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Abstract

The Super-Kamiokande detector can be used to search for neutrinos in time coincidence with gravitational waves
detected by the LIGO–Virgo Collaboration (LVC). Both low-energy (7–100MeV) and high-energy (0.1–105 GeV)
samples were analyzed in order to cover a very wide neutrino spectrum. Follow-ups of 36 (out of 39) gravitational
waves reported in the GWTC-2 catalog were examined; no significant excess above the background was observed,
with 10 (24) observed neutrinos compared with 4.8 (25.0) expected events in the high-energy (low-energy)
samples. A statistical approach was used to compute the significance of potential coincidences. For each
observation, p-values were estimated using neutrino direction and LVC sky map; the most significant event
(GW190602_175927) is associated with a post-trial p-value of 7.8% (1.4σ). Additionally, flux limits were
computed independently for each sample and by combining the samples. The energy emitted as neutrinos by the
identified gravitational wave sources was constrained, both for given flavors and for all flavors assuming
equipartition between the different flavors, independently for each trigger and by combining sources of the same
nature.

Unified Astronomy Thesaurus concepts: Neutrino astronomy (1100); Gravitational wave astronomy (675); High
energy astrophysics (739); Black holes (162); Compact objects (288); Neutron stars (1108); Transient
sources (1851)

Supporting material: figure sets, machine-readable table

1. Introduction

We have entered a new phase of astronomical observations,
the so-called multimessenger astronomy era. Experiments and
observatories are more than ever now able to observe the sky in
different energy regions (from eV to EeV) with different
messengers (photons, cosmic rays, neutrinos, or gravitational
waves).

Since 2019 April, the LIGO/Virgo collaboration (LVC) has
been publicly releasing their alerts for gravitational waves
(GW) directly through their own GraceDB service and through
the GCN system.58 Within a few minutes after the first
detection, the first alert is sent with a precise time stamp and a
rough sky localization allowing quick follow-ups from other

observatories. More precise information on localization is
provided in the following days.
The detected GW emitters are categorized by LVC into

several types, for which high-energy neutrino (HE-ν) emission
is also expected from relativistic outflows and hadronic
interactions within these sources: binary neutron star mergers
(BNS; Kimura et al. 2018), neutron star–black hole mergers
(NSBH; Kimura et al. 2017), or binary black hole mergers
(BBH; Kotera & Silk 2016). Such astrophysical objects may
also emit MeV neutrinos (LE-ν; for BNS, see Foucart et al.
2016).
However, such a joint observation of GWs and neutrinos is

yet to be observed. Even a single event of this type would
provide useful information on the underlying mechanisms.
Furthermore, high-energy neutrinos would allow improving the
localization in the sky of a single GW event, increasing the
chance for a pointing observatory (e.g., follow-up telescopes)
to observe a third correlated signal if the alert is provided
promptly.
The IceCube (Countryman et al. 2019) and ANTARES/

KM3NeT (Dornic et al. 2019) experiments are already taking
part in such a follow-up program for every single reported GW
event. Nevertheless, these neutrino telescopes are mainly

55 Also at BMCC/CUNY, Science Department, New York, NY 10007, USA.
56 Now at IFIC (CSIC—U. Valencia), Spain.
57 Deceased.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

58 https://gcn.gsfc.nasa.gov/
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covering HE-ν above 100 GeV. Super-Kamiokande (SK) can
complement such follow-up studies, as, despite its much
smaller size, it is sensitive to lower energies (MeV–TeV). In
the past, SK has performed such studies, but only for a few of
the detected GW events: GW150914/GW151226 in Abe et al.
(2016a) and GW170817 in Abe et al. (2018). For the MeV
region, searches have also been carried out in KamLAND (Abe
et al. 2021b) and Borexino (Agostini et al. 2017).
This paper is focused on the follow-ups of GW triggers

detected during the first half of the third observing run (O3a) of
LVC, from 2019 April to 2019 September, and described in the
GWTC-2 catalog (Abbott et al. 2021). Each GW was classified
as a BNS, BBH, or NSBH based on the measured masses of
the two objects (m< 3Me= neutron star, m> 3Me= black
hole, where Me is the solar mass).

This article is organized as follows. Section 2 describes SK and
the used data sets. In Section 3, the search method and basic
results will be described. Section 4 focuses on the extraction of
flux limits and signal significance out of each of individual follow-
up, while Section 5 describes how the results can be combined to
constrain different source populations. Section 6 summarizes and
concludes the discussion. The data release accompanying this
article (doi:10.5281/zenodo.4724822) includes all the figures, the
tables of observations and calculated flux limits, and the SK
effective area.

2. Super-Kamiokande and Event Samples

SK (Fukuda et al. 2003) is a water Cerenkov detector located in
the Mozumi mine in Gifu Prefecture, Japan. It lies under Mount
Ikeno (Ikenoyama) with a total of 2700 m.w.e (meters water
equivalent) mean overburden, reducing the cosmic-ray muon rate
at the detector by a factor of ∼105 with respect to the surface. The
detector consists of a cylindrical stainless-steel tank of 39m
diameter and 42m height, filled with 50 kt of water. It is optically
separated into an inner detector (ID) and an outer detector (OD)
by a structure at ∼2m from the wall. The ID is instrumented with
11,129 photomultiplier tubes (PMTs) to observe the Cerenkov
light emitted by charged particles produced in neutrino interac-
tions. The OD, instrumented with 1885 PMTs, is primarily used
as a veto for external background. SK is sensitive to neutrinos
with energies ranging from several MeV to TeV.

The experiment has been operating since 1996, and data
taking can be separated into six distinct periods, from SK-I to
SK-VI, with the latter starting in 2020 July, being the first
phase where gadolinium sulfate has been dissolved into the
otherwise pure water. In this paper focused on O3a GW events,
only data from SK-V (2019 January–2020 July) were used for
analysis, as this is covering the full O3 period.

2.1. HE-ν Samples

The high-energy samples correspond to neutrinos with
Eν> 100MeV (which is linked to an electron equivalent
energy / visible energy greater than 30MeV). The neutrino is
detected thanks to the outgoing lepton produced in the neutrino
charged-current interaction. Data are further divided into three
subsamples based on event topology.

The fully contained (FC) and partially contained (PC)
samples have a reconstructed neutrino interaction vertex inside
the fiducial volume of the ID.59 The separation between FC and

PC is based on the number of effective PMT hits in OD (<16
hits for FC, �16 hits for PC).
The muons entering the detector can originate from muon

neutrino interactions in the rock surrounding the detector. As
such events would be indistinguishable from downward-going
cosmic-ray muons, only events with upward-going direction
are considered, hence the name UPMU (for “Upward-going
muons”). Events are either through-going (with a requirement
on track length >7 m) or stopping in the detector (with a
requirement on reconstructed muon momentum >1.6 GeV).
Further details are documented in Ashie et al. (2005).
Typical neutrino energy for FC (PC) will be between

0.1 GeV and 10 GeV (1 and 100 GeV), and these samples are
sensitive to νμ, νe, n̄m, and n̄e. The UPMU sample is only
sensitive to muon neutrinos and muon antineutrinos, but it
covers energies from (GeV) to (TeV). The contribution of
tau neutrinos is subdominant and was therefore neglected in the
following, even though it may improve the final limits in a next
iteration of the analysis.

2.2. LE-ν Sample

The low-energy sample corresponds to events with energy
between 7 and 100MeV. The largest cross section in this range
is the inverse beta decay (IBD) of electron antineutrinos (n̄e +
p→ e+ + n), and the second most dominant is neutrino elastic
scattering (ν+ e−→ ν+ e−), which is sensitive not only to
electron neutrinos but also to other flavors. Interactions on 16O
are neglected in the following analysis.
There are two existing data samples in the SK low-energy

analysis. In the 7–15.5MeV range, the selection tuned for the
solar neutrino analysis (Abe et al. 2016b) is applied, while the
supernova relic neutrino (SRN) search (Bays et al. 2012) is
focused on the 15.5–100MeV range. The main background
below 20MeV is spallation products from cosmic-ray
muons (Zhang et al. 2016); above 20MeV, it is dominated
by interactions from atmospheric neutrinos and electrons from
muon decays.
The solar neutrino analysis is in principle sensitive down to

3.5MeV (Abe et al. 2016b). However, to reduce the back-
ground originating from radioactive decays (especially Rn
Nakano et al. 2020), only events with reconstructed energy
above 7MeV are considered in this paper.
The expected background is higher than for the HE-ν

samples (see the next section), and, as opposed to the latter, the
reconstructed neutrino direction cannot be reliably used to
identify spatial coincidence with the GW localization, IBD
being mostly insensitive to the original direction.

3. Search Method and Results

The information related to O3a GW triggers is extracted
from the FITS60 files in the data release accompanying Abbott
et al. (2021). The main input for the SK analysis is the trigger
time tGW: it is used to define a ±500 s time window centered on
tGW. The choice of this window is based on the conservative
considerations proposed by Baret et al. (2011). The SK data in
this window were collected and divided into the four samples
(three HE-ν, one LE-ν) described in Section 2.
Downtime periods, due to detector calibration or other

maintenance (e.g., preparation for Gd-loading in early 2020),
59 The fiducial volume for this analysis is defined as the region in the ID more
than 1 m (2 m for PC) from any wall. 60 https://fits.gsfc.nasa.gov/
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prevent the follow-up of some GW triggers. Out of the 39
confirmed events from O3a, SK was able to perform the
analysis for 36 of them, with a live time within the 1000 s
window of ∼99.5% for each (not 100% because of cosmic
muon vetoes and other trigger dead times). Additionally, one of
those (GW190512_180714) was not suited for low-energy
analysis since there were large noise fluctuations in SK near the
GW time due to high-voltage issues.

3.1. HE-ν Samples

The events passing the selection described in Section 2.1
were stored. For FC and PC events, the total visible energy Evis

is a good estimator of the incoming neutrino energy. For
UPMU events, the reconstructed muon momentum pμ is not an
accurate estimator because the original neutrino energy cannot
be inferred as it interacted in the surrounding rock; it is,
however, a lower bound for the neutrino energy.61

For FC and PC, the direction of each event was estimated by
reconstructing the Cerenkov rings in the ID, while the direction
of UPMU event is determined using the OD hit information.
This local direction was converted to equatorial coordinates, R.
A. and decl., so that it can easily be compared with GW
localization. The associated angular uncertainty was obtained
by comparing the reconstructed direction with the true neutrino
direction in atmospheric Monte Carlo samples of similar
energies. For the lower energies ( n E (GeV)), the angular
resolution is limited by the scattering angle between the
neutrino and the lepton (e.g., σ∼ 20° for FC, Eν= 2 GeV).
Resolution of the order of the degree can be achieved with the
UPMU sample, as detailed in Hagiwara (2020).
The expected background rate in the high-energy samples was

stable over the full data period and therefore can be extracted
from data using the full data set from 2019 February to 2020
March. The expected number of background events in a 1000 s
time window is 0.112, 0.007, and 0.016 events for FC, PC, and
UPMU, respectively (with negligible statistical uncertainties).

The numbers of observed events in the different samples for
each individual follow-up are presented in Table 1. Out of the 36
performed follow-ups, 10 of them have associated SK HE-ν
events in time coincidence (8 FC, 0 PC, 2 UPMU); this can be
compared to the expected background over the 36 GWs: 4.0, 0.3,
and 0.6 events, respectively, for FC, PC, and UPMU. For each
selected neutrino event, the timing (in particular Δt= tν− tGW),
energy, direction, and its related angular uncertainty are provided.
The latter information is presented in Table 2, and the angular
distributions are shown in Figure 1.

3.2. LE-ν Sample

The events within the 1000 s time window passing the
selection described in Section 2.2 were extracted. As in the case
of HE-ν samples, the total number of observed events is
compared to the background expectation. The latter is based on
the average event rate computed using the total SK-V data set,
which corresponds to 0.729 expected events in 1000 s; this
background level has been found to be stable over the whole
period. The results for all follow-ups are summarized in
Table 1. No significant excess was observed with respect to the
expected Poisson statistics, with 24 observed events and 25.0
expected.

4. Event-by-event Statistical Analysis

4.1. Observation Significance

The significance of a given observation in HE-ν samples can be
quantified in terms of p-value. The latter can be divided into a
temporal component ptime that is evaluating the probability to
observe at least one SK event in time coincidence with the GW and
a spatial component pspace comparing the direction of reconstructed
neutrinos with the GW localization: p= ptime× pspace. This
discrimination allows separating the discrete time component
(due to the low expected background) from the continuous spatial
component.
The term ptime is simply the Poisson probability to observe

at least one event in the selected time window: =ptime
( ) = - -p N e1 1 nB. We have ptime; 12.6% for nB; 0.13

(total number of expected events in 1000 s). The term pspace is
obtained using a maximum likelihood method with the GW
localization used as a spatial prior. The best-fit sky position of
the potential joint source is obtained by maximizing the log-
likelihood ratio, and the obtained test statistic value is
compared to its expected distribution from background events
to extract pspace as the probability for the observation to be
compatible with the background-only hypothesis given that at
least one SK event in time coincidence has been observed. The
method presented in Aartsen et al. (2020) and Hussain et al.
(2019) has been adapted to SK.
For each sample (k= FC, PC, or UPMU), the point-source

likelihood ( )( ) ( ) g Wn n , ;k
S
k

S is defined as
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where ( )nS
k is the number of signal events in the sample (to be

fitted), γ is the spectral index of the signal neutrino spectrum
( µn

g-dn dE E , to be fitted as well), ΩS is the probed source
direction, ( )nB

k is the expected number of background events in
the time window, and ( )N k is the observed number of events.

( )( ) gW x E, ; ,i
k

i S is the signal probability density function
(pdf), which depends on reconstructed event direction xi,
reconstructed event energy Ei, source spectral index, and
direction. ( )( ) x E,ik

i is the background pdf, which depends
solely on event information.
The ( ) k and ( ) k functions were computed and tuned for

k = FC, PC, and UPMU independently, using atmospheric
neutrino Monte Carlo simulation data sets. They are both
written as the product of an angular and an energy component:

( ) ( ) ( ) ( )( ) g gW = W  x xE E E, ; , ; , ; 2i i
k

i S S i S S i

( ) ( ) ( ) ( )( ) =  x xE Eand , , 3i i
k

i B B i

where the point-spread function ( )W x E; ,iS i S is characterizing
the angular resolution of the detector at the considered energy
Ei (it is maximal for xi=ΩS, i.e., neutrino in the direction of
the probed point source), and the energy part ( )g E ;S i is the
convolution of the energy spectrum µn

g-dn dE E with the
energy response function f (Ei; Eν). The functions ( ) xiB and

( ) EB i characterize the expected background distribution with
direction and energy.

61 In the following, we will use the notation Ereco to refer to Evis and pμ for
FC/PC and UPMU, respectively, with the related caveats.
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Table 1
Summary of All GW Triggers from the O3a Observation Run

Trigger Name Alert Time GW Type Distance Live Time HE-ν LE-ν
(UTC) (Mpc) (s) FC PC UPMU

GW190408_181802 2019-04-08 18:18:02 BBH 1547.5 993 0 0 0 3
GW190412 2019-04-12 05:30:44 BBH 734.1 993 0 0 0 0
GW190413_052954 2019-04-13 05:29:54 BBH 4189.6 993 0 0 0 0
GW190413_134308 2019-04-13 13:43:08 BBH 5181.6 993 0 0 0 0
GW190421_213856 2019-04-21 21:38:56 BBH 3165.5 993 0 0 0 3
GW190424_180648 2019-04-24 18:06:48 BBH 2568.4 993 1 0 0 1
GW190425 2019-04-25 08:18:05 BNS 156.8 993 0 0 0 1
GW190426_152155 2019-04-26 15:21:55 NSBH 377.2 993 0 0 1 0
GW190503_185404 2019-05-03 18:54:04 BBH 1527.3 993 0 0 0 0
GW190512_180714a 2019-05-12 18:07:14 BBH 1462.5 994 0 0 0 L
GW190513_205428 2019-05-13 20:54:28 BBH 2189.7 994 1 0 0 0
GW190514_065416 2019-05-14 06:54:16 BBH 4987.6 994 0 0 0 1
GW190517_055101b 2019-05-17 05:51:01 BBH 2270.5 0 L L L L
GW190519_153544 2019-05-19 15:35:44 BBH 3023.5 994 0 0 0 1
GW190521 2019-05-21 03:02:29 BBH 4566.9 994 0 0 0 3
GW190521_074359 2019-05-21 07:43:59 BBH 1244.2 994 0 0 0 0
GW190527_092055 2019-05-27 09:20:55 BBH 3562.9 994 1 0 0 1
GW190602_175927 2019-06-02 17:59:27 BBH 3138.1 994 1 0 0 0
GW190620_030421 2019-06-20 03:04:21 BBH 3210.9 995 0 0 1 1
GW190630_185205 2019-06-30 18:52:05 BBH 956.2 992 0 0 0 2
GW190701_203306 2019-07-01 20:33:06 BBH 2152.4 992 0 0 0 0
GW190706_222641 2019-07-06 22:26:41 BBH 5184.0 992 0 0 0 2
GW190707_093326 2019-07-07 09:33:26 BBH 790.8 992 0 0 0 0
GW190708_232457 2019-07-08 23:24:57 BBH 887.9 993 0 0 0 0
GW190719_215514 2019-07-19 21:55:14 BBH 4786.3 993 0 0 0 1
GW190720_000836 2019-07-20 00:08:36 BBH 906.0 993 0 0 0 0
GW190727_060333 2019-07-27 06:03:34 BBH 3608.9 992 0 0 0 0
GW190728_064510 2019-07-28 06:45:10 BBH 857.6 993 1 0 0 2
GW190731_140936 2019-07-31 14:09:36 BBH 4033.7 993 0 0 0 1
GW190803_022701 2019-08-03 02:27:01 BBH 3749.6 993 0 0 0 0
GW190814 2019-08-14 21:10:38 NSBH 240.7 994 1 0 0 0
GW190828_063405 2019-08-28 06:34:05 BBH 2160.3 542 0 0 0 1
GW190828_065509b 2019-08-28 06:55:09 BBH 1657.8 0 L L L L
GW190909_114149 2019-09-09 11:41:49 BBH 4923.7 994 0 0 0 0
GW190910_112807 2019-09-10 11:28:07 BBH 1670.1 994 1 0 0 2
GW190915_235702b 2019-09-15 23:57:02 BBH 1714.6 0 L L L L
GW190924_021846 2019-09-24 02:18:46 BBH 572.4 994 1 0 0 0
GW190929_012149 2019-09-29 01:21:49 BBH 3901.5 994 0 0 0 0
GW190930_133541 2019-09-30 13:35:41 BBH 785.9 994 0 0 0 0

Notes. The first four columns summarize GW information (name, time, event type, and mean distance), the fifth column corresponds to SK live time in the 1000 s time
window, and the last columns present the observed number of events in the four SK samples.
a The low-energy sample is not used because of high-voltage issues.
b The detector was not taking data owing to calibrations or maintenance.

Table 2
List of Selected SK HE-ν Events in Time Coincidence with GW Triggers from O3a Observation Run

Trigger Name SK Sample ΔT Ereco R.A. Decl. σang pspace p
(s) (GeV) (deg) (deg) (deg) (%) (%)

GW190424_180648 FC 104.03 0.57 210.82 −58.74 52.08 48.55 6.12
GW190426_152155 UPMU 278.99 9.52 352.37 −8.46 2.15 100.00 12.59
GW190513_205428 FC −183.27 0.68 279.34 −37.27 41.19 8.59 1.08
GW190527_092055 FC 248.41 0.48 54.09 18.80 52.08 58.93 7.43
GW190602_175927 FC −286.52 2.75 93.67 −38.90 16.22 1.72 0.22
GW190620_030421 UPMU −327.70 2.33 177.69 −35.59 8.04 100.00 12.62
GW190728_064510 FC 102.99 0.19 300.45 29.71 92.51 21.02 2.65
GW190814 FC 250.36 1.21 157.59 −9.47 28.26 100.00 12.61
GW190910_112807 FC 301.42 1.08 160.13 −22.70 32.09 57.11 7.20
GW190924_021846 FC 411.87 0.30 281.38 −54.52 73.58 50.49 6.37

Note. The p-values obtained with the statistical method presented in Section 4.1 are also listed.
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For each sample k and direction ΩS, the values ( )nS
k and

( )g k maximizing the likelihood ( )( ) ( ) g Wn n , ;k
S
k

S were
obtained using iminuit (Dembinski et al. 2020).62 The log-
likelihood ratio Λ(ΩS) was then computed:
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where∑k sums over the three considered samples and ( )W SGW

is the spatial prior given directly by the GW sky map.
The test statistic TS was defined by finding the direction in

the sky maximizing Λ(Ω) while scanning the full sky, after it
has been divided into equal-area pixels using the HEALPix
method (Gorski et al. 2005; same pixelization method as used
by LVC for GW sky maps):

[ ( )] ( )= L W
W

TS max . 5

Finally, this number can be used to compute pspace. First, the
observation in SK was used to compute TSdata. Over 105

background toys were generated with neutrino events dis-
tributed according to the background distribution (empty toys
with zero events are not considered). For each toy, TS was
computed and the probability distribution function ( ) TSbkg
was obtained and compared to the data value:

( ) ( )ò=
¥

p dTS TS. 6space
TS

bkg
data

The value pspace is the probability for the observation to be
compatible with the background-only hypothesis given that at
least one SK event in time coincidence has been observed.

Table 2 presents the obtained pspace for the GW triggers with at
least one SK event (for the other triggers, we trivially have
p= pspace= 100%). No significant deviations from the background
hypothesis (uniform distribution) were observed. The most
significant coincidence is associated with GW190602_175927,
with a p-value =p 1.72%space

best (pbest= 0.22%), corresponding to
2.1σ (2.9σ). However, one needs to take into account the total
number of trials involved in the catalog search (N= 10 for pspace,
as the analysis is restricted to GW with at least one SK event in
time coincidence, or N= 36 for p). The trial factor correction is
computed by performing 105 background-only pseudoexperiments
and checking how often one gets { } <= ¼p pmin i i N1

best. This
gives post-trial values =P 15.9%space

best (1.0σ) and Pbest= 7.8%
(1.4σ), which are fully consistent with the background-only
hypothesis.

4.2. Flux Limits Using High-energy Samples

Because no statistically significant event excess was observed
within the 1000 s time window in the HE-ν samples, the
observation can be converted to an upper limit on the incoming
neutrino flux. In the first approach, this was done separately for
FC, PC, and UPMU samples, using a similar procedure to that in
Abe et al. (2018), while a second approach used the test statistic
defined in Section 4.1 to combine the samples.

In the following, the neutrino energy spectrum is assumed to
follow a simple power law with a spectral index γ= 2, which is
commonly used in such astrophysical searches (e.g., Abe et al.
2018). The neutrino flux can then be written as

( )f=
n

n
-dn

dE
E . 70

2

In the following, we will report the upper limits on f =0

n nE dn dE2 (in GeV cm−2), for the different samples and
neutrino flavors (νμ, n̄m, νe, n̄e).

4.2.1. Sample-by-sample Approach

For a given sample s, flavor f, and source position Ω, the
neutrino flux E dn dE2 is related to the number of events:
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where ( )( ) WnA E ,s f
eff
, is the SK detector effective area for the

selected sample and neutrino flavor, and the integration range is
0.1105 GeV. The quantity ( )( ) Wc s f, is the detector acceptance,
which takes into account the source direction. To marginalize
over the source localization, the following Poisson likelihood is
then defined:
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where ( )nB
k and ( )N k are, respectively, the expected and

observed number of events in sample s. One can then derive
90% confidence level (C.L.) upper limits by computing the
likelihood as a function of f0 and finding the 90th percentile,
for each sample and flavor (this effectively corresponds to the
Bayesian limit with flat prior on f0):
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The effective areas have been computed explicitly as a function
of neutrino energy and zenith angle, using 500 yr of
atmospheric Monte Carlo simulations. There is a very small
dependency on the local zenith angle θ for FC and PC, while
UPMU covers only efficiently below the horizon (θ> 90°),
with a nonnegligible variation with θ, as shown in Figure 2.
The UPMU sample has very limited sensitivity at and above
the horizon (0< θ< 90°); only near-horizontal neutrinos with
slightly upgoing muons can be identified. No systematic
uncertainties are applied to the detector effective area estimate,
as the detector response is relatively stable and well understood
and the analysis is strongly dominated by limited statistics.
The full results for νμ are presented in Figure 3. They show a

wide variety of limits: in particular, UPMU upper limits are
only reported if the GW localization is mainly below the
horizon, where this sample has sensitivity. Detailed numbers
for GW190425 (Abbott et al. 2020a) and GW190521 (Abbott
et al. 2020b) are presented in Table 3. These two events are
illustrating the two scenarios and are the only BNS candidate in

62 In the implementation, as the maximization is performed independently for

each sample k, the ( )g k may differ, even though from the physical point of
view there should be only one common value. In practice, this has almost no
impact, as, in most of the cases, only zero or one event is observed in SK in the
time window, so that Equation (4) is much simpler and only one sample
contributes.
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GWTC-2 and the heaviest BBH, respectively. Results for all
the triggers are given in Table 4.

4.2.2. Combination of the Samples (Using Test Statistic)

As the neutrino spectrum is expected to span the full range
from 0.1 to 105 GeV, it is worth combining the different

samples that have varying sensitivities (in energy, flavor, and
direction). The method initially presented in Veske et al. (2020)
was implemented using the test statistic defined previously.
Signal simulations were performed, assuming E−2 spectrum

and that at most two signal neutrinos are detected in SK; the
source direction is chosen randomly based on GW sky map

Figure 1. Sky maps (in equatorial coordinates) showing the distribution of SK events, superimposed with the GW probability distribution, for the 10 GW triggers with
one observed event in the O3a observation run. The region representing the 1σ angular resolution is indicated in blue for FC and in green for UPMU. The dark-red
contour shows the 90% containment of the GW probability. The shaded area shows the sky region that is below SK horizon (where the UPMU sample is sensitive).
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GW; and the distribution of signal toy events between the
samples is done according to the relative effective areas. As
with the background toys in Section 4.1, this allows computing
the pdf ( ) TSnS for a given number of signal events nS= 0, 1, 2.

Assuming that at most two signal neutrinos will be observed
for a given GW trigger, the following flux likelihood is defined,
based on the observed test statistic and GW sky map:
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where ( ) ( )( )W = å Wc cs
s f, is the total detector acceptance

(summing all samples) assuming E−2 spectrum and the other
quantities have already been defined above. The likelihood is
composed of a sum of Poisson terms that quantify the relation
between number of events and the flux, weighted by the

probability to observe the measured test statistic given the
different signal hypotheses.
The 90% C.L. upper limit on f = n nE dn dE0

2 is then simply
obtained as in Equation (10). The procedure can be repeated
independently for each neutrino flavor or also combining
flavors, e.g., ¯n n+m m (in the latter case, both ( ) TSnS terms and
c(Ω) are computed assuming equally distributed flux between
the different flavors). The results are presented in Figure 3 and
Table 3 for the two examples mentioned above and in Table 4
for all the events.
The combined limits are usually close to the limits obtained

by the most constraining individual sample. If the UPMU
sample is used (GW localized mainly below the horizon), the
combined limit is similar to the UPMU limit. Otherwise,
it is consistent with the result of FC+PC. In the case of
GW190602_175927, the combined limit is slightly worse than
the individual UPMU because of the observed FC event in the
same direction as the GW, which gives higher TSdata and thus
impact ( ) TSk data used in Equation (11).

Figure 2. Effective area of the SK event selection, for the different HE-ν samples and neutrino flavors, as a function of neutrino energy: dark (light) green for muon
(anti)neutrinos and dark (light) orange for electron (anti)neutrinos. The different line styles show the variation of effective area for different ranges in zenith angle.
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4.3. Flux Limits Using Low-energy Sample

The flux limit calculation for the low-energy sample is
similar to HE-ν, except that the effective area is parameterized
as in Abe et al. (2018). As there is no direction dependence of
the latter and there is only one LE-ν sample, there is no need to
define a likelihood in order to perform a combination or to
marginalize over the sky like in the HE-ν case.

The upper limit on the total fluence ( òF = dn dE dE) is
then simply computed as

( ) ( ) ( ) ( )
( )

ò l s
F =

n n n

N

N E E R E E E dE,
, 12

T e
90

90

vis vis

where N90 is the 90% C.L. upper limit on the number of signal
events (calculated from a Poisson distribution), NT is the
number of target nuclei in SK fiducial volume, σ is the
combined cross section for all interactions, ò is the detection
efficiency, λ is the energy density assuming a given spectrum
( ( )l= F ´ndn dE E ), and R is the response function to
convert electron or positron energy (Ee) to visible energy in SK
(Evis). The response function and the detection efficiency (ò) are
calculated using SK detector Monte Carlo simulations, and
related systematic uncertainties are neglected as in the HE-
ν case.

In this analysis, two types of spectra were considered: flat
spectrum (l = constant) and Fermi–Dirac spectrum with an
average energy of 20MeV. The results for a selection of
triggers are shown in Table 3, while the rest are detailed in
Table 4. The limits are more stringent for the n̄e case, given that
the main interaction channel in the detector is IBD of n̄e, as
described in Section 2.

5. Neutrino Emission Limits and Population Constraints

None of the joint observations have a significance high
enough in order to classify them as detection (as presented in
Table 2), and the flux limits provided in the previous sections
do not directly constrain the physical quantities related to the
astrophysical objects. In this section, the neutrino emission at

the source is assumed to be isotropic, so that the intrinsic
energy Eiso emitted by neutrinos from a source at a distance d is
directly related to the detected flux at Earth:

( )òp= ´E d
dn

dE
E dE4 . 13iso

2

Knowing d, one can then constrain Eiso, as described in the
following.

5.1. High-energy Neutrino Emission

If, as in Section 4.2, the E−2 spectrum is assumed,
Equation (13) can then be integrated under this particular
assumption:
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To use the GW sky map as an input, the following likelihood is
defined (Veske et al. 2020):
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The quantity ( )¢ Wc r, is the conversion factor from Eiso to the
expected number of signal events in SK for known source
distance r and direction Ω. The test statistic distributions

( )( ) TSk
i and the measured test statistic ( )TS i

data for trigger i are
the same as defined in Section 4.2.2. ( )( ) W r,i

GW is the three-
dimensional LVC sky map provided for trigger i, taking into
account both the direction localization and the distance to
the source (see Singer et al. 2016 for details on GW3D
localization).
One can derive Eiso limits independently for each GW trigger

as has been done for the flux limits. For a given flavor (e.g.,
νμ), the obtained limit is on the isotropic energy emitted from

Figure 3. Obtained 90% C.L. upper limits on E dn dE2 for νμ and for the different GW triggers, using the methods presented in Section 4.2.1 (sample by sample) and
Section 4.2.2 for the combined analysis.

(The complete figure set (4 images) is available.)
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the source and that would be detected with this given flavor on
Earth (with no assumptions on the flavor distribution). Limits
on the total energy emitted by neutrinos of all flavors can be
obtained by considering all detectable flavors in SK and
assuming equal proportions of them at Earth. This is a
reasonable assumption in the most common source scenario,
where neutrinos are produced in pion decays in a flavor ratio
(νe: νμ: ντ) equal to (1:2:0), which would become ∼(1: 1: 1) at
Earth, after oscillations.

The results are detailed for a selection of triggers in Table 3
and are plotted in Figure 4; the full results are shown in
Table 4. In the example of GW190521, the UPMU sample
contributed to the observation so that the most constraining
limits are obtained for νμ and n̄m; the limit on the total energy
emitted in neutrinos assuming equipartition is then dominated
by the latter contributions: ¯ ´ n n- +m mE E3iso,90%

all flavors
iso,90%. Instead,

for GW190425, the limit has similar contributions from all
neutrino flavors, as the UPMU sample is not contributing to the
limit.

It is worth mentioning that the only BNS in the catalog,
GW190425, is located in a sky region for which the
observation with the UPMU sample is not possible, as already
mentioned in Section 4.2.2. If it had been located in a more
favorable region, the upper limit would have improved by a
factor of ∼30. This is promising for future observations.

Furthermore, if the spectrum is assumed to follow a E−3

spectrum, all the limits presented above are getting less
constraining, due to this less favorable spectrum (shifted to
lower energies where associated effective areas are smaller), as
detailed in Table 4 for the combined all-flavor Eiso limits.
The combination of a meaningful set of GW events to

constrain further Eiso is also worthwhile to infer information
about the common physical processes involved in a given
source population. This can be performed for different sets of
triggers, based on the classification provided in the GW
catalog. The relevant categories are BBH, BNS, and NSBH. If
emission from all objects of the same nature is assumed to be
similar (independently of their individual characteristics), one
can define the likelihood:

( { ) } { })
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; TS ,
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iso data GW

1
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where the sum runs over the selected GW triggers to be
combined.
A more realistic toy scenario would be that the neutrino

emission scales with the total masstot of the binary system:
= ´n

n E fiso tot. One can then use the following likelihood to

Table 3
Obtained 90% C.L. Upper Limits on E dn dE2 for GW190425 and GW190521

Trigger Name Sample νe n̄e νμ (νx) n̄m (n̄x)

HE E
dn

dE
2 FC 2.22 × 103 4.32 × 103 3.91 × 103 9.42 × 103

PC 3.32 × 104 1.12 × 105 4.81 × 103 8.74 × 103

UPMU L L L L
Combined 2.09 × 103 4.28 × 103 2.16 × 103 4.20 × 103

HE Eiso Per-flavor 1.98 × 1056 3.85 × 1056 1.96 × 1056 3.69 × 1056

GW190425 ¯n n+ 2.62 × 1056 2.52 × 1056

All 3.47 × 1056

LE Φ Flat 1.49 × 109 1.83 × 107 9.35 × 109 1.11 × 1010

Fermi–Dirac 3.92 × 109 9.57 × 107 2.43 × 1010 2.87 × 1010

LE Eiso Per-flavor 3.92 × 1059 9.59 × 1057 2.43 × 1060 2.87 × 1060

All 5.54 × 1058

HE E
dn

dE
2 FC 2.27 × 103 4.71 × 103 3.76 × 103 9.60 × 103

PC 3.66 × 104 3.68 × 104 4.89 × 103 8.35 × 103

UPMU L L 4.48 × 101 5.04 × 101

Combined 2.21 × 103 4.60 × 103 3.75 × 101 4.82 × 101

HE Eiso Per-flavor 1.69 × 1059 3.46 × 1059 2.58 × 1057 3.72 × 1057

GW190521 ¯n n+ 2.26 × 1059 3.00 × 1057

All 8.94 × 1057

LE Φ Flat 2.63 × 109 3.22 × 107 1.65 × 1010 1.95 × 1010

Fermi–Dirac 6.89 × 109 1.68 × 108 4.27 × 1010 5.04 × 1010

LE Eiso Per-flavor 5.85 × 1062 1.43 × 1061 3.63 × 1063 4.28 × 1063

All 8.26 × 1061

Note. For HE-ν, limits on E dn dE2 (in Gev cm−2) are presented for the different neutrino flavors, assuming E−2 spectrum. Upper limits on the total energy emitted
by the source as neutrinos Eiso (in erg) (assuming isotropic emission) are also presented: one limit per flavor and limits for νe + n̄e, νμ + n̄m, and on the total energy in
all flavors assuming equipartition (including unseen tau neutrinos). For LE-ν, limits on the total neutrino fluence Φ (in cm−2) are given for νe, n̄e, νx = νμ + ντ,
¯ ¯ ¯n n n= +m tx assuming Fermi–Dirac spectrum (with average energy of 20 MeV) and flat spectrum (within the range 7–100 MeV), as well as upper limits on Eiso (in
erg) for the Fermi–Dirac scenario.
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where fν, in erg/Me is to be constrained (simplifying the units,
fν can be expressed as the proportion of the total mass
converted in neutrinos, e.g., fν= 1054 erg/Me= 62%), and

( )( )p i
GW tot is the posterior distribution of the total mass of the

binary system, as obtained from the LVC data release.
Figure 5 presents the results for the three categories defined

above: 1 BNS candidate,63 2 NSBH (GW190426_152155 and
GW190814), and 33 BBH (all other events in O3a). The all-
flavor limit values are indicated on the figures, with the most
constraining results obtained for the BBH population:
Eiso< 4.16× 1055 erg assuming that all objects have similar
emission. This turns to Eiso< 9.73× 1056 erg for the E−3

spectrum.
Despite the objects being closer, the BNS and NSBH limits

are worse than the ones for BBH because of the limited
statistics for these two samples and the fact that the three
corresponding GW events have localization above the SK
horizon.

5.2. Low-energy Neutrino Emission

As for the flux limits, the low-energy case is much simpler.
Eiso limits are directly obtained by scaling the flux limits using
the source distance estimate. In case per-flavor limits are
combined, the limit on the total energy emitted in all flavors,
assuming equipartition, is, however, dominated by the n̄e limit.

To cover the distance uncertainty, the following likelihood was
defined:

( )
( ( ) )

!
( ) ( )( ( ) )

ò=
+ ´
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¥

- + ´

 E N N
N c r E

N

e p r dr

; ,

, 18

N

N c r E

iso obs bkg 0

bkg
LE

iso

obs

GW

obs

bkg
LE

iso

where Nobs and Nbkg are the observed and expected number of
LE-ν events, cLE(r) is the conversion factor from Eiso to
number of signal events assuming Fermi–Dirac spectrum and
source at distance r, and pGW(r) is the pdf of distance
estimation provided by LIGO-Virgo (Singer et al. 2016).
Detailed results for selected triggers are shown in Table 3.

6. Discussion and Conclusions

The results of the follow-up of LVC O3a GWs with the SK
detector have been presented. In the ±500 s time windows
centered on the triggers, no excess with respect to the
background hypothesis was observed in any of the four
considered samples (three for HE-ν, one for LE-ν). Upper
limits on the incoming neutrino flux were computed for the
different neutrino flavors. For HE-ν, the E−2 spectrum was
assumed, while for LE-ν limits, Fermi–Dirac emission with
average energy of 20MeV was considered. In both cases,
detailed results are presented in Table 4. Assuming isotropic
emissions and equipartition between the different flavors, upper
limits on the total energy as neutrinos Eiso were derived, both
individually for each trigger and by combining the different
triggers of the same type, assuming the same emission or that
the neutrino emission is scaling with the total mass of the
binary system.
For low-energy neutrino emissions, the upper limits on the

isotropic energy are not yet constraining enough to probe
existing models such as Foucart et al. (2016) (predicted
luminosity –~ ´ -L 4 7 10 erg siso

model 53 1), even though the
exact shape of the neutrino spectrum (beyond the assumed

Figure 4. The 90% C.L. upper limits on the isotropic energy emitted in neutrinos for the 36 GW triggers followed up by SK, as a function of source distance. The
distance and its error, as well as the source type (indicated by the different colors and markers), are provided using the data from Abbott et al. (2021)
(m < 3 Me = NS, m > 3 Me = BH). The limits are following two lines µE distanceiso

90% 2 based on geometrical considerations; one of the lines shows events
dominated by UPMU ¯n nn m contributions (giving more stringent limits), while the other line contains GW triggers that are less constrained. The two GW used in
Table 3 are labeled in the plots.

(The complete figure set (5 images) is available.)

63 In this case, the result is the same as using directly the GW190425 event, as
it is the only identified BNS in O3a.
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simple Fermi–Dirac distribution with 〈Eν〉= 20MeV) may
modify slightly the obtained upper limits.

For high-energy neutrino emissions, the obtained limits on Eiso
assuming the E−2 spectrum are barely covering the nonphysical
region where the total mass of the binary system is converted to
neutrinos ( fν 1054–1056 erg/Me; 60%–6000%), while the
region currently probed by IceCube is fν 1% (Aartsen et al.
2020). However, this depends greatly on the assumed spectrum; if
the latter happens to be different from the E−2 standard scenario or
features a cutoff, the limits would be changed as illustrated in
Section 5.1 for the E−3 spectrum. A larger GeV component would
favor detection and precise reconstruction of such neutrinos at SK
as compared to larger neutrino telescopes like IceCube (Abbasi
et al. 2021).

Even though the present paper has focused on the O3a catalog
and the analysis was performed offline, the selections and
techniques could also be used for real-time follow-up in the O4
observation period and beyond. With these constantly increasing
statistics, it may finally be possible to probe the GW+ν source
population and better understand the underlying mechanisms.
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agreement No. 754496, H2020-MSCA-RISE-2018 JENNIFER2
grant agreement No. 822070, and H2020-MSCA-RISE-2019
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Appendix
Additional Material and Data Release

This appendix details all the results not presented in the main
text of the paper. Table 4 contains the number of observed and
expected events in the different samples and for each follow-
up, as well as computed flux and Eiso limits.
Additionally, the data release (doi:10.5281/zenodo.4724822)

contains the effective areas that have actually been involved in the
computation of flux upper limits, as presented in Section 4.2.1.
These can be used to derive again the upper limits with a specific
source position or a different spectrum.

Figure 5. 90% C.L. upper limits on the isotropic energy emitted in neutrinos by combining GW triggers with the same nature, for νμ, ¯n n+m m, ¯n n+e e, and all-flavor
emission (assuming equipartition). The left panel shows the results assuming that all selected sources are emitting the same Eiso, while the right panel is assuming that
neutrino emission is scaling with the total mass of the binary system.
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Table 4
Content of the Detailed Data Release Table

Col.# Label Unit Description

1 GW_NAME Name of the GW trigger
2 GW_UTC UTC time of the trigger
3 GW_SKYAREA90 deg2 Surface of the 90% containment of GW localization
4 GW_DISTANCE Mpc Mean estimate of the distance to GW source
5 SK_LIVETIME s Live time of SK over the selected 1000 s time window
6 SK_FC_OBSERVED Number of observed events in the HE-ν/FC sample in the time window
7 SK_FC_EXPECTED Number of expected background events in the HE-ν/FC sample in the time window
8 SK_PC_OBSERVED Same for HE-ν/PC
9 SK_PC_EXPECTED Same for HE-ν/PC
10 SK_UPMU_OBSERVED Same for HE-ν/UPMU
11 SK_UPMU_EXPECTED Same for HE-ν/UPMU
12 SK_LOWE_OBSERVED Same for LE-ν
13 SK_LOWE_EXPECTED Same for LE-ν
14 E2PHI90_NUE_FC GeV cm−2 90% U.L. on ∣nE dn dE e

2 using the HE-ν/FC sample, assuming E−2 spectrum

15 E2PHI90_NUEB_FC GeV cm−2 Same for ∣n̄E dn dE e
2

16 E2PHI90_NUENUEB_FC GeV cm−2 Same for ∣ ¯n n+E dn dE e e
2

17 E2PHI90_NUMU_FC GeV cm−2 Same for ∣nmE dn dE2

18 E2PHI90_NUMUB_FC GeV cm−2 Same for ∣n̄mE dn dE2

19 E2PHI90_NUMUNUMUB_FC GeV cm−2 Same for ∣ ¯nm nm+E dn dE2

20 E2PHI90_NUE_PC GeV cm−2 90% U.L. on ∣nE dn dE e
2 using the HE-ν/PC sample, assuming E−2 spectrum

21 E2PHI90_NUEB_PC GeV cm−2 Same for ∣n̄E dn dE e
2

22 E2PHI90_NUENUEB_PC GeV cm−2 Same for ∣ ¯n n+E dn dE e e
2

23 E2PHI90_NUMU_PC GeV cm−2 Same for ∣nmE dn dE2

24 E2PHI90_NUMUB_PC GeV cm−2 Same for ∣n̄mE dn dE2

25 E2PHI90_NUMUNUMUB_PC GeV cm−2 Same for ∣ ¯nm nm+E dn dE2

26 E2PHI90_NUMU_UPMU GeV cm−2 90% U.L. on ∣nmE dn dE2 using the HE-ν/UPMU sample, assuming E−2 spectrum

27 E2PHI90_NUMUB_UPMU GeV cm−2 Same for ∣n̄mE dn dE2

28 E2PHI90_NUMUNUMUB_UPMU GeV cm−2 Same for ∣ ¯nm nm+E dn dE2

29 E2PHI90_NUE_COMBINED GeV cm−2 90% U.L. on ∣nE dn dE e
2 using all HE-ν samples, assuming E−2 spectrum

30 E2PHI90_NUEB_COMBINED GeV cm−2 Same for ∣n̄E dn dE e
2

31 E2PHI90_NUENUEB_COMBINED GeV cm−2 Same for ∣ ¯n n+E dn dE e e
2

32 E2PHI90_NUMU_COMBINED GeV cm−2 Same for ∣nmE dn dE2

33 E2PHI90_NUMUB_COMBINED GeV cm−2 Same for ∣n̄mE dn dE2

34 E2PHI90_NUMUNUMUB_COMBINED GeV cm−2 Same for ∣ ¯nm nm+E dn dE2

35 EISO90_NUE_COMBINED erg 90% U.L. on ∣nE eiso using all HE-ν samples, assuming E−2 spectrum

36 EISO90_NUEB_COMBINED erg Same for ∣n̄E eiso

37 EISO90_NUENUEB_COMBINED erg Same for ∣ ¯n n+E e eiso

38 EISO90_NUMU_COMBINED erg Same for ∣nmEiso

39 EISO90_NUMUB_COMBINED erg Same for ∣n̄mEiso

40 EISO90_NUMUNUMUB_COMBINED erg Same for ∣ ¯nm nm+Eiso

41 EISO90_ALL_COMBINED erg Same for all-flavors Eiso (assuming equipartition between flavors)
42 EISO90_ALL_COMBINED_GAMMA3 erg Same but assuming E−3 spectrum
43 FLUENCE90_LOWE_NUE_FERMIDIRAC cm−2 90% U.L. on Fne using LE-ν sample, assuming Fermi–Dirac spectrum

44 FLUENCE90_LOWE_NUEB_FERMIDIRAC cm−2 Same for ¯Fne

45 FLUENCE90_LOWE_NUX_FERMIDIRAC cm−2 Same for Fnm nt+

46 FLUENCE90_LOWE_NUXB_FERMIDIRAC cm−2 Same for ¯ ¯Fnm nt+

47 FLUENCE90_LOWE_NUE_FLAT cm−2 90% U.L. on Fne using LE-ν sample, assuming flat spectrum

48 FLUENCE90_LOWE_NUEB_FLAT cm−2 Same for ¯Fne

49 FLUENCE90_LOWE_NUX_FLAT cm−2 Same for Fnm nt+

50 FLUENCE90_LOWE_NUXB_FLAT cm−2 Same for ¯ ¯Fnm nt+

51 EISO90_LOWE_NUE_FERMIDIRAC erg 90% U.L. on ∣nE eiso using LE-ν sample, assuming Fermi–Dirac spectrum

52 EISO90_LOWE_NUEB_FERMIDIRAC erg Same for ∣n̄E eiso

53 EISO90_LOWE_NUX_FERMIDIRAC erg Same for ∣nm nt+Eiso

54 EISO90_LOWE_NUXB_FERMIDIRAC erg Same for ∣¯ ¯nm nt+Eiso

55 EISO90_LOWE_ALL_FERMIDIRAC erg Same for all-flavors Eiso (assuming equipartition between flavors)

Note. Only the description of the table is shown here. The complete table is available in MRT format in the online journal and in CSV format at doi:10.5281/zenodo.4724822.

(This table is available in its entirety in machine-readable form.)
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