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ABSTRACT

The Magician Problem (MP) and its generalization, the Generalized
Magician Problem (GMP), were introduced by Alaei et al. (APPROX-
RANDOM 2013) and Alaei (SICOMP 2014) and have been used as
powerful ingredients in online-algorithm design for many hard
problems such as the k-choice prophet inequality, mechanism de-
sign in Bayesian combinatorial auctions, and the generalized as-
signment problem. The adversarial model here is essentially that
of an oblivious adversary.

In this paper, we introduce generalizations of GMP (MP) under
two different arrival settings (by making the adversary stronger):
unknown independent identical distributions (UIID) and unknown
adversarial distributions (UAD). Different adversary models capture
a range of arrival patterns. For GMP under UIID, we show that a
natural greedy algorithm Greedy is optimal. For the case of MP
under UIID, we show that Greedy has an optimal performance
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of 1 BB 2 1 Vo’ where B is the budget, and show an

application to online B-matching with stochastic rewards. For GMP
under UAD, we present a simple algorithm, which is near-optimal
among all non-adaptive algorithms. We consider the simple case of
MP under UAD with B = 1, and give an exact characterization of the
respective optimal adaptive and optimal non-adaptive algorithms
for any finite time horizon. We offer an example of MP under UAD
on which there is a provable gap between the classical MP under
adversarial order and MP under UAD even with a time horizon
T =4.
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1 INTRODUCTION

Several “prophet” and “magician” problems have been studied in-
tensively over the last several years, motivated by online problems
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in E-commerce. The generalized magician problem (GMP) was in-
troduced by Alaei et al. [4] to model several online problems. The
formal description is as follows.

Generalized Magician Problem: Suppose we have a budget of
B and that at each time! t = 1,2, .. ., an item Y; will arrive where
Y; is an independent random variable taking values from [0, 1].
Here are Three Rules to follow: (1) once the item Y; arrives, its
distribution (but not its value) is revealed to us and we need to
make an instant and irrevocable decision — either to accept it or
reject; (2) we can accept Y; only when we have at least one unit
budget remaining (referred to as “being safe”); (3) once the item
Y; is accepted, a realization y; € [0, 1] of Y; sampled from Y;’s
distribution is revealed to us and our budget will be reduced by
y; accordingly. The adversary can choose an arbitrary sequence
of items subject to the constraint that }; E[Y;] < B, before the
arrivals start; thus, the model is that of an oblivious adversary [7].
Note that the distribution of each item Y; is unknown until its
arrival and that the Y;’s are independent. We know B upfront and
our task is to design an online algorithm to maximize the value
y such that each item will be accepted with probability at least
Y- When all items are restricted to be Bernoulli random variables,
GMP is reduced to the classical Magician Problem (MP), which was
first introduced by Alaei [1]. The main results regarding MP and
GMP are summarized as follows.

THEOREM 1.1 (ALAEI [2]). For a given budget B, there exists an
algorithm which accepts each arriving item with probability at least
- L -1 i
1 7B and 1 Ve for GMP and MP respectively.

Here are several applications of GMP and MP presented in
[1, 4]. Alaei [1] considered a generalization of prophet inequal-
ities, where both the gambler and the prophet are allowed to pick
B numbers and each to receive a reward equal to their sum, called
the B-choice prophet inequality, which was first introduced by Ha-
jiaghayi et al. [22]. These works designed a randomized strategy
for the gambler invoking MP as blackbox, which achieves at least a
fraction of 1 — — 5 of the reward obtained by the prophet. Further-

more, Alaei [1] presented a general framework for approximately
reducing the mechanism design problem for multiple agents to
single-agent subproblems in the context of Bayesian combinatorial
auctions. Alaei et al. [4] introduced the online generalized assign-
ment problem (GAP), which can be viewed as a generalization of
Prophet-Inequality Matching (PIM) [3] with each item having a
random size. Both GAP and PIM capture applications in ad allo-
cation arising from cellular networks [5]. Alaei et al. [4] designed
a near-optimal algorithm for the online GAP invoking GMP as a
blackbox, which results in an online competitive ratio of 1 —

75

!We use “time” and “round” exchangeably throughout this paper.
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The arrival assumption considered by GMP (MP) in [1, 4] is
called adversarial order, i.e., the whole arrival sequence is unknown
and fixed. This is driven by theoretical interest whereas in prac-
tical cases, two other common arrival settings, called known and
unknown distributions, have received far more attention. The basic
setting is: We now have a set X of items, and in each round, an item
is sampled from X according to a fixed but known or unknown dis-
tribution. These two arrival settings are commonly used to capture
several stochastic online arrival patterns naturally emerging in the
real world: keywords in the online advertising business [29], work-
ers in online crowdsourcing markets [33, 34] and queries in online
mobile advertising systems [5], just to name a few. As for known
distributions, there is a long line of research in the context of online
bipartite matching, see, e.g. [6, 9, 19, 21, 24, 28]. For the setting of
unknown distributions, a notable special case, called unknown i.i.d.,
refers to the scenario when the sampling distribution is assumed
unknown but the same and independent over each round. There
are several works considering this setting in the domain of online
bipartite matching and Adwords?, see, e.g. [15, 16, 25, 27]. Studies
of [15, 16] introduced the unknown adversarial arrival model for
the Adwords problem (they called it adversarial stochastic input
there). It can be viewed as a generalization of unknown i.i.d.: in
each round a keyword is sampled from a fixed but unknown distri-
bution, which can change over time. Inspired by these works above,
we introduce a similar “unknown distributions” generalization of
GMP as follows: One of our applications is an improved analysis of
the algorithm for online B-matching with stochastic rewards (see
the full version). As seen below, this generalization also models
fairness in online algorithms for stochastic bin packing. Let [k]
denote the set {1, 2, ..., k} for any positive integer k.

GMP (MP) under unknown distributions: Suppose we have T
rounds and a set of items X = {X1,X>, ..., X}, where each Xj is
a random variable taking values from [0, 1]. During each round
t € [T], an item i is sampled (we also say i arrives) with probability
pi,+ for each i € [n] such that } ;¢ pi,+ < 1. In other words, with
probability 1 3;c(p] pi,¢, no item will be sampled at ¢. In addition,
each time when an item X; arrives, its index i and distribution
are revealed to us. Let P = {p; (|i € [n],t € [T]} be the arrival
distributions over the T rounds, which are independent round-by-
round. For a given budget B, an instance I = (T, X, %) is called
feasible iff 3;e[7) Zie[n] Pi,t - E[Xi] < B. Let Ip be the set of
all feasible instances with respect to B. Note that only B is known
in advance while P and X are never revealed to us: the adversary
can choose an arbitrary unknown feasible instance I from Ip before
observing our strategy. The same Three Rules shown in the original
GMP apply here as well.

For an algorithm (strategy) ALG, let o; be the expected number
of acceptances of item i (over the randomness of ALG and the online
arrivals through the T rounds). Define the fairness achieved by ALG

over an instance I as y(ALG,I) = min;¢[p (#1;[) where the
1,
denominator refers to the expected number of arrivals of item i over

the T rounds. Let y(ALG, B) = infj¢ 1, ¥(ALG,I) be the fairness
achieved by ALG with respect to budget B. Our goal is to design an

2Unknown i.i.d is typically studied together with another closely-related variant, called
random arrival order.
algorithm such that the fairness achieved is maximized. A natural
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application of the above is in fair online algorithms for stochastic
bin packing. As is common in Internet advertising [29], each X;
denotes a “type” of item - e.g., type of job submitted to a server,
such as data-intensive, highly-parallel, low-variance runtime, etc. -
before a job is accepted, we only have distributional information
about it. Maximizing y is a natural fairness objective in this type of
stochastic bin-packing problem. We can define MP under unknown
distributions in a same way by just adding one more constraint for
the adversary: all X; are required to be Bernoulli random variables.

Remarks on the adversarial model. Note that our model of ad-
versary is more powerful than that of an oblivious adversary (which
will have to decide on the arrival sequence upfront) [7]. On the
other hand, our adversary has less power than, say, adaptive online
adversaries [7]: indeed, our approach is to strengthen the oblivi-
ous adversary by adding an ingredient of randomness (the p; ;),
the realizations of which the adversary has no control over. This
is an attempt to model non-completely-adversarial, yet random
and hence unpredictable, arrival models, as in the case of random
item-types in the above-seen online bin-packing problem (where
item sizes are also stochastic). Indeed, as shown in Example 1.2,
our adversarial model is provably (strictly) stronger than the obliv-
ious adversary of the classical GMP and MP. See, e.g. [11, 13, 31]
for additional works on online algorithms under different types of
adversaries.

A notable special case is when the arrival distributions are the
same throughout the T rounds (not necessarily the same among the
nitems), i.e., foreachi € [n], p;,; = p; forallt € [T]. We refer to this
as GMP under unknown independent identical distributions (UIID).
For the general case where the arrival distributions are allowed to
change over time, we refer to it as GMP under unknown adversarial
distributions (UAD) instead. Similarly we can define MP under UIID
and UAD respectively when all items are restricted to be Bernoulli
random variables. We refer to the original GMP (MP) introduced in
[1, 4] as GMP (MP) under (oblivious) adversarial order or simply as
GMP (MP) when the context is clear.

We can view GMP as a special case of GMP under UAD: for any
instance {Y1, Y2, ...}, just take p; ; = 1 for all t; we can verify that
for a given ALG and instance I, the minimum acceptance probabil-
ity y over all items in [ is exactly the fairness achieved by ALG on
I. For GMP, recall that the adversary’s strategy is fixed in advance,
obliviously of our strategy; thus, at any time ¢, we know the adver-
sary’s choices for the full distributions at times 1,2, ...,¢ — 1. This
key assumption is not valid for GMP under UAD since # or X is
never revealed to us, causing significantly more algorithmic chal-
lenges. Take the “y-conservative” strategy for example as shown
in [1, 4]. The main idea is to adaptively compute a sequence of
thresholds {7; > 1} at each time t and the corresponding strategy
at t as follows: add the arriving item X; with probability 1 and
0 respectively if the remaining budget R; (at the beginning of t)
satisfies Ry > 7; or R; < 74; add X with probability f; if Ry = 7;.
The sequence of thresholds {r; > 1} and f; are computed in an
interesting manner in [1, 4] such that

Pr[Ry > 7] + Pr[Ry = 4] - By =y, Vt € [T]. (1
Note that in GMP, the distribution of R; can be computed from

our previous strategies, together with previous observed inputs.
Thus, theoretically for each given target y, we can sequentially solve
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7; and f; from (1) at t. However, this idea fails in the GMP under
UAD since we are not informed of P or X and thus the distribution of
Ry is not computable just from our previous strategies and observed
inputs. This is seen in the following example.

Example 1.2. Consider MP with B = 1. Consider the following
simple algorithm ALG. Step (1): For time ¢t = 1, accept X; with
probability %; Step (2): Let E[X;] = p; and thus, we see that we are
safe (i.e., we have at least one unit budget) at t = 2 with probability
ap=1-— % > % For any arriving item X3 at ¢t = 2, ALG will do
the following: if we are not safe, then stop; otherwise accept X»
with probability ﬁ < 1. Note that both X; and X are accepted
by ALG with probability equal to %; Step (3): For a general time
t =3,4,..., let all previously-arrived items be Bernoulli random
variables with respective means y, . . ., y—1. Suppose each arrived
item at t’ < t is accepted with probability equal to % in ALG. We
can compute the probability that we are safe at t as follows:

1 1 S 1
ar=1-= r> =,
t 2 Hr 2
t'=1
since Z§7=11 Hy < 1by the definition of a feasible instance. ALG can

continue a similar strategy as outlined in Step (2) at ¢: if safe, then
1L < 1.In this way X; is accepted by

2 a;
ALG with probability again equal to % We can thus verify that ALG
accepts all items with probability equal to % for MP with B = 1.

For MP under unknown distributions with B = 1, ALG fails. We
cannot do the same as stated in Step (2) for MP to compute a2, the
probability that we are safe at t = 2. In fact, after running Step
(1) here, the updated value az = 1—Y; pi,1 - fti - % which is not
evaluable since {p; 1} and the majority of {y;} are not revealed to
us (only one single p; is revealed during ¢ = 1). We can rigorously
show that no (adaptive) algorithm can achieve a fairness equal to
% for MP under unknown distributions. See the details in 5.2. m

accept X; with probability

Our Contributions: We give a high-level summary of our contri-
butions followed by the details. The first contribution is the new
adversary model, which we hope is useful for non-adversarial yet
random arrival issues in, say, E-commerce and cloud computing; we
give a concrete example showing that this model is strictly stronger
than the classical GMP and MP under adversarial order [2, 4]. This
also models fairness for certain models of, e.g., online stochastic
bin packing. We show a simple greedy algorithm for GMP under
UIID, prove that it is optimal, and explicitly describe its (optimal)
fairness; as an application, we obtain improved competitive analysis
for online B-matching with stochastic rewards under known IID.
For the general GMP under UAD, we present a simple non-adaptive
algorithm and prove that it is near-optimal over all non-adaptive
algorithms. Adaptive algorithms are harder to reason about: for the
special case of budget B = 1, we present an exact characterization of
the optimal adaptive and optimal non-adaptive algorithms. Overall,
our algorithms are simple, and the optimality/hardness results are
more challenging. We next present further details of our results.

First we consider the GMP under UIID and show that Algorithm 1,
referred to as Greedy, is optimal (Section 3).

THEOREM 1.3. For GMP under UIID, Greedy is optimal. Further-
more, for MP under UIID, Greedy achieves an optimal fairness y* =
1-B% 5 _1

BleB = 27B’
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One consequence is that we can use MP under UIID as a black-
box to re-analyze the performance of the algorithm presented in
[9]. Our result shows that for “online B-matching with stochastic
rewards under known IID” [9], Greedy achieves an online com-

petitive ratio of 1 — \/217[73(1 + 0(1)), strictly better than the ratio

of (1 — B~1/2%+€) a5 shown in [9]. Our analysis also implies that
this improved competitive ratio is applicable to a more general
online-bipartite-matching scenario where each offline vertex u has
capacity at least B: see more details in the full version.

For the general case of GMP under UAD, we restrict our attention
to all non-adaptive algorithms. Generally speaking, an algorithm
ALG is called non-adaptive, if it can be characterized by {f; €
[0,1]]t € [T]} such that at each time ¢, ALG will accept the arriving
item non-adaptively with probability j; iff we are safe. Notice that
Greedy is a special non-adaptive when f; = 1 for all t € [T]. Our
second contribution is a near-optimal algorithm among all non-
adaptive algorithms, denoted by NAdap(B, 6*), for GMP under UAD
(Section 4.1).

THEOREM 1.4. For GMP under UAD with budget B, NAdap(B, 5*)
achieves a fairness at least 1 — 25, where §* = —d\nﬁf(l +0(1)) and

0(1) is a vanishing term when B — co. Moreover, no non-adaptive
algorithm can achieve a fairness better than 1 — §* even for GMP.

Recall that GMP is a special case of GMP under UAD. Thus
Theorem 1.4 implies that NAdap(B, 5*) achieves a near-optimal
fairness among all non-adaptive algorithms for GMP under UAD.

Finally, we consider a special case of MP under UAD with B = 1.
We offer exact characterizations for the optimal adaptive and opti-
mal non-adaptive algorithms (Section 5.1). We consider a concrete
example of MP under UAD with T = 4 and show that the opti-
mal fairness achieved by any algorithm is strictly less than % This
contrasts with the fact that there is an algorithm which achieves a
fairness of % for the classical MP with B = 1 for all T [2].

2 RELATED WORK

Based on different arrival assumptions, online problems can be
divided into the following four categories. The first is Adversarial:
the arrival sequence is unknown but fixed. See, e.g., Online match-
ing [26, 35], Adwords [10, 30]). The MP and GMP introduced in
[1] and [4] fall into this class. The classical prophet inequality also
assumes this arrival setting but oblivious adversarial. The second is
random arrival order: the set of items is unknown but fixed, and the
arrival sequence is a random permutation over all items. See, e.g.,
online matching [25, 27], Adwords [14, 20], and prophet inequal-
ity [12, 17]. The third is unknown distributions: the set of items is
unknown but fixed; each round, an item is sampled from a fixed but
unknown distribution. If the sampling distributions are required
to be the same during each round, we refer to it as unknown i.i.d.
(UIID) (e.g., [15, 16]); otherwise, we call it unknown adversarial
distributions (UAD). See, e.g., [15])3. The fourth is known distribu-
tions: in each round, an item is sampled from a known distribution.
Similarly, we have known i.i.d. (KIID) (e.g., [9, 19, 21, 23, 24, 28])

3In [15, 16], this is referred to as adversarial stochastic input.
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and known adversarial distributions (KAD) (e.g., [3, 4, 8]), depending
on if the sampling distributions are allowed to be different over
time. Note that Huang and Shu [23] studied the setting of Poisson
arrivals that share the essence with KIID.

Among all variants of online bipartite matching, online B-matching
(also known as Display Ads) might be the most relevant model for
GMP (MP). A typical setting is as follows: we have a bipartite graph
G = (U,V,E), and in each round, a vertex v € V arrives (while all of
U is “offline” - i.e., already available) and we need to either discard
v or assign it to one of its neighbors from U right away. Each u
has a capacity of ¢, > B, i.e, it can be assigned at most ¢, times.
The goal is to design an online allocation policy such that the total
expected weight of the assignment is maximized. Feldman et al.
[18] considered Display Ads under adversarial order with a “free
disposal” assumption and showed an algorithm achieving an online
ratio of 1 —1/e when all ¢;, — co. Alaei et al. [3] introduced Display
Ads under known adversarial distributions as Prophet Inequality
Matching, where the arrival distributions change over time. They
gave an algorithm achieving an online ratio of 1 — ———. Brubach

VB+3

et al. [9] introduced online B-matching under known IID with sto-
chastic rewards, where each e = (u,v) is present independently
with a known probability pe; this models the user v’s click-rate for
the ads u. The online generalized assignment problem (GAP) intro-
duced by Alaei et al. [4] considered all features together and can be
viewed as online B-matching under known adversarial distributions
such that each assignment e = (u, v) has a random time-sensitive
cost of Sy v,+ € [0, 1] for u. For the online GAP, the analysis in [4]
actually implies that the standard LP-based online algorithm has
an online ratio of y, when provided with an oracle achieving a ratio
of y for GMP.

3 GMP UNDER UIID

In this section, we consider the case when all p; ; = p; for each
i € [n]. Please see the example below which inspires us to design
an optimal algorithm. Throughout this paper, we say “we are safe
at ¢” iff at the beginning of time ¢, we still have at least one unit
budget left.

Example 3.1. Let B = 1,n = 1, i.e, there is only one item X.
Assume that for each time ¢, the single item arrives with probability
pr = 1 and that X; is Bernoulli(1/T). Observe that the expected
number of arrivals of X is T and recall - from the definition of
fairness for GMP under IID (or under UAD) — that our objective
is reduced to maximizing E[Z]/T where Z is the total number of
acceptances of X.

Consider any optimal algorithm OPT and let y; = Pr[Z; =
1] where Z; indicates if X is accepted at t in OPT. Thus E[Z] =
>+ E[Z:]. Let Hy = Z; - X; indicate if we use the one unit budget B
or not. Observe that {H;|t € [T]} are mutually exclusive events and
that Pr[H; = 1] = % Therefore we are safe at t with probability
equal to Pr[Ay<;(Hy =0)] =1— Y4 y#/T. Thus, OPT can be
viewed as choosing the values {y;|t € [T]} in order to maximize
E[Z] = X;yr subjecttoy; < 1 - Ypos Y—f’ for each t. (These
constraints are valid since for each time ¢, the probability that X is

accepted by OPT should be at most the probability that we are safe
t.) Therefore we obtain the following LP:

. oy
max Y yr:0<y <0<y <1 ZT,WZZ.
te[T] t'<t
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We can verify that the optimal solution is y; = (1 - 1/T)* -1 for
each t. This suggests that OPT will accept X whenever we are safe
at each time t, i.e., OPT is essentially greedy. m

Inspired by the above example, we present a formal description
of our greedy algorithm, denoted by Greedy, as follows.

Algorithm 1: Greedy

1 For each time ¢, we accept the arriving item if we are safe, i.e.,
we still have at least one unit budget.

Observe that under UIID, the constraint };; >; E[X;]p; s < Bis
reduced to )}; E[X;]p; < B/T. Greedy treats each item in a uniform
way and accepts any item as long as we are safe. For Greedy, the
online arrival process can be viewed in the following way: in each
round ¢ € [T], a single random variable X = 3; |; - X; arrives with
probability 1, where |; is a Bernoulli random variable with mean
pi indicating if X; comes each round. Notice that (1) {I;|i € [n]}
are independent of {X;|i € [n]} and (2) X takes values from [0, 1]
with E[X] = X; piE[Xi] < B/T. Let Y; indicate if we are safe at ¢
when we run Greedy on X, and Y = };¢[7] ¥+ which denotes the
(random) number of rounds after which we become unsafe.

Note that the distribution of each Y; is completely determined
by X. For a given B and T, suppose the adversary tries to mini-
mize E[Y]/T = 3 ;7] E[Y:]/T by constructing a proper random
variable X = X* with X* € [0,1] and E[X*] < B/T. Let y* be the
resultant optimal objective value for the adversary. We prove that:

THEOREM 3.2. For any given B and T, Greedy will achieve a fair-
ness equal to y*. Furthermore, no algorithm can achieve a fairness
better than y*, i.e., Greedy is optimal.

Proor. Consider a given input X = {Xi,...,X,} and focus on
an item X;. Let Z; indicate that X; comes and is accepted at ¢ in
Greedy and Y; indicate if we are safe at t when we run Greedy
on X. Thus Pr[Z; = 1] = Pr[Y; = 1]p;. The fairness achieved
by Greedy for item i will be y; = >; E[Z:]/(Tpi) = X+ B[Y:]/T.
By the definition of y*, we see y; > y*. Thus we see that Greedy
achieves a fairness at least y*.

Now we show that no algorithm can achieve a fairness better
than y*. Consider an input I where X consists of one single item
X = X* and X comes with probability 1 in each of the T rounds. Let
Z be the number of acceptances of X in any given algorithm ALG.
Since Greedy accepts X whenever we are safe, we see that the num-
ber of acceptances of X in any ALG should be no larger than that
of Greedy. Thus we claim Z < Y, where Y is the number of accep-
tances when Greedy runs on I. Therefore, E[Z]/T < E[Y]/T =y*.
Note that E[Z]/T is exactly the fairness achieved by ALG for the
item X. Thus we have proven our claim. O

3.1 MP under UIID

We now consider a special case: MP under UIID, i.e., all the X; are
Bernoulli variables, and give an asymptotically tight expression for
y* when B > 1.
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THEOREM 3.3. The fairness achieved by Greedy for MP under UIID
BS -B q1__1
B! ~ 27B’

with input Bisy* =1 -

In the case when all X; are Bernoulli, we see that X = }; 1;X;
is also a Bernoulli random variable with mean E[X] < B/T. For a
given B and T, the adversary will hence arrange X* ~ Ber(B/T) to
ensure that y = E[Y]/T is minimized, where Y < T is the number
of rounds after which we become unsafe. Consider the random
process where we have a bin with capacity of B and where, in each
round, we independently receive a ball with probability B/T. Let
Y’ be the number of rounds after which we exhaust the capacity.
Observe that E[Y’] = T and Y = min(Y’, T). Note that our problem
is different from that raised and solved in [16, 36] for Adwords:
they are concerned with min(Y"’, B) where Y”’ is the number of
balls received after T rounds.

Notice that for each given t > B,

FG)0-5) =
Therefore, we have
T - E[Y] = E[Y'] - E[Y]

_B_
T-B

Bt
7)

V(50

e8]

> (725

J 5o (-7 e

t=T+1

T _ l
() - S
_ BB B\T T(T-1)---(T - B)
w7 e

Thus, we have
E[Y]

===

BB

- 1-F(B,T).

(-
)

LEMMA 3.4. Foreach given B > 1, F(B,T) is an increasing function
of T > B andlimy e F(B, T) = B ¢™B.

B)T (T-1)---(T-B)

T (T - B)B

ProoF. Let T = B + k with k > 0. Notice that
BB/ k \Kl(k+1 k+2 k+B-1
F(B,T) = —( ) :

B!'\B+k k+B k+B k+B

which implies that F(B, T) is an increasing function of T > B. When

T — oo, we see that the limit of F(B, T) is %?e_B. m]

Therefore for each given B, the adversary will arrange an in-
stance of MP under UIID with T — oo such that y is minimized.
Plugging the result of Lemma 3.4 into (2) yields Theorem 3.3. By
combining the results of Theorems 3.2 and 3.3, we obtain Theo-
rem 1.3.

4 GMP UNDER UAD

In this section we consider the GMP under UAD. Recall that in this
case, the arrival distributions can change in different rounds.

4.1 A near-optimal non-adaptive algorithm

First, we show that Greedy can be arbitrarily bad for GMP under
UAD.
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Example 4.1. Let X be the disjoint union of {X7,...,Xp} and
{Xa, Xp}. B[Xij] = pi =1foralli € [n]and B[Xy] = pg =1—-¢
and E[X},] = yup = €/(T — B).For t € [B— 1], p;,+ = 1/n for each
i € [n]and pgs = pp,s = 0.Fort = B, p;,y = 0foreachi € [n]
and pp ; = 0,pg+ = 1;for B<t <T,p;; = 0foreachi € [n] and
Pat = 0,ppr = 1. Observe that ZtE[T] Zie[n]U{a,b}Pi,tl‘i = B.
Now suppose we run Greedy on X. First, the expected number of
arrivals is 3 ;¢[7] pp,s = T —B. Second, note that at the beginning of
t = B+ 1, we are safe with probability €, implying that the expected
number of acceptances of X}, is at most €(T — B). Thus, Greedy
achieves fairness at most € for X;. m

Recall that for a given B, an instance X = {Xi, ..., Xt} of GMP
is called feasible iff each X; lies in [0, 1] with }; (7] E[X;] < B. Let
{Y:|t € [T]} be T ii.d. Bernoulli random variables with mean 1 — §
each, where ¢ is a parameter. Set Hx = ;<[] Xt - Y¢. For a given
8 and B, let F(B,8) = sup x¢ g, Pr[Hx > B — 1] where Jp is the
set of all feasible instances of GMP with respect to B.

Let NALG be the set of all possible non-adaptive algorithms. For
an instance I of GMP and an algorithm ALG € NALG, let y(ALG, I)
be the minimum acceptance probability of ALG over all the items.
We can verify that this coincides with the fairness defined for GMP

under UAD. For a given B, let y*(B) = sup genaLg infre g5 ¥ (ALG, I),

which refers to the fairness achieved by the optimal non-adaptive
algorithm for GMP with input B.

THEOREM 4.2. Letd™ € [0, 1] be the unique solution to the equation
F(B,8) = 6. Then, y*(B) < 1—6*.

Proor. Observe that F(B, ) is a non-increasing function of J.
Also, we can verify that F(B,0) = 1 and F(B, 1) = 0, which justifies
the existence of a unique solution in [0, 1] for the equation F(B, §) =
é.

Let NOPT be an optimal non-adaptive algorithm for GMP with
input B. Suppose for a contradiction that the fairness achieved by
NOPT is y*(B) > 1 — 6*. Let e = (y*(B) — (1 — §%))/2. By the
definition of F(B, §*), we see that there exists a feasible instance
X’ ={X1,Xs,...,X7} such that Pr[Hy, > B—1] > §" — € where
Hyxr = Yterr) Xt * Yr with each Y; ~ Ber(1 — 6*). Consider the
instance X"/ = X’ U {XT141} where Xt is the last item with mean
0. Thus X" is still a feasible instance of GMP with respect to B.
Suppose we run NOPT on X’ and define Ut to be the usage of
the budget at the end of time T. Since the last item X7, can be
accepted with probability at least y*(B) by NOPT, we must have
Pr[Ur > B-1] < 1-y*(B).

Notice that in NOPT, each item in X'’ is accepted with prob-
ability at least y*(B) > 1 — §* non-adaptively. Consider such a
non-adaptive ALG which accepts each item with probability ex-
actly equal to 1 — 6* whenever we are safe. Let U;. be the expected
usage of budget for ALG at the end of T. We see that

Pr(U; > B—-1] =Pr[Hy > B-1] < Pr[Ur > B—1] < 1-y"(B)
On the other hand, we have that Pr[Hy, > B—1] > §* —¢, which
implies that € > §* — (1 — y*(B)). This contradicts our assumption

that € = (5* —(- y*(B)))/Z 0. O

Since GMP is a special case of GMP under UAD, we have the
following corollary.
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COROLLARY 4.3. For GMP under UAD with budget B, no non-
adaptive algorithm can achieve a fairness better than 1 — 6*.

We next present a simple non-adaptive algorithm, denoted by
NAdap(B, §*), for GMP under UAD with budget B:

Algorithm 2: NAdap(B, §*)

1 For each time ¢, we accept the arriving item with probability
1 — §* (non-adaptively) whenever we are safe.

THEOREM 4.4. Algorithm NAdap(B, §*) achieves a fairness at least
(1-6%)2 > 1 - 28" for GMP under UAD with budget B.

Proor. Consider a given feasible instance I = {T, X, P} of GMP
under UAD with budget B, where X = {Xjli € [n]} and P =
{pi.¢li € [n],t € [T]}. Since NAdap(B, §) is non-adaptive, we can
view the arrival process as follows: in each round ¢ € [T] a single
random variable X; = 3; I; ; - X; arriving with probability 1 where
I;,+ indicates that X; comes at ¢, with E[l; ;] = p;,+; we accept each
X/ non-adaptively with probability 1—§* whenever we are safe. Let
{Y;|t € [T]} be i.i.d. Bernoulli random variables with mean 1 — §*
each. Let U; be the usage of the budget at the end of t when we run
NAdap(B, §*) over I; thus, y(U; < B—1) indicates that we are safe
at time ¢ + 1.

Observe that Pr[Us > B— 1] = Pr[Y,<; X; - Y¢ > B - 1]. Also
each X € [0,1] and E[Y r<; X}] < B; thus, {X/|¢ < t} itself can
be viewed as a feasible instance of GMP (under adversarial) with
respect to B. From the definition of F(B, §*), we see that for each ¢,

Pr[U; > B—1] = Pr[Z X!-Y; > B—1] < F(B,5") = &%,
t'<t
which implies that Pr[U; < B—1] > 1-§". Notice that for each given
X; withi € [n], the expected number of acceptances of X; over the T
roundsisE[Y}; y(Us < B=1)-Yeq1-1i¢41] = (1 -5y, I;,+ while
its expected number of arrivals is }; I; ;. Thus from the definition
of fairness, NAdap(B, §*) achieves a fairness at least (1 — §*)% on
the instance I. This completes the proof. O

4.2 Computation of §*

By Theorem 4.4, we obtain a near-optimal non-adaptive algorithm
for GMP under UAD whenever 6* is known. In this section, we
assume B > 1 and give an asymptotically tight form for 6*.

THEOREM 4.5. §* = (1 + 0(1))B~Y/2VIn B, where o(1) is a vanish-
ing term as B increases.

4.2.1 A Lower Bound on §*. First we show a lower bound on
&* as follows.

LEMMA 4.6. §* > (1+0(1))B"Y/2VIn B, where o(1) is a vanishing
term as B increases.

Proor. Consider the following instance of MP with respect to
B: X’ = {X1,...,Xr} where {X;} are T i.i.d. Bernoulli random
variables with mean B/T each. Recall that Hx = X;c[71 Xt - V1
where {Y;|t € [T]}are T i.i.d. Bernoulli random variables with mean
1 — § each, which are independent from {X;}. For our instance X,

we see that Hy- is a sum of T i.i.d. Bernoulli random variables with
mean B(1 — §)/T each. For each given B and 8, we have that Hy/
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follows a Poisson distribution with mean B(1—J), when T — oco. By
Hy—B(1-8)
VB(1-3)

can be approximated by N (0, 1) with error at most m. Thus

applying the Berry-Esseen Theorem [32], we see that

we have
Hy —B(1-98) VB§
VB(1-8)  Vi-§

1 o —x)2 1
= — e dx + 0(—)
V27rj; \/E

1 —72/2 1 BS

_ LoD gy o) (re VB
Ver VB Vi-s

where the term o(1) in the last line vanishes when B — oo and lies

between 0 and 1/72.

Consider the equation Pr[Hys > B — 1] = §, which is reduced to

1 -B5? 8

N (2(1 — 5)) (1-0(1)) + O(8) 5«/13.

Solve this, we get that §” = (1+0(1))B~Y/2/In B, where o(1) is a van-
ishing term when B — oco. Notice that F(B, §) = sup ¢ 1, Pr[Hx >
B —1] > Pr[Hys > B — 1]. In other words, if we view F(B, §) and
Pr[Hyx > B — 1] as two functions of § for a given B, we see that
both are decreasing over § € [0, 1] and the graph of F(B,d) lies
above that of Pr[Hy, > B — 1]. Since §* and & are respectively the
intersection points of y = § and the two functions, we claim that
85" >4 o

Pr[Hy > B—1] =Pr +0(—)

VB

T

4.2.2 An Upper Bound on §*. Now we show an upper bound
on §* as follows.

LEmMMA 4.7. §* < (1+0(1))B"Y/2In B, where o(1) is a vanishing
term as B increases.

In this paper we use the following form of the Chernoff bound
to prove the above lemma.

Definition 4.8 (Chernoff Bound). Let X1, ..., X, be nindependent
random variables with 0 < X; < 1. Let X = X3 + ... + X, and
p = E[X]. Then for any A > 0,

AZ
2+ Ak )

Proor oF LEMMA 4.7. Consider a given B and a given feasible
instance X € Ip. Recall that Hy = X;¢[1] X: - Y+ where each
X; € [0, 1] and Y; is Bernoulli random variable with mean 1-§ with
2 te(7) E[X¢] < B. Thus we can view Hx as a sum of T independent
random variable each taking value from [0, 1] with total mean at
most B(1 — §). To apply the Chernoff bound shown in 4.8, we have
p=B(1-J)and A = % — 1. Here we assume & > B~L. This is
alowed since B can be taken arbitrarily large.

)
)

Pr[X > (1+ A)p] < exp (— (3)

AZ
Pr[Hy > B—1] < exp (_2+Aﬂ)

:exp(_z y

2
= exp (—%(l + o(l))) s

B(1-6)
1-1/B _
15

1-1/B
1-6

+
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where o(1) is a vanishing term when B — oo. Solving the equation
exp (—3752(1 + o(l))) = 5, we get that 8’ = (1 + 0(1))B~/2VIn B.
Notice that X is an arbitrary feasible instance in 7g, thus we claim

that F(B, §) < exp (—BT‘SZ(I + o(l))). Again suppose we try to view

F(B, ) and exp (—3752(1 + 0(1))) as two decreasing functions of

8 € [0,1] while 6* and §” are respectively the intersection points
of the line y = § with the two functions. Therefore we have that
8" < &’ and we prove our claim. O

Theorem 4.5 directly follows from the results in Lemmas 4.6 and
4.7. The combination of results in Corollary 4.3 and Theorems 4.4
and 4.5 yields that NAdap is nearly an optimal non-adaptive algo-
rithm for GMP under UAD.

5 MP UNDERUAD WITHB =1

In this section, we consider the following special case: MP under
UAD with B = 1.

5.1 An optimal non-adaptive algorithm

Consider a given finite T. Let {f;|t € [T]} denote an optimal non-
adaptive algorithm, denoted by NOPT. In other words, NOPT will
accept the arriving item at ¢ with probability f; whenever safe.
Now we discuss how to compute {f;|t € [T]} for a given T. For
each t € [T], let J; be the set of all feasible instances of GMP with
B = 1 and time horizon t. In other words, J; = {Ap|1 <t/ < t}
where {Ay/|t’ € [t]} are all independent random variables and each
takes a value from [0, 1] and ¥ ¢ E[Ap] < 1.

LEmMMA 5.1. NOPT achieves a fairness of y for MP under UAD with
B=1iffforeach1 <t <T,

v <B[p [ [0 pran)].

t'<t

for all possible {Ap|t’ <t} € Jr-1.

Proor. We first show the necessity. Consider a given1 <t < T
and a given set of {Ap|t’ < t} such that {Ay} are all indepen-
dent random variables taking values from [0, 1] with total mean
at most 1. WLOG assume the union of support of Ay is a finite
set S = {p1, 2, .., pn} and for each t’ < ¢, Pr[Ap = p;] = q; v
Consider the following instance I created by the adversary: X =
{X1,X2,...,Xn} U {Xn+1} such that X; = Ber(y;) for each i € [n],
and Xp+1 = Ber(0). During each round of ¢’ with ¢’ < ¢, item X;
comes with probability p; ;- for each i € [n] and X;41 comes with
probability 0; during the round ¢, item Xj,41 comes with probability
1 and no one else will come; no item will come after round ¢. Note
that the sum of mean of Ay is at most 1 implies that instance I
is feasible. We can verify that the fairness achieved by NOPT on

the item X, 41 is exactly equal to E[ﬁt [My<:(1 —ﬁtrAt/)]. The fact

that NOPT achieves a fairness of y justifies the constraint at .
Now we show the sufficiency. Consider a given instance I =
(T,X,P), where X = {X3,...,Xp}and P = {p; ¢ }. Let p; = E[X;].
For each t € [T], define a random variable A; such that Pr[A; =
pi] = pi,+ for each i € [n]. Observe that each A; takes values from
[0,1] with 3, (7] E[A¢] < 1. For each t € [T], we can verify that
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we are safe with probability equal to E[ Myr<:(1- ﬂt/At/)]. This

implies that for each item Xj, the expected number of acceptances

should be
> pue B[ [Ja-pean] =y Y pur
te[T] t'<t te[T]

Thus, we claim that NOPT achieves a fairness at least y. O

To find a maximum y satisfying all the constraints in Lemma 5.1,
we just need to solve the following maximization program.

maX)/ (4)
y<B(=p)V1I<t <t<T
0<p <1 Vte[T]

LEMMA 5.2. An optimal solution {f;|1 < t < T} andy to the

maximization program (4) can be solved from the following equations:

v
Pr=rbe= ©)

Proor. Let {f*} and y* be the unique solution to the program (5).
Ignore the equation y = 1 — fr_y; each f;,t < T can be viewed as
an function of y, which is strictly increasing over [0, 1]. Thus we
can get an unique solution y* from the last equation y = 1 — f1_1.

The feasibility of {#*} and y* to the maximization program (4)
can be verified straightforwardly. Now we show the proof of op-
timality. Suppose the optimal value to the program (4) is y’ > y*
which is achieved on {8/} . Then we see that

<

Nl<t<T,y=1-pr_1,pr =1.

’

_r
-5

By comparing the above inequalities to the equations in pro-
gram (5), we claim that 7. > f7_,, which is followed by y’ <
1-p7_, <1-p5_, =y" We get a contradiction. O

B>y .B = NU<t<T,1-p5_ >y

Let y*(T) be the optimal value to the program (5). Numerically
we can verify that

3-45

Y1) =1y"@2=-,y"0Q) =

1 1
=, ~0.3819, y*(4) = -.
5 () 3

LEMMA 5.3. lim7_,0 y*(T) = 0.

Proor. Consider a given y. Ignore the equation y = 1—fr_; and
view each f;,t < T as an increasing function of y. Since 71 < 1,
we claim that {$1, f2, . . ., fr—1} must converge to a value satisfying
the equation p when T — oo. From the last equation, we
O

L =
see y = 1 — f3, which implies f = 1,y = 0.

5.2 An optimal adaptive algorithm

In this section, we present an optimal adaptive algorithm, which is
denoted by OPT.

LEMMA 5.4. The optimal adaptive strategy at t for the MP under
UAD with B = 1 just needs to adapt to U;—1 = (u1, . . ., pir—1) subject
to being safe, where iy is the mean of the arriving item at t’ for each
t’ < t. It need not adapt to the random outcomes of previous optimal
strategies and realizations of accepted items.
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Proor. Consider a finite (known) T and suppose the worst un-
known but fixed input arranged by the adversary is I = (X, P),
where X = {X1,X2,...,Xp} and P = {p; +li € [n],t € [T]} with
it Pi,tB[X;] < 1 and each X; is a Bernoulli random variable.

Considerastate Sy = (¢t,B = 1, Uy) with Uy = {u1, ..., ple—1, e},
i.e., we are safe at time t and all observations so far are U;
{1, ... pr—1, s} where pp is the mean of the arriving item at
t’ € [t]. Let PATH be the set of all paths in the decision tree of OPT
ending at S. Notice that we can extract the same information from
each path P € PATH for the future arrivals X and {p; |t > t}.
Thus we claim the optimal strategy should be the same if we end
at S; following each path P € PATH.

Let f;(U;) be the probability that OPT accepts the arrival item
Y; at t conditioning on we are safe at t and U;. Now we show
further that f; (U;) has nothing to do with u; = E[Y;]. Suppose
we run OPT and at time ¢, we are safe and observe an arriving
item Y; = Ber(y;). Consider the following worst scenario for Y;
arranged by the adversary: Y; never comes before (its index revealed
to us is different from all previous) and it comes exclusively at ¢
with probability €. Thus OPT achieving a fairness of y over Y; is
equivalent to the property that for all y; € [0, 1], we have

I(t—l?éi}ll(t—l)EﬂH Pr[OPT is safe at ¢t| Us—1]- fr (u1, - -
where (1) U;—1 is a random vector of means of all arrival items
coming during the first t—1 rounds whose distribution is determined
by the unknown input projected into the first ¢ — 1 rounds, denoted
by I(t—1); (2) 71 (¢t —1) is the set of all feasible instances of MP under
UAD with B = 1 and time horizon T = t — 1. Notice that neither of
the values Pr[OPT is safe at ¢|U;—1] and 17 (¢ — 1) is connected to
it thus we claim that f; (u1, g2, . . ., p¢) in OPT has no dependence
on y; either. O

Consider a finite T. From Lemma 5.4 we see that OPT can be char-
acterized by {f;|t € [T]} where for each t € [T], f; : [0,1]*"! —
[0, 1] is such that f;(U;-1) denotes the probability that OPT ac-
cepts the arriving item at ¢ conditioning on being safe at t and U;_1.
The following lemma gives a sufficient and necessary condition
when OPT = {f;|t € [T]} achieves a fairness of y. Recall that J;
is the set of all feasible instances of GMP with B = 1 and a time
horizon of t.

LEMMA 5.5. An OPT parameterized by {f;|t € [T]} achieves a
fairness of y for MP under UAD with B = 1 and a time horizon of T
iff foreach1 <t <T,

y <E[fitanAn. A [ (1- firan . avan )]

t'<t

SHE) | 2,
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for all possible {Ap |1 < t' <t} € Jp-1.

The proof of Lemma 5.5 is similar to that of Lemma 5.1. We omit
it here. For a given T, let y(T) be the maximum value satisfying all
constraints in Lemma 5.5. It turns out to be much more challenging
than before to compute y(T). Here we only consider the simple
case T = 4 and show y(4) < % Note that for the classic MP with
B =1 for an arbitrary T, Theorem 1.1 in [2] indicates that there is
an algorithm which achieves a fairness of % This suggests that MP
under UAD is strictly harder than the classical MP under adversarial
order.

LEMMA 5.6. For MP under UAD with B = 1 and T = 4, OPT
achieves a fairness of y(4) < %

Proor. We prove by contradiction. Suppose y(4) > 1/2. From
Lemma 5.5, we see that the optimal choice is fi =y, fa(x) = ﬁ
for each x € [0,1] and f3 = 1. The key issue is to choose f3 = f.
The conditions stated in Lemma 5.5 for t = 3, 4 are reduced to the

following:
E [f(X1,X2) (1 -y (X1 + X)) | > v,

E [(1 - £ X2)Xs ) (1= 7o +X2))] >y,

for all possible {X1,X2} € J2 and {Y1, Y2, Y3} € 5. Consider these
two concrete examples: {X1, X3} are two i.i.d. Bernoulli random
variables with mean 1/2 while {Y7, Y2, Y3} are three i.i.d. Bernoulli
random variables with mean 1/3. Let a = (f(1,0) + £(0,1))/2 and
b = f(0,0). After simplification, the two inequalities in (6) on
these two examples with y > 1/2 are reduced to the following:

a+b>2,a+2b< %. Notice that both a and b take value in [0, 1]
and thus this linear system is infeasible. O

(6)

6 CONCLUSION AND FUTURE WORK

In this paper, we have considered a generalization of GMP (MP) as
introduced in [1, 4] and presented two near-optimal non-adaptive
online algorithms for unknown IID and the more-general unknown
adversarial distributions.

For GMP under UIID, we have proven that Greedy is optimal
while the exact optimal fairness is not known yet. We conjecture
that it should have the same performance as that of MP under
UIID, i.e., that the adversary will arrange all items as Bernoulli
random variables in the worst case. Another direct future direction
is to show some hardness results for GMP under UAD regarding
the optimal adaptive algorithm: is NAdap(B, §*) also near-optimal
among all adaptive algorithms for GMP under UAD?
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