degeneracy is broken by the finite dispersion of the single-
particle Hamiltonian which acts perturbatively within the ground state manifold [68, 69]. Instead of focusing on a
single ground state at each integer filling as predicted by perturbation theory [58, 68], we will instead explore the
properties of the degenerate manifold in an effort to identify the experimentally-relevant ground state.

We will now briefly review the symmetries of the interaction Hamiltonian HI , which were derived and extensively
discussed in Refs. [42, 43, 58, 74]. Following the notation of Ref. [74], we shall use ζa, τa, and sa to denote the identity
matrix (a = 0), and Pauli matrices (a = x, y, z) in the band (n = ±1), valley (η = ±), and spin (s =↑, ↓) subspaces,
respectively.
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• U (2)×U (2) symmetry in the non-particle-hole-symmetric case (λ = 1). Due to the absence of spin-orbit coupling
in TBG, as well as the suppression of intervalley scattering processes in Eq. (A37), HI , enjoys a U (2) × U (2)
rotation symmetry corresponding to independent spin-charge rotation within each valley. The corresponding
generators are given by

Sab =
∑
k

∑
n,η,s
n′,η′,s′

[
sab
]
nηs,n′η′s′

ĉ†k,n,η,sĉk,n′,η′,s′ , for a = 0, z b = 0, x, y, z, (A50)

where the matrices sab read as

s0b = ζ0τ0sb, szb = ζ0τzsb. (A51)

• U (4) symmetry in the particle-hole-symmetric case (λ = 0). The presence of the anticommuting particle-hole
symmetry restricts the parameterization of the form factors, as shown in Eq. (A44). In turn, this enlarges the
U (2) × U (2) symmetry of HI to the U (4) group [42, 43, 58, 74] (corresponding to the so-called nonchiral-flat
limit, as defined by Ref. [74]). In what follows, we will always denote the nonchiral-flat U (4) group as Unc (4)
to distinguish it from other U (4) groups. The generators of Unc (4) read as

Sab =
∑
k

∑
n,η,s
n′,η′,s′

[
sab
]
nηs,n′η′s′

ĉ†k,n,η,sĉk,n′,η′,s′ , for a, b = 0, x, y, z, (A52)

with the matrices sab being given by

s0b = ζ0τ0sb, sxb = ζyτxsb, syb = ζyτysb, szb = ζ0τzsb. (A53)

For future reference, we also define the set

NUnc(4) =

 ∑
a,b∈{0,x,y,z}

φabsab

∣∣∣∣∣∣ φab ∈ C, φ00 = 0

, (A54)

which contains all eight-dimensional matrices which can be expressed as a linear combinations of the generators
sab from Eq. (A53) for a, b ∈ {0, x, y, z} and ab 6= 0. For any M ∈ NUnc(4),

[
M, sab

]
∈ NUnc(4), implying that

the set NUnc(4) is closed under any Unc (4) group transformation.

• U (4) × U (4) symmetry in the first chiral limit. Finally, in the first chiral limit (w0 = 0) [74, 86], the anti-
commuting C symmetry further restricts the parameterization of the form factors, given in Eq. (A46). As a
consequence, the projected interaction Hamiltonian enjoys a large U (4)×U (4) symmetry [58, 74] (corresponding
to the chiral-flat limit, as defined in Ref. [74]) which is generated by the 32 operators

Sab± =
∑
k

∑
n,η,s
n′,η′,s′

[
sab±
]
nηs,n′η′s′

ĉ†k,n,η,sĉk,n′,η′,s′ , for a, b = 0, x, y, z, (A55)

with the matrices sab± being given by

sab± =
1

2

(
ζ0 ± ζy

)
τasb. (A56)

In analogy with Eq. (A54), we also introduce the set

NU(4)×U(4) =

 ∑
a,b∈{0,x,y,z}

(
φab+ s

ab
+ + φab− s

ab
−
) ∣∣∣∣∣∣ φab± ∈ C, φ00

+ = φ00
− = 0

, (A57)

which is closed under any U (4)×U (4) transformation.

The Unc (4) group in the nonchiral-flat limit is a subgroup of the U (4)×U (4) group in the chiral-flat limit, but is
not one of the tensor-producted U (4) subgroups of the later [74]. To better understand the group-subgroup relation
between the two groups, is is instructive to recast the generators from Eqs. (A52) and (A55) in the Chern band basis



19

defined in Eq. (A31). In the Chern band basis, the chiral-flat generators from Eq. (A55) correspond to independent
U (4) charge-valley-spin rotations within each Chern sector

Sab± =
∑
k

∑
η,s,η′,s′

[
τasb

]
ηs,η′s′

d̂†k,±1,η,sd̂k,±1,η′,s′ , for a, b = 0, x, y, z. (A58)

When the chiral anticommuting symmetry is broken, the generators of the U (4)×U (4) group get combined into the
generators of the Unc (4) group from Eq. (A52)

Sab =

{
Sab+ + Sab− , if a = 0, z

Sab+ − Sab− , if a = x, y
, for a, b = 0, x, y, z. (A59)

As such, we find that away from the chiral limit, the fermions belonging to the two Chern sectors can no longer be
rotated independently in the charge-valley-spin space. Instead, the Unc (4) rotations which do not mix the two valleys
rotate the two Chern sectors in the same directions, while the generators corresponding to valley rotations in the xz
and yz planes rotate the two Chern sectors in in opposite directions.

Appendix B: Charge-one excitations at integer fillings

The spectral function of the TBG insulators which is measured by STM experiments depends on the eigenstates of
the TBG Hamiltonian obtained by adding or removing one electron from the ground state – the charge-one excitations.
The latter constitute the main focus of this appendix. We start with a brief review of the method devised by Ref. [75] for
obtaining the charge-one excitations above the ground states of TBG obtained in Ref. [68]: the charge-one excitation
can be found by diagonalizing the so-called charge-one excitation matrices. We then investigate the consequences of
the various discrete symmetries of TBG from Appendix [A 1 c] on the charge-one excitation matrices and obtain their
parameterizations under different limits. Finally, by focusing on a specific state from the approximately degenerate
ground state manifold of TBG derived in Ref. [68], we explicitly work out the charge-one excitation spectrum.

1. Charge-one excitation matrices

Ref. [75] has shown that for the different ground states of the TBG Hamiltonian at integer fillings derived in
Ref. [68], the charge-one excitations can be computed directly as a zero-body problem. Here, we will briefly review
the procedure introduced in Ref. [75] for obtaining them.

Let |ϕ〉 be one of the exact eigenstates of HI at filling ν introduced in Ref. [68] (which will be specified in de-
tail below). The energies and wave functions of the charge-one excitations can be determined using the following
commutation relations [75] [

HI − µN̂, ĉ†k,n,η,s
]
|ϕ〉 =

∑
m

Rηmn (k) ĉ†k,m,η,s |ϕ〉 , (B1)[
HI − µN̂, ĉk,n,η,s

]
|ϕ〉 =

∑
m

R̃ηmn (k) ĉk,m,η,s |ϕ〉 , (B2)

where µ denotes the chemical potential and N̂ is the total fermion number operator

N̂ =
∑

k,n,η,s

ĉ†k,n,η,sĉk,n,η,s. (B3)

The charge-one excitation matrices Rηmn (k) and R̃ηmn (k) depend only on the filling ν of the ground state |ϕ〉 and are
given in terms of the form factors introduced in Eq. (A39)

Rηmn (k) =
1

2ΩTBG

∑
G∈Q0

 ∑
q∈MBZ,m′

V (q + G)M∗ηm′m (k,q + G)Mη
m′n (k,q + G)


+2A−G

√
V (G)Mη

mn (k,G)
]
− µδmn, (B4)
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R̃ηmn (k) =
1

2ΩTBG

∑
G∈Q0

 ∑
q∈MBZ,m′

V (q + G)Mη
m′m (k,q + G)M∗ηm′n (k,q + G)


−2A−G

√
V (G)M∗ηmn (k,G)

]
+ µδmn, (B5)

with the factor AG depending on the filling ν according to [75]

AG =
√
V (G)

∑
k∈MBZ
n,η

ν

4
Mη
nn (k,G) =

√
V (G)

∑
k∈MBZ

ν

4
Tr [M (k,G)] . (B6)

The charge-one excitation matrices defined in Eq. (B4) are valid for any gauge choice. Under the gauge-fixing
conditions defined in Appendix [A 1 d], the form factors are real, so the complex-conjugation can be dropped.

Refs. [63, 75] derived the charge-one commutation relations from Eqs. (B1) and (B2) in the particle-hole symmetric
case (λ = 0), for |ϕ〉 being one of the ground states 1 of HI derived in Ref. [68]. Away from the first chiral limit
(w0 6= 0), Eqs. (B1) and (B2) are valid provided |ϕ〉 is one of ground states |Ψν〉 of HI at even filling ν defined by [68]

|Ψν〉 =
∏
k

(ν+4)/2∏
j=1

ĉ†k,+1,ηj ,sj
ĉ†k,−1,ηj ,sj

 |0〉 , for ν = 0,±2,±4, (B7)

as well as any Unc (4) rotation thereof given by the generators from Eq. (A52). In Eq. (B7), {ηj , sj} denote the
occupied valley-spin flavors of |Ψν〉 and the “vacuum state” |0〉 corresponds to filling ν = −4 (i.e. unoccupied TBG
active bands). The states |Ψν〉 and their Unc (4) rotations carry zero Chern number.

In the first chiral limit (w0 = 0), Eqs. (B1) and (B2) are valid for any of the Chern number C ground states
∣∣Ψν+,ν−

ν

〉
of HI at integer filling ν defined by [68]

|Ψν+,ν−
ν 〉 =

∏
k

 ν+∏
j1=1

d̂†k,+1,ηj1 ,sj1

ν−∏
j2=1

d̂†k,−1,ηj2 ,sj2

 |0〉 , for − 4 ≤ ν ≤ 4 (B8)

and any of their U (4)× U (4) rotations generated by the operators from Eq. (A55). In Eq. (B8), the occupancies of
the two Chern sectors are given by

ν+ =
ν + 4 + C

2
and ν− =

ν + 4− C
2

, (B9)

with {ηj1 , sj1} and {ηj2 , sj2} denoting the (arbitrarily chosen) occupied valley-spin flavors of the two Chern sectors.
Additionally, the charge-one commutation relations from Eqs. (B1) and (B2) are also valid in the λ = 1 case for

any of the ground states of HI from Eq. (B7), along with any U (2)×U (2) rotation thereof. In what follows, we will
assume the charge-one commutation relations to hold for any U (4)× U (4) rotation of the integer filling states from
Eq. (B8), even away from the first chiral limit (w0 6= 0) and in the absence of exact particle-hole symmetry (λ = 1).
To see why this approximation is justified, we first note that in moving away from the chiral limit (w0 = 0 and λ = 0)
to the nonchiral, but particle-hole symmetric case (w0 6= 0 and λ = 0), the states of the form in Eq. (B8) are still
perturbatively the ground states of the TBG Hamiltonian, even at odd integer fillings [68, 69]. Moreover, through a
renormalization group approach, Ref. [63] has shown that by successively integrating the remote TBG bands in the
nonchiral case (w0 6= 0), the system flows towards the chiral limit, thus approaching the U (4)×U (4)-symmetric case.
It is therefore justified to use the same charge-one commutation relation away from the chiral limit for U (4)× U (4)
rotations of the states in Eq. (B8). Finally, moving away from the case with exact particle-hole symmetry can be
justified by noting that even in the λ = 1 case, particle-hole is still and excellent approximate symmetry [84].

2. Symmetry properties of the charge-one excitation matrices

Under the gauge-fixing conditions outlined in Appendix [A 1 d], the symmetries of the single-particle TBG Hamil-
tonian impose a series of constraints on the charge-one excitation matrices. This appendix aims to derive these

1 Strictly speaking, Ref. [68] showed that in the nonchiral- and chiral-flat cases, respectively, the states from Eq. (B7) and Eq. (B8) are
eigenstates of HI . Additionally, they were shown to be the ground states of HI only for ν = 0, or for ν 6= 0 assuming that the flat
metric condition holds [68, 87]. However, Ref. [69] proved the validity of the flat metric approximation by offering compelling numerical
evidence that the states from Eq. (B7) and Eq. (B8) are indeed the ground states of HI in the corresponding limits.
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constraints with the goal of parameterizing the R (k) and R̃ (k) matrices within the band and valley subspaces. This
will then used for analytic approximations of the LDOS. Part of this parametrization was first derived in [67].

Let g be one of the symmetries of the single-particle TBG Hamiltonian from Appendix [A 1 c]. Using the symmetry
properties of the form factor matrix from Eq. (A41), Eq. (B6) implies that

AG =
√
V (G)

∑
k∈MBZ

ν

4
Tr [M (k,G)] =

√
V (G)

∑
k∈MBZ

ν

4
Tr
[
B†g(k)M (gk, gG)Bg(k)

]
=
√
V (gG)

∑
k∈MBZ

ν

4
Tr [M (gk, gG)] = AgG, (B10)

where we have used the reality of the form factor matrix, the invariance of the interaction potential under two-
dimensional spatial rotations, as well as the unitarity of the sewing matrices. Applying Eqs. (A41) and (B10) in the
definition from Eq. (B4), we find that

Rηmn (k) =
1

2ΩTBG

∑
G∈Q0

 ∑
q∈MBZ,m′

V (gq + gG)
[
B†g(k + q)M (gk, gq + gG)Bg(k)

]∗η
m′m

×
[
B†g(k + q)M (gk, gq + gG)Bg(k)

]η
m′n

)
+2A−gG

√
V (gG)

[
B†g(k)M (gk, gG)Bg(k)

]η
mn

]
− µδmn

=
1

2ΩTBG

∑
G∈Q0

 ∑
q∈MBZ,m′

V (q + G)
[
B†g(k + q)M (gk,q + G)Bg(k)

]∗η
m′m

×
[
B†g(k + q)M (gk,q + G)Bg(k)

]η
m′n

)
+ 2A−G

√
V (G)

[
B†g(k)M (gk,G)Bg(k)

]η
mn

]
− µδmn. (B11)

We now proceed to simplify the first term in Eq. (B11),∑
m′

[
B†g(k + q)M (gk,q + G)Bg(k)

]∗η
m′m

[
B†g(k + q)M (gk,q + G)Bg(k)

]η
m′n

=
∑
m′

∑
η1,n1,m1
η2,n2,m2

[Bg(k)]
∗
n1η1,mη

[Bg(k + q)]m1η1,m′η
M∗η1
m1n1

(gk,q + G)

× [Bg(k)]n2η2,nη
[Bg(k + q)]

∗
m2η2,m′η

Mη2
m2n2

(gk,q + G)

=
∑

η1,n1,m1
η2,n2,m2

[Bg(k)]
∗
n1η1,mη

M∗η1
m1n1

(gk,q + G) [Bg(k)]n2η2,nη
Mη2
m2n2

(gk,q + G) δm1m2
δη1η2

=
∑
η′,m′
n1,n2

[Bg(k)]
∗
n1η′,mη

M∗η
′

m′n1
(gk,q + G) [Bg(k)]n2η′,nη

Mη′

m′n2
(gk,q + G) . (B12)

Finally, combining Eqs. (B11) and (B12), it is straightforward to show that

Rηmn (k) =
∑

η′,n1,n2

[Bg(k)]
∗
n1η′,mη

[Bg(k)]n2η′,nη
Rη
′

n1n2
(gk) , (B13)

or alternatively, in matrix notation

R (k) = B†g(k)R (gk)Bg(k). (B14)

Note that the C2zT symmetry of TBG, through the gauge-fixing conditions from Appendix [A 1 d], imposes a reality
condition on the form-factor matrix, and consequently on the matrix R (k). As such, we have not included a complex
conjugation when g is anti-unitary. Strictly speaking, for a different gauge choice (i.e. when the charge-excitation
matrices are not real), an additional complex conjugation could be required in Eq. (B14) when g is anti-unitary.

Obtaining the symmetry transformation of the R̃ (k) matrix proceeds analogously with the derivation of Eq. (B14),
as R (k) and R̃ (k) only differ by the sign of the second term and of the chemical potential

R̃ (k) = BTg(k)R̃ (gk)B∗g(k). (B15)
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Under the gauge-fixing conditions from Appendix [A 1 d], all sewing matrices are real, Eqs. (B14) and (B15) can be
written equivalently as

R (k) = B†g(k)R (gk)Bg(k), (B16)

R̃ (k) = B†g(k)R̃ (gk)Bg(k). (B17)

Finally, we note that the charge-one excitation matrices are Hermitian

R† (k) = R (k) (B18)

R̃† (k) = R̃ (k) (B19)

We will prove this for R (k) using the definition from Eq. (B14), as well as the Hermiticity of the form factor matrix
from Eq. (A42)

R∗ηnm (k) =
1

2ΩTBG

∑
G∈Q0

 ∑
q∈MBZ,m′

V (q + G)Mη
m′n (k,q + G)M∗ηm′m (k,q + G)


+2A∗−G

√
V (G)M∗ηnm (k,G)

]
− µδmn

=
1

2ΩTBG

∑
G∈Q0

 ∑
q∈MBZ,m′

V (q + G)M∗ηm′m (k,q + G)Mη
m′n (k,q + G)


+2AG

√
V (G)Mη

mn (k,−G)
]
− µδmn

= Rηmn (k) , (B20)

with the Hermiticity of R̃ (k) following analogously.

3. Parameterization of the charge-one excitation matrices

With the transformation properties of the charge-one excitation matrices at hand, we now analyze the consequence
of each discrete symmetry of TBG from Appendix [A 2 c].

Firstly, as shown in Appendix [B 2], the charge-one excitation matrices are Hermitian and diagonal in valley space.
Moreover, as a consequence of the C2zT symmetry, they are real, and hence symmetric. In the most general case,
they can be parameterized as

R (k) = ζ0τzd1 (k) + ζ0τ0d2 (k) + ζxτzd3 (k) + ζxτ0d4 (k) + ζzτzd5 (k) + ζzτ0d6 (k) , (B21)

R̃ (k) = ζ0τz d̃1 (k) + ζ0τ0d̃2 (k) + ζxτz d̃3 (k) + ζxτ0d̃4 (k) + ζzτz d̃5 (k) + ζzτ0d̃6 (k) , (B22)

where di (k) and d̃i (k) (1 ≤ i ≤ 6) are real functions of the crystalline momentum k. Moreover, as a consequence of
Eqs. (B16) and (B17) for g = C2z, we find that the parity of di (k) and d̃i (k) (1 ≤ i ≤ 6) with respect to k is given
by the parity of i, i.e.

di (−k) = (−1)idi (k) , d̃i (−k) = (−1)id̃i (k) , for 1 ≤ i ≤ 6. (B23)

No additional restrictions are imposed by the time-reversal symmetry T .
In the particle-hole symmetric case (λ = 0), we find that the particle-hole transformation P additionally imposes

di (−k) =

{
di (k) if 1 ≤ i ≤ 2

−di (k) if 3 ≤ i ≤ 6
, d̃i (−k) =

{
d̃i (k) if 1 ≤ i ≤ 2

−d̃i (k) if 3 ≤ i ≤ 6
, (B24)

which together with Eq. (B23) requires that di (k) = d̃i (k) = 0 for i = 1, 4, 6. In the particle-hole symmetric case
(λ = 0), the parameterization of the charge-one excitation matrices reads as

R (k) = ζ0τ0d2 (k) + ζxτzd3 (k) + ζzτzd5 (k) , (B25)

R̃ (k) = ζ0τ0d̃2 (k) + ζxτz d̃3 (k) + ζzτz d̃5 (k) , (B26)
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where the momentum parity of the functions di (k) and d̃i (k) for i = 2, 3, 5 is given by Eq. (B23).
In the λ = 1 case, although not exact, the particle-hole transformation P is an an excellent approximate symme-

try [84]. Provided the gauge-fixing condition from Eq. (A36) is imposed, we find that the parameterization of the
charge-one excitation matrices from Eqs. (B21) and (B22) obeys

|di (k)| � |dj (k)| and
∣∣∣d̃i (k)

∣∣∣� ∣∣∣d̃j (k)
∣∣∣, for i = 1, 4, 6 and j = 2, 3, 5, (B27)

meaning that Eqs. (B25) and (B26) still hold approximately. Nevertheless, in the absence of exact particle-hole sym-
metry, we will employ the exact parameterizations from Eqs. (B21) and (B22) and only then explore the consequences
of Eq. (B27).

Finally, in the first chiral limit (w0 = 0), the presence of the anti-commuting C symmetry implies that the charge-one
excitation matrices are diagonal

R (k) = ζ0τ0d2 (k) , (B28)

R̃ (k) = ζ0τ0d̃2 (k) , (B29)

where the real functions d2 (k) and d̃2 (k) are even with respect to momentum inversion.

4. Charge-one excitation above specific ground states

As written in Eqs. (B1) and (B2), the charge-one commutation relations are cumbersome to apply for any choice of
TBG ground states apart from the states |Ψν〉 defined in Eq. (B7). This is because for a generic U (4)×U (4) rotation of
the state

∣∣Ψν+,ν−
ν

〉
introduced in Eq. (B8) and for a given momentum k, the states ĉ†k,n,η,s

∣∣Ψν+,ν−
ν

〉
(ĉk,n,η,s

∣∣Ψν+,ν−
ν

〉
)

are not necessarily linearly independent, and therefore provide a redundant basis for the electron (hole) excitations
above the ground state. As a simple example, consider the ν = −3 valley-polarized ground state with C = 1

|ϕ〉 =
∏
k

d̂†k,+1,+,↑ |0〉 =
∏
k

1√
2

(
ĉ†k,+1,+,↑ + iĉ†k,−1,+,↑

)
|0〉 . (B30)

With only one occupied Chern band, the state |ϕ〉 admits a single hole excitation with momentum k. On the other
hand, both ĉk,+1,+,↑ |ϕ〉 and ĉk,−1,+,↑ |ϕ〉 are non-vanishing. The solution to this apparent contradiction is that
ĉk,+1,+,↑ |ϕ〉 = iĉk,−1,+,↑ |ϕ〉, meaning that the two hole excitations are in fact one and the same. The situation
becomes even worse when considering generic rotations of the state |ϕ〉, where a coherent superposition of potentially
all the TBG active bands is filled: despite having only one filled band and hence a single hole excitation for a given
momentum, acting with any of the energy band operators ĉk,n,η,s leads to a non-vanishing state.

Since the states
∣∣Ψν+,ν−

ν

〉
from Eq. (B8) are obtained by filling Chern bands of different valley-spin flavors, we

will find it useful perform a basis change and recast Eqs. (B1) and (B2) in terms of the Chern band operators from
Eq. (A31) as [

HI − µN̂, d̂†k,eY1
,η,s

]
|ϕ〉 =

∑
eY2

R′ηeY2
eY1

(k) d̂†k,eY2
,η,s |ϕ〉 , (B31)

[
HI − µN̂, d̂k,eY1

,η,s

]
|ϕ〉 =

∑
eY2

R̃′ηeY2
eY1

(k) d̂k,eY2
,η,s |ϕ〉 , (B32)

where the charge-one excitation matrices expressed in the Chern-band basis are given by

R′ηeY2
eY1

(k) =
∑
m,n

W ∗eY2
,mWeY1

,nR
η
mn (k) ,

R̃′ηeY2
eY1

(k) =
∑
m,n

WeY2
,mW

∗
eY1

,nR̃
η
mn (k) .

(B33)

Here and in what follows, we will use the same symbol to represent a matrix or a vector in both the Chern (eY = ±1)
and energy band (n = ±1) bases. To avoid confusion, we will employ a “prime” (′) symbol to denote that a matrix or
vector is expressed in the Chern band basis, rather than the energy band basis. For generic U (4)×U (4) rotations of
the states

∣∣Ψν+,ν−
ν

〉
, we will also define rotated Chern and energy band fermion operators. By doing so, we avoid the

problems associated with redundant bases for the charge-one excitations.
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a. Rotated fermion operators

Consider a specific U (4)×U (4) rotation (henceforth denoted by Û) of the state from Eq. (B8)

|ϕ〉 = Û |Ψν+,ν−
ν 〉 . (B34)

We employ ρeY ,η,s = 0, 1 to explicitly show which Chern-valley-spin flavors are occupied in the unrotated state∣∣Ψν+,ν−
ν

〉
, such that

ρeY ,η,s =

{
1, if the Chern-valley-spin flavor {eY , η, s} band is occupied in

∣∣Ψν+,ν−
ν

〉
0, if the Chern-valley-spin flavor {eY , η, s} band is empty in

∣∣Ψν+,ν−
ν

〉 . (B35)

We are interested in explicitly deriving the charge-one excitation states above |ϕ〉, by particularizing Eqs. (B1)
and (B2). To find a non-redundant basis for the charge-one excitations, we define the rotated Chern band basis

ĝ†k,eY ,η,s ≡ Û d̂
†
k,eY ,η,s

Û† =
∑

e′Y ,η
′,s′

U ′eY ηs,e′Y η′s′
d̂†k,e′Y ,η′,s′

, (B36)

as well as the rotated energy band basis

f̂†k,n,η,s ≡ Û ĉ
†
k,n,η,sÛ

† =
∑

n′,η′,s′

Unηs,n′η′s′ ĉ
†
k,n′,η′,s′ . (B37)

In Eq. (B36) and Eq. (B37), U ′eY ηs,e′Y η′s′ and Unηs,n′η′s′ respectively denote eight-dimensional unitary matrices im-

plementing the rotation Û within the original Chern band (d̂†k,eY ,η,s) and energy band (ĉ†k,n,η,s) bases. The rotated
Chern band operator ĝ†k,eY ,η,s creates a fermion with a Chern number eY = ±1, as the U (4)×U (4) rotations gener-
ated by Eq. (A55) do not mix the different Chern sectors. On the other hand, ĝ†k,eY ,η,s generally denotes a coherent
superposition of fermions at momentum k from all valley and spin sectors, with the indices η and s merely indicating
that ĝ†k,eY ,η,s is obtained from d̂†k,eY ,η,s by acting with the transformation Û . For the rotated energy band fermion
f̂†k,n,η,s, the band (n), valley (η), and spin (s) indices are simply an indication that it was obtained by rotating the
original energy band fermion ĉ†k,n,η,s according to the transformation Û .

The main benefit of using the rotated Chern basis from Eq. (B36) is that the ground state |ϕ〉 of Eq. (B34) has a
particularly simple expression

|ϕ〉 =
∏
k

 ∏
eY ,η,s

ρeY ,η,s=1

ĝ†k,eY ,η,s

 |0〉 , (B38)

where the product runs over those values {eY , η, s} for which ρeY ,η,s = 1. When written in this form, it becomes clear
that a non-redundant basis for the electron excitations above |ϕ〉 with a definite momentum k is given by the 4 − ν
operators ĝ†k,eY ,η,s for which ρeY ,η,s = 0. Similarly, a linearly-independent basis for the hole excitations is given by
the 4 + ν operators ĝk,eY ,η,s for which ρeY ,η,s = 0. We illustrate this schematically for a generic U (4)×U (4) rotation
of the state

∣∣∣Ψ1,2
−1

〉
in Fig. 6.

b. Rotated charge-one excitation matrices

As discussed in Appendix [B 4 a] and shown schematically in Fig. 6, the Chern band operators d̂†k,eY ,η,s represent
coherent superpositions of the occupied bands in |ϕ〉. As such, we will rewrite Eqs. (B31) and (B32) in terms of the
rotated Chern band basis defined in Eq. (B36)[

HI − µN̂, ĝ†k,eY1
,η1,s1

]
|ϕ〉 =

∑
eY2

,η2,s2
ρeY2

,η2,s2
=0

[
R′Û (k)

]
eY2

η2s2,eY1
η1s1

ĝ†k,eY2
,η2,s2

|ϕ〉 , for ρeY1
,η1,s1 = 0, (B39)
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FIG. 6. Defining a non-redundant basis for the charge-one excitations. We consider the state |ϕ〉 = Û
∣∣Ψ1,2
−1

〉
, where Û denotes a

U (4)×U (4) rotation. For generic rotations Û the three occupied bands of |ϕ〉 represent coherent superpositions of the original
TBG Chern bands, implying that the operators d̂†k,eY ,η,s (d̂k,eY ,η,s) acting on the state |ϕ〉 constitute a redundant basis for
the electron (hole) excitations. By defining a rotated Chern band basis according to Eq. (B36), the state |ϕ〉 can be rewritten
simply as

∏
k

(
ĝ†k,−1,−,↑ĝ

†
k,+1,−,↑ĝ

†
k,−1,−,↓

)
|0〉. The rotated operators ĝ†k,eY ,η,s (ĝk,eY ,η,s) corresponding to the empty (filled)

bands in |ϕ〉 provide a linearly independent basis for all the electron (hole) excitations on top of |ϕ〉. The rotated charge-one
excitation matrices R′Û (k) and R̃′Û (k) defined in Eqs. (B41) and (B42) are then diagonalized in the space of empty and filled
bands of |ϕ〉, respectively. For a given momentum k, the rotated operators ĝ†k,eY ,η,s (ĝk,eY ,η,s) corresponding to the empty
(filled) bands in |ϕ〉 can be recombined into the operators γ̂†k,p for 1 ≤ p ≤ 4 − ν (θ̂k,p for 1 ≤ p ≤ 4 + ν), which create an
electron (hole) excitation above |ϕ〉 with energy Epk (Ẽpk).

[
HI − µN̂, ĝk,eY1

,η1,s1

]
|ϕ〉 =

∑
eY2

,η2,s2
ρeY2

,η2,s2
=1

[
R̃′Û (k)

]
eY2

η2s2,eY1
η1s1

ĝk,eY2
,η2,s2 |ϕ〉 , for ρeY1

,η1,s1 = 1. (B40)

where we have also introduced the rotated charge-one excitation matrices given by[
R′Û (k)

]
eY2

η2s2,eY1
η1s1

=
∑

eY3
,η3,s3

eY4
,η4,s4

U ′eY1
η1s1,eY3

η3s3R
′η3
eY4

,eY3
(k) δη3η4

δs3s4U
′∗
eY2

η2s2,eY4
η4s4 , (B41)

[
R̃′Û (k)

]
eY2

η2s2,eY1
η1s1

=
∑

eY3
,η3,s3

eY4
,η4,s4

U ′∗eY1
η1s1,eY3

η3s3R̃
′η3
eY4

,eY3
(k) δη3η4

δs3s4U
′
eY2

η2s2,eY4
η4s4 , (B42)

or equivalently, in matrix form, by

R′Û (k) = U ′∗
(
R′ (k)⊗ s0

)
U ′T , (B43)

R̃′Û (k) = U ′
(
R̃′ (k)⊗ s0

)
U ′†. (B44)

Note that in the electron (hole) commutation relation, we have restricted to only those operators ĝ†k,eY ,η,s (ĝk,eY ,η,s)
which create (destroy) fermions belonging to the empty (filled) rotated Chern bands of |ϕ〉. In the chiral limit (w0 = 0),
Eqs. (B28) and (B29) imply that the charge-one excitation matrices R (k) and R̃ (k), and hence the rotated charge-one
excitation matrices are proportional to identity. As such, they do not include any off-diagonal elements between the
fermions belonging to the empty and filled rotated Chern bands in |ϕ〉. Away from the chiral limit (w0 6= 0), without
exact particle-hole symmetry (λ = 1), and for general U (4) × U (4) rotations, the R′Û (k) and R̃′Û (k) matrices will
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generically contain non-vanishing off-diagonal elements between the fermions belonging to the empty and filled bands
of |ϕ〉. This is a consequence of |ϕ〉 being a perturbative rather than exact eigenstate of HI .

The charge commutation relations from Eqs. (B39) and (B40) written in the rotated Chern band basis allow us to
find the electron and hole excitation states above the ground state |ϕ〉. To see this, we first note that R′Û (k) and
R̃′Û (k) are Hermitian, being related by a unitary transformations to the Hermitian matrices R (k)⊗s0 and R̃ (k)⊗s0,
respectively. Therefore, their restrictions into the filled or empty rotated Chern bands from Eqs. (B39) and (B40)
are Hermitian and can be diagonalized. We define the electron (Ξ′pk,eY ηs for 1 ≤ p ≤ 4 − ν) and hole (Ξ̃′pk,eY ηs for
1 ≤ p ≤ 4 + ν) excitation wave functions in the rotated Chern basis from Eq. (B36) (where p indexes the excitation),
with support only on the empty and occupied rotated Chern bands, respectively, i.e.

Ξpk,eY ηs = 0, if ρeY ,η,s = 1, (B45)

Ξ̃pk,eY ηs = 0, if ρeY ,η,s = 0. (B46)

The charge excitation wave functions diagonalize the restriction of R′Û (k) [R̃′Û (k)] in the empty (occupied) rotated
Chern bands∑

eY1
,η1,s1

ρeY1
,η1,s1=0

[
R′Û (k)

]
eY2

η2s2,eY1
η1s1

Ξ′pk,eY1
η1s1

= EpkΞ′pk,eY2
η2s2

, for 1 ≤ p ≤ 4− ν, if ρeY2
,η2,s2 = 0 (B47)

∑
eY1

,η1,s1
ρeY1

,η1,s1
=1

[
R̃′Û (k)

]
eY2

η2s2,eY1
η1s1

Ξ̃′pk,eY1
η1s1

= ẼpkΞ̃′pk,eY2
η2s2

, for 1 ≤ p ≤ 4 + ν, if ρeY2
,η2,s2 = 1, (B48)

where Epk and Ẽpk denote the electron and hole excitation energies 2, respectively. Assuming that |ϕ〉 is a ground
state of the TBG interaction Hamiltonian, the excitation energies must be positive Epk, Ẽ

p
k ≥ 0 [75]. Defining the

charge-one excitation operators

γ̂†k,p =
∑
eY ,η,s

Ξ′pk,eY ηsĝ
†
k,eY ,η,s

=
∑
n,η,s

Ξpk,nηsf̂
†
k,n,η,s, for 1 ≤ p ≤ 4− ν, (B49)

θ̂k,p =
∑
eY ,η,s

Ξ̃′pk,eY ηsĝk,eY ,η,s =
∑
n,η,s

Ξ̃pk,nηsf̂k,n,η,s, for 1 ≤ p ≤ 4 + ν, (B50)

corresponding respectively to the electron and hole excitations above the |ϕ〉 state, we find that[
HI − µN̂, γ̂†k,p

]
|ϕ〉 = Epkγ̂

†
k,p |ϕ〉 , for 1 ≤ p ≤ 4− ν, (B51)[

HI − µN̂, θ̂k,p
]
|ϕ〉 = Ẽpkθ̂k,p |ϕ〉 , for 1 ≤ p ≤ 4 + ν, (B52)

implying that γ̂†k,p |ϕ〉 (θ̂k,p |ϕ〉) is an electron (hole) excited eigenstate of HI above the ground state |ϕ〉 with eigenvalue
Eϕ + Epk + µ (Eϕ + Ẽpk − µ), where Eϕ is the energy of |ϕ〉, i.e. HI |ϕ〉 = Eϕ |ϕ〉. In Eqs. (B49) and (B50), we have
also introduced the charge-one excitation wave functions in the rotated energy band basis

Ξpk,nηs =
∑
eY

WeY ,nΞ′pk,eY ηs (B53)

Ξ̃pk,nηs =
∑
eY

W ∗eY ,nΞ̃′pk,eY ηs (B54)

Having obtained the charge-one excitation operators from Eqs. (B49) and (B50), we now perform one last basis
transformation to express the corresponding wave functions in the original TBG fermion basis. Defining

Z ′pk,eY ηs =
∑

e′Y ,η
′,s′

U ′e′Y η′s′,eY ηs
Ξ′pk,e′Y η′s′

, for 1 ≤ p ≤ 4− ν, (B55)

2 The excitation energies are defined with respect to the grand canonical Hamiltonian HI − µN̂ .
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Z̃ ′pk,eY ηs =
∑

e′Y ,η
′,s′

U ′∗e′Y η′s′,eY ηs
Ξ̃′pk,e′Y η′s′

, for 1 ≤ p ≤ 4 + ν, (B56)

we can rewrite the charge-one excitation operators as

γ̂†k,p =
∑
eY ,η,s

Z ′pk,eY ηsd̂
†
k,eY ,η,s

=
∑
n,η,s

Zpk,nηsĉ
†
k,n,η,s, for 1 ≤ p ≤ 4− ν, (B57)

θ̂k,p =
∑
eY ,η,s

Z̃ ′pk,eY ηsd̂k,eY ,η,s =
∑
n,η,s

Z̃pk,nηsĉk,n,η,s, for 1 ≤ p ≤ 4 + ν, (B58)

where we have also defined the charge-one excitation wave functions Zpk,nηs and Z̃
p
k,nηs in the TBG energy band basis.

Finally, we can define two projector matrices which project in the empty and occupied Chern bands of the unrotated
state

∣∣Ψν+,ν−
ν

〉
, whose components in the Chern band basis read as

Π′eY1
η1s1,eY2

η2s2 = δeY1
,eY2

δη1,η2δs1,s2 − ρeY1
,η1,s1ρeY2

,η2,s2 , (B59)

Π̃′eY1
η1s1,eY2

η2s2 = ρeY1
,η1,s1ρeY2

,η2,s2 , (B60)

respectively. Eqs. (B59) and (B60) can be employed to obtain a set of important relations which relate the U (4)×U (4)

transformation Û , the occupied bands of the unrotated state
∣∣Ψν+,ν−

ν

〉
, the charge-one excitation matrices from

Eqs. (B1) and (B2), and the charge-one excitation spectra for |ϕ〉
4−ν∑
p=1

EpkΞ∗pk,nηsΞ
p
k,n′η′s′ =

[
ΠR∗Û (k) Π

]
nηs,n′η′s′

=
[
ΠU

(
R (k)⊗ s0

)
U†Π

]
nηs,n′η′s′

, (B61)

4+ν∑
p=1

ẼpkΞ̃pk,nηsΞ̃
∗p
k,n′η′s′ =

[
Π̃R̃Û (k) Π̃

]
nηs,n′η′s′

=
[
Π̃U

(
R̃ (k)⊗ s0

)
U†Π̃

]
nηs,n′η′s′

, (B62)

4−ν∑
p=1

EpkZ
∗p
k,nηsZ

p
k,n′η′s′ =

[
U †ΠR∗Û (k) ΠU

]
nηs,n′η′s′

=
[
U†ΠU

(
R (k)⊗ s0

)
U†ΠU

]
nηs,n′η′s′

, (B63)

4+ν∑
p=1

ẼpkZ̃
p
k,nηsZ̃

∗p
k,n′η′s′ =

[
U†Π̃R̃Û (k) Π̃U

]
nηs,n′η′s′

=
[
U†Π̃U

(
R̃ (k)⊗ s0

)
U †Π̃U

]
nηs,n′η′s′

. (B64)

In Appendix [E], we will employ these relations in order to provide an analytical understanding of the symmetry
properties of the spectral function of the TBG ground states.

Appendix C: Spectral function

An STM experiment allows for the indirect determination of the spectral function A (r, ω) of a certain quantum
system. This appendix is dedicated to defining and then deriving the spectral function for a TBG sample. We
show that the TBG spectral function can be written as a contraction between two (gauge-dependent) tensors: the
spectral function matrix (which depends on the specific ground state that we consider and on the many-body TBG
Hamiltonian), and the spatial factor (which depends on the active band TBG wave functions). We then investigate
the properties of the spatial factor arising from the single-particle symmetries of the single-particle TBG Hamiltonian
outlined in Appendix [A 1 c], as well as on the gauge-fixing conditions from Appendix [A 1 d]. Finally, we will provide
an approximation to the spatial factor and compute it at key momenta within the SLG Brillouin zone.

1. Derivation

a. Fermionic field operators

We start by introducing the fermionic field operator Ψ̂s (r) which annihilates an electron of spin s at position
r. Letting φ (r) denote the carbon pz orbital wave function, we can obtain the following anti-commutation relation
between the field operator Ψ̂s (r) and the microscopic fermion operators â†R,α,s,l introduced in Appendix [A 1 a]{

Ψ̂s (r) , â†R,α,s,l

}
= 〈0| Ψ̂s (r) â†R,α,s,l |0〉 = φ [r−Rθ,l (R + tα)− zl] , (C1)
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i ξi Ci Ni
1 0.9807 0.2824 1.100
2 1.4436 0.5470 2.891
3 2.6005 0.2320 12.59
4 6.5100 0.0103 124.9

TABLE I. Parameters of the valence electron wave function of the carbon atom pz orbital from Eq. (C2). These parameters
were tabulated by Ref. [94], and were obtained by a series expansion in the basis set of atomic Slater orbitals.

with zl = zlẑ, where zl is the height of the layer l (see Fig. 5). Note that â†R,α,s,l creates an electron of spin s in a
carbon pz orbital located at position Rθ,l (R + tα). Throughout this work, we take the pz orbital wave function to
be given by an analytic approximation of the carbon atom pz orbital [94, 95]

φ (r) =
1

2

√
3

πa5
B

z
4∑
i=1

CiNie
− ξiraB , (C2)

where r = xx̂ + yŷ + zẑ, aB is the Bohr radius, and the dimensionless parameters Ci, Ni and ξi (for 1 ≤ i ≤ 4)
were defined and tabulated by Ref. [94] and are also provided in Table I. In what follows, we will assume pz orbitals
belonging to different carbon atoms to be orthogonal and thus{

â†R,α,s,l, âR′,β,s′,l′
}

= δR,R′δα,βδs,s′δl,l′ . (C3)

Strictly speaking, this is not true, as we are assuming atomic orbitals as opposed to Wannier ones. Nevertheless,
for visualizing STM patterns, Eq. (C2) provides a good enough approximation [95]. Using the anti-commutation
relations from Eqs. (C1) and (C3) we can express the fermionic field operator at the STM tip position in terms of the
microscopic graphene orbitals as

Ψ̂†s (r + zp) =
∑
α,l

∑
R

φ [r + zp −Rθ,l (R + tα)− zl] â
†
R,α,s,l + . . . , (C4)

where zp = zpẑ, with zp being the height of the STM tip (see Fig. 5). The dots at the end imply that Eq. (C4) does
not provide a full expansion of the fermionic field, as the pz Carbon atoms of the TBG sample do not form a complete
basis set. For Eq. (C4) to be complete, one would need to include the all the (infinitely many) orbitals orthogonal
to the ones created by the set of operators â†R,α,s,l. As they are not relevant for the physics of TBG near charge
neutrality, we leave them unspecified in the expansion from Eq. (C4) and omit them completely henceforth.

We assume the height of the STM tip to remain constant throughout an experiment 3. As such, we will employ
a convention in which r denotes a strictly two-dimensional vectors in the plane of the TBG sample, and use the
shorthand notation where

ψ̂†s (r) ≡ Ψ̂†s (r + zp) (C5)

denotes the Fermionic field operator corresponding to the STM tip position and

φl (r) ≡ φ (r + zp − zl) . (C6)

is the orbital wave function for a pz orbital located at the origin, within layer l.
Using the notation in Eqs. (C5) and (C6), Eq. (C4) becomes

ψ̂†s (r) =
∑
α,l

∑
R

φl [r−Rθ,l (R + tα)] â†R,α,s,l. (C7)

We will now relate the Fermion field operator to the TBG energy band operators introduced in Eq. (A15). We start
by introducing the two-dimensional Fourier transformation of the pz orbital wave function over the SLG Brillouin
Zone BZl

φl (r) =
1

N0ΩSLG

∑
p∈BZl
G∈Gl

φl (p + G) e−i(p+G)·r, (C8)

3 For the theoretically predicted STM signal, we assume the height of the STM tip to remain constant, whereas for experiments, its
height changes so as to keep the tunneling current constant. As such, we normalize the experimentally-measured STM signals and the
theoretically-predicted spectral functions in Fig. 1 according to their maxima.
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where Gl is the reciprocal lattice of the graphene layer l, as defined in the text surrounding Eq. (A5), ΩSLG denotes
the surface area of the SLG unit cell, and N0 denotes the number of SLG unit cells. The total area of the TBG sample
is thus given by ΩTBG = N0ΩSLG. Owing to the rotational symmetry of the pz orbital around the ẑ axis, we have
that

φl (p + G) = φl (|p + G|) (C9)

and φl (p + G) is also real, i.e.

φl (p + G) = φ∗l (p + G) . (C10)

Employing the Fourier transformations introduced in Eqs. (A4) and (C8), we can express the Fermionic field operators
ψ̂†s (r) in terms of the moiré lattice low-energy operators defined in Eq. (A8)

ψ̂†s (r) =
1

N0ΩSLG

√
N0

∑
α,l

∑
R

∑
p1,p2∈BZl

G∈Gl

φl (p1 + G) â†p2,α,s,l
e−i(p1+G)·rei(p1−p2)·Rθ,l(R+tα)eiG·Rθ,ltα

=
1

ΩSLG

√
N0

∑
α,l

∑
p∈BZl
G∈Gl

φl (p + G) â†p,α,s,le
iG·Rθ,ltαe−i(p+G)·r

=
1

ΩSLG

√
N0

∑
α,l,η

∑
k∈MBZl
Q∈Qηl
G∈Gl

φl (ηKl + k−Q + G) eiG·Rθ,ltαe−i(ηKl+k−Q+G)·rĉ†k,Q,η,α,s. (C11)

Using Eq. (A17), we can also write Eq. (C11) in the energy band basis as

ψ̂†s (r) =
∑
η,n

Vr,knη ĉ
†
k,n,η,s, (C12)

where we have defined

Vr,knη =
1

ΩSLG

√
N0

∑
α,l

∑
Q∈Qηl
G∈Gl

φl (ηKl + k−Q + G) eiG·Rθ,ltαe−i(ηKl+k−Q+G)·ru∗Qα;nη (k) . (C13)

b. The TBG spectral function

As mentioned previously, the key quantity which is measured in an STM experiment is the real-space spectral
function A (r, ω) which can be written as [77, 96, 97]

A (r, ω) =
∑
λ,ξ

∑
s

Pλ

[∣∣∣〈ξ∣∣∣ψ̂†s (r)
∣∣∣λ〉∣∣∣2δ (ω − Eξ + Eλ) +

∣∣∣〈ξ∣∣∣ψ̂s (r)
∣∣∣λ〉∣∣∣2δ (ω + Eξ − Eλ)

]
, (C14)

where |λ〉 and |ξ〉 denote the exact many-body eigenstates of TBG, with the corresponding energies being given by
Eξ and Eλ, respectively. In Eq. (C14) Pλ represents the thermodynamic probability of the system being in state λ.
In what follows, we will focus on low-temperature measurements, and so we will assume that Pλ = 1 if |λ〉 is one of
the ground-states of TBG, and zero otherwise [42, 58, 68]. In Eq. (C14), the state ψ̂†s (r) |λ〉 (ψ̂s (r) |λ〉) is formed
by creating (destroying) an electron from the TBG many-body ground state, and thus represents a superposition
of charge-one excitations [75]. It follows that the only states |ξ〉 which give a non-zero contribution to the spectral
function in Eq. (C14) are the charge-one excitations above the many-body ground states of TBG, whose properties
were analytically derived in Ref. [75] and summarized and extended in Appendix [B].

As discussed in Appendix [B], Ref. [75] has shown that the low-energy charge-one excitation above a given TBG
ground state at integer fillings −4 ≤ ν ≤ 4 [68] are obtained by acting with the energy band operators from Eq. (A15)
with n = ±1, or alternatively, with the Chern band basis operators from Eq. (A31) on the many-body ground states
of TBG. As such, we can employ Eq. (C12) to write the real-space spectral function in terms of the energy-band
operators as

A (r, ω) =
∑

k′,k∈MBZ

∑
n,η
n′,η′

{[
M+ (ω)

]
knη,k′n′η′

Vr,knηV
∗
r,k′n′η′ +

[
M− (ω)

]
knη,k′n′η′

Vr,knηV
∗
r,k′n′η′

}
=
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=
∑

k′,k∈MBZ

∑
n,η
n′,η′

[
M+ (ω) +M− (ω)

]
knη,k′n′η′

[B (r)]knη,k′n′η′ (C15)

where here, and in what follows, all summations over the TBG energy bands will be restricted to the active TBG
bands (i.e. n, n′ = ±1). Eq. (C15) represents the central result of this appendix: the spectral function of TBG is the
tensor contraction between the spectral function matrices [M± (ω)]knη,k′n′η′ , which depend on the particular TBG
ground state that we consider and whose elements are given by[

M+ (ω)
]
knη,k′n′η′

=
∑
λ,ξ

∑
s,s′

Pλ 〈λ|ĉk′,n′,η′,s′ |ξ〉
〈
ξ
∣∣∣ĉ†k,n,η,s∣∣∣λ〉 δs,s′δ (ω − Eξ + Eλ) , (C16)

[
M− (ω)

]
knη,k′n′η′

=
∑
λ,ξ

∑
s,s′

Pλ

〈
λ
∣∣∣ĉ†k,n,η,s∣∣∣ξ〉 〈ξ|ĉk′,n′,η′,s′ |λ〉 δs,s′δ (ω + Eξ − Eλ) , (C17)

respectively for the so called “electron” and “hole” contributions, and the spatial factor matrix B (r) whose elements
are given by [B (r)]knη,k′n′η′ = V ∗r,k′n′η′Vr,knη, or more precisely by

[B (r)]knη,k′n′η′ =
1

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Qηl1
Q2∈Qη′l2

∑
G1∈Gl1
G2∈Gl2

φl1 (ηKl1 + k−Q1 + G1)φ∗l2 (η′Kl2 + k′ −Q2 + G2)

×u∗Q1α1;nη (k)uQ2α2;n′η′ (k
′) ei(G1·Rθ,l1tα1

−G2·Rθ,l2tα2)e−i(ηKl1
+k−Q1+G1)·rei(η

′Kl2
+k′−Q2+G2)·r. (C18)

It is important to note that neither the spectral function matrix elements, nor the spatial factor are separately gauge-
invariant quantities. By fixing the gauge according to Appendix [A 1 d], we can however discuss their properties
individually. We also note that provided that the moiré translation symmetry is not broken by the TBG ground state
(which will always assume to be the case in this work), the spectral function matrix is diagonal in momentum space[

M± (ω)
]
knη,k′n′η′

= 0, if k′ 6= k. (C19)

Finally, the spectral function matrix elements can be used to determine the density of states ρ (ω) by tracing over all
degrees of freedom

ρ (ω) =
∑

k∈MBZ

∑
n,η

[
M+ (ω) +M− (ω)

]
knη,knη

(C20)

Alternatively, one can also adopt a momentum-space description and define the Fourier transformation of the
spectral function and spatial factor

A (r, ω) =

∫
d2q

(2π)
2A (q, ω) eiq·r, B (r) =

∫
d2q

(2π)
2B (q) eiq·r. (C21)

By analogy with Eq. (C15) A (q, ω) can also be expressed in terms of the spectral function matrix elements as

A (q, ω) =
∑

k′,k∈MBZ

∑
n,η
n′,η′

[
M+ (ω) +M− (ω)

]
knη,k′n′η′

[B (q)]knη,k′n′η′ , (C22)

where the Fourier-transformed spatial factor is given explicitly by

[B (q)]knη,k′n′η′ =
(2π)

2

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Qηl1
Q2∈Qη′l2

∑
G1∈Gl1
G2∈Gl2

φl1 (ηKl1 + k−Q1 + G1)φ∗l2 (η′Kl2 + k′ −Q2 + G2)

×u∗Q1α1;nη (k)uQ2α2;n′η′ (k
′) ei(G1·Rθ,l1tα1−G2·Rθ,l2tα2)δ (ηKl1 + k−Q1 + G1 − η′Kl2 − k′ + Q2 −G2 + q) . (C23)

From a computational standpoint, we evaluate and store the Fourier-transformed spatial factor. After contracting it
with the spectral function matrix elements for a given insulator ground state, we employ the FINUFFT package [98, 99]
for the efficient inverse (nonuniform) Fourier transformation back to real space. For the evaluation of the spectral
function matrix elements, we approximate the δ-functions from Eqs. (C16) and (C17) by Lorentzians according to

δ(ω)→ 1

π

ε

x2 + ε2
, (C24)

where the broadening width ε is chosen adaptively throughout the MBZ, depending on the local gradient of the
charge-one excitation dispersion [100].
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2. Symmetries and the spatial factor

The discrete spatial symmetries of the single-particle TBG Hamiltonian summarized in Appendix [A 1 c] impose
several constraints on the spatial factor, as a consequence of the gauge-fixing conventions from Appendix [A 1 d]. In
this section, we discuss the consequences of the C2zT and T symmetries of single-particle TBG Hamiltonian on the
spatial factor. The discussion of the particle-hole symmetry of Ĥ0 (in the λ = 0 case), which does not impose any
further constraints on the spatial factor will be relegated to Appendix [C 3 b].

a. C2zT symmetry

Due to the C2zT symmetry implemented by Eqs. (A19) and (A22), as well as the gauge-fixing from Eq. (A27), we
find that the single-particle TBG wave functions obey

uQα;nη (k) = u∗Q(−α);nη (k) , (C25)

where −α = B,A for α = A,B. Additionally, from Eq. (A3), we have that

e−iG·Rθ,ltα = eiG·Rθ,lt−α , for G ∈ Gl, (C26)

where tα is the sublattice displacement vector for the graphene sublattice α. Using also the reality of the Fourier-
transformed pz orbital wave functions from Eq. (C10), one can show from Eq. (C23) that

[B (q)]
∗
knη,k′n′η′ =

(2π)
2

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Qηl1
Q2∈Qη′l2

∑
G1∈Gl1
G2∈Gl2

φ∗l1 (ηKl1 + k−Q1 + G1)φl2 (η′Kl2 + k′ −Q2 + G2)

×uQ1α1;nη (k)u∗Q2α2;n′η′ (k
′) e−i(G1·Rθ,l1tα1−G2·Rθ,l2tα2)δ (ηKl1 + k−Q1 + G1 − η′Kl2 − k′ + Q2 −G2 + q)

=
(2π)

2

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Qηl1
Q2∈Qη′l2

∑
G1∈Gl1
G2∈Gl2

φl1 (ηKl1 + k−Q1 + G1)φ∗l2 (η′Kl2 + k′ −Q2 + G2)

×u∗Q1−α1;nη (k)uQ2−α2;n′η′ (k
′) ei(G1·Rθ,l1t−α1

−G2·Rθ,l2t−α2)δ (ηKl1 + k−Q1 + G1 − η′Kl2 − k′ + Q2 −G2 + q)

=
(2π)

2

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Qηl1
Q2∈Qη′l2

∑
G1∈Gl1
G2∈Gl2

φl1 (ηKl1 + k−Q1 + G1)φ∗l2 (η′Kl2 + k′ −Q2 + G2)

×u∗Q1α1;nη (k)uQ2α2;n′η′ (k
′) ei(G1·Rθ,l1tα1

−G2·Rθ,l2tα2)δ (ηKl1 + k−Q1 + G1 − η′Kl2 − k′ + Q2 −G2 + q) .

(C27)

Otherwise stated, the spatial factor has a real Fourier transformation

B (r) = B∗ (−r) , B (q) = B∗ (q) , (C28)

which greatly simplifies all numerical computations, by halving the memory usage and required processing power.

b. T symmetry

Another important property can be obtained by considering the T symmetry of TBG. Under the gauge-fixing
conditions from Eq. (A27), Eq. (A22) implies that the single-particle TBG wave functions obey

u∗−Qα;n(−η) (−k) =
[
BT (k)

]
nη,n−η uQα,nη (k) = (−1)

k
uQα;nη (k) , (C29)

where we have introduced the factor

(−1)k =

{
1 k 6= kMM

−1 k = kMM

, (C30)
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with kMM
denoting any one of the three equivalent MM points in the MBZ from Eq. (A29).

Additionally, using the rotational invariance, as well as the reality of the pz orbital wave functions from Eqs. (C9)
and (C10), respectively, one can show from Eq. (C23) that

[B (−q)]
∗
kn(−η),k′n′(−η′) =

(2π)
2

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Q−ηl1
Q2∈Q−η′l2

∑
G1∈Gl1
G2∈Gl2

φ∗l1 (−ηKl1 + k−Q1 + G1)φl2 (−η′Kl2 + k′ −Q2 + G2)

×uQ1α1;n(−η) (k)u∗Q2α2;n′(−η′) (k′) e−i(G1·Rθ,l1tα1−G2·Rθ,l2tα2)δ (ηKl1 − k + Q1 −G1 − η′Kl2 + k′ −Q2 + G2 + q)

=
(2π)

2

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Qηl1
Q2∈Qη′l2

∑
G1∈Gl1
G2∈Gl2

φl1 (−ηKl1 + k + Q1 −G1)φ∗l2 (−η′Kl2 + k′ + Q2 −G2)

×(−1)k(−1)k
′
u∗Q1α1;nη (−k)uQ2α2;n′η′ (−k′) ei(G1·Rθ,l1tα1

−G2·Rθ,l2tα2)

×δ (ηKl1 − k−Q1 + G1 − η′Kl2 + k′ + Q2 −G2 + q) .
(C31)

This implies using the definition from Eq. (C23) that

[B (−q)]
∗
kn(−η),k′n′(−η′) = (−1)k(−1)k

′
[B (q)]−knη,−k′n′η′ . (C32)

Additionally, the spectral function matrix obeys the trivial property

[B (−q)]
∗
knη,k′n′η′ = [B (q)]k′n′η′,knη , (C33)

which can be readily verified using the definition from Eq. (C23). Combining Eqs. (C32) and (C33), we obtain

[B (q)]k′n′(−η′),kn(−η) = (−1)k(−1)k
′
[B (q)]−knη,−k′n′η′ . (C34)

Eq. (C34) can be simplified for the case without translation symmetry breaking (for which the condition k = k′ is
imposed from the spectral function matrix elements)

[B (r)]kn′η′,knη = [B (r)]−kn(−η),−kn′(−η′) , [B (q)]kn′η′,knη = [B (q)]−kn(−η),−kn′(−η′) . (C35)

Eq. (C35) will prove instrumental in providing a general understanding of the TBG spectral function. In anticipation of
the results from Appendix [E], we briefly mention that because of Eq. (C35), the spectral function can be alternatively
computed as

A (q, ω) =
∑

k∈MBZ
n,η,n′,η′

[
MS+ (ω) +MS− (ω)

]
knη,kn′η′

[B (q)]knη,kn′η′ , (C36)

where we have introduced the symmetrized spectral function matrices

[
MS±

ϕ (ω)
]
knη,kn′η′

=
1

2

([
M±ϕ (ω)

]
knη,kn′η′

+
[
M±ϕ (ω)

]
−kn′−η′,−kn−η

)
. (C37)

Eq. (C36) implies that any components of M± (ω) which are anti-symmetric with respect to the transformation
[knη,kn′η′]→ [−kn′(−η′),−kn(−η)] will necessarily vanish upon contracting with the spatial factor.

3. Approximations of the spatial factor

The goal of this section is to formulate a series of approximations to the spatial factor matrix for the purpose of
obtaining some analytical intuition on the STM patterns. After deriving a general approximation to the spatial factor,
we briefly review the consequences of the anti-commuting particle-hole symmetry of Ĥ0 on the approximations of the
spatial factor. Finally, we compute the approximate spatial factor at key momenta at the SLG graphene scale.
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a. General approximations

In deriving approximations to the spatial factor matrix, we will assume that the translation symmetry (at the level
of the moiré lattice) is not broken and focus on the properties of [B (q)]knη,kn′η′ . The generalization to the case when
translation symmetry is broken is straightforward.

First, we note that k ∈ MBZ and therefore |k| � |ηKl + G| for any η = ±, l = ±, and G ∈ Gl. The Fourier
transformations of pz orbital wave functions do not change significantly on the scale of the MBZ, justifying the
approximation φl (ηKl + k−Q + G) ≈ φl (ηKl −Q + G) for any l = ±, Q ∈ Q±, k ∈ MBZ, and G ∈ Gl. Thus a
first simplification of the spatial factor matrix reads[

B(1) (q)
]
knη,kn′η′

=
(2π)

2

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Qηl1
Q2∈Qη′l2

∑
G1∈Gl1
G2∈Gl2

φl1 (ηKl1 −Q1 + G1)φ∗l2 (η′Kl2 −Q2 + G2)

×u∗Q1α1;nη (k)uQ2α2;n′η′ (k
′) ei(G1·Rθ,l1tα1−G2·Rθ,l2tα2)δ (ηKl1 −Q1 + G1 − η′Kl2 + Q2 −G2 + q) . (C38)

Additionally, the TBG wave functions uQα;nη (k) decay exponentially in magnitude for large values of Q as shown
in Ref. [87]. As such, there is a natural cutoff Qmax for the magnitude of the vectors in Q±. More precisely, one has
|Q| ≤ Qmax for any Q ∈ Q±. Crucially, Ref. [87] found that Qmax . 2kθ, implying that |Q| � |ηKl + G| for any
η = ±, l = ±, Q ∈ Q±, and G ∈ Gl. As the pz orbital wave functions do not change significantly on the scale kθ, we
can approximate φl (ηKl −Q + G) ≈ φl (ηKl + G) for any l = ±, Q ∈ Q±, G ∈ Gl. Thus, we can construct a second
approximation to the spatial factor matrix[

B(2) (q)
]
knη,kn′η′

=
(2π)

2

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Qηl1
Q2∈Qη′l2

∑
G1∈Gl1
G2∈Gl2

φl1 (ηKl1 + G1)φ∗l2 (η′Kl2 + G2)

×u∗Q1α1;nη (k)uQ2α2;n′η′ (k
′) ei(G1·Rθ,l1tα1

−G2·Rθ,l2tα2)δ (ηKl1 −Q1 + G1 − η′Kl2 + Q2 −G2 + q) . (C39)

Although the pz orbital wave functions are roughly constant at the MBZ scale, they do decay significantly at the
graphene reciprocal lattice scale. In fact, it can be checked numerically that∣∣∣∣φl (ηKl + G)

φl (ηKl)

∣∣∣∣ . 0.03, for any η = ± and G ∈ Gl with |ηKl + G| 6= |ηKl|. (C40)

This implies that in Eq. (C39), the only G1 and G2 vectors that contribute significantly to
[
B2 (q)

]
knη,kn′η′

are
G1 ∈ G∗η,l1 and G2 ∈ G∗η′,l2 , where we have defined

G∗η,l = {0,−ηgl,1,−ηgl,2} . (C41)

Moreover, |ηKl + G| = |ηKl| for anyG ∈ G∗η,l, and as a consequence of Eq. (C9), we have that φl (ηKl + G) = φl (K+)
for any l = ±, η = ±, and G ∈ G∗η,l. Therefore, we can write a third approximation for the spatial factor matrix as[

B(3) (q)
]
knη,kn′η′

=
(2π)

2

ΩTBGΩSLG

∑
α1,l1
α2,l2

∑
Q1∈Qηl1
Q2∈Qη′l2

∑
G1∈Gl1
G2∈Gl2

φl1 (K+)φ∗l2 (K+)

×u∗Q1α1;nη (k)uQ2α2;n′η′ (k
′) ei(G1·Rθ,l1tα1

−G2·Rθ,l2tα2)δ (ηKl1 −Q1 + G1 − η′Kl2 + Q2 −G2 + q) . (C42)

Finally, the bottom layer l = − is about twice as far away from the STM tip than the top layer l = + is (zp−z+ ≈ 3Å
and zp − z− ≈ 6Å). Mathematically, this implies that∣∣∣∣φ− (q)

φ+ (q)

∣∣∣∣ . 0.01, (C43)

allowing us to further neglect the bottom layer contribution in Eq. (C42), and write a fourth approximation to the
spatial factor matrix[

B(4) (q)
]
knη,kn′η′

=
(2π)

2

ΩTBGΩSLG
|φ+ (K+)|2

∑
α1,α2

G1,G2∈G∗+

∑
Q1∈Qη
Q2∈Qη′

u∗Q1α1;nη (k)uQ2α2;n′η′ (k
′)
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×ei(G1·Rθ,l1tα1−G2·Rθ,l2tα2)δ [(η − η′)K+ −Q1 + Q2 + G1 −G2 + q] . (C44)

Defining the two order-three complex non-real roots of unity ωα with α = A,B and

ωA = ei
2π
3 and ωB = e−i

2π
3 , (C45)

one can rewrite the fourth approximation from Eq. (C44) as[
B(4) (q)

]
knη,kn′η′

=
(2π)

2

ΩTBGΩSLG
|φ+ (K+)|2

∑
α1,α2

0≤j1,j2<3

∑
Q1∈Qη
Q2∈Qη′

u∗Q1α1;nη (k)uQ2α2;n′η′ (k)

×ωη
′j2
α2

ω−ηj1α1
δ
[
Cj23zη

′K+ − Cj13zηK+ −Q2 + Q1 − q
]
, (C46)

where C3z denotes a three-fold rotation around the ẑ axis. It is important to note that all the approximations to
the spatial factor matrix obey the properties derived in Appendix [C 2]. Specifically, as a consequence of the C2zT
symmetry of the TBG single-particle Hamiltonian, the approximated spatial factor matrix has a real Fourier trans-
formation, meaning that B(i) (q) (for 1 ≤ i ≤ 4) is real. Additionally, because of the T symmetry, the approximated
spatial factor matrices obey[

B(i) (q)
]
kn′−η′,kn−η

=
[
B(i) (q)

]
−knη,−kn′η′

, for 1 ≤ i ≤ 4. (C47)

Finally, we note that the fourth approximation from Eq. (C44) agrees with the unappoximated spatial factor to a
relative error smaller than 5%.

b. The particle-hole symmetry and the spatial factor

In Appendix [C 2], we have argued that the anti-commuting P symmetry of Ĥ0 in the λ = 0 does not provide any
additional constraints on the spatial factors. Here, we show that the particle-hole symmetry allows us to relate the
spatial factor in the fourth approximation to the TBG form factors defined in Eq. (A39). Under the gauge-fixing
conditions from Eq. (A27), Eq. (A23) implies that the single-particle TBG wave functions obey

u−Qα,−nη (−k) = −ζQηn(−1)kuQα,nη (k) , (C48)

where the factor (−1)k was defined in Eq. (C30). We now consider the fourth approximation of the spatial factor
from Eq. (C46), where as a consequence of Eq. (C48), we have[

B(4) (q)
]
−k−nη,−k−n′η′

=
(2π)

2

ΩTBGΩSLG
|φ+ (K+)|2

∑
α1,α2

0≤j1,j2<3

∑
Q1∈Q−η
Q2∈Q−η′

u∗−Q1α1;−nη (−k)u−Q2α2;−n′η′ (−k)

× ωη
′j2
α2

ω−ηj1α1
δ
[
Cj23zη

′K+ − Cj13zηK+ + Q2 −Q1 − q
]

=
(2π)

2

ΩTBGΩSLG
|φ+ (K+)|2ηη′nn′

∑
α1,α2

0≤j1,j2<3

∑
Q1∈Q−η
Q2∈Q−η′

u∗Q1α1;nη (k)uQ2α2;n′η′ (k)

× ωη
′j2
α2

ω−ηj1α1
δ
[
Cj23zη

′K+ − Cj13zηK+ + Q2 −Q1 − q
]
. (C49)

In the neighborhood of q ≈ G ∈ Q0, Eq. (C49) is dominated by q = G, leading to 4

[
B(4) (q)

]
−k−nη,−k−n′η′

∣∣∣∣
q≈G

=
3 (2π)

2
δη,η′

ΩTBGΩSLG
|φ+ (K+)|2nn′

∑
α

∑
Q1,Q2∈Q−η

u∗Q1α;nη (k)uQ2α;n′η (k)

4 Strictly speaking, the Fourier-transformed spatial factor matrix is not a function, but rather a distribution. Because of the Dirac
δ-function located at q = G,

∣∣∣[B(4) (G)
]
knη,kn′η′

∣∣∣ = +∞. We therefore use the notation in Eq. (C50) to specify the amplitude of the
Dirac δ-function at q = G.
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× δ (Q2 −Q1 − q)

=
3 (2π)

2
δη,η′

ΩTBGΩSLG
|φ+ (K+)|2nn′

∑
α

∑
Q∈Q−η

u∗Qα;nη (k)uQ+Gα;n′η (k) δ (q−G) . (C50)

At the same time, using the approximation from Eq. (C46) directly for q ≈ G[
B(4) (q)

]
knη,kn′η′

∣∣∣∣
q≈G

=
3 (2π)

2
δη,η′

ΩTBGΩSLG
|φ+ (K+)|2

∑
α

∑
Q1,Q2∈Qη

u∗Q1α;nη (k)uQ2α;n′η (k)

× δ (−Q2 + Q1 − q)

=
3 (2π)

2
δη,η′

ΩTBGΩSLG
|φ+ (K+)|2

∑
α

∑
Q∈Qη

u∗Q+Gα;nη (k)uQα;n′η (k) δ (G− q) . (C51)

Combining Eqs. (C50) and (C51) with the definition of the TBG form factors from Eq. (A39), we find that{
nn′

[
B(4) (q)

]∗
−k−n′η,−k−nη′

+
[
B(4) (q)

]
knη,kn′η′

}∣∣∣∣
q≈G

= Mη
nn′ (k,G)

3 (2π)
2
δη,η′

ΩTBGΩSLG
|φ+ (K+)|2δ (q−G) . (C52)

c. Computing the spectral function at key momenta in the SLG BZ

As discussed in Appendix [C 3 a], the active TBG wave functions uQα;nη (k) decay exponentially in magnitude for
large values of Q [87]. As such, there is a natural cutoff Qmax for the magnitude of the vectors in Q±. More precisely,
one has |Q| ≤ Qmax . 2kθ for any Q ∈ Q± [87], implying that |Q| � |K+| for any Q ∈ Q±. Considering the fourth
approximation from Eq. (C46), we find that the contributions to the spatial factor matrix are clustered around four
types of momenta q:

|q| ≈ 0, |q| ≈ |K+|, |q| ≈ 2|K+|, |q| ≈ |g+,1|. (C53)

For each of the four types of clusters, we will chose one relevant momentum q and explicitly work out the spatial
factor matrix within the fourth approximation from Eq. (C46). It is also important to note that any non-vanishing
amplitude of the spectral function with momenta |q| ≈ |K+| or |q| ≈ 2|K+| signals the presence of so-called

√
3×
√

3

ordering at the level of the SLG. Without
√

3×
√

3 ordering, the STM patterns of TBG display an apparent periodicity
corresponding to the usual SLG lattice up to an additional modulation at the moiré scale. In the presence of

√
3×
√

3
ordering, the apparent periodicity of the graphene mono-layer lattice is broken, with the SLG unit cell becoming
enlarged from two to six carbon atoms per unit cell [78, 101, 102].

In fact, inspecting the (unapproximated) spatial factor from Eq. (C23) and remembering that |Q| � |K+| for any
Q ∈ Q± as a consequence of the exponential decay of the TBG wave functions uQα,nη (k) with |Q| [87], we see that
the contributions to the spatial factor [B (q)]knη,k′n′η′ cluster around three types of momenta, depending on the valley
indices η and η′:

[B (q)]knη,k′n′η 6= 0 if and only if q = ∆q + G,

[B (q)]knη,k′n′(−η) 6= 0 if and only if q = ∆q + 2ηK+ + G,
(C54)

where G ∈ G+, and |∆q| ∼ kθ � |K+|. One important consequence of the second line in Eq. (C54) is that
√

3×
√

3
ordering arises from the valley-off-diagonal elements of the spatial factor, a fact upon which we will rely heavily in
Appendix [E] for understanding the real-space STM patterns of the various TBG insulators.

We will now consider each of the four types of momenta from Eq. (C53) individually and compute the spatial factor
using the fourth approximation:

1. B (q) for |q| ≈ 0.
For the contributions with |q| ≈ 0, we choose to compute the spatial factor matrix at q = 0, where we must
have that Cj23zη

′K+−Cj13zηK+−Q2 +Q1 = 0 in Eq. (C46). Since |Q1|, |Q2| � |K+|, this is only true if j1 = j2,
Q1 = Q2 and η = η′. As such, we find that[

B(4) (q)
]
knη,kn′η′

∣∣∣∣
q≈0

=
(2π)

2
δη,η′

ΩTBGΩSLG
|φ+ (K+)|2

∑
α1,α2
0≤j<3

∑
Q∈Qη

u∗Qα1;nη (k)uQα2;n′η (k)ωηjα2
ω−ηjα1

δ (q)
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=
3 (2π)

2
δη,η′

ΩTBGΩSLG
|φ+ (K+)|2

∑
α

∑
Q∈Qη

u∗Qα;nη (k)uQα;n′η (k) δ (q) . (C55)

Notice that in Eq. (C55) the summation is only over the Q ∈ Qη and not over the entire Q± lattice. Had
Eq. (C55) included a summation over the entire Q± lattice, this contribution would have been proportional to
δnn′ . Nevertheless, we have checked numerically that to an error smaller than 1%,

[
B(4) (q)

]
knη,kn′η′

∣∣∣∣
q≈0
≈ 3 (2π)

2
δη,η′

ΩTBGΩSLG
|φ+ (K+)|2 δn,n

′

2
δ (q) . (C56)

2. B (q) for |q| ≈ |K+|.

When |q| ≈ |K+|, we choose to focus on the contribution at q ≈ K+. As such, we must have that Cj23zη
′K+ −

Cj13zηK+−Q2 +Q1 ≈ K+ in Eq. (C46). This necessarily means that η = −η′ = + and j1 = 1, j2 = 2, or j1 = 2,
j2 = 1. Since this implies that Q1 ∈ Q+ and Q2 ∈ Q−, it follows that Q1 6= Q2, meaning that we cannot chose
q to be exactly at K+. However, we can still make q as close as possible to K+, by letting |Q1 −Q2| be as
small as possible. Here, we will consider Q1 −Q2 = −q1 to find that

[
B(4) (q)

]
knη,kn′η′

∣∣∣∣
q≈K+−q1

=
(2π)

2
δη,+δη′,−

ΩTBGΩSLG
|φ+ (K+)|2

∑
α1,α2

∑
Q∈Q+

u∗Qα1;n+ (k)uQ+q1α2;n′− (k)

×
(
ω−1
α2
ω−2
α1

+ ω−2
α2
ω−1
α1

)
δ (K+ − q1 − q)

=
(2π)

2
δη,+δη′,−

ΩTBGΩSLG
|φ+ (K+)|2δ (K+ − q1 − q)

×
∑
α

∑
Q∈Q+

2u∗Qα;n+ (k)uQ+q1α;n′− (k)− u∗Qα;n+ (k)uQ+q1(−α);n′− (k) . (C57)

3. B (q) for |q| ≈ 2|K+|.

When |q| ≈ 2|K+|, we choose to focus on the contribution at q ≈ 2K+. As such, we must have that Cj23zη
′K+−

Cj13zηK+ −Q2 +Q1 ≈ 2K+ in Eq. (C46). This necessarily means that η = −η′ = + and j1 = j2 = 0. Since this
implies that Q1 ∈ Q+ and Q2 ∈ Q−, it follows that Q1 6= Q2, meaning that we cannot chose q to be exactly at
2K+. However, we can still make q as close as possible to 2K+, by letting |Q1 −Q2| be as small as possible.
Here, we will consider Q1 −Q2 = −q1 and find that

[
B(4) (q)

]
knη,kn′η′

∣∣∣∣
q≈2K+−q1

=
(2π)

2
δη,+δη′,−

ΩTBGΩSLG
|φ+ (K+)|2

∑
α1,α2

∑
Q∈Q+

u∗Qα1;n+ (k)uQ+q1α2;n′− (k) δ (2K+ − q1 − q)

=
(2π)

2
δη,+δη′,−

ΩTBGΩSLG
|φ+ (K+)|2δ (2K+ − q1 − q)

×
∑
α

∑
Q∈Q+

u∗Qα;n+ (k)uQ+q1α;n′− (k) + u∗Qα;n+ (k)uQ+q1(−α);n′− (k) . (C58)

4. B (q) for |q| ≈ |g+,1|.
Finally, for the contribution with |q| ≈ |g+,1|, we chose to focus on q = g+,1. As such, we must have that
Cj23zη

′K+−Cj13zηK+−Q2 +Q1 ≈ g+,1 in Eq. (C46). This necessarily means that η = η′ = +, j1 = 0 and j2 = 2,
or η = η′ = −, and j1 = 2 and j2 = 0. Since Q1,Q2 ∈ Q+, it follows that we can chose q to be exactly at g+,1.
We find that[
B(4) (q)

]
knη,kn′η′

∣∣∣∣
q≈g+,1

=
(2π)

2
δη,+δη′,+

ΩTBGΩSLG
|φ+ (K+)|2

∑
α1,α2

∑
Q∈Q+

u∗Qα1;n+ (k)uQα2;n′+ (k)ω2
α2
δ (g+,1 − q)

+
(2π)

2
δη,−δη′,−

ΩTBGΩSLG
|φ+ (K+)|2

∑
α1,α2

∑
Q∈Q−

u∗Qα1;n− (k)uQα2;n′− (k)ω2
α1
δ (g+,1 − q) . (C59)
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Appendix D: The spectral function matrix elements

In Appendix [C], we have shown that the spectral function for TBG sample can be obtained by contracting two
(gauge-dependent) tensors: the spatial factor – which depends on the TBG active band wave functions – and the
spectral function matrices – which depend on the TBG ground state under consideration, as well as on the TBG
Hamiltonian. With the properties of the spatial factor derived and discussed in Appendix [C], this appendix turns to
the spectral function matricesM± (ω) and their evaluation. We start by focusing on the experimentally-relevant flat
limit [74], in which the physics of the system is governed by the TBG interaction Hamiltonian HI from Appendix [A 2].
We show how the charge-one excitations derived in Ref. [75] and reviewed in Appendix [B] can be used to compute
the spectral function matrices for the TBG correlated insulators found in Ref. [68]. Under the assumption of rigidly
filling the charge-one excitation bands, we additionally consider the effects of small doping away from integer filling on
the TBG spectral function. Finally, the spectral function matrices are also computed in the non-interacting limit (i.e.
when the electron-electron interactions are ignored). The direct comparison presented in the main paper between the
computed spectral functions in both the non-interacting and interacting regimes and the STM experimental data at
ν = ±4 offers compelling evidence for the validity of the strongly-coupled limit in TBG at the magic angle.

1. Computing the spectral function matrices at integer fillings in the interacting limit

In this section, we derive the spectral function matrixM± (ω) using the exact charge-one excitations of TBG found
by Ref. [75], and briefly reviewed in Appendix [B]. We will always assume to be in the so-called flat limit [74], and
therefore ignore the projected single-particle Hamiltonian H0 with respect to the interaction one HI .

As in Appendix [B 4] (whose notation we will follow), we assume that the ground state is given by |ϕ〉 from Eq. (B34),
which represents a certain U (4)×U (4) rotation Û of the integer-filling ground state

∣∣Ψν+,ν−
ν

〉
from Eq. (B8). Using

Eqs. (C16) and (C17), we find the corresponding spectral function matrices M±ϕ (ω) to be[
M+

ϕ (ω)
]
knη,k′n′η′

=
∑
ξ

∑
s,s′

〈ϕ|ĉk′,n′,η′,s′ |ξ〉
〈
ξ
∣∣∣ĉ†k,n,η,s∣∣∣ϕ〉 δs,s′δ (ω − Eξ + Eϕ) , (D1)

[
M−ϕ (ω)

]
knη,k′n′η′

=
∑
ξ

∑
s,s′

〈
ϕ
∣∣∣ĉ†k,n,η,s∣∣∣ξ〉 〈ξ|ĉk′,n′,η′,s′ |ϕ〉 δs,s′δ (ω + Eξ − Eϕ) . (D2)

Eqs. (D1) and (D2) include a summation over all the eigenstates of the TBG interaction Hamiltonian, |ξ〉. Nevertheless,
one of the central results of the charge-commutation relations from Appendix [B 4] was that acting with the ĉ†k,n,η,s
(ĉk,n,η,s) operators on the ground state |ϕ〉 leads to a superposition of electron (hole) excitations, which can be readily
computed as a zero-body problem. Focusing on the electron excitations, we have shown in Appendix [B 4] that the
eight fermionic operators ĉ†k,n,η,s |ϕ〉 (for s =↑, ↓, η = ±, n = ±1) can be recombined into γ̂†k,p (for 1 ≤ p ≤ 4− ν) and
θ̂†k,p (for 1 ≤ p ≤ 4+ν), which were respectively defined in Eqs. (B57) and (B58). Thus, the Hillbert space of spanned
by all states of the form ĉ†k,n,η,s |ϕ〉 is identical to the space spanned by γ̂†k,p |ϕ〉 for 1 ≤ p ≤ 4− ν, i.e. the eigenstates
of HI corresponding to an electron excitation above the ground state |ϕ〉 5. Therefore, the only many-body eigenstates
of HI that have a non-vanishing overlap with ĉ†k,n,η,s |ϕ〉 are the electron excitations γ̂†k,p |ϕ〉, for 1 ≤ p ≤ 4 − ν 6,
whose properties were given in Appendix [B 4]. As shown in the text surrounding Eq. (B51), γ̂†k,p |ϕ〉 are eigenstates
of the interaction Hamiltonian with eigenvalue Eϕ + Epk + µ, for 1 ≤ p ≤ 4− ν, where Eϕ is the ground state energy
and the addition of the chemical potential µ reflects the fact that the excitation energies Epk were defined with respect
to the grand canonical Hamiltonian (HI − µN̂), as opposed to microcanonical one, HI . As a result, one can replace
the summation over all excited states |ξ〉 in Eq. (D1), according to∑

ξ

|ξ〉 δ (ω − Eξ + Eϕ) 〈ξ| →
∑
k

4−ν∑
p=1

γ̂†k,p |ϕ〉 δ (ω − µ− Epk) 〈ϕ| γ̂k,p. (D3)

5 Note that θ̂†k,p (for 1 ≤ p ≤ 4 + ν) are linear combinations of fermions corresponding to the occupied bands in |ϕ〉 and, therefore,
θ̂†k,p |ϕ〉 = 0.

6 Strictly speaking, this relies on γ̂†k,p |ϕ〉 being exact eigenstates of HI . As argued in Appendix [B 1], this is only true in the chiral limit
(w0 = 0) for |ϕ〉 being any U(4)×U(4) rotation of the states from Eq. (B8), or away from the chiral limit in the particle-hole-symmetric
case (w0 6= 0 and λ = 0) for |ϕ〉 being any Unc (4) rotation of the states in Eq. (B7). In the general case, we approximate the spectral
function by treating both |ϕ〉 and γ̂†k,p |ϕ〉 as being exact eigenstates of HI and ignore any further perturbative corrections to the spectral
function matrix elements.
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By analogy, the sum over |ξ〉 in Eq. (D2) can be changed to include only the hole excitations on top of |ϕ〉 from
Eq. (B58) according to

∑
ξ

|ξ〉 δ (ω + Eξ − Eϕ) 〈ξ| →
∑
k

4+ν∑
p=1

θ̂k,p |ϕ〉 δ
(
ω − µ+ Ẽpk

)
〈ϕ| θ̂†k,p. (D4)

Using Eqs. (D3) and (D4), as well as the wave functions of the charge-one excitations from Eqs. (B57) and (B58), we
find that the spectral function matrices are given by[

M+
ϕ (ω)

]
knη,k′n′η′

=δk,k′
∑
s,s′

[Y (k, ω)]nηs,n′η′s′ δs,s′ , (D5)

[
M−ϕ (ω)

]
knη,k′n′η′

=δk,k′
∑
s,s′

[
Ỹ (k, ω)

]
nηs,n′η′s′

δs,s′ . (D6)

where, for simplicity, we have defined

[Y (k, ω)]nηs,n′η′s′ =
4−ν∑
p=1

δ (ω − µ− Epk)Z∗pk,nηsZ
p
k,n′η′s′ , (D7)

[
Ỹ (k, ω)

]
nηs,n′η′s′

=
4+ν∑
p=1

δ
(
ω − µ+ Ẽpk

)
Z̃pk,nηsZ̃

∗p
k,n′η′s′ . (D8)

Alternatively, the spectral function can also be defined in terms of charge-one excitation wave functions in the rotated
fermion basis, Ξpk,nηs and Ξ̃pk,nηs, which were defined in Eqs. (B49) and (B50), respectively,

[
M+

ϕ (ω)
]
knη,k′n′η′

=δk,k′
∑
s,s′

[
U†Υ (k, ω)U

]
nηs,n′η′s′

δs,s′ , (D9)

[
M−ϕ (ω)

]
knη,k′n′η′

=δk,k′
∑
s,s′

[
U †Υ̃ (k, ω)U

]
nηs,n′η′s′

δs,s′ , (D10)

where U is the eight-dimensional unitary matrix defined in Eq. (B37) implementing the U (4)×U (4) rotation Û from
Eq. (B34) and

[Υ (k, ω)]nηs,n′η′s′ =

4−ν∑
p=1

δ (ω − µ− Epk) Ξ∗pk,nηsΞ
p
k,n′η′s′ , (D11)

[
Υ̃ (k, ω)

]
nηs,n′η′s′

=
4+ν∑
p=1

δ
(
ω − µ+ Ẽpk

)
Ξ̃pk,nηsΞ̃

∗p
k,n′η′s′ . (D12)

Finally, from Eqs. (B55) and (B56), we note that

U†Υ (k, ω)U = Y (k, ω) and U †Υ̃ (k, ω)U = Ỹ (k, ω) , (D13)

and therefore, the matrices Υ (k, ω) and Υ̃ (k, ω) are related to Y (k, ω) and Ỹ (k, ω) through a U (4)×U (4) rotation.
The advantage of using the notation from Eqs. (D5) and (D6) becomes apparent when comparing Eqs. (D7)

and (D8) with Eqs. (B63) and (B64): up to a Dirac δ-function being applied on the (non-zero) eigenvalues,
the matrices Y (k, ω) and Ỹ (k, ω) share identical eigenspectra with the matrices U†ΠU

(
R (k)⊗ s0

)
U†ΠU and

U†ΠU
(
R̃ (k)⊗ s0

)
U†ΠU , respectively. Similarly, the matrices Υ (k, ω) and Υ̃ (k, ω) share identical eigenvectors

with the matrices ΠU
(
R (k)⊗ s0

)
U†Π and ΠU

(
R̃ (k)⊗ s0

)
U †Π, respectively. In Appendix [E], we will leverage

this connection extensively for deriving parameterizations for the M±ϕ (ω) matrices and for obtaining an analytical
understanding of the TBG spectral function patterns.
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2. Influence of small doping away from integer fillings in the interacting limit

Having derived the spectral function matrix elements of the insulator |ϕ〉 (corresponding to an exact integer filling
ν), we now investigate the influence of small doping away from integer filling. As a zeroth order approximation, we will
assume that the ground state of the interacting Hamiltonian away from exact integer filling can be found by “rigidly”
filling or depleting the charge-one excitation bands. In other words, we assume that for small doping away from
integer fillings, the charge-one excitations can be approximated as non-interacting fermions and, as such, the charge-
one excitation bands can be filled (or depleted) according to the Pauli exclusion principle. Such an approximation
can be justified by noting that the steep dispersion of the charge-one excitations above |ϕ〉 is enough to stabilize a
Fermi liquid for small doping away from integer filling [67].

To start with, we let |ϕ∆ν〉 be the ground state of the interaction TBG Hamiltonian at filling ν + ∆ν, obtained by
doping the insulator |ϕ〉

|ϕ∆ν〉 =


4−ν∏
p=1

∏
k

(µ∆ν−µ−Epk)>0

γ̂†k,p




4+ν∏
p=1

∏
k

(µ−µ∆ν−Ẽpk)>0

θ̂k,p

 |ϕ〉 , (D14)

where µ∆ν (µ) is the chemical potential of the doped (un-doped) ground state. Because |ϕ〉 is a ground state of the
TBG interaction Hamiltonian, the charge-one excitation energies are strictly positive. Therefore, Eq. (D14) is valid
for both electron doping (where µ∆ν > µ and the second product is identity) and hole doping (where µ∆ν < µ and the
first product is identity). The chemical potential of the doped ground state µ∆ν satisfies the self-consistent condition

∆ν =
1

NM

{∑
k

∑4−ν
p=1 Θ (µ∆ν − µ− Epk) , if ∆ν > 0

−
∑

k

∑4+ν
p=1 Θ

(
µ− µ∆ν − Ẽpk

)
, if ∆ν < 0

, (D15)

where NM denotes the number of moiré unit cells in the system and Θ(x) is the Heaviside step function

Θ(x) =

{
1, x > 0

0, x < 0
. (D16)

Eq. (D15) can also be written more succinctly as

∆ν =
1

NM

[∑
k

4−ν∑
p=1

Θ (µ∆ν − µ− Epk)−
∑
k

4+ν∑
p=1

Θ
(
µ− µ∆ν − Ẽpk

)]
. (D17)

To obtain the spectral function matrix elements[
M+

ϕ∆ν
(ω)
]
knη,k′n′η′

=
∑
ξ

∑
s,s′

〈ϕ∆ν |ĉk′,n′,η′,s′ |ξ〉
〈
ξ
∣∣∣ĉ†k,n,η,s∣∣∣ϕ∆ν

〉
δs,s′δ (ω − Eξ + Eϕ∆ν ) , (D18)

[
M−ϕ∆ν

(ω)
]
knη,k′n′η′

=
∑
ξ

∑
s,s′

〈
ϕ∆ν

∣∣∣ĉ†k,n,η,s∣∣∣ξ〉 〈ξ|ĉk′,n′,η′,s′ |ϕ∆ν〉 δs,s′δ (ω + Eξ − Eϕ∆ν
) . (D19)

we still need to compute the eigenstates of the interaction Hamiltonian that contain one additional electron or hole
compared to |ϕ∆ν〉. Focusing on the electron contribution from Eq. (D18), we first note that the Hilbert space spanned
by ĉ†k,n,η,s |ϕ∆ν〉 for s =↑, ↓, η = ±, n = ±1, is identical to the Hilbert space spanned by γ̂†k,p |ϕ∆ν〉, for 1 ≤ p ≤ 4− ν,
and θ̂†k,p |ϕ∆ν〉, for 1 ≤ p ≤ 4 + ν, because the corresponding operators, γ̂†k,p and θ̂†k,p, are just linear combinations of
the energy band operators ĉ†k,n,η,s. Therefore, the only states containing one additional electron compared to |ϕ∆ν〉
that have a non-vanishing overlap with ĉ†k,n,η,s |ϕ∆ν〉 are of the form γ̂†k,p |ϕ∆ν〉 or θ̂†k,p |ϕ∆ν〉, provided that these states
do themselves not vanish. Under the approximation that the charge-one excitations do not interact, these states are
also eigenstates of the interaction Hamiltonian, and so we find that |ξ〉 from Eq. (D18) can be either γ̂†k,p |ϕ∆ν〉 (with
energy Eξ = Eϕ∆

+Epk + µ) or θ̂†k,p |ϕ∆ν〉 (with energy Eξ = Eϕ∆
− Ẽpk + µ). As such, the summation over the states

|ξ〉 in Eq. (D18) can be changed according to

∑
ξ

|ξ〉 δ (ω − Eξ + Eϕ∆ν
) 〈ξ| →

∑
k

(
4−ν∑
p=1

γ̂†k,p |ϕ∆ν〉 δ (ω − µ− Epk) 〈ϕ∆ν | γ̂k,p
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+
4+ν∑
p=1

θ̂†k,p |ϕ∆ν〉 δ
(
ω − µ+ Ẽpk

)
〈ϕ∆ν | θ̂k,p

)
. (D20)

Using a similar argument for the hole contribution from Eq. (D19), we find that the summation over the states |ξ〉 in
Eq. (D19) can also be replaced as

∑
ξ

|ξ〉 δ (ω + Eξ − Eϕ∆ν
) 〈ξ| →

∑
k

(
4−ν∑
p=1

γ̂k,p |ϕ∆ν〉 δ (ω − µ− Epk) 〈ϕ∆ν | γ̂†k,p

+
4+ν∑
p=1

θ̂k,p |ϕ∆ν〉 δ
(
ω − µ+ Ẽpk

)
〈ϕ∆ν | θ̂†k,p

)
. (D21)

By substituting Eqs. (D14), (D20) and (D21) in the expressions for the spectral function matrices from Eqs. (D18)
and (D19), we find

[
M+

ϕ∆ν
(ω)
]
knη,k′n′η′

=δk,k′


4−ν∑
p=1

∑
s,s′

Z∗pk,nηsZ
p
k,n′η′s′δs,s′δ (ω − µ− Epk) [1−Θ (µ∆ν − µ− Epk)]

+
4+ν∑
p=1

∑
s,s′

Z̃pk,nηsZ̃
∗p
k,n′η′s′δs,s′δ

(
ω − µ+ Ẽpk

)
Θ
(
µ− µ∆ν − Ẽpk

) , (D22)

[
M−ϕ∆ν

(ω)
]
knη,k′n′η′

=δk,k′


4+ν∑
p=1

∑
s,s′

Z̃pk,nηsZ̃
∗p
k,n′η′s′δs,s′δ

(
ω − µ+ Ẽpk

) [
1−Θ

(
µ− µ∆ν − Ẽpk

)]

+
4−ν∑
p=1

∑
s,s′

Z∗pk,nηsZ
p
k,n′η′s′δs,s′δ (ω − µ− Epk) Θ (µ∆ν − µ− Epk)

 . (D23)

At first glance, since the spectral function matrix elements of the doped insulator from Eqs. (D22) and (D23) differ
from the ones of the un-doped state |ϕ〉 from Eqs. (D5) and (D6), one might conclude that the spectral function itself
also changes under small doping. However, as shown in Eq. (C15), the spectral function depends on the sum between
the electron and hole contributions from Eqs. (D22) and (D23), which can be seen to obey

M+
ϕ∆ν

(ω) +M−ϕ∆ν
(ω) =M+

ϕ (ω) +M−ϕ (ω) , (D24)

implying that, under the assumption of rigidly filling the charge-one excitation bands, the spectral function does
not change. This result is a direct consequence of treating the charge-one excitations as being non-interacting and
represents a well-known result in non-interacting band theory [97]. For example, one can consider doping the insulator
|ϕ〉 with electrons: there are fewer available electron excitations in |ϕ∆ν〉. However, the missing electron excitations
from |ϕ∆ν〉 now appear as hole excitations, meaning that although the individual hole and electron contributions to
the spectral function change, their sum does not.

3. Computing the spectral function matrices in the absence of interactions

For comparison purposes, it is instructive to compute the TBG spectral function in the non-interacting limit at
a certain (not necessarily integer) filling factor ν. In this limit, the physics is governed by the single-particle TBG
Hamiltonian from Eq. (A14), as electron-electron interactions are ignored. The corresponding ground state |φν〉 at
filling ν is found by populating the active TBG bands according the Pauli exclusion principle

|φν〉 =
∏
n,η

∏
k

εn,η(k)<µ

ĉ†k,n,η,↑ĉ
†
k,n,η,↓ |0〉 . (D25)

In Eq. (D25), εn,η (k) are the single-particle energies of the active TBG bands and µ is the chemical potential of |φν〉
satisfying the self-consistent condition

ν = −4 +
2

NM

∑
k

∑
n,η

Θ
(
µ− εn,η (k)

)
. (D26)
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Since interactions are ignored completely, the state ĉ†k,n,η,s |φν〉 [ĉk,n,η,s |φν〉] is an exact eigenstate of the noninteracting
TBG Hamiltonian with energy Eφν + εn,η (k) [Eφν − εn,η (k)], provided that the state itself does not vanish. As a
result, one can replace the summation over all excited states |ξ〉 in the definition of the spectral function matrices
from Eqs. (C16) and (C17) according to∑

ξ

|ξ〉 δ (ω − Eξ + Eϕ∆ν
) 〈ξ| →

∑
k

∑
n,η,s

ĉ†k,n,η,s |φν〉 δ
(
ω − εn,η (k)

)
〈φν | ĉk,n,η,s, (D27)

∑
ξ

|ξ〉 δ (ω + Eξ − Eϕ∆ν
) 〈ξ| →

∑
k

∑
n,η,s

ĉk,n,η,s |φν〉 δ
(
ω − εn,η (k)

)
〈φν | ĉ†k,n,η,s, (D28)

respectively. The corresponding matrix elements can be readily computed to be[
M+

φν
(ω)
]
knη,k′n′η′

=
∑
s,s′

δk,k′δn,n′δη,η′δs,s′δ
(
ω − εn,η (k)

) [
1−Θ

(
µ− εn,η (k)

)]
, (D29)

[
M−φν (ω)

]
knη,k′n′η′

=
∑
s,s′

δk,k′δn,n′δη,η′δs,s′δ
(
ω − εn,η (k)

)
Θ
(
µ− εn,η (k)

)
. (D30)

The TBG spectral function depends on the sum between the electron and hole contribution,[
M+

φν
(ω)
]
knη,k′n′η′

+
[
M−φν (ω)

]
knη,k′n′η′

= 2δk,k′δn,n′δη,η′δ
(
ω − εn,η (k)

)
, (D31)

which is independent on the filling ν. Unlike the interacting spectral function matrices computed in Appendix [D 1],
the spectral function matrices in the non-interacting case are necessarily diagonal in the band and valley subspaces.

Appendix E: Symmetry properties of the spectral function matrices in the interacting case

In Appendix [D 1], we showed how the exact charge-one excitations from Appendix [B 4] can be employed to
compute the spectral function matrices for the correlated TBG insulating states found by Ref. [68]. Since evaluating
the charge-one excitation spectrum for a given ground state |ϕ〉 in the interacting case is equivalent to a zero-body
problem [75], the direct numerical calculation of the corresponding spectral function is computationally feasible even
for relatively large system sizes (i.e. much higher than can be achieved with techniques such as exact diagonalization).
Nevertheless, the various ways of populating the eight Chern bands in the unrotated state

∣∣Ψν+,ν−
ν

〉
, coupled with the

thermodynamically extensive number of possible U (4)×U (4) rotations thereof, results in a virtually infinite number
of choices for the correlated TBG ground states |ϕ〉. As such, the numerical evaluation of the spectral functions for
all possible insulating ground states found by Ref. [68] becomes neither feasible, nor useful.

With the goal of building a more complete understanding of the spectral functions for the various insulators found
by Ref. [68], this appendix analytically derives the symmetry properties of the spectral functions matrices. To do so,
we will leverage the connection outlined in Appendices [B 4 b] and [D 1] between the spectral function and charge-one
excitation matrices. For a given ground state |ϕ〉 defined in Eq. (B34), comparing the spectral function matrices from
Eqs. (D5) and (D6) with Eqs. (B63) and (B64) reveals that, up to a rescaling of the eigenvalues and a trace over the spin
degrees of freedom,M+

ϕ (ω) andM−ϕ (ω) have the same eigendecomposition as the matrices U †ΠU
(
R (k)⊗ s0

)
U†ΠU

and U †Π̃U
(
R̃ (k)⊗ s0

)
U†Π̃U , respectively, where the unitary matrix U defined in Eq. (B37) specifies the U (4)×U (4)

transformation defining |ϕ〉, and the projectors Π and Π̃ are related to the occupied bands of |ϕ〉 according to
Eqs. (B59) and (B60). Since the charge-one excitation matrices R (k) and R̃ (k) defined in Appendix [B 1] have
been explicitly parameterized in Appendix [B 3], this connection allows us to derive parameterizations of the spectral
function matrices, which take into consideration both the discrete and continuous symmetries of TBG. Coupled with
the properties of the spatial factor derived in Appendix [C 2], these will enable us to obtain a general understanding
of the real-space STM patterns of the integer-filled TBG insulators.

As argued in Appendix [C 3 c], the valley-off-diagonal elements of the spatial factor correspond to the emergence
of
√

3×
√

3 symmetry-breaking at the level of the SLG lattice. In turn, for intervalley-coherent TBG ground states,
the spectral function matrices also contain valley-off-diagonal terms. As such, one might conclude that

√
3 ×
√

3
ordering represents a generic feature of intervalley-coherent TBG ground states. In this appendix, we will show that
this naive picture is, in fact, incorrect:

√
3×
√

3 symmetry-breaking is not generic even in the presence of intervalley
coherence, and therefore its presence or absence in the STM patterns can serve as a robust means of experimentally
discriminating between the various theoretically-proposed TBG ground state at a given filling. Consequently, deriving
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the conditions under which
√

3×
√

3 ordering emerges within the TBG insulators found by Ref. [68] constitutes the
main focus of this appendix.

We start by investigating the STM patterns of the insulators |Ψν〉, defined in Eq. (B7), together with their Unc (4)
rotations. The resulting states |ϕ〉 correspond to an even filling and zero Chern number, and were analytically
shown [42, 58, 68] and numerically verified [58, 69] to be exact ground states of the projected interaction TBG
Hamiltonian HI (in the λ = 0 case), thus making our analysis exact in the nonchiral-flat limit [74]. We show that
the spectral function of these insulators is independent of the particular Unc (4) rotation we consider, and prove that
no
√

3 ×
√

3 symmetry breaking is present in the corresponding STM patterns, even in the presence of intervalley
coherence. We find that the counter-intuitive absence of

√
3×
√

3 ordering stems from occupying both Chern bands of
a given valley-spin flavor, considering only Unc (4) rotations (as opposed to the more general U (4)×U (4) rotations),
and the discrete symmetries of TBG – C2z, T , and P .

We then consider the more general states
∣∣Ψν+,ν−

ν

〉
, alongside their U (4)×U (4) rotations, which were shown to be

exact ground states of the interaction Hamiltonian in the chiral limit [68, 69]. Working similarly in the chiral limit, our
analysis is also exact. We find that

√
3×
√

3 ordering can arise for generic intervalley-coherent U (4)×U (4) rotations
of the states

∣∣Ψν+,ν−
ν

〉
, provided that they are not Unc (4) rotations of the insulators |Ψν〉, defined in Eq. (B7). The

latter does not however constitute the only exception. Indeed, without being exhaustive, we show that there are
possible choices (to be defined in Appendix [E 3]) for the states

∣∣Ψν+,ν−
ν

〉
(different from |Ψν〉), which, when rotated

according to a certain subgroup (to be defined in Appendix [E 3]) of U (4)×U (4) (different from the Unc (4) group),
give rise to intervalley-coherent insulators without any

√
3 ×
√

3 ordering. On the other hand, we argue that such
examples are fine-tuned, as there is no a priori reason for restricting to these U (4) × U (4) subgroups (unlike the
Unc (4) group which is obtained from U (4)×U (4) as a result of breaking the chiral symmetry). We end the discussion
with an intuitive picture explaining the presence or absence of

√
3 ×
√

3 ordering for the maximally spin-polarized
TBG insulators.

Finally, we investigate the effects of breaking the exact particle-hole symmetry on the absence of
√

3×
√

3 symmetry-
breaking in the the STM patterns of the insulators |Ψν〉, defined in Eq. (B7), together with their Unc (4) rotations.

In the forthcoming Appendix [G], we also provide a series of numerical results illustrating the main conclusions of
this appendix.

1. The spectral function of |Ψν〉 and its Unc (4) rotations

In this section we consider the spectral function of the even-integer-filled insulators |Ψν〉 defined in Eq. (B7), and
their Unc (4) rotations. We will assume that the single-particle TBG Hamiltonian has an exact particle-hole symmetry
by focusing on the case λ = 0 (the λ = 1 case will be discussed in detail in Appendix [E 4]).

Following the notation in Appendix [B 4], we let

Û = exp

i∑
a,b

θabSab

 and U = exp

i∑
a,b

θab
(
sab
)T (E1)

respectively denote a nonchiral-flat rotation operator and the corresponding eight-dimensional unitary matrix U
implementing it in the energy band basis. In Eq. (E1), θab ∈ R (for a, b = 0, x, y, z) denote the angles parameterizing
the Unc (4) rotation, Sab are the Unc (4) generators from Eq. (A52), while sab are the corresponding matrix generators
given in Eq. (A53). The TBG ground state we consider can be written as

|ϕ〉 = Û |Ψν〉 , (E2)

where the unrotated state |Ψν〉 was defined in Eq. (B7). Note that the states of the form in Eq. (E2) form a subset
of the more general states considered in Eq. (B34). In what follows, we will employ aη,s to specify which valley-spin
flavors of |Ψν〉 are occupied, such that

aη,s =

{
1, if the valley-spin flavor {η, s} is filled in |Ψν〉
0, if the valley-spin flavor {η, s} is empty in |Ψν〉

. (E3)

In the notation of Eq. (B35), this implies that ρ+1,η,s = ρ−1,η,s = aη,s. The corresponding projectors in the empty
and filled bands of |Ψν〉 defined in Eqs. (B59) and (B60), respectively read as

Π =ζ0τ0s0 − 1

4
ζ0 ⊗

∑
η

(
τ0 + ητz

)
⊗
[
aη,↑

(
s0 + sz

)
+ aη,↓

(
s0 − sz

)]
(E4)
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Π̃ =
1

4
ζ0 ⊗

∑
η

(
τ0 + ητz

)
⊗
[
aη,↑

(
s0 + sz

)
+ aη,↓

(
s0 − sz

)]
(E5)

Our goal is to obtain parameterizations of the spectral function matrix elements of the insulator |ϕ〉. To do so,
we note that the spectral function matrices are obtained by tracing over the spin degrees of freedom of the matrices
Υ (k, ω) and Υ̃ (k, ω), defined in Eqs. (D11) and (D12). By comparing Eqs. (D11) and (D12) with Eqs. (B61)
and (B62), respectively, we find that, up to a Dirac δ-function being applied on the (non-zero) eigenvalues, the matrices
Υ (k, ω) and Υ̃ (k, ω) share identical eigenspectra with the matrices ΠU

(
R (k)⊗ s0

)
U†Π and ΠU

(
R̃ (k)⊗ s0

)
U†Π,

respectively. Therefore, parameterized forms of the former can be inferred from the parameterizations of the latter.
In what follows, we will focus on the electron excitations, and obtain the parameterization of Υ (k, ω), which we then
use to parameterize M+ (ω). The hole contribution can be computed analogously, which allows us to discuss the
spectral function of the insulator |ϕ〉.

a. Parameterized form of Υ (k, ω)

To obtain ΠU
(
R (k)⊗ s0

)
U†Π, we first note that Eq. (B25) implies for the λ = 0 case that

R (k)⊗ s0 = ζ0τ0s0d2 (k) + ζxτzs0d3 (k) + ζzτzs0d5 (k) , (E6)

and, because ζ0τ0s0, ζxτzs0, and ζzτzs0 commute with all the Unc (4) generators sab from Eq. (A53),

U
(
R (k)⊗ s0

)
U† = R (k)⊗ s0. (E7)

We then project Eq. (E7) using the projector Π defined in Eq. (E4) to obtain

ΠU
(
R (k)⊗ s0

)
U†Π = Π

(
R (k)⊗ s0

)
Π =

1

4
ζ0τ0s0 (4− a−,↓ − a−,↑ − a+,↓ − a+,↑) d2 (k) +

1

4
ζ0τ0sz (−a−,↓ + a−,↑ − a+,↓ + a+,↑) d2 (k)

+
1

4
ζ0τzs0 (−a−,↓ − a−,↑ + a+,↓ + a+,↑) d2 (k) +

1

4
ζ0τzsz (−a−,↓ + a−,↑ + a+,↓ − a+,↑) d2 (k)

+
1

4
ζxτ0s0 (−a−,↓ − a−,↑ + a+,↓ + a+,↑) d3 (k) +

1

4
ζxτ0sz (−a−,↓ + a−,↑ + a+,↓ − a+,↑) d3 (k)

+
1

4
ζxτzs0 (4− a−,↓ − a−,↑ − a+,↓ − a+,↑) d3 (k) +

1

4
ζxτzsz (−a−,↓ + a−,↑ − a+,↓ + a+,↑) d3 (k)

+
1

4
ζzτ0s0 (−a−,↓ − a−,↑ + a+,↓ + a+,↑) d5 (k) +

1

4
ζzτ0sz (−a−,↓ + a−,↑ + a+,↓ − a+,↑) d5 (k)

+
1

4
ζzτzs0 (4− a−,↓ − a−,↑ − a+,↓ − a+,↑) d5 (k) +

1

4
ζzτzsz (−a−,↓ + a−,↑ − a+,↓ + a+,↑) d5 (k) , (E8)

where we have employed a2
η,s = aη,s. Using Eq. (E8), as well as the parity of the function di (i = 2, 3, 5) from

Eq. (B23), we can find all the symmetries of the matrix ΠU
(
R (k)⊗ s0

)
U†Π[

ζ0τ0sz,ΠU
(
R (k)⊗ s0

)
U†Π

]
=
[
ζ0τzs0,ΠU

(
R (k)⊗ s0

)
U†Π

]
= 0,(

ζyτ0s0
)

ΠU
(
R (k)⊗ s0

)
U†Π

(
ζyτ0s0

)
= ΠU

(
R (−k)⊗ s0

)
U†Π.

(E9)

Because ΠU
(
R (k)⊗ s0

)
U†Π and Υ (k, ω) share the same eigenvectors, as can be seen from Eqs. (B61) and (D11),

the symmetries of the former also represent symmetries of the latter, thus implying that[
ζ0τ0sz,Υ (k, ω)

]
=
[
ζ0τzs0,Υ (k, ω)

]
= 0,(

ζyτ0s0
)

Υ (k, ω)
(
ζyτ0s0

)
= Υ (−k, ω) .

(E10)

Additionally, since ΠU
(
R (k)⊗ s0

)
U†Π is real, its eigenstate are real, implying that Υ (k, ω) is also real. Moreover,

from its definition in Eq. (D11), Υ (k, ω) is manifestly Hermitian. Coupled with the symmetries from Eq. (E10), we
obtain the decomposition of Υ (k, ω) in the energy band, valley, and spin subspaces as

Υ (k, ω) =
∑

a∈{0,x,z}
b,c∈{0,z}

ζaτ bscβabc (k, ω) , (E11)
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where βabc (k, ω) are real functions whose parity with respect to momentum inversion is given by

βabc (k, ω) =

{
βabc (−k, ω) , if a = 0

−βabc (−k, ω) , if a = x, z
, for a ∈ {0, x, z} and b, c ∈ {0, z} , (E12)

and which only depend on the occupation of the valley-spin flavors aη,s defined in Eq. (E3), but not on the Û rotation.

b. Parameterized form of M+
ϕ (ω)

As shown in Eq. (D9), to obtain the electron spectral function matrix from Eq. (E12), we need to perform one final
Unc (4) transformation on Υ (k, ω), which results in

Y (k, ω) = U†Υ (k, ω)U = ζ0τ0s0β000 (k, ω) + ζxτzs0βxz0 (k, ω) + ζzτzs0βzz0 (k, ω) +
3∑
j=1

N jβj (k, ω) , (E13)

where βi (k, ω) are real functions (i = 1, 2, 3) obeying

β1 (k, ω) = β1 (−k, ω) , β2 (k, ω) = −β2 (−k, ω) , β3 (k, ω) = −β3 (−k, ω) , (E14)

but which we otherwise leave unspecified. In Eq. (E13), we have also introduced the matrices N i for i = 1, 2, 3, which
depend on the specific Unc (4) rotation Û and belong to the sets N i ∈ N i, with

N 1 = NUnc(4),

N 2 =

 ∑
a,b∈{0,x,y,z}

φabtab

∣∣∣∣∣∣ φab ∈ C, φ00 = 0, t0b = ζxτzsb, txb = ζzτxsb, tyb = ζzτysb, tzb = ζxτ0sb

,
N 3 =

 ∑
a,b∈{0,x,y,z}

φabtab

∣∣∣∣∣∣ φab ∈ C, φ00 = 0, t0b = ζzτzsb, txb = ζxτxsb, tyb = ζxτysb, tzb = ζzτ0sb

,
(E15)

where NUnc(4) was defined in Eq. (A54). To see how Eq. (E13) was obtained from Eq. (E11), we start by observing
that the sets from Eq. (E15) share one important property: they form invariant spaces under the Unc (4) group. This
can be seen by remarking that for any matrix T ∈ N i,

[
T, sab

]
∈ N i, and so, from Eq. (E1), U †TU ∈ N i, for any

i = 1, 2, 3. We then group all the matrices in the expansion from Eq. (E11) according to how they transform under a
Unc (4) rotation. The first three terms of Eq. (E13) are obtained by noting that the matrices ζ0τ0s0, ζxτzs0, ζzτzs0

are invariant under any transformation U , as they commute with all the nonchrial-flat Unc (4) generators sab. The
other matrices from Eq. (E11) can be grouped as follows

ζ0τ0sz, ζ0τzs0, ζ0τzsz ∈ N 1,

ζxτ0s0, ζxτxsz, ζxτzsz ∈ N 2,

ζzτ0s0, ζzτ0sz, ζzτzsz ∈ N 3.

(E16)

Within each one of the three groups, the parity with respect to momentum inversion of the real functions βabc (k, ω)
multiplying each matrix is the same, thus leading to the expansion from Eq. (E13).

The parameterization of the electron spectral function matrix is obtained from Eq. (E13), by employing Eq. (D9)

[
M+

ϕ (ω)
]
knη,k′n′η′

= δk,k′

ζ0τ0β000 (k, ω) + ζxτzβxz0 (k, ω) + ζzτzβzz0 (k, ω) +
3∑
j=1

(
trsN

j
)
βj (k, ω)


nη,n′η′

,

(E17)
where trs denotes the trace over the spin degrees of freedom, and the spin-traced matrices obey

trsN
1 ∈

{
φxζ

yτx + φyζ
yτy + φzζ

0τz
∣∣ φx, φy, φz ∈ C

}
,

trsN
2 ∈

{
φxζ

zτx + φyζ
zτy + φzζ

xτ0
∣∣ φx, φy, φz ∈ C

}
,

trsN
3 ∈

{
φxζ

xτx + φyζ
xτy + φzζ

zτ0
∣∣ φx, φy, φz ∈ C

}
.

(E18)
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c. Parameterized form of MS±
ϕ

As seen in Eq. (E17), for general non-chiral flat Unc (4) rotations, M+
ϕ (ω) contains off-diagonal elements in the

valley subspace. Following the discussion surrounding Eq. (C54), one might conclude that this signals the presence
of
√

3×
√

3 ordering at the level of the SLG lattice. In fact, introducing intervalley coherence by means of a Unc (4)
rotation in the ground state |ϕ〉 results to intervalley-coherent charge-one excitations, according to the discussion from
Appendix [B 4]. In turn, intervalley-coherent charge-one excitations lead to scattering between the two K points of
the SLG Brillouin Zone and generically give rise to

√
3×
√

3 ordering at the level of the SLG lattice [78, 101, 102].
However, the above reasoning neglects the discrete symmetries of TBG, which impose several restrictions on both

the spatial factor and the spectral function matrices. It was shown in Appendix [C 2 b] that owing to the time-reversal
symmetry of Ĥ0, the components of [M± (ω)]knη,kn′η′ which are anti-symmetric with respect to the transformation
[knη,kn′η′]→ [−kn′(−η′),−kn(−η)] vanish upon contracting with the spatial factor tensor. Following Eq. (C36), we
find that instead of studyingM±ϕ (ω) directly, one should instead focus on the symmetrized tensorsMS±

ϕ (ω) defined
in Eq. (C37).

To computeMS+
ϕ , we first note that in Eq. (E17),[
ζ0τ0

]
nη,n′η′

=
[
ζ0τ0

]
n′(−η′),n(−η)

,
[
trsN

1
]
nη,n′η′

= −
[
trsN

1
]
n′(−η′),n(−η)

,

[ζxτz]nη,n′η′ = − [ζxτz]n′(−η′),n(−η) ,
[
trsN

2
]
nη,n′η′

=
[
trsN

2
]
n′(−η′),n(−η)

, (E19)

[ζzτz]nη,n′η′ = − [ζzτz]n′(−η′),n(−η) ,
[
trsN

3
]
nη,n′η′

=
[
trsN

3
]
n′(−η′),n(−η)

,

which coupled with Eqs. (C37), (E12) and (E14) leads to[
MS+

ϕ (ω)
]
knη,kn′η′

= δk,k′
[
ζ0τ0β000 (k, ω) + ζxτzβxz0 (k, ω) + ζzτzβzz0 (k, ω)

]
nη,n′η′

. (E20)

In an analogous fashion, it can be shown that the hole contribution to the spectral function matrix elements is[
MS−

ϕ (ω)
]
knη,kn′η′

= δk,k′
[
ζ0τ0β̃000 (k, ω) + ζxτzβ̃xz0 (k, ω) + ζzτzβ̃zz0 (k, ω)

]
nη,n′η′

, (E21)

where the real functions β̃abc (k, ω) have the same parity as the functions βabc (k, ω) (for abc = 000, xz0, zz0) with
respect to momentum inversion and, similarly, only depend on the occupation of the valley-spin flavors, aη,s, but not
on the exact Unc (4) rotation.

The parameterizations in Eqs. (E20) and (E21) imply that the spectral function matrices are diagonal in the valley-
subspace. As a result of this and of Eq. (C36), for the insulators |Ψν〉 defined in Eq. (B7), and their Unc (4) rotations,
there is no

√
3×
√

3 ordering, despite the possible presence of intervalley coherence. Equally surprising is the fact that
the spectral function of the insulators of the form Û |Ψν〉 is independent on the particular Unc (4) rotation considered.

The counter-intuitive absence of
√

3 ×
√

3 ordering even in the presence of intervalley coherence in any Unc (4)
rotation of the states |Ψν〉 warrants a more careful explanation. At the level of the spatial factor, the presence of
T symmetry imposes Eq. (C35), which requires that we consider only the symmetrized spectral function matrices
defined Eq. (C37). For the spectral function matrices themselves, the vanishing of the valley-off-diagonal terms in
the parameterizations from Eqs. (E20) and (E21) even in the case of valley-coherent insulators Û |Ψν〉 relies on three
main peculiarities of this specific ground state and the TBG Hamiltonian:

1. Occupying both Chern bands in each of the filled spin-valley sector of the unrotated state |Ψν〉.

2. Restricting to the non-chiral flat Unc (4) rotations of the |Ψν〉 state, as opposed to the more general U (4)×U (4)
rotations.

3. The presence of C2z, T , and P symmetries of the TBG single-particle Hamiltonian which constrain the forms
of the charge-one excitation matrices, as derived in Eqs. (B25) and (B26). In turn, the parameterizations of the
charge-one excitation matrices directly determine the parameterization of the spectral function matrices.

In Appendix [E 2], we will investigate the effects of relaxing the first two assumptions in the first chiral-flat limit [74, 86].
Additionally, in Appendix [E 4] we will relax the third assumption and explore the spectral function of |Ψν〉 as defined
in Eq. (B7) and some of its Unc (4) rotations using the full-fledged TBG interaction Hamiltonian away from the first
chiral-flat limit and without assuming exact particle-hole symmetry (i.e. focusing on the λ = 1 case).



46

2. The spectral function of
∣∣Ψν+,ν−

ν

〉
and its U (4)×U (4) rotations

In Appendix [E 1], we discussed the spectral function of the integer-filled states |Ψν〉 and their nonchiral-flat Unc (4)

rotations. The corresponding spectral function is independent on the Unc (4) rotation in question and no
√

3 ×
√

3
ordering emerges at the level of the SLG lattice, even in the presence of intervalley coherence. To better understand
the reasons behind the exact cancellation from Appendix [E 1] leading to the absence of

√
3 ×
√

3 ordering, we here
derive the minimal set of conditions necessary (but not sufficient) for the emergence of

√
3×
√

3 ordering in the STM
signal in a given TBG insulator.

For simplicity, we will focus on the chiral limit [74, 86]. This is because any
√

3 ×
√

3 ordering emerging in the
chiral limit for a given TBG insulator will necessarily persist when the chiral symmetry is broken. In other words,
the absence of

√
3 ×
√

3 ordering for a given insulator is reliant on the presence rather than the absence of certain
symmetries, so breaking chiral symmetry in itself cannot remove the

√
3×
√

3 ordering. On the other hand, as shown
in Eqs. (B28) and (B29), in the chiral limit, the charge-one excitation matrices are proportional to identity, which
vastly simplifies all algebraic manipulations.

We consider the general ground state |ϕ〉 defined in Eq. (B34) for a generic U (4)×U (4) rotation Û , where

Û = exp

i∑
a,b

θab+ S
ab
+ + θab− S

ab
−

 and U = exp

i∑
a,b

θab+

(
sab+

)T
+ θab−

(
sab−
)T (E22)

respectively denote the rotation operator and the corresponding eight-dimensional unitary matrix U implementing it
in the energy band basis. In Eq. (E22), θab± ∈ R (for a, b = 0, x, y, z) denote the angles parameterizing the U (4)×U (4)

rotation, while Sab± and sab± are the corresponding generators in the operator and matrix form, as given in Eqs. (A55)
and (A56), respectively. In order to specify the filled Chern-band, valley, and spin flavors in the unrotated ground
state

∣∣Ψν+,ν−
ν

〉
, we will find it useful to define

aη,s =
1

2

∑
eY

ρeY ,η,s, bη,s =
1

2

∑
eY

eY ρeY ,η,s, (E23)

where ρeY ,η,s = 1, 0 was introduced in Eq. (B35). In Eq. (E23), aη,s specifies whether the valley-spin flavor {η, s}
has zero (aη,s = 0), one (aη,s = 1/2), or two (aη,s = 1) filled Chern bands in

∣∣Ψν+,ν−
ν

〉
. In addition, 2bη,s = −1, 0, 1

denotes the total Chern number of the occupied bands in the valley-spin flavor {η, s}. As an example, the insulator∣∣∣Ψ1,2
−1

〉
=
∏

k

(
d̂†k,−1,−,↑d̂

†
k,+1,−,↑d̂

†
k,−1,−,↓

)
|0〉 (also depicted in Fig. 6 of Appendix [B 4]) corresponds to a−,↑ = 1,

a−,↓ = 1/2, a+,↑/↓ = 0, and b−,↓ = −1/2, b−,↑ = b+,↑/↓ = 0. This notation is consistent with the one introduced in
Eq. (E3): the states considered in Appendix [E 2] correspond to aη,s = 0, 1 and bη,s = 0.

a. Parameterized forms of Υ (k, ω) and Υ̃ (k, ω)

We are interested in obtaining parameterizatizations of the spectral function matrices M±ϕ (ω). Focusing on the
electron contribution, M+

ϕ (ω) can be written in terms of the matrix Υ (k, ω) introduced in Eq. (D9), according to
Eq. (D11). In turn, we have argued in Appendix [E 1] that Υ (k, ω) shares identical eigenvectors with the matrix
ΠU

(
R (k)⊗ s0

)
U†Π, as can be seen by comparing Eqs. (B61) and (D11). However, in the first chiral limit, the

charge-one excitation matrices are proportional to identity, implying from Eq. (B28) that the electron excitations are
degenerate, having energies given by Epk = d2 (k), for any 1 ≤ p ≤ 4 − ν, which allows us derive an even stronger
relation

Υ (k, ω) =
δ [ω − d2 (k)]

d2 (k)
ΠU

(
R (k)⊗ s0

)
U†Π = Πβ (k, ω) , (E24)

where β (k, ω) = δ [ω − d2 (k)] is a real function which is even with respect to momentum inversion. In the last equality
of Eq. (E24), we have used the fact that R (k)⊗ s0 is proportional to the identity matrix and that the projector Π is
idempotent (i.e. Π2 = Π). A similar relation can be written for hole contribution

Υ̃ (k, ω) =
δ
[
ω − d̃2 (k)

]
d̃2 (k)

Π̃U
(
R̃ (k)⊗ s0

)
U †Π̃ = Π̃β̃ (k, ω) , (E25)
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where β̃ (k, ω) = δ
[
ω − d̃2 (k)

]
is also a real function which is even with respect to momentum inversion.

Using the notation in Eq. (E23), we find that the two projector matrices are given by

Π =
1

4
ζ0τ0s0 (4− a−,↓ − a−,↑ − a+,↓ − a+,↑) +

1

4
ζ0τ0sz (a−,↓ − a−,↑ + a+,↓ − a+,↑)

+
1

4
ζ0τzs0 (a−,↓ + a−,↑ − a+,↓ − a+,↑) +

1

4
ζ0τzsz (−a−,↓ + a−,↑ + a+,↓ − a+,↑)

+
1

4
ζyτ0s0 (b−,↓ + b−,↑ + b+,↓ + b+,↑) +

1

4
ζyτ0sz (−b−,↓ + b−,↑ − b+,↓ + b+,↑)

+
1

4
ζyτzs0 (−b−,↓ − b−,↑ + b+,↓ + b+,↑) +

1

4
ζyτzsz (b−,↓ − b−,↑ − b+,↓ + b+,↑) , (E26)

Π̃ =ζ0τ0s0 −Π, (E27)

or, equivalently, in index notation by

Πnηs,n′η′s′ = δη,η′δs,s′
{[
ζ0
]
nn′

(1− aη,s)− [ζy]nn′ bη,s
}
, (E28)

Π̃nηs,n′η′s′ = δη,η′δs,s′
{[
ζ0
]
nn′

aη,s + [ζy]nn′ bη,s
}
. (E29)

b. Parameterized form of MS±
ϕ

To obtain the spectral function matrices, we perform one additional U (4)×U (4) rotation on Eqs. (E24) and (E25),
which affords

Y (k, ω) = U †Υ (k, ω)U = β (k, ω)U†ΠU = β (k, ω)

[
1

4
ζ0τ0s0

(
4−

∑
η,s

aη,s

)
+

1

4
ζyτ0s0

(∑
η,s

bη,s

)
+N

]
, (E30)

Ỹ (k, ω) = U †Υ̃ (k, ω)U = β̃ (k, ω)U†Π̃U = β̃ (k, ω)

[
1

4
ζ0τ0s0

(∑
η,s

aη,s

)
− 1

4
ζyτ0s0

(∑
η,s

bη,s

)
+ Ñ

]
, (E31)

where the matrices N and Ñ depend on the exact rotation Û , as well as on the parameters aη,s and bη,s. In what
follows, we will work out the parameterization of N and Ñ in different cases and derive properties of the corresponding
spectral function matrices.

Eqs. (E30) and (E31) were derived in analogy with Eq. (E13). Focusing on the electron contribution (the hole
contribution follows in exactly the same manner), the matrices ζ0τ0s0 and ζyτ0s0 commute with all the generators of
the U (4)×U (4) group from Eq. (A56): the corresponding terms in the expansion in Eq. (E26) remain invariant under
the transformation U . The remaining matrices in the expansion of Π are not invariant under general U (4) × U (4)
transformations, but belong to the set NU(4)×U(4) defined in Eq. (A57). Since NU(4)×U(4) is invariant (as a set) under
U (4)×U (4) rotations (i.e. for any T ∈ NU(4)×U(4), U†TU ∈ NU(4)×U(4)), it follows that N, Ñ ∈ NU(4)×U(4).

Remembering that the functions β (k, ω) and β̃ (k, ω) are even with respect to momentum inversion, we can derive
the parameterized form of the symmetrized spectral function from Eqs. (C37), (E30) and (E31)

[
MS+

ϕ (ω)
]
knη,kn′η′

= δk,k′
1

2

(
4− ν

2
δn,n′δη,η′ + [trsN ]nη,n′η′ + [trsN ]n′(−η′),n(−η)

)
β (k, ω) , (E32)

[
MS−

ϕ (ω)
]
knη,kn′η′

= δk,k′
1

2

(
4 + ν

2
δn,n′δη,η′ +

[
trs Ñ

]
nη,n′η′

+
[
trs Ñ

]
n′(−η′),n(−η)

)
β̃ (k, ω) , (E33)

where, as in Eq. (E17), trs denotes the trace over the spin degree of freedom. Depending on the rotation Û and
the parameters aη,s and bη,s, more restrictive statements can be made about the matrices N and Ñ . Without being
exhaustive, we can identify two distinct cases with particular relevance to the existence of

√
3×
√

3 ordering:

1. Û ∈ Unc (4) and bη,s = 0 for all η = ± and s =↑, ↓, where Unc (4) denotes the nonchiral-flat subgroup of
U (4)×U (4) whose generators are given in Eq. (A52).

If all bη,s are zero, then all matrices from Eqs. (E26) and (E27) which are not proportional to ζ0τ0s0 or ζyτ0s0

belong to the set NUnc(4), defined in Eq. (A54). Because NUnc(4) (as a set) is invariant under any Unc (4)
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rotations, it follows that N, Ñ ∈ NUnc(4), implying that trsN, trs Ñ ∈ trsNUnc(4), where

trsNUnc(4) =

{
3∑
i=1

φiti

∣∣∣∣∣ φi ∈ C, t1 = ζyτx, t2 = ζyτy, t3 = ζ0τz

}
. (E34)

In this case, one obtains that

[trsN ]nη,n′η′ + [trsN ]n′(−η′),n(−η) =
[
trs Ñ

]
nη,n′η′

+
[
trs Ñ

]
n′(−η′),n(−η)

= 0, (E35)

which implies from Eqs. (E32) and (E33) that the spectral function matrices are diagonal in the valley and
band indices and independent on the rotation Û . Therefore, no

√
3×
√

3 ordering emerges in this case and the
corresponding spectral functions are independent on the particular rotation Û . This result can also be seen as
a consequence of the general case away from the chiral limit, derived in Appendix [E 1].

2. Generic Û ∈ [U (4)×U (4)] \Unc (4) rotations and/or bη,s 6= 0 for some η and s.

For any choices of |ϕ〉, which do not otherwise belong to Case 1, we have N, Ñ ∈ NU(4)×U(4). Therefore, we find
that trsN, trs Ñ ∈ trsNU(4)×U(4), where

trsNU(4)×U(4) =

{
7∑
i=1

φiti

∣∣∣∣∣ φi ∈ C, t1 = ζyτx, t2 = ζyτy, t3 = ζ0τz, t4 = ζyτ0, t5 = ζ0τx, t6 = ζ0τy, t7 = ζyτz

}
,

(E36)
implying that for generic rotations Û we expect to have

[trsN ]nη,n′η′ + [trsN ]n′(−η′),n(−η) 6= 0 and
[
trs Ñ

]
nη,n′η′

+
[
trs Ñ

]
n′(−η′),n(−η)

6= 0. (E37)

A simple example illustrating this case corresponds to an intervalley-coherent C = 1 insulator at ν = −3

|ϕ〉 =
∏
k

(
d̂†k,+1,+,↑ cosα− d̂†k,+1,−,↑ sinα

)
|0〉 , (E38)

which can be obtained by setting θy0
+ = α and all other angles θab± = 0 in Eq. (E22), as well as b+,↑ = a+,↑ = 1/2

and all other bη,s = aη,s = 0. From Eqs. (E30) and (E31), we find that

1

2

(
[trsN ]nη,n′η′ + [trsN ]n′(−η′),n(−η)

)
=

1

4

[(
ζ0τx

)
sin 2α+ (ζyτz) cos 2α

]
nη,n′η′

1

2

([
trs Ñ

]
nη,n′η′

+
[
trs Ñ

]
n′(−η′),n(−η)

)
= −1

4

[(
ζ0τx

)
sin 2α+ (ζyτz) cos 2α

]
nη,n′η′

(E39)

which manifestly obeys Eq. (E37).
In this case, the symmetrized spectral function matrices from Eqs. (E32) and (E33) can generically have non-
vanishing off-diagonal valley components (as can be seen in the above example for general values of α), leading
to the emergence of

√
3 ×
√

3 ordering in the corresponding STM patterns. This does not however imply that
for any intervalley-coherent insulator not contained in Case 1,

√
3 ×
√

3 ordering emerges, but rather that
there is no symmetry precluding it. In the following Appendix [E 3], we present one additional example of
intervalley-coherent insulators without

√
3×
√

3 ordering, which do not belong to Case 1.

The analysis from this section complements the conclusions of Appendix [E 1]: for an intervalley-coherent U (4) ×
U (4) rotation of the state

∣∣Ψν+,ν−
ν

〉
defined in Eq. (B8), which is not part of the set of insulators discussed in

Appendix [E 1], an
√

3 ×
√

3 pattern can generically arise in the STM signal. Moreover, as
√

3 ×
√

3 ordering is a
symmetry-breaking effect, we expect the conditions for its emergence to hold even as we move away from the chiral
limit (i.e. the vanishing of

√
3×
√

3 ordering relies on the presence rather than the absence of certain symmetries).
On the other hand, the insulators discussed in Appendix [E 1] are not the only example of intervalley-coherent

insulators |ϕ〉 of the form in Eq. (B34) without
√

3 ×
√

3 symmetry-breaking. Far from being exhaustive, in Ap-
pendix [E 3], we will show by direct construction that a different submanifold of intervalley-coherent TBG ground
states without

√
3×
√

3 ordering exists. While deriving all the necessary and sufficient conditions for the emergence of√
3×
√

3 symmetry-breaking is beyond the scope of this work, we will nevertheless build a complete picture describing
the presence or absence of

√
3×
√

3 ordering in the case of maximally spin-polarized TBG ground states of the form
in Eq. (B34).
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3. Additional examples of intervalley-coherent ground states without
√

3×
√

3 ordering

In Appendix [E 2], we argued that an intervalley-coherent U (4) × U (4) rotation of the state
∣∣Ψν+,ν−

ν

〉
defined in

Eq. (B8) does generically show
√

3 ×
√

3 ordering, unless the rotation is part of the Unc (4) group, and the state∣∣Ψν+,ν−
ν

〉
has only fully-filled and fully-empty valley-spin flavors. In this section, we construct a different submanifold

of TBG ground states of the form in Eq. (B34) that are intervalley-coherent, but do not exhibit
√

3×
√

3 symmetry
breaking. Coupled with the analysis in Appendix [E 1], this will enable us discuss the

√
3 ×
√

3 symmetry-breaking
in the maximally spin-polarized insulators of the form in Eq. (B34).

a. C = 0 intervalley-coherent insulators with opposite valley polarization per Chern sector

We start by defining SUS (2) × SUV (2) to be a subgroup of U (4) × U (4) corresponding to independent SU (2)
rotations in both the valley (V) and spin (S) subspaces. The SUS (2) × SUV (2) group is generated by the six
operators

SaV =
∑
k

∑
η,s,η′,s′,n

[
τ0sa

]
ηs,η′s′

ĉ†k,n,η,sĉk,n,η′,s′ , for a = x, y, z,

SaS =
∑
k

∑
η,s,η′,s′,n

[
τas0

]
ηs,η′s′

ĉ†k,n,η,sĉk,n,η′,s′ , for a = x, y, z,
(E40)

which are diagonal in the band subspace, and therefore act identically within the two Chern sectors. Unlike the
Unc (4) group, within the SUS (2) × SUV (2) group, the valley rotations generated by SaV rotate the two Chern-band
operators in the same direction.

Using the notation from Eq. (E23), we now focus on the case

bη,s = −
∑
s′

Mss′b−η,s′ , for all η = ± and s =↑, ↓ (E41)

where we take either M = s0 or M = sx. Depending on the matrix M , this case corresponds to occupying the
Chern bands of the unrotated state

∣∣Ψν+,ν−
ν

〉
two at a time, with opposite Chern numbers, opposite valley indices

and identical (M = s0) or opposite (M = sx) spin projections along the ẑ axis. To obtain the rotated state |ϕ〉
defined in Eq. (B34), we perform two successive SU (2) rotations in the valley (V) and spin (S) subspaces by letting
Û = ÛSÛV = ÛVÛS, where

ÛV = exp

i ∑
a∈{x,y,z}

θaVS
a
V

 , and ÛS = exp

i ∑
a∈{x,y,z}

θaSS
a
S

 , (E42)

with θaV, θ
a
S ∈ R denoting the angles parameterizing the two SU (2) rotations, and SV and SS being the SUS (2)×SUV (2)

generators introduced in Eq. (E40). Within the energy-band basis, the transformation Û is implemented by the eight-
dimensional unitary matrix U = USUV = UVUS, with

UTV = exp

i ∑
a∈{x,y,z}

θaVζ
0τas0

 , and UTS = exp

i ∑
a∈{x,y,z}

θaSζ
0τ0sa

 , (E43)

corresponding to the two individual SU (2) rotations in the valley and spin subspaces. As the transformation ÛV

rotates the two Chern sectors identically and the bands of the unrotated state
∣∣Ψν+,ν−

ν

〉
are occupied two at a time

within opposite Chern sectors and opposite valleys, it follows that in the state |ϕ〉, any bands with opposite Chern
numbers have exactly opposite valley polarizations.

We will now prove that no
√

3 ×
√

3 ordering emerges in the STM signal of |ϕ〉, despite it being generically
intervalley coherent. We first note that for the particular choice of occupying the bands of

∣∣Ψν+,ν−
ν

〉
, the projectors

from Eqs. (E26) and (E27) obey(
ζ0τxM

)
Π∗
(
ζ0τxM

)†
= Π and

(
ζ0τxM

)
Π̃∗
(
ζ0τxM

)†
= Π̃, (E44)
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where the matrix M was defined in the text surrounding Eq. (E41). In addition, it can checked that for any SUS (2)×
SUV (2) rotation as defined in Eq. (E42), we have that(

ζ0τzs0
)
UV

(
ζ0τzs0

)†
=
(
ζ0τxM

)
U∗V
(
ζ0τxM

)†
. (E45)

Focusing on the electron contribution to the spectral function matrix and letting Q ≡
(
ζ0τ0M

)
US

(
ζ0τ0M

)
, we can

show from Eqs. (E44) and (E45) that the projector matrix from Eq. (E26) obeys(
ζ0τxM

) (
U †ΠU

)∗ (
ζ0τxM

)†
= QT

(
ζ0τxM

)
UTV Π∗U∗V

(
ζ0τxM

)†
Q∗

= QT
(
ζ0τxM

)
UTV

(
ζ0τxM

)†
Π
(
ζ0τxM

)
U∗V
(
ζ0τxM

)†
Q∗

= QT
(
ζ0τzs0

)
U †V
(
ζ0τzs0

)†
Π
(
ζ0τzs0

)
UV

(
ζ0τzs0

)†
Q∗

=
(
ζ0τzs0

)
QTUS

(
U †ΠU

)
U†SQ

∗ (ζ0τzs0
)†
. (E46)

In deriving Eq. (E46), we have also used M2 = s0, [τx, Q] = [US, UV] = 0. Additionally, using the parametrization of
the electron excitation matrix from Eq. (B21), it is straightforward to show that(

ζ0τxM
) (
R (k)⊗ s0

)∗ (
ζ0τxM

)†
=
(
R (−k)⊗ s0

)
. (E47)

Combining Eqs. (E46) and (E47), we can derive a relation for the electron excitations wave functions(
ζ0τxM

) [
U †ΠU

(
R (k)⊗ s0

)
U†ΠU

]∗ (
ζ0τxM

)†
=
(
ζ0τzs0

)
QTUS

[
U†ΠU

(
R (−k)⊗ s0

)
U†ΠU

]
U †SQ

∗ (ζ0τzs0
)†
.

(E48)
As discussed at the end of Appendix [D 1], the matrix Y (k, ω) defined in Eq. (D7) and U †ΠU

(
R (k)⊗ s0

)
U†ΠU ,

whose spectral decomposition was given in Eq. (B63), share identical eigendecompositions, up to a rescaling of the
eigenvalues. As such, Y (k, ω) satisfies a similar relation to Eq. (E48), namely(

ζ0τxM
)

[Y (k, ω)]
∗ (
ζ0τxM

)†
=
(
ζ0τzs0

)
QTUS [Y (−k, ω)]U †SQ

∗ (ζ0τzs0
)† (E49)

Tracing over the spin degree of freedom in Eq. (E49) and using the Hermiticity of Y (k, ω), we find that

[trs Y (−k, ω)]n′(−η′),n(−η) =
[(
ζ0τz

)
trs Y (k, ω)

(
ζ0τz

)†]
nη,n′η′

= ηη′ [trs Y (k, ω)]nη,n′η′ . (E50)

At the same time, using Eqs. (C37) and (D5), we can find the symmetrized spectral function matrix corresponding
to electron excitations to be [

MS+
ϕ (ω)

]
knη,kn′η′

=
1

2
δk,k′ (1 + ηη′) [trs Y (k, ω)]nη,n′η′ . (E51)

In analogous manner, the hole symmetrized spectral function matrix is given by[
MS−

ϕ (ω)
]
knη,kn′η′

=
1

2
δk,k′ (1 + ηη′)

[
trs Ỹ (k, ω)

]
nη,n′η′

. (E52)

Inspecting Eqs. (E51) and (E52) reveals that the symmetrized spectral function matrices are diagonal in valley
subspace, thus proving that no

√
3×
√

3 ordering emerges for the insulator |ϕ〉.
The insulators Û

∣∣Ψν+,ν−
ν

〉
with Û restricted to SUS (2)×SUV (2) and the occupancy of the Chern bands of

∣∣Ψν+,ν−
ν

〉
given in Eq. (E42) constitute another example of intervalley-coherent states without

√
3 ×
√

3 ordering, in addition
to the set of ground states discussed already in Appendix [E 1]. The key difference between the two cases lies in the
symmetries enforcing the absence of

√
3×
√

3 ordering. In Appendix [E 1], we proved that the vanishing of
√

3×
√

3
ordering is a direct consequence of restricting to the insulators with fully-occupied or fully-empty spin-valley flavors
and only considering nonchiral Unc (4) rotations thereof, rather than the more general U (4)×U (4) transformations.
This particular submanifold of ground states over the more general states given by Eq. (B8) becomes energetically
favored - in the absence of chiral symmetry - in comparison to the latter at even fillings [68, 69]. On the other hand,
the absence of

√
3×
√

3 ordering for the insulators discussed in this section is fine tuned : there is no a priori reason
for restricting to the SUS (2)× SUV (2) subgroup of U (4)× U (4) or to the unrotated states described by Eq. (E41).
Nevertheless, coupled with the conclusions of Appendix [E 1], this example allows us to provide an intuitive picture
explaining the vanishing of

√
3×
√

3 ordering in maximally spin-polarized TBG insulators of the form in Eq. (B8).
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FIG. 7. The presence of
√

3×
√

3 symmetry-breaking and the valley polarization Bloch sphere for the maximally spin-polarized
TBG ground states. We show how the valley polarization of the C = +1 (red) and C = −1 (blue) bands for the maximally
spin-polarized TBG insulators at ν = −3,−2 determines the presence of

√
3 ×
√

3 ordering. With only one Chern band filled
[panel a)], the intervalley coherent, maximally spin-polarized ν = −3 ground state will harbor

√
3 ×
√

3 symmetry breaking.
For the ν = −2 and C = 0 insulators [panels b)-d)], intervalley coherence does lead to the emergence of

√
3 ×
√

3 ordering
[panel b)], unless the polarization vectors of the two Chern bands have opposite projections in the xy plane [panels c) and
d)]. The insulator in panel c) corresponds to a Unc (4) rotation of a TBG ground state with a single fully-filled valley-spin
flavor, and thus, as shown in Appendix [E 1], does not display

√
3 ×
√

3 ordering. The absence of
√

3 ×
√

3 ordering in the
insulator from panel d) is due to the opposite valley polarizations of the two Chern bands, as shown in Appendix [E 3 a]. The
vanishing of

√
3 ×
√

3 ordering in panels c) and d) can be understood by noting that in both cases the xy-projections of the
valley polarizations of the two Chern band exactly cancel.

b. An intuitive picture for the maximally spin-polarized insulators

Intervalley-coherence is a necessary, but insufficient condition for the emergence of
√

3 ×
√

3 patterns in the STM
signals of the TBG insulators constructed in Ref. [68]. This was illustrated in Appendices [E 1] and [E 3 a], where
we identified two distinct ground-state submanifolds that are manifestly intervalley-coherent, but do not harbor any√

3×
√

3 ordering. Due to the nature of the U (4)× U (4) group, whose rotations mix the valley and spin degrees of
freedom, deriving all the necessary and sufficient conditions for the absence of

√
3 ×
√

3 symmetry-breaking for the
valley-coherent TBG insulators from Eq. (B34) is beyond the scope of the current work. Nevertheless, an intuitive
explanation for the absence of

√
3×
√

3 ordering in some valley-coherent TBG insulators can be obtained by restricting
to the subset of TBG ground states from Eq. (B34), which are maximally spin-polarized.

The complete set of maximally spin-polarized (along the ẑ direction, without loss of generality) states |ϕ〉, as defined
in Eq. (B34), can be obtained by letting Û be a product of SU (2) valley transformations in each of the two Chern
sectors [i.e. letting θx0

± , θy0
± , θz0± be the only nonzero angles in Eq. (E22)], and occupying the spin-↑ bands of the

unrotated state
∣∣Ψν+,ν−

ν

〉
first. For ν = −4, TBG ground state is not intervalley-coherent, so no

√
3 ×
√

3 ordering
is expected. At ν = −3, the only possibility is to occupy a single Chern band, and it was already shown in Case 2
of Appendix [E 2 b] that the resulting insulator does show

√
3 ×
√

3 symmetry-breaking if it is intervalley-coherent
(see Fig. 7a). For ν = −2, there are two choices. Filling two Chern bands with the same Chern number leads to
a valley-polarized state, which does not display any

√
3 ×
√

3 ordering. On the other hand filling two Chern bands
with opposite Chern numbers will generically lead to the emergence of

√
3×
√

3 ordering, unless |ϕ〉 = Û |Ψν〉, with
Û ∈ Unc (4) (i.e. |ϕ〉 is one of the insulators discussed in Appendix [E 1]), or |ϕ〉 has opposite valley polarizations per
Chern sector (as discussed in Appendix [E 3 a]). As shown in Figs. 7b to 7d, the maximally spin-polarized ν = −2

and C = 0 insulators |ϕ〉 generally harbor
√

3 ×
√

3 symmetry-breaking, unless valley polarization projections of the
two Chern bands in the xy plane exactly cancel.

At ν = −1, the situation is similar to that at ν = −3 for the maximally spin-polarized insulators. As both valleys
are filled, one Chern sector will be valley-polarized. Assuming that the other Chern band is intervalley-coherent,√

3×
√

3 ordering will generally emerge for the insulator |ϕ〉. For ν = 0, both valleys are fully filled for a given spin
sector, thus precluding any

√
3×
√

3 symmetry breaking. For any positive filling ν, the conditions for the presence or
absence of

√
3×
√

3 ordering are identical to the ones at −ν, as a consequence of the many-body charge-conjugation
symmetry of TBG [74].
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FIG. 8. Emergence of
√

3 ×
√

3 ordering in the absence of exact particle-hole symmetry (λ = 1). We consider the ν = −2

insulator from Eq. (E53) for different rotation Û given by Eq. (E54), and show how the valley polarization of the C = +1 (red)
and C = −1 (blue) bands determines the presence of

√
3×
√

3 symmetry-breaking. The Unc (4) rotation from Eq. (E54) rotates
the polarizations of the two Chern bands by an angle φ in opposite directions within the xz plane. As expected, the valley
polarized case [panel a)] does not exhibit

√
3 ×
√

3 ordering. Unlike the case with exact particle-hole symmetry (λ = 0), a
general values of φ leads to the emergence of

√
3 ×
√

3 ordering, unless the Chern bands are polarized in the xy plane [panel
c)], when the

√
3×
√

3 ordering vanishes even without exact particle-hole symmetry.

4. Breaking the particle-hole symmetry

In Appendix [E 1], we showed that the states Û |Ψν〉, where Û ∈ Unc (4) and the unrotated state |Ψν〉 defined in
Eq. (B7) contains only fully-filled or fully-empty valley-spin flavors, do not harbor any

√
3×
√

3 ordering even in the
presence of intervalley-coherence. Among other reasons, we argued that the absence of

√
3×
√

3 symmetry breaking
is a direct result of the discrete symmetries of TBG: C2z, T , and P . While the particle-hole symmetry is an excellent
approximate symmetry of TBG [82, 84], it is nevertheless not exact. In this section, we investigate the effects of
relaxing the assumption of exact particle-hole symmetry by considering the unapproximated case λ = 1.

For simplicity, we will focus on the insulator

|ϕ〉 = Û |Ψ−2〉 = Û

(∏
k

ĉ†k,+1,+,↑ĉ
†
k,−1,+,↑

)
|0〉 (E53)

where the rotation Û is given in terms of the Unc (4) generators from Eq. (A52) by

Û = exp

(
iφSy0

2

)
. (E54)

The transformation Û rotates the valley polarization of the Chern sector eY , by an angle eY φ within the xz plane
(see Fig. 8). Although Û is not the most general Unc (4) rotation, it is nevertheless sufficient for understanding the
implications of breaking the exact particle-hole symmetry on the conclusions of Appendix [E 1].

As in Appendix [E 2], to parameterize the spectral function matrix, we can leverage the fact that the matrix
Y (k, ω) defined in Eq. (D7) and U †ΠU

(
R (k)⊗ s0

)
U†ΠU , whose spectral decomposition was given in Eq. (B63),

share identical eigendecompositions, up to a rescaling of the eigenvalues (and similarly for the hole contribution).
The matrices U†ΠU

(
R (k)⊗ s0

)
U†ΠU and U †Π̃U

(
R̃ (k)⊗ s0

)
U†Π̃U can be obtained directly for |ϕ〉, by using the

parameterizations of the charge-one excitation matrices in the λ = 1 case from Eqs. (B21) and (B22)

U†ΠU
(
R (k)⊗ s0

)
U†ΠU− =

1

4
ζ0τ0s0 (− cos(φ)d1 (k) + 3d2 (k))

−1

4
ζ0τ0sz (− cos(φ)d1 (k)− d2 (k))− 1

8
ζ0τzs0 ((5 + cos(2φ))d1 (k)− 2 cos(φ)d2 (k))

−1

8
ζ0τzsz ((−3 + cos(2φ))d1 (k)− 2 cos(φ)d2 (k))

−1

8
ζxτ0s0 (−2 cos(φ)d3 (k) + (5 + cos(2φ))d4 (k))
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−1

8
ζxτ0sz (−2 cos(φ)d3 (k) + (−3 + cos(2φ))d4 (k))− 1

4
ζxτys0 sin(φ) (d5 (k)− cos(φ)d6 (k))

−1

4
ζxτysz sin(φ) (d5 (k)− cos(φ)d6 (k))− 1

4
ζxτzs0 (3d3 (k)− cos(φ)d4 (k))

−1

4
ζxτzsz (−d3 (k)− cos(φ)d4 (k))− 1

4
ζyτxs0 sin(φ) (− cos(φ)d1 (k) + d2 (k))

−1

4
ζyτxsz sin(φ) (− cos(φ)d1 (k) + d2 (k))− 1

8
ζzτ0s0 (−2 cos(φ)d5 (k) + (5 + cos(2φ))d6 (k))

−1

8
ζzτ0sz (−2 cos(φ)d5 (k) + (−3 + cos(2φ))d6 (k))− 1

4
ζzτys0 sin(φ) (−d3 (k) + cos(φ)d4 (k))

−1

4
ζzτysz sin(φ) (−d3 (k) + cos(φ)d4 (k))− 1

4
ζzτzs0 (3d5 (k)− cos(φ)d6 (k))

−1

4
ζzτzsz (−d5 (k)− cos(φ)d6 (k)) , (E55)

U†Π̃U
(
R̃ (k)⊗ s0

)
U†Π̃U− =

1

4
ζ0τ0s0

(
cos(φ)d̃1 (k) + d̃2 (k)

)
− 1

4
ζ0τ0sz

(
cos(φ)d̃1 (k) + d̃2 (k)

)
−1

4
ζ0τzs0 cos(φ)

(
cos(φ)d̃1 (k) + d̃2 (k)

)
− 1

4
ζ0τzsz cos(φ)

(
cos(φ)d̃1 (k) + d̃2 (k)

)
−1

4
ζxτ0s0 cos(φ)

(
d̃3 (k) + cos(φ)d̃4 (k)

)
− 1

4
ζxτ0sz cos(φ)

(
d̃3 (k) + cos(φ)d̃4 (k)

)
−1

4
ζxτys0 sin(φ)

(
d̃5 (k) + cos(φ)d̃6 (k)

)
− 1

4
ζxτysz sin(φ)

(
d̃5 (k) + cos(φ)d̃6 (k)

)
−1

4
ζxτzs0

(
d̃3 (k) + cos(φ)d̃4 (k)

)
− 1

4
ζxτzsz

(
d̃3 (k) + cos(φ)d̃4 (k)

)
−1

4
ζyτxs0 sin(φ)

(
cos(φ)d̃1 (k) + d̃2 (k)

)
− 1

4
ζyτxsz sin(φ)

(
cos(φ)d̃1 (k) + d̃2 (k)

)
−1

4
ζzτ0s0 cos(φ)

(
d̃5 (k) + cos(φ)d̃6 (k)

)
− 1

4
ζzτ0sz cos(φ)

(
d̃5 (k) + cos(φ)d̃6 (k)

)
−1

4
ζzτys0 sin(φ)

(
d̃3 (k) + cos(φ)d̃4 (k)

)
− 1

4
ζzτysz sin(φ)

(
d̃3 (k) + cos(φ)d̃4 (k)

)
−1

4
ζzτzs0

(
d̃5 (k) + cos(φ)d̃6 (k)

)
− 1

4
ζzτzsz

(
d̃5 (k) + cos(φ)d̃6 (k)

)
, (E56)

with the parity of the functions di (k) and d̃i (k) (for 1 ≤ i ≤ 6) being given in Eq. (B23). For general values of
φ, none of the terms in the matrix expansions from Eqs. (E55) and (E56) has definite momentum parity, implying
that the matrices U†ΠU

(
R (k)⊗ s0

)
U†ΠU and U †Π̃U

(
R̃ (k)⊗ s0

)
U †Π̃U at opposite momenta cannot be related

through a similarity transformation. As a result, Y (k, ω) and Ỹ (k, ω) defined in Eqs. (D7) and (D8), which share
identical eigenvectors with the matrices from Eqs. (E55) and (E56), are not similar with the matrices Y (−k, ω)

and Ỹ (−k, ω), respectively. At the same time, for general values of φ, the matrices U †ΠU
(
R (k)⊗ s0

)
U†ΠU and

U†Π̃U
(
R̃ (k)⊗ s0

)
U†Π̃U have non-vanishing valley-off-diagonal terms, implying that Y (k, ω) and Ỹ (k, ω) are not

necessarily diagonal in the valley subspace. Since Y (k, ω) and Ỹ (k, ω) have different eigenvalues at opposite momenta,
no exact cancellation of the valley-off-diagonal matrix elements can occur when computing the symmetrized spectral
function matrices. As a result,

√
3×
√

3 ordering generally emerges in the STM signal of |ϕ〉.
In addition to the cases φ = 0, π, which correspond to valley-polarized insulators, there is one other notable exception

for which
√

3×
√

3 ordering vanishes exactly even in the λ = 1 case: φ = π/2. For φ = π/2 the valley polarizations of
the two Chern bands lie in the xy plane, a configuration which was shown by Ref. [58, 68] to be energetically favored
when the effects of kinetic energy are considered (i.e. the K-IVC state discussed in the main paper). To show that√

3 ×
√

3 order vanishes in this case, despite |ϕ〉 being valley-coherent, we note that for φ = π/2, the matrices from
Eqs. (E55) and (E56) are given by

U†ΠU
(
R (k)⊗ s0

)
U†ΠU =

ζ0τ0s0 3d2 (k)

4
− 1

4
ζ0τ0szd2 (k)− ζ0τzs0 d1 (k)

2
− 1

2
ζ0τzszd1 (k)− ζxτ0s0 d4 (k)

2
− 1

2
ζxτ0szd4 (k)

−ζxτys0 d5 (k)

4
− ζxτysz d5 (k)

4
− ζxτzs0 3d3 (k)

4
− 1

4
ζxτzszd3 (k)− ζyτxs0 d2 (k)

4
− ζyτxsz d2 (k)

4
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−ζzτ0s0 d6 (k)

2
− 1

2
ζzτ0szd6 (k)− 1

4
ζzτys0d3 (k)− 1

4
ζzτyszd3 (k)− ζzτzs0 3d5 (k)

4
− 1

4
ζzτzszd5 (k) , (E57)

U†Π̃U
(
R̃ (k)⊗ s0

)
U †Π̃U =

1

4
ζ0τ0s0d̃2 (k)− 1

4
ζ0τ0sz d̃2 (k)− 1

4
ζxτys0d̃5 (k)− 1

4
ζxτysz d̃5 (k)− 1

4
ζxτzs0d̃3 (k)− 1

4
ζxτzsz d̃3 (k)

−1

4
ζyτxs0d̃2 (k)− 1

4
ζyτxsz d̃2 (k)− 1

4
ζzτys0d̃3 (k)− 1

4
ζzτysz d̃3 (k)− 1

4
ζzτzs0d̃5 (k)

−1

4
ζzτzsz d̃5 (k) . (E58)

Using the parity and the reality of the functions di (k) and d̃i (k) (for 1 ≤ i ≤ 6) from Eq. (B23), we find that(
ζ0τys0

)
U†ΠU

(
R (k)⊗ s0

)
U†ΠU

(
ζ0τys0

)†
=U †ΠU

(
R (−k)⊗ s0

)∗
U†ΠU, (E59)(

ζ0τys0
)
U†Π̃U

(
R̃ (k)⊗ s0

)
U †Π̃U

(
ζ0τys0

)†
=U †Π̃U

(
R̃ (−k)⊗ s0

)∗
U †Π̃U, (E60)

which implies (as a result of sharing identical eigenvectors) that the Y (k, ω) and Ỹ (k, ω) matrices defined in Eqs. (D7)
and (D8) obey an identical property (

ζ0τys0
)
Y (k, ω)

(
ζ0τys0

)†
=Y ∗ (−k, ω) , (E61)(

ζ0τys0
)
Ỹ (k, ω)

(
ζ0τys0

)†
=Ỹ ∗ (−k, ω) . (E62)

Focusing on the electron contribution, tracing over the spin degree of freedom of Y (k, ω) and using its Hermiticity,
we obtain that

ηη′ [trs Y (−k, ω)]n′(−η′),n(−η) = [trs Y (k, ω)]nη,n′η′ . (E63)

At the same time, using Eqs. (C37) and (D5), we can find the symmetrized spectral function matrix corresponding
to electron excitations to be [

MS+
ϕ (ω)

]
knη,kn′η′

=
1

2
δk,k′ (1 + ηη′) [trs Y (k, ω)]nη,n′η′ . (E64)

In analogous manner, the hole symmetrized spectral function matrix is given by[
MS−

ϕ (ω)
]
knη,kn′η′

=
1

2
δk,k′ (1 + ηη′)

[
trs Ỹ (k, ω)

]
nη,n′η′

. (E65)

Inspecting Eqs. (E64) and (E65) reveals that the symmetrized spectral function matrices are and are manifestly
valley-diagonal, thus proving that no

√
3×
√

3 ordering emerges for the insulator |ϕ〉 for φ = π/2.
In conclusion, breaking the exact particle-hole symmetry generally leads to the emergence of

√
3×
√

3 ordering in
Unc (4) rotations of the insulators |Ψν〉. Nevertheless, because the particle-hole symmetry-breaking terms in Eqs. (E55)
and (E56) (i.e. di (k) and d̃i (k) for i = 1, 4, 6) are relatively small, as shown in Eq. (B27), we expect the amplitude
of the

√
3×
√

3 ordering signal to be small in an STM measurement, implying that the conclusions of Appendix [E 1]
hold approximately even in the λ = 1 case. Nevertheless, we note that when the valley polarizations of the two Chern
bands of |ϕ〉 are in the xy plane, a configuration which was shown to be energetically favorable when kinetic energy
effects are included [68], the

√
3×
√

3 ordering vanishes exactly, even in the absence of exact particle-hole symmetry.

Appendix F: Experimental method

In this appendix, we provide additional information about the experimental data discussed in the article. Tunneling
measurements were performed on a homebuilt, ultra-high vacuum (UHV) STM [103] using tungsten tips calibrated
against the Cu(111) Shockley surface state. Tungsten and copper were chosen to match the work function of graphene.
TBG devices, which consist of TBG/hexagonal boron nitride (hBN)/SiO2/Si, were electrically contacted through pre-
patterned gold electrodes. The TBG was biased relative to the tip, which was referenced to ground, and a gate voltage
was applied to Si to tune the carrier density to ν = ±4. Differential conductance was obtained via lock-in detection
of the AC tunnel current induced by an AC modulation voltage added to the sample bias.
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FIG. 9. STM signal along a line connecting two AA stacking sites of TBG for the ν = −4 band insulator with a gate voltage
Vg = −43 V. In panel a), we show the topography map of the sample together with the line connecting the two AA regions,
passing through one AB and one BA regions. Because the AB and BA regions of TBG are equivalent, we label the centers
of the staking regions along the line by AA1, AB1, AB2, and AA2. The (unnormalized) differential conductance is measured
along the line and shown in panel b) as a function of the bias (ω− µ), as well as the distance along the line xline, with the four
stacking regions marked by vertical lines. As explained in Appendix [C], for each value of xline, we normalize the differential
conductance such that the maximum value is 1 and show the resulting data in panel c). There is significant variability in the
differential conductance on the atomic graphene scale. For that reason, we convolve the signals along the line with a Gaussian
with standard deviation σ = 0.8 nm, resulting in the data shown in panel d). In panel e) we show the resulting four STM
signals at AA1, AB1, AB2, and AA2, of which the AA2 and AB1 are showcased in Fig. 1 of the main text.

TBG devices were fabricated through a “tear-and-stack” method [104] whereby monolayer graphene was torn into
two pieces via pickup on a sacrificial polyvinyl alcohol (PVA) structure. One monolayer was rotated relative to the
other and was stacked on top of the other. As explained in greater detail in Ref. [103], the PVA structure was dissolved
through water injection, and the subsequent heterostructure was annealed at 400◦C.

In the main paper, we present STM data at ν = ±4 which fits with the overall features of the TBG spectral function
in the strong-coupling picture. We now give a broader overview of the data at ν = −4 in Figs. 9 and 10. The two
figures are obtained from the same sample but at two different locations, and we will detail Fig. 9 knowing that a
similar analysis can be done for Fig. 10. We measure the STM signal along a line connecting two AA regions and
passing through an AB and a BA region: as depicted in Fig. 9a, the measurement starts at the lower-left endpoint and
ends approximately at the upper-right corner (with a small amount of drift). The resulting differential conductance
from Fig. 9b is then normalized with respect to its maximum in Fig. 9c. The data shows a significant degree of
variability in the STM signal on the atomic graphene scale. We circumvent this issue by applying a Gaussian filter
with standard deviation σ = 0.8 nm before normalization, resulting in Fig. 9d. Finally, we extract the normalized STM
signals corresponding to the two AA and two AB regions and illustrated them in Fig. 9e. Note that the normalized
STM signals shown in Fig. 1a are the AA2 and AB1 plots of Fig. 9e.

The results shown in both Fig. 9e and Fig. 10e indicate a fair amount of variability between different AA and AB
sites of the same sample, primarily in how the ratio between the two peaks changes upon moving from the AA to the
AB site. Nevertheless, as explained in the main paper, the signal broadening is consistent with the interaction energy
scale as opposed to the bandwidth of the TBG bands. Thus, it validates the strong coupling approach in describing
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FIG. 10. STM signal along a line connecting two AA sites of TBG for the ν = −4 band insulator with a gate voltage Vg = −45 V
at a different location than Fig. 9 (but the same sample). The panels have the same meaning as in Fig. 9.

the physics of TBG.

Appendix G: Additional numerical results

In this appendix we provide numerical results for 14 TBG insulator states listed in Table II. For each insulator
we consider four parameter values (w0/w1, λ) = (0.0, 0), (w0/w1, λ) = (0.4, 0), (w0/w1, λ) = (0.8, 0), (w0/w1, λ) =
(0.8, 1). In each case, we show the spectral function at the AA and AB stacking centers, together with the charge-one
excitation dispersion plotted along the high-symmetry lines of the MBZ. For each insulator and parameter choice, we
also plot the spatial structure of the TBG spectral function in both real and momentum spaces for two values of ω−µ
(corresponding roughly to the maxima of the AA STM signal for hole or electron tunneling, respectively).
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ν |φ〉 Appendix Description
w0/w1

0.0 0.4 0.8

−4
∣∣∣φ(0)

〉
= |0〉 Appendix [G 1] Insulator with all TBG active bands empty 3 3 3

−3
∣∣∣φ(1)

〉
=
∏
k

d̂†k,+1,+,↑ |0〉 Appendix [G 2] C = 1, valley polarized 3 3 7

−3
∣∣∣φ(2)

〉
=
∏
k

d̂†k,+1,+,↑ + d̂†k,+1,−,↑√
2

|0〉 Appendix [G 3] C = 1, valley coherent 3 3 7

−2
∣∣∣φ(3)

〉
=
∏
k

∏
eY =±1

d̂†k,eY ,+,↑ + eY d̂
†
k,eY ,−,↑√

2
|0〉 Appendix [G 4] C = 0, KIVC 3 3 3

−2
∣∣∣φ(4)

〉
=
∏
k

∏
eY =±1

d̂†k,eY ,+,↑ + d̂†k,eY ,−,↑√
2

|0〉 Appendix [G 5] C = 0, TIVC 3 3 3

−2
∣∣∣φ(5)

〉
=
∏
k

d̂†k,+1,+,↑d̂
†
k,−1,+,↑ |0〉 Appendix [G 6] C = 0, valley polarized 3 3 3

−2
∣∣∣φ(6)

〉
=
∏
k

d̂†k,+1,+,↑d̂
†
k,+1,+,↓ |0〉 Appendix [G 7] C = 2, valley polarized 3 3 3

−2
∣∣∣φ(7)

〉
=
∏
k

∏
s=↑,↓

d̂†k,+1,+,s + d̂†k,+1,−,s√
2

|0〉 Appendix [G 8] C = 2, valley coherent 3 3 3

−1
∣∣∣φ(8)

〉
=
∏
k

d̂†k,+1,+,↑d̂
†
k,+1,+,↓d̂

†
k,+1,−,↓ |0〉 Appendix [G 9] C = 3, valley polarized 3 3 3

−1
∣∣∣φ(9)

〉
=
∏
k

d̂†k,+1,−,↓

∏
eY =±1

d̂†k,eY ,+,↑ + eY d̂
†
k,eY ,−,↑√

2
|0〉 Appendix [G 10] C = 1, two occupied KIVC bands and a valley

polarized band
3 3 3

0
∣∣∣φ(10)

〉
=
∏
k

∏
eY =±1

∏
s=↑,↓

d̂†k,eY ,+,s + eY d̂
†
k,eY ,−,s√

2
|0〉 Appendix [G 11] C = 0, KIVC 3 3 3

0
∣∣∣φ(11)

〉
=
∏
k

∏
eY =±1

∏
s=↑,↓

d̂†k,eY ,+,s |0〉 Appendix [G 12] C = 0, valley polarized 3 3 3

0
∣∣∣φ(12)

〉
=
∏
k

∏
η=±

∏
s=↑,↓

d̂†k,+1,η,s |0〉 Appendix [G 13] C = 4, valley polarized 3 3 3

+4
∣∣∣φ(13)

〉
=
∏
k

∏
η=±

∏
s=↑,↓

∏
eY =±1

d̂†k,eY ,η,s |0〉 Appendix [G 14] Insulator with all TBG active bands filled 3 3 3

TABLE II. Model insulator states of TBG, for which we study the spectral function. Each model insulator is investigated for
multiple values of the w0/w1. For each value of w0/w1 and type of potential, we indicate whether the insulator shows only
positive-energy charge-one and charge neutral excitations (3) or not (7). If an insulator has negative-energy excitations, then
we do not compute the spectral function (as this implies the insulators is not a ground state of HI).
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1. ν = −4, insulator with all TBG active bands empty: |0〉
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FIG. 11. ν = −4, insulator with all TBG active bands empty: The real-space spectral function averaged over three graphene
unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown
in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as
well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on
(w0/w1, λ) = (0.0, 0).
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FIG. 12. ν = −4, insulator with all TBG active bands empty: The real-space spectral function averaged over three graphene
unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown
in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as
well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on
(w0/w1, λ) = (0.4, 0).
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FIG. 13. ν = −4, insulator with all TBG active bands empty: The real-space spectral function averaged over three graphene
unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown
in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as
well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on
(w0/w1, λ) = (0.8, 0).
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FIG. 14. ν = −4, insulator with all TBG active bands empty: The real-space spectral function averaged over three graphene
unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown
in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as
well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on
(w0/w1, λ) = (0.8, 1).
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2. ν = −3, C = 1, valley polarized:
∏

k d̂
†
k,+1,+,↑ |0〉
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FIG. 15. ν = −3, C = 1, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 16. ν = −3, C = 1, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 17. ν = −3, C = 1, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 18. ν = −3, C = 1, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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3. ν = −3, C = 1, valley coherent:
∏

k

d̂
†
k,+1,+,↑+d̂

†
k,+1,−,↑√

2
|0〉
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FIG. 19. ν = −3, C = 1, valley coherent: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 20. ν = −3, C = 1, valley coherent: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 21. ν = −3, C = 1, valley coherent: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 22. ν = −3, C = 1, valley coherent: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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4. ν = −2, C = 0, KIVC:
∏

k

∏
eY =±1
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+eY d̂
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FIG. 23. ν = −2, C = 0, KIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 24. ν = −2, C = 0, KIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 25. ν = −2, C = 0, KIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 26. ν = −2, C = 0, KIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).



66

5. ν = −2, C = 0, TIVC:
∏
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FIG. 27. ν = −2, C = 0, TIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 28. ν = −2, C = 0, TIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 29. ν = −2, C = 0, TIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 30. ν = −2, C = 0, TIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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6. ν = −2, C = 0, valley polarized:
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FIG. 31. ν = −2, C = 0, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).

-30 -20 -10 0 10

0.0

0.2

0.4

0.6

0.8

1.0

-30 -20 -10 0 10

0.0

0.2

0.4

0.6

0.8

1.0

0

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 32. ν = −2, C = 0, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 33. ν = −2, C = 0, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 34. ν = −2, C = 0, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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7. ν = −2, C = 2, valley polarized:
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FIG. 35. ν = −2, C = 2, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 36. ν = −2, C = 2, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 37. ν = −2, C = 2, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 38. ν = −2, C = 2, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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8. ν = −2, C = 2, valley coherent:
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FIG. 39. ν = −2, C = 2, valley coherent: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 40. ν = −2, C = 2, valley coherent: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 41. ν = −2, C = 2, valley coherent: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 42. ν = −2, C = 2, valley coherent: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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9. ν = −1, C = 3, valley polarized:
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FIG. 43. ν = −1, C = 3, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 44. ν = −1, C = 3, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 45. ν = −1, C = 3, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 46. ν = −1, C = 3, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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10. ν = −1, C = 1, two occupied KIVC bands and a valley polarized band:∏
k d̂
†
k,+1,−,↓

∏
eY =±1

d̂
†
k,eY ,+,↑

+eY d̂
†
k,eY ,−,↑√

2
|0〉

-20 -10 0 10

0.0

0.2

0.4

0.6

0.8

1.0

-20 -10 0 10

0.0

0.2

0.4

0.6

0.8

1.0

12

14

16

18

20

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 47. ν = −1, C = 1, two occupied KIVC bands and a valley polarized band: The real-space spectral function averaged
over three graphene unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange)
dispersion is shown in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space
[d) and e)], as well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here,
we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 48. ν = −1, C = 1, two occupied KIVC bands and a valley polarized band: The real-space spectral function averaged
over three graphene unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange)
dispersion is shown in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space
[d) and e)], as well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here,
we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 49. ν = −1, C = 1, two occupied KIVC bands and a valley polarized band: The real-space spectral function averaged
over three graphene unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange)
dispersion is shown in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space
[d) and e)], as well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here,
we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 50. ν = −1, C = 1, two occupied KIVC bands and a valley polarized band: The real-space spectral function averaged
over three graphene unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange)
dispersion is shown in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space
[d) and e)], as well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here,
we focus on (w0/w1, λ) = (0.8, 1).
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11. ν = 0, C = 0, KIVC:
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FIG. 51. ν = 0, C = 0, KIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 52. ν = 0, C = 0, KIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 53. ν = 0, C = 0, KIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 54. ν = 0, C = 0, KIVC: The real-space spectral function averaged over three graphene unit cells at the AA site [panel
a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels d)-g), we
illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and g)] for the
two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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12. ν = 0, C = 0, valley polarized:
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FIG. 55. ν = 0, C = 0, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 56. ν = 0, C = 0, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 57. ν = 0, C = 0, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 58. ν = 0, C = 0, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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13. ν = 0, C = 4, valley polarized:
∏

k

∏
η=±

∏
s=↑,↓ d̂

†
k,+1,η,s |0〉
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FIG. 59. ν = 0, C = 4, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.0, 0).
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FIG. 60. ν = 0, C = 4, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.4, 0).
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FIG. 61. ν = 0, C = 4, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 0).
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FIG. 62. ν = 0, C = 4, valley polarized: The real-space spectral function averaged over three graphene unit cells at the AA
site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown in panel c). In panels
d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as well as real space [f) and
g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on (w0/w1, λ) = (0.8, 1).
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14. ν = +4, insulator with all TBG active bands filled:
∏

k

∏
η=±

∏
s=↑,↓

∏
eY =±1 d̂

†
k,eY ,η,s

|0〉
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FIG. 63. ν = +4, insulator with all TBG active bands filled: The real-space spectral function averaged over three graphene
unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown
in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as
well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on
(w0/w1, λ) = (0.0, 0).
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FIG. 64. ν = +4, insulator with all TBG active bands filled: The real-space spectral function averaged over three graphene
unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown
in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as
well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on
(w0/w1, λ) = (0.4, 0).
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FIG. 65. ν = +4, insulator with all TBG active bands filled: The real-space spectral function averaged over three graphene
unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown
in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as
well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on
(w0/w1, λ) = (0.8, 0).
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FIG. 66. ν = +4, insulator with all TBG active bands filled: The real-space spectral function averaged over three graphene
unit cells at the AA site [panel a)] and at the AB site [panel b)]. The electron (blue) and hole (orange) dispersion is shown
in panel c). In panels d)-g), we illustrate the spatial variation of the spectral function in momentum space [d) and e)], as
well as real space [f) and g)] for the two energy choices depicted by dashed gray lines in panels a) and b). Here, we focus on
(w0/w1, λ) = (0.8, 1).
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