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Abstract

Consider property testing on bounded degree graphs and let ε > 0 denote the proximity parameter. A
remarkable theorem of Newman-Sohler (SICOMP 2013) asserts that all properties of planar graphs (more
generally hyperfinite) are testable with query complexity only depending on ε. Recent advances in testing
minor-freeness have proven that all additive and monotone properties of planar graphs can be tested in
poly(ε−1) queries. Some properties falling outside this class, such as Hamiltonicity, also have a similar
complexity for planar graphs. Motivated by these results, we ask: can all properties of planar graphs can
be tested in poly(ε−1) queries? Is there a uniform query complexity upper bound for all planar properties,
and what is the “hardest" such property to test?

We discover a surprisingly clean and optimal answer. Any property of bounded degree planar graphs can
be tested in exp(O(ε−2)) queries. Moreover, there is a matching lower bound, up to constant factors in the
exponent. The natural property of testing isomorphism to a fixed graph requires exp(Ω(ε−2)) queries, thereby
showing that (up to polynomial dependencies) isomorphism to an explicit fixed graph is the hardest property
of planar graphs. The upper bound is a straightforward adaptation of the Newman-Sohler analysis that tracks
dependencies on ε more carefully. The main technical contribution is the lower bound construction, which is
achieved by a special family of planar graphs that are all mutually far from each other.

We can also apply our techniques to get analogous results for bounded treewidth graphs. We prove that
all properties of bounded treewidth graphs can be tested in exp(O(ε−1 log ε−1)) queries. Moreover, testing
isomorphism to a fixed forest requires exp(Ω(ε−1)) queries.

1 Introduction
Consider the setting of property testing for bounded degree graphs, under the model of random access to a graph
adjacency list, as introduced by Goldreich-Ron [12]. Let G = (V,E) be a graph where V = [n] and the maximum
degree is d. We have random access to the list through neighbor queries. There is an oracle that, given v ∈ V
and i ∈ [d], returns the ith neighbor of v (if no neighbor exists, it returns ⊥).

For a property P of graphs with degree bound d, the distance of G to P is the minimum number of edge
additions/removals required to make G have P, divided by dn. We say that G is ε-far from P if the distance to
P is more than ε. A property tester for P is a randomized procedure that takes as input (query access to) G and
a proximity parameter, ε > 0. If G ∈ P , the tester must accept with probability at least 2/3. If G is ε-far from
P, the tester must reject with probability at least 2/3. In our context, the property P is called testable if there
exists a property tester for P whose query complexity is independent of n.

One of the grand goals of property testing is to classify testable (graph) properties according to the query
complexity of testing them. Of special interest are efficiently testable properties, whose testing complexity is
poly(ε−1). For bounded degree graphs, there is little clarity on this issue. A recent survey by Goldreich states:
“Indeed, it is hard to find a common theme among [efficiently testable] properties...". [11]
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Our work focuses on properties of planar graphs. Even the problem of just testing planarity has received much
attention, whose complexity has only recently been shown to be poly(ε−1) [3, 14, 8, 21, 17, 15]. Newman-Sohler
proved that every planar property (actually, every hyperfinite property) is testable, but they do not provide an
explicit complexity bound depending on ε [20]. Kumar-Seshadhri-Stolman recently showed that every additive
and monotone planar property can tested in poly(ε−1) queries [15]. Applying techniques from this result, Levi-
Shoshan showed that Hamiltonicity can be tested efficiently when the graph is promised to be planar [18]. The
latter property is neither additive nor monotone, so it is natural to ask if all planar properties can be tested
efficiently. If not, does there exist a uniform complexity bound for all planar properties, and a candidate for the
“hardest planar property"? (We note that there is significant work on characterizing testable planar properties,
for the unbounded degree case, which is qualitatively different [5, 6]. Details are given in §1.2.)

We discover that the answer to this question is the query complexity bound exp(Θ(ε−2)). Up to constant
factors in the exponent, the hardest planar property is testing isomorphism to a fixed explicit graph.

Let us give some formalism, and discuss the connection to isomorphism. In our discussions, n is basically
fixed, so we are considering a non-uniform setting. A planar property Π is a set of unlabeled bounded degree
planar graph with n vertices. The input G is a labeled graph and the tester is trying to property test if G is
isomorphic (or equal to, if one ignores the labels) to any member of Π. Observe that singleton properties, where
Π = {H}, are equivalent to testing if G is isomorphic to an fixed graph H. With this preamble, we can state our
main results.

Our upper bound is a straightforward adaptation of arguments in Newman-Sohler [20].

Theorem 1.1. Consider a planar property Π of n-vertex, d degree-bounded graphs. There is a property tester for
Π that makes poly(d) exp(O(ε−2)) queries.

Our main technical result is a matching lower bound for an explicit singleton property. One of the surprises
(at least to the authors) is that testing isomorphism to an arbitrary set of planar graphs is not harder, up
to polynomial dependencies, than testing isomorphism to a single fixed graph. A recent compendium of open
problems by Goldreich states the question of determining the complexity of testing isomorphism (Open Problem
2.4 in [11]). We note that our theorems resolve this question for bounded-degree planar graphs.

Theorem 1.2. For every sufficiently large n, there exists a bounded-degree planar graph H on n vertices such
that property testing Π = {H} requires exp(Ω(ε−2)) queries. Equivalently, testing isomorphism to H requires
exp(Ω(ε−2)) queries.

Bounded treewidth classes: In the context of property testing, many results for planar graphs also hold
for minor-free classes. It is natural to ask whether the bound of exp(Θ(ε−2)) is the “right" answer for any property
of minor-free graphs. We discover that to not be the case. For properties of bounded treewidth graphs, the answer
is between exp((ε−1)) and exp((ε−1) log ε−1). The following theorems are also derived from the same methods
for planar graphs, but the constructions are substantially simpler. The lower bound is achieved by a simple
construction of forests. The main point of these results is to show that the bounded of exp(Θ(ε−2)) achieved for
planar properties can be significantly beaten for non-trivial minor-closed families.

Theorem 1.3. Consider a bounded treewidth property Π of n-vertex, d degree-bounded graphs. There is a property
tester for Π that makes poly(d) exp(O(ε−1 log ε−1)) queries.

Theorem 1.4. For every sufficiently large n, there exists a bounded-degree forest H on n vertices such that
property testing Π = {H} requires exp(Ω(ε−1)) queries.

1.1 Main ideas One of the key components of property testers for planar graphs is the notion of partition
oracles for hyperfinite graphs, as introduced by Hassidim-Kelner-Nguyen-Onak [14]. Bounded degree planar graphs
(and more generally, minor-closed families) are hyperfinite, meaning that one can remove a constant fraction of
edges and obtain connected components of constant size. Specifically, one can remove εdn edges to get connected
components of size O(ε−2).

Suppose G is hyperfinite. A partition oracle is a local procedure that gives access to a hyperfinite
decomposition to a graph G, without any preprocessing. Given a query vertex v, the partition oracle outputs a
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connected subgraph C(v) of size O(ε−2), such that the union of components C(v) forms a hyperfinite partition.
Recent results give a partition oracle that runs in time poly(ε−1) per query [17, 16].

Newman-Sohler used partition oracles to prove that all hyperfinite (and hence planar) properties are
testable [20]. This is where our results begin. Stripping down the Newman-Sohler arguments to their core,
we can essentially treat a planar G, up to εdn edge changes, as a distribution over connected planar graphs of
size O(ε−2). The partition oracle allows us to sample efficiently from this distribution. (If the input graph G
is not hyperfinite, the partition oracle can detect that efficiently, and the graph can be directly rejected.) For
convenience, let D(G) denote this distribution.

Existing theorems in combinatorics show that the number of planar graphs of size O(ε−2) is exp(O(ε−2)) [19];
hence, this bounds the support size of D(G). We can learn an approximation of D(G) up to ε TV-distance
with exp(O(ε−2)) queries to the partition oracle. It is not hard, but central to the argument, to show that if
‖D(G) − D(H)‖1 ≤ ε, then G is ε-close to H. For any property Π, one can simply check exhaustively if the
learned approximation to D(G) is close to D(H) for any H ∈ Π. (While this could be expensive in running time,
it requires no further queries to G.)

The main challenge is in the lower bound. We need to find a property Π such that testing Π requires
exp(Ω(ε−2)) samples from D(G). We seem to need a converse to the upper bound argument, showing if
‖D(G) − D(H)‖1 is large, then G and H are far from each other. But this is false in general! The support
of D(G) is a set of graphs, which are mutable objects. Meaning, we can modify D(G) dramatically by only
modifying a few edges of G. (As an extreme case, D(G) and D(H) could have disjoint supports on graphs that
are close to each other.)

All our graphs (both input and hard instance) will be collections of connected components of size O(ε−2).
We begin by trying to construct a graph H such that: for all G, ‖D(G) − D(H)‖1 ≥ ε implies that G is ε-far
from H. Moreover, determining if ‖D(G) − D(H)‖1 ≥ ε should require exp(Ω(ε−2)) samples from D(G). A
candidate is suggested by the problem of uniformity testing of distributions. Suppose we construct H where
D(H) is a uniform distribution on a collection F of graphs (each member of which has size O(ε−2)), such that
|F| = exp(Ω(ε−2)). By standard distribution testing arguments, distinguishing the uniform distribution on F
from a uniform distribution on half of F requires

√
|F| = exp(Ω(ε−2)) samples. Suppose furthermore that all

graphs in F are ε-far from each other and all balanced separators of F ∈ F are at least of size ε|F |. We prove
that any graph G such that D(G) is supported on half of F must be ε-far from H. Moreover, we can construct
candidate input graphs G, where any property tester can be simulated by sampling from D(G). Putting all the
arguments together, we get a bonafide lower bound: property testing Π = {H} requires exp(Ω(ε−2)) queries.

What remains is the main technical construction. We need to design F , the “suitable family" of graphs for
the lower bound. We achieve this family by taking the ε−1 × ε−1 grid and adding a collection of diagonal edges.
We apply a cleaning procedure to get a large family of graphs that are all far from each other. The separator size
holds trivially, since each graph in F contains a large grid.

1.2 Related Work Property testing on bounded-degree graphs is a vast topic and we direct the reader to
Chapter 9 of Goldreich’s book [10] for an introduction to the subject.

Arguably, the starting point for testing planarity is the seminal work of Benjamini-Schramm-Shapira [3], who
showed that all minor-closed properties are testable. This paper also introduced the significance of hyperfiniteness
to property testing. Hassidim-Kelner-Nguyen-Onak [14] introduced the concept of partition oracles, a key tool in
property testing for hyperfinite classes. Improving the query time of partition oracles was addressed by Edelman-
Hassidim-Nguyen-Onak [8], Levi-Ron [17] and Kumar-Seshadhri-Stolman [16].

The quest for characterizing testable (bounded-degree) graph properties and finding properties testable in
poly(ε−1) is an important theme in property testing. We note that Goldreich’s recent survey explicitly calls these
out as Open Problems 2.2 and 2.3 [11]. One of the main inspirations for our work is the result of Newman-Sohler
that proves that all hyperfinite properties are testable [20]. The recent work of [16] proves that all additive and
monotone minor-closed properties are efficiently testable, and Levi-Shoshan show that Hamiltonicity of minor-
closed families is also efficiently testable [18].

We note an important line of work of testing properties of planar graphs, in the unbounded degree case.
This direction was pioneered by Czumaj-Monemizadeh-Onak-Sohler [5], who showed the bipartitenesss is testable
(independent of the size). A recent result of Czumaj-Sohler prove that all testable planar properties in the
unbounded degree setting are related to subgraph freeness [6].
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The proof strategies used here have been used in different forms in other work. The construction of the
explicit family that suits our purposes is similar to the approach taken in Theorem 1.1 of a recent result due to
Goldreich, albeit it does not concern itself with planarity. Moreover, the process of adding diagonals to a t× t grid
randomly (that we adopt in the construction) inherently implies an encoding of O(t2) bits by the grid, similar to
techniques used by Goldreich and Wigderson[22][23]. The subsequent argument that achieves the lower bound on
the constructed family is similar to the arguments presented by Onak in an unpublished note[25].

2 Proof of Theorem 1.1 and Theorem 1.3
We begin with some preliminaries: the notions of hyperfiniteness and partition oracles. Note that all graphs have
n vertices and degree bound d.

Definition 1. A graph G is (ε, k) hyperfinite if there exists a subset of εdn edges whose removal results in
connected components of size at most k.

A classic result of Alon-Seymour-Thomas (Prop. 4.1 of [1]) shows that all minor-closed families are (ε,O(ε−2))-
hyperfinite. In LemmaA.1, we prove that all bounded treewidth families are (ε,O(ε−1))-hyperfinite. A partition
oracle gives local access to a hyperfinite decomposition. We give the formal definition below (adapted from Def.
1.1 of [16]).

Definition 2. A procedure A is a partition oracle for a minor-closed family Π of graphs if it satisfies the following
properties. The deterministic procedure takes as input random access to G = (V,E), access to a random seed r,
a proximity parameter ε > 0, and a vertex v of G. (We will think of fixing G, r, ε, so we use the notation AG,r,ε.
All probabilities are with respect to r.) The procedure AG,r,ε(v) outputs a connected set of vertices, such that the
sets {AG,r,ε(v)}, over all v, form a partition of V .

We say that the partition oracle outputs an (ε, k)-hyperfinite decomposition if the following properties hold. (i)
For all v, |AG,r,ε(v)| ≤ k and (ii) with probability > 2/3 (over r), the number of edges between the sets AG,r,ε(v)
is at most εdn.

The main result of [16] that we use is the following.

Theorem 2.1. (Rephrasing of Theorem 1.2 [16]) For any d-bounded degree graph in a minor-closed family,
there is a partition oracle that outputs an (ε,O(ε−2))-hyperfinite partition, and runs in time O(poly(dε−1)) per
query.

For bounded treewidth classes, the partition oracle can output (ε,O(ε−1))-hyperfinite partitions using
standard arguments (Claim 14)

2.1 Property testers through subgraph count vectors We use partition oracles to summarize a hyperfinite
graph by an approximate count vector. This technique was first used by Newman-Sohler [20]. We follow their
analysis, but take care to keep track of various dependencies on ε. This allows for getting the optimal query
complexity bound.

Consider any planar property Π (technically, the following arguments hold for any minor-closed property).
For any planar G, let P(G) denote the partition given by the partition oracle of Theorem2.1. (Note that the
partition is a random variable.) Let Bk be the set of unlabeled graphs in the family Π with at most k vertices.
We will always set k = O(ε−2) (though the exact setting will change for bounded-treewidth properties).

For any graph G′ consisting of connected components of size at most k and any F ∈ Bk, let ctF (G′) be
the number of occurrences of F in G′. Let ct(G′) be the |Bk|-dimensional vector of these counts. Note that
‖ ct(G′)‖1 ∈ [n/k, n].

Claim 3. Consider two graphs G′1, G
′
2 consisting entirely of connected components of size at most k. If

‖ ct(G′1)− ct(G′2)‖1 ≤ γn, then dist(G′1, G′2) ≤ γk.

Proof. For every F ∈ Bk, we will modify G′1 and G′2 to equalize the ctF (G′1) and ctF (G′2). We simply delete
| ctF (G′1) − ctF (G′2)| instances from either G′1 or G′2 (whichever has the larger count). This operation deletes at
most | ctF (G′1)−ctF (G′2)|kd edges. In total, the number of edges deleted is at most ‖ ct(G′1)−ct(G′2)‖1kd ≤ γnkd.
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For the property Π that we wish to test, construct the following set CΠ of count vectors: for every F ∈ Π
(with n vertices and degree bound d) and every subgraph F ′ that is an (ε, k) partition of F , add ct(F ′) to CΠ.

Lemma 2.1. Suppose P(G) is a valid (ε, k)-partition of G. If G ∈ Π, then ct(P(G)) ∈ CΠ. If G is 3ε-far from
Π, then ∀v ∈ CΠ, ‖ ct(P(G))− v‖1 > εn/k.

Proof. Suppose G ∈ Π. In the construction of CΠ described above, we can select F as G and F ′ as P(G). Hence,
ct(P(G)) ∈ CΠ.

Suppose G is 3ε-far from Π. Consider any v ∈ CΠ, so v = ct(F ′), for F ′ being an (ε, k)-partition of
F ∈ Π. By the triangle inequality, dist(P(G), F ′) ≥ dist(G,F ) − dist(G,P(G)) − dist(F, F ′). By farness,
dist(G,F ) ≥ 3ε. Because P(G) and F ′ are respective (ε, k)-partitions, dist(G,P(G)) and dist(F, F ′) are at most
ε. Hence, dist(P(G), F ′) ≥ ε. By Claim 3, ‖ ct(P(G))− v‖1 > εn/k.

Now, we present the main algorithmic ingredient of our property tester.

Claim 4. Given G and a setting of P(G) that is a valid (ε, k)-partition, using O(poly(dε−1)δ−2|Bk|3 log |Bk|)
queries one can compute a vector v such that ‖v − ct(P(G))‖1 < δn with probability at least 1− 1

|Bk| .

Proof. Fix F ∈ Bk. We show how to approximate ctF (P(G)). Pick uar vertex s, and using the partition
oracle, determine the component of P(G) containing s. If the component is isomorphic to F , declare
success. The probability of success is exactly |F | ctF (P(G))/n. By Chernoff-Hoeffding, we can get an additive
δ/|Bk| estimate with error probability < |Bk|−2 using O(|Bk|2δ−2 log |Bk|) samples. Thus, we get an additive
δn/(|F | · |Bk|) ≤ δn/|Bk| estimate for ctF (P(G)). Applying for all F , we get our estimate vector v. Note that
the total approximation is ‖v − ct(P(G))‖1 < δn/|Bk| × |Bk| = δn. The error probability, by a union bound,
is at most |Bk|−1. By the running time bound of the partition oracle, the total number of queries made is
O(poly(dε−1)δ−2|Bk|3 log |Bk|).

Now, we prove Theorem1.1, repeated for convenience. To get the optimal bound for planar properties, we
need the right upper bound for Bk. Numerous results in the past show that the answer is exp(O(k)). We cite one
specific reference.

Theorem 2.2. (Theorem 5 of [19]) A planar graph on k vertices and k′ edges can be represented uniquely by
8k + 2k′ + o(k + k′) bits.

Hence, the number of planar graphs on k vertices is exp(O(k)).

Theorem 2.3. Consider a planar property Π of n-vertex, d degree-bounded graphs. There is a property tester for
Π that makes poly(d) exp(O(ε−2)) queries.

Proof. The tester has two phases. In the first phase, it uses Theorem2.1 to get a hyperfinite partition. If it
succeeds, then the tester proceeds to the second phase. It uses Claim 4 to approximate ct(P(G)) and checks if it
lies in CΠ.

The tester repeats the following O(1) times. For a random seed R, it sets up the partition oracle with this
seed, and then estimates the number of cut edges via random sampling. This is done by sampling Θ(ε−1) uar
vertices u, picking a uar neighbor v of u, and calling the partition oracle on u and v. If the outputs are different
components, then edge (u, v) is cut. If more than an ε/4-fraction of edges are cut, the process is repeated with a
new choice of R. Otherwise, R is fixed, and the tester proceeds to the next phase. If no R is found, the tester
rejects.

At this point, a suitable P(G) has been discovered. We set k = O(ε−2), to be the size bound of components,
as promised by Theorem2.1. Using Claim 4, the tester computes an approximate count vector v of ct(P(G)),
setting δ = ε/4k. Note that CΠ is a fixed set of vectors, independent of the input. The tester then determines if
∃w ∈ CΠ such that ‖v−w‖1 ≤ εn/2k. If such a vector w exists, it accepts. Otherwise, it rejects. The description
of the property tester is complete, and we proceed to the analysis.

Query complexity bound: Note that k = O(ε−2), δ = ε/4k, and, by Theorem2.2, |Bk| = exp(O(ε−2)).
Hence, by Claim 4, the overall query complexity is poly(d) exp(O(ε−2)).

Correctness analysis: If G is planar and hence (ε/8, O(ε−2))-hyperfinite, with probability at least 2/3
over R, the partition oracle computes a hyperfinite decomposition. Hence, with probability at least 5/6, the
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tester proceeds to the second phase with P(G) being a valid (ε,O(ε−2))-hyperfinite partition. Conversely, with
probability at least 5/6, if the tester finds a suitable R, then P(G) is a valid (ε,O(ε−2))-hyperfinite partition.

Suppose G ∈ Π and hence planar. As argued above, with probability > 5/6, P(G) is an (ε,O(ε−2))-
hyperfinite decomposition. By Claim 4, with probability > 5/6, ‖v − ct(P(G))‖1 < εn/4k. By the union bound,
both conditions hold with probability at least 2/3. By Lemma2.1, ct(P(G)) ∈ CΠ. Thus, there exists w in CΠ
such that ‖v −w|1 ≤ εn/2k and the tester accepts with probability at least 2/3.

Suppose G is 3ε-far from Π. By Lemma2.1, for all w ∈ CΠ, ‖ ct(P(G)) − w‖1 > εn/k. By the triangle
inequality, ‖v −w‖1 > εn/k − εn/4k > εn/2k. Thus, the tester rejects with probability at least 2/3.

The proof of Theorem1.3 is nearly identical.

Theorem 2.4. Consider a bounded treewidth property Π of n-vertex, d degree-bounded graphs. There is a property
tester for Π that makes poly(d) exp(O(ε−1 log ε−1)) queries.

Proof. We redo the proof of Theorem1.1. Claim 14 shows that graphs with treewidth at most τ admit a partition
oracle with k = O(τ/ε). For bounded treewidth graphs, we apply the trivial bound |Bk| ≤ 2O(k log k) (Claim 13).
We apply these bounds in the above proof, and get a query complexity of O(poly(d) exp(ε−1 log ε−1)) queries.

3 Lower bounds through suitable families
The key construct for the lower bounds is given in the following definition. A graph class is monotone if it is
closed under edge removals. A graph class is additive if it closed under taking disjoint unions of graphs.

Definition 5. Fix ε > 0 and a monotone, additive graph class C. We call a family F of distinct graphs (in C)
ε-suitable if the following conditions hold:
• All graphs in F have the same number of vertices (denoted t).
• If t > 2/ε, ∀F, F ′ ∈ F , dist(F, F ′) ≥ 0.02.
• ∀F ∈ F , the size of any ( 0.01

d , 1− 0.01
d ) balanced separator in F is Ω(εt).

The main lemma used in our lower bound says that a large suitable family leads to a property testing lower
bound.

Lemma 3.1. Fix ε > 0, and let F denote an ε-suitable family of a monotone, additive graph class C. Then, for
all sufficiently large n, there exists a graph H ∈ C with the following property. Any property tester for the property
{H} with proximity parameter ε requires Ω(

√
|F|) queries.

The proof of Lemma3.1 requires some tools, that we shall build up in this section. Firstly, using the properties
of a suitable family, we can construct two graphs consisting entirely of components in F that are far from each
other. These graphs form the core of the lower bound.

Claim 6. Let F denote an ε-suitable family of a graph class C (as defined in Lemma 3.1). Let I = [|F|] denote
a set indexing graphs in F .

Let H1 be the graph consisting of a disjoint union of all graphs in |F|. For any subset R ⊆ I with |R| = |I|/2,
let HR be the disjoint union of two copies of each graph in F indexed by R. Then the graphs H and HR are Ω(ε)
far from each other.

Proof. Since F is ε-suitable, we know that all graphs F ∈ F are defined on t = t(ε) vertices. We know for
any F, F ′ ∈ F , since |F | = |F ′| = t and dist(F, F ′) ≥ 0.02, the number of edge edits needed to change F to
F ′ is at least Ω(t). Since R will be fixed for the remainder of the proof, it will be convenient to refer to HR

as H2 for the rest of the argument. Let us denote the components of H1 (resp H2) as components(H1) (resp as
components(H2)). Let s = |components(F)|. H2 contains s/2 connected components in F each of which occurs
twice. Recall from Definition 5, C,C ′ ∈ components(F) are Ω(1)-far from each other. Let M1/2 denote the set
of missing components of F in H2. And let P1/2 denote the set of components from F that are present in H2
(without duplicates). Thus, H2 contains two subgraphs isomorphic to P1/2 which we denote as P1

1/2 and P2
1/2.
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For C ∈ components(P1/2), let C1 ∈ components(P1
1/2) denote the subgraph of P1

1/2 isomorphic to C. Similarly,
define C2. Let

4E = argmin
4E′⊆V (H2)×V (H2)
E(H1)=E(H2)⊕4E′

|4E′|

denote the smallest set of edge modifications to H2 that produce a graph isomorphic to H1. We now lower bound
|4E|. For a component C ∈ F , let E(C) denote the edge set of that component. Fix a component C such that
E(C) ∩4E 6= ∅. The following cases arise.

• Case 1: 4E ∩ E(C) is connected. Thus, the deletion edits do not disconnect C. In this case, after the
insertion edits in 4E, we obtain a component inM1/2. By the definition of suitable families, if t > 2/ε, it
takes at least Ω(εt) edits. If t ≤ 2/ε, then C obviously gets at least one edit, which is at least Ω(εt) edits.
In both cases, the number of edits is Ω(εt).

• Case 2: 4E∩E(C) is not connected. Now, we get two subcases depending on size of the biggest component
in 4E ∩ E(C).

1. The biggest component in C \4E has size at least (1−1/100d) · t. In this case, 4E⊕E(C) maps C to
some component inM1/2. Now we split into two cases. Suppose t > 2/ε. Since C is a bounded degree
graph, the number of insertion edits (by Definition 5) is at least 0.02t − ( 0.01

d · d)t = 0.01t. Suppose
t ≤ 2/ε. In any case C must get at least one insertion edit to make it have size t. So the number of
edits is at least Ω(εt).

2. The biggest component in 4E∩E(C) has size at most (1− 1
100d ) ·t. In this case, note that 4E removes

a balanced separator of C. Thus, the number of deletion edits made to C is at least Ω(εt).

In all of the above cases we see that for any component C ∈ components(H2) with 4E ∩ E(C) 6= ∅, the
number of edits made to C is at least Ω(εt). Finally, note that

|{C ∈ components(H2) : E(C) ∩4E 6= ∅}| ≥ |components(H2)|
2

.

And therefore, the distance between graphs H1 and H2 is at least Ω(ε) as desired.

We can now define the graph H used to prove the lower bound Theorem1.2. For convenience, assume that
n is a multiple of t|F|, the size of graphs in F . (If not, we will pad the final graph with extra isolated vertices.)
The (unlabeled) graph H is a disjoint union of n/t|F| copies of every graph in F .

Analogously, for R ⊂ I, |R| = |F|/2, let HR be the graph that has n/(2t|F|) copies of every graph in F
indexed by R. For convenience, we refer to any such R as a half index set.

3.1 The distinguishing problem Note that input graph is really a labeled instance, as given by the adjacency
list. We now give the explicit distribution of labeled inputs G and the main “distinguishing" problem. By Yao’s
minimax lemma, it suffices to prove lower bounds for determinstic algorithms over randomized inputs. So let us
define the YES and NO distributions.

• YES: Generate a uar labeling of H.

• NO: Generate a uar half index set R. Then, generate a uar labeling of HR.

Given an input G generated from either of these distribution, the distinguishing problem is to determine, with
probability > 2/3, which distribution G came from. (Note that the supports of these distributions are disjoint.)

Claim 7. If there exists a deterministic distinguisher that makes q queries (where q is independent of n), then
there exists an algorithm with the following property. Given input G (generated as above), the algorithm gets q
uar connected components of G and determines, with probability > 2/3− o(1), whether G came from the YES or
NO distribution.
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Proof. Consider any deterministic algorithm. One can express its behavior as follows. At any stage, it has
explored the adjacency lists of some vertices v1, v2, . . . , vb. It can choose to further query the adjacency lists of
these vertices. In this case, it further explores the connected components already visited. The algorithm can also
choose to visit a new vertex ID v′. Note that v′ is an arbitrary (but fixed) function of all the vertex IDs and
edges seen so far. Since the input is a uar labeling of either H or HR, the probability that v′ lies in a component
already visited is at most qt/n. With probability at least 1 − qt/n, v′ lies in a uar connected component (since
all components have exactly the same size, t). By a union bound, with probability at least 1− q2t/n = 1− o(1),
the algorithm sees a uar set of at most q components and makes its decision.

The total number of components is n/t, and hence the probability of seeing a specific set of q components is
(up to 1±o(1)-factors) 1/

(
n/t
q

)
. Since n is sufficiently large, this probability is within (1+o(1))-factors of q!/(n/t)q.

This implies that with probability at least 1 − o(1), the algorithm sees a uniform distribution of multisets of q
components. Alternately, the algorithm gets q uar connected components of G. The success probability only
changes by (1− o(1))-factors.

The proof of Lemma3.1 is now a straightforward reduction from distribution testing and an application of
the tools built thus far.

Proof. (of Lemma3.1) By Claim 6, all graphs generated by the NO distribution are ε-far from the property {H}.
By Yao’s minimax lemma, it suffices to show that any deterministic distinguisher requires Ω(

√
|F|) queries.

By Claim 7, if there is a deterministic distinguisher making q queries, then there is an algorithm that can
distinguish H from HR (with probability > 2/3 − o(1)) by querying q uar connected components. Standard
arguments in distribution testing show that Ω(

√
|F|) samples are required to distinguish the uniform distribution

on the index set I = [|F|] from the uniform distribution on a uar half index set R (refer to the section titled
“An Ω(

√
n/ε2) lower bound" on page 13 of [4]). By mapping I arbitrarily to F , getting samples from the

uniform distribution in I is equivalent to getting uar components from G generated from the YES distribution.
Analogously, samples from the uniform distribution on a uar half index set R is equivalent to uar components from
G generated from the NO distribution. Thus, any algorithm that distinguishes H from HR with uar connected
components requires Ω(

√
|F|) samples, leading to the lower bound for deterministic distinguishers.

4 A suitable family for planar graphs
The main result of this section is the following theorem.

Theorem 4.1. There exists a family F of planar graphs where each graph has s2 vertices and
• |F| ≥ exp(Ω(s2)).
• For every G ∈ F , the size of a minimum balanced vertex separator in G is Ω(s)
• For every pair of graphs G,G′ ∈ F , it takes at least 0.16s2 edge edits to go from G to G′. In particular, it

holds that G and G′ are 0.02-far.

We collect some ingredients which will be useful in proving Theorem4.1. The first important ingredient we
need is Whitney’s theorem.

Theorem 4.2. (Whitney’s Theorem. (Theorem 4.3.2 in [7])) Any two planar embeddings of a 3-connected
planar graph are equivalent.

We first define a “base” graph (Definition 8). This is obtained in the following manner. Let us start with
the s × s grid which we denote as G0. The label set of G0 is indexed by a pair (i, j) ∈ [s] × [s]. We call this
labeling the standard grid order. We denote the base graph by G, and G is constructed on top of G0 by the
addition of some specific edges. Essentially, we add edges at the corners; we refer the reader to Fig. 1. We add
edges from (0, 0) to (0, 2), (2, 0), from (0, s) to (0, s− 3), (3, s), from (s, s) to (s, s− 4), (s− 4, s) and from (s, 0) to
(s, 5), (s − 5, 0). This graph G thus differs from G0 only in the edges adjacent to the corner vertices, making all
the corners unique. Let us label G according to the standard grid order. For u ∈ V , we thus identify u as the pair
(xu, yu) which refers to the (x, y) coordinate of u on the grid. With this labeling, we have E(G) = E(G0) ∪ E1.
where the set E1 contains all the non grid neighbors of all the corner vertices.

Definition 8. Consider the graph G obtained above and consider the planar embedding of G (which is unique
by Theorem4.2). We will fix an embedding of G where
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• The unique corner vertex adjacent to two vertices 2 hops away (according to standard grid order) is located
at (0, 0).
• The unique corner vertex adjacent to two vertices 3 hops away (in the standard grid order) is located at

(0, s).
• The unique corner vertex adjacent to two vertices 4 hops away (in the standard grid order) is located at

(s, s).
• The unique corner vertex adjacent to two vertices 5 hops away (in the standard grid order) is located at

(s, 0).
We call this graph (and by abuse of terminology, its embedding) as the base graph.

Figure 1: An example of one of the graphs from our family B.
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4.1 Proof of Theorem 4.1 Let us begin by defining the following family of graphs. We will show that all
graphs in this family are pairwise non isomorphic.

Construction 9. The family B of graphs is a family of graphs labeled according to standard grid order which
is obtained from the base graph G in the following way. Let

I = [0, s)× (1, s]

denote an index set for vertices in V (G). Graphs in this family are obtained in the following manner. For each
(i, j) ∈ I, we add exactly one of the following edges. Either we add

• The upward diagonal ((i, j), (i+ 1, j + 1)), or

• The downward diagonal ((i+ 1, j), (i+ 1, j − 1)).

Noting |I| = s2, note that the size of this family is |B| = 2s2 .

Lemma 4.1. The family B defined in Construction 9 is a collection of 2s2 pairwise non isomorphic graphs on s2

vertices.

Proof. As mentioned earlier in Definition 8, the base graph G admits a unique planar drawing. This is due to
Theorem4.2, because the additional edges made our graph 3-connected. We fix that embedding. Now consider
two drawings B1, B2 ∈ B. They differ in at least one diagonal and therefore they are non isomorphic.
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However, we still need to show that this family has a sufficient number of graphs that are far from being
isomorphic to each other. We state this in the following lemma.

Lemma 4.2. There is a greedy procedure that takes as input the family B of graphs and returns a family F of size
at least 2s2/5 all of which are pairwise 0.01-far from each other.

Proof. We begin with the following observations. Consider the ball Bb(G) for any instance of the modified grid G,
which is the set of graphs reachable from G by b (diagonal) edge deletions. For any G ∈ B, note that the number
of edges in G is at most s2. Thus, the number of possible graphs reachable from G after making b deletions is
at most

(
s2

b

)
. We replace these deleted diagonals with diagonals oriented the other way. Choose b = 0.16s2. We

apply the bound
(
a
b

)
≤ (ea/b)b.

max
G∈B
|Bb(G)| ≤

(
s2

b

)
≤
(
es2

b

)b
≤
(

es2

0.16s2

)0.16s2

≤ 20.8s2

Let F denote the set found by the algorithm below. Using the above bound on maxG∈B |Bb(G)|, it holds that

|F| ≥ 2s2

maxG∈B B0.16s2(G) ≥
2s2

20.8s2 ≥ 2s
2/5.

Since for any G ∈ B, the maximum degree of any vertex in G is at most 8, and all the graphs in the set F disagree
in at least 0.16s2 edges, it follows that all the graphs in F are pairwise 0.02-far. Below, we present our greedy
procedure.

TakeScoops(B)
1. Initialize F = ∅.
2. While B 6= ∅:

(a) Pick G ∈ B.
(b) B = B \B0.16s2(G).
(c) F = F ∪G.

end while
3. return F .

The family F is thus the family output with the desired properties as stated in Theorem4.1.

The proof of the theorem follows immediately from the lemmas.

Proof. [Proof of Theorem4.1] We show that the family F obtained in Lemma4.2 satisfies all the criteria we require
to be satisfied in Theorem4.1. We pick these one by one:

• |F| ≥ exp(Ω(s2)) : This is a direct consequence of Lemma4.2.

• For every G ∈ F , the size of the minimum balanced separator is Ω(s) : This follows from the fact that the
family F comprises graphs that contain the grid on s × s vertices as proper induced subgraphs. The grid
has balanced separators of size Ω(s), so all graphs in F must have separators at least as large.

• Graphs in F are all pairwise 0.01 far from each other: Follows from Lemma4.2.

This shows that F follows the properties described in theorem 4.1, thus completing its proof.

4.1.1 Proof of Theorem 1.2 The proof follows from plugging in the right value for s. In Theorem4.1, we set
s = ε−1. We get a suitable family F with t = ε−2, where |F| = exp(Ω(ε−2)). By Lemma3.1, we have a explicit
singleton property that requires Ω(

√
|F|) = exp(Ω(ε−2)) queries to test.
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5 A suitable family of trees
This construction is fairly straightforward: we simply pick all distinct trees on ε−1 vertices. We need to take care
to count the number of unrooted trees, so some work is required.

Let UNLABr(s) denote the set of unlabled and rooted binary trees on s vertices. We first recall the following
fact.

Fact 5.1. The number of different unlabeled rooted binary trees on s vertices is |UNLABr(s)| ≥ 2Ω(s) (Probelm
1.44 in [9] where they attribute this result to [24]).

We would like to lower bound the number of unlabeled, unrooted and binary trees on s vertices. To this end,
we first make the following definition.

Definition 10. Write UNLABr(s) = {(T, r) : T is unlableled with root r}. For (T, r) ∈ UNLABr(n), let

Orbit(T ) = {(T ′, r′) ∈ UNLABr(n) : T ′ ∼= T}.

Note that this also means T ∈ Orbit(T ′). Also, note that if (T ′′, r′′) 6∈ Orbit(T ) then Orbit(T ′′) ∩Orbit(T ) = ∅.

Now, we note the following.

Claim 11. For any (T, r) ∈ UNLABr(s), |Orbit(T )| ≤ s.

Proof. Suppose not. Then ∃(T ′, x), (T ′′, x) ∈ Orbit(T ) which share x as the root where both T ∼= T ′ and T ∼= T ′′.
Then T ′ ∼= T ′′ as well. However, we also have (T ′, x), (T ′′, x) ∈ UNLABr(n). Contradiction.

Now, we will produce a family of unlabeled and unrooted binary trees. This is done by picking a single tree
from each orbit in UNLABr(s). The following is immediate.

Claim 12. |UNLABu(s)| ≥ 2Ω(s).

Proof. Since all orbits have size at most s, it holds that |UNLABu(s)| ≥ |UNLABr(s)| ≥ 2Ω(s).

We can now complete the proof of the main lower bound for forests.

Proof. (of Theorem1.4) The suitable family is simply UNLABu(ε−1). Since all graphs are of size t = 1/ε, it only
suffices to verify the separator bound for suitable families. But that trivially holds, since the separator size is
non-zero, which is Ω(1) = Ω(εt). The size of the family is exp(ε−1), by Claim 12. Lemma3.1 gives the lower
bound of exp(ε−1) for property testing an explicit singleton property.
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A Missing proofs from §2
In this appendix, our objective is to prove Claim 13 and Claim 14. The former claim counts the number of graphs
with treewidth at most τ and is proved below.

Claim 13. The number of unlabeled bounded treewidth graphs on t vertices is at most expO(t log t).

Proof. Observe that for a graph on t vertices with bounded treewidth τ = O(1) has O(t) edges. Then, the number
of unlabelled graphs of this form, Tt is at most

(
N
O(t)
)
, where N =

(
t
2
)
. Thus Tt = tO(t), which implies that the

number of bounded treewidth graphs on t vertices is at most exp(O(t log t)).

Next, we produce the statment of Claim 14. It postulates that there exist efficient poly(dε−1) time
implementations of partition oracles for d-degree bounde graphs with bounded treewidth.

One key tool we need to prove this theorem is an analog of Alon-Seymour-Thomas style result which proves
that a graph with treewidth at most τ is (ε,O(τ/ε))-hyperfinite.

Let s̃(G) be the size of the smallest 1/3−2/3 balanced separator, whose removal leads to connected components
of size at most 2/3 of the vertices.

Theorem A.1. [Theorem 2 of [26] and Theorem 12 of [2]] s̃(G)− 1 ≤ tw(G).

We now prove that every treewidth τ graph is (ε, 6τ/ε) hyperfinite.
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Lemma A.1. Fix ε > 0, d, τ ∈ N. Then for any graph G with tw(G) ≤ τ − 1 there exists a set of edges E′ such
that the following hold:

• G \ E′ is a graph with connected components no larger than 6τ/ε.

• |E′| ≤ εdn

Proof. We begin by showing item 1. Since G has treewidth at most τ , all of its subgraphs also have treewidth τ .
Also, recall tw(G) ≤ τ , implies that for all 1/3-balanced separators of G satisfy |BalSep(G)| ≤ O(τ).

Consider the following recursive procedure. Here Delsep(G) is a routine which returns a three tuple
(S,G0, G1) where S is the smallest balanced separator of G and G0 and G1 are collections of connected
components of G each with size at least |V (G)|/3.

Decompose(G)
1. If |V (G)| ≥ 6τ/ε

(a) Write (S0, G0, G1) = Delsep(G).
(b) Decompose(G0), Decompose(G1).

Note that the sets G0 and G1 produced at any intermediate step of this procedure are unions of connected
components (and they are not necessarily connected components themselves). Consider the recursion tree of this
process and let us examine the leaves of this recursion tree. The leaf nodes correspond to some subgraph G (which
is a union of connected components) obtained after repeated applications of balanced separator routine such that
|V (G)| ≤ 6τ/ε. Also, since the procedure repeatedly deletes a 1/3-separator, it also holds that all the leaf nodes
of the recursion tree correspond to graphs with at least 2τ/ε vertices. Thus, since the leaves correspond to disjoint
subgraphs, the number of leaves equals L ≤ εn

2τ and the total number of nodes produced in the recursion is at
most 2L. Generating every node requires deleting at most τ edges. Thus, in all, we delete εdn edges which proves
the lemma.

We now prove bounds on partition oracles for bounded treewidth graphs.

Claim 14. Let Tτ denote the class of graphs with treewidth at most τ . Let G ∈ Tτ denote a graph with treewidth
at most τ . Then G admits an (ε, k) partition oracle with k ≤ 30τ

ε .

Proof. Set α = ε/2. Since Tτ is a minor-closed class of graphs, it follows from Theorem2.1 that any G ∈ Tτ
admits an (α,O(α−2)) partition oracle whose setting on G is denoted as P(G). Note that the number of edges
that run between the connected components of the underlying partition is at most αnd ≤ 1/2 · εdn. We will show
how to modify the parition obtained by this oracle and obtain another oracle which returns components with size
at most 30τ/ε. This is done as follows.

Let P ∈ P(G) denote some connected component in the partition P(G). If |P | ≤ 30τ/ε, we do not refine P .
On the other hand, if |P | > 30τ/ε, we use LemmaA.1 on P with parameter β = ε/2. This refines P and produces
connected components of size at most 3τ/β ≤ 6τ/ε ≤ 30τ/ε as desired. And the total number of edges lost is at
most βdn ≤ 1/2 · εdn. Overall, the total number of edges lost is at most εdn as desired.
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