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Abstract

Reward is the driving force for reinforcement-learning agents. This paper is
dedicated to understanding the expressivity of reward as a way to capture tasks
that we would want an agent to perform. We frame this study around three new
abstract notions of “task” that might be desirable: (1) a set of acceptable behaviors,
(2) a partial ordering over behaviors, or (3) a partial ordering over trajectories.
Our main results prove that while reward can express many of these tasks, there
exist instances of each task type that no Markov reward function can capture. We
then provide a set of polynomial-time algorithms that construct a Markov reward
function that allows an agent to optimize tasks of each of these three types, and
correctly determine when no such reward function exists. We conclude with an
empirical study that corroborates and illustrates our theoretical findings.

1 Introduction

How are we to use algorithms for reinforcement learning (RL) to solve problems of relevance in the
world? Reward plays a significant role as a general purpose signal: For any desired behavior, task, or
other characteristic of agency, there must exist a reward signal that can incentivize an agent to learn
to realize these desires. Indeed, the expressivity of reward is taken as a backdrop assumption that
frames RL, sometimes called the reward hypothesis: “...all of what we mean by goals and purposes
can be well thought of as maximization of the expected value of the cumulative sum of a received
scalar signal (reward)” [53, 29, 6]. In this paper, we establish first steps toward a systematic study of
the reward hypothesis by examining the expressivity of reward as a signal. We proceed in three steps.

1. An Account of “Task”. As rewards encode tasks, goals, or desires, we first ask, “what is
a task?”. We frame our study around a thought experiment (Figure 1) involving the interactions
between a designer, Alice, and a learning agent, Bob, drawing inspiration from Ackley and Littman
[2], Sorg [50], and Singh et al. [46]. In this thought experiment, we draw a distinction between how
Alice thinks of a task (TASKQ) and the means by which Alice incentivizes Bob to pursue this task
(EXPRESSIONQ). This distinction allows us to analyze the expressivity of reward as an answer to the
latter question, conditioned on how we answer the former. Concretely, we study three answers to
the TASKQ in the context of finite Markov Decision Processes (MDPs): A task is either (1) a set of
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Figure 1: Alice, Bob, and the artifacts of task definition (blue) and task expression (purple).

acceptable behaviors (policies), (2) a partial ordering over behaviors, or (3) a partial ordering over
trajectories. Further detail and motivation for these task types is provided in Section 3, but broadly
they can be viewed as generalizations of typical notions of task such as a choice of goal or optimal
behavior. Given these three answers to the TASKQ, we then examine the expressivity of reward.

2. Expressivity of Markov Reward. The core of our study asks whether there are tasks Alice
would like to convey—as captured by the answers to the TASKQ—that admit no characterization
in terms of a Markov reward function. Our emphasis on Markov reward functions, as opposed to
arbitrary history-based reward functions, is motivated by several factors. First, disciplines such as
computer science, psychology, biology, and economics typically rely on a notion of reward as a
numerical proxy for the immediate worth of states of affairs (such as the financial cost of buying
a solar panel or the fitness benefits of a phenotype). Given an appropriate way to describe states
of affairs, Markov reward functions can represent immediate worth in an intuitive manner that also
allows for reasoning about combinations, sequences, or re-occurrences of such states of affairs.
Second, it is not clear that general history-based rewards are a reasonable target for learning as they
suffer from the curse of dimensionality in the length of the history. Lastly, Markov reward functions
are the standard in RL. A rigorous analysis of which tasks they can and cannot convey may provide
guidance into when it is necessary to draw on alternative formulations of a problem. Given our focus
on Markov rewards, we treat a reward function as accurately expressing a task just when the value
function it induces in an environment adheres to the constraints of a given task.

3. Main Results. We find that, for all three task types, there are environment–task pairs for which
there is no Markov reward function that realizes the task (Theorem 4.1). In light of this finding, we
design polynomial-time algorithms that can determine, for any given task and environment, whether
a reward function exists in the environment that captures the task (Theorem 4.3). When such a reward
function does exist, the algorithms also return it. Finally, we conduct simple experiments with these
procedures to provide empirical insight into the expressivity of reward (Section 5).

Collectively, our results demonstrate that there are tasks that cannot be expressed by Markov reward
in a rigorous sense, but we can efficiently construct such reward functions when they do exist
(and determine when they do not). We take these findings to shed light on the nature of reward
maximization as a principle, and highlight many pathways for further investigation.

2 Background

RL defines the problem facing an agent that learns to improve its behavior over time by interacting with
its environment. We make the typical assumption that the RL problem is well modeled by an agent
interacting with a finite Markov Decision Process (MDP), defined by the tuple (S,A, R, T, γ, s0).
An MDP gives rise to deterministic behavioral policies, π : S → A, and the value, V π : S → R, and
action–value, Qπ : S × A → R, functions that measure their quality. We will refer to a Controlled
Markov Process (CMP) as an MDP without a reward function, which we denote E for environment.
We assume that all reward functions are deterministic, and may be a function of either state, state-
action pairs, or state-action-state triples, but not history. Henceforth, we simply use “reward function”
to refer to a deterministic Markov reward function for brevity, but note that more sophisticated settings
beyond MDPs and deterministic Markov reward functions are important directions for future work.
For more on MDPs or RL, see the books by Puterman [41] and Sutton and Barto [54] respectively.
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2.1 Other Perspectives on Reward

We here briefly summarize relevant literature that provides distinct perspectives on reward.

Two Roles of Reward. As Sorg [50] identifies (Chapter 2), reward can both define the task the
agent learns to solve, and define the “bread crumbs” that allow agents to efficiently learn to solve the
task. This distinction has been raised elsewhere [2, 46, 47], and is similar to the extrinsic-intrinsic
reward divide [45, 66]. Tools such as reward design [34, 51] or reward shaping [36] focus on offering
more efficient learning in a variety of environments, so as to avoid issues of sparsity and long-term
credit assignment. We concentrate primarily on reward’s capacity to express a task, and defer learning
dynamics to an (important) stage of future work.

Discounts, Expectations, and Rationality. Another important facet of reward is how it is used in
producing behavior. The classical view offered by the Bellman equation (and the reward hypothesis)
is that the quantity of interest to maximize is expected, discounted, cumulative reward. Yet it is
possible to disentangle reward from the expectation [5], to attend only to ordinal [60] or maximal
rewards [26], or to adopt different forms of discounting [61, 11]. In this work, we take the standard
view that agents will seek to maximize value for a particular discount factor γ, but recognize that
there are interesting directions beyond these commitments, such as inspecting the limits of reward in
constrained MDPs as studied by Szepesvári [56]. We also note the particular importance of work
by Pitis [40], who examines the relationship between classical decision theory [59] and MDPs by
incorporating additional axioms that account for stochastic processes with discounting [24, 35, 48, 49].
Drawing inspiration from Pitis [40] and Sunehag and Hutter [52], we foresee valuable pathways for
future work that further makes contact between RL and various axioms of rationality.

Preferences. In place of numerical rewards, preferences of different kinds may be used to evaluate
an agent’s behaviors, drawing from the literature on preference-learning [25] and ordinal dynamic
programming [8, 35, 48]. This premise gives rise to preference-based reinforcement learning (PbRL)
in which an agent interacts with a CMP and receives evaluative signals in the form of preferences
over states, actions, or trajectories. This kind of feedback inspires and closely parallels the task
types we propose in this work. A comprehensive survey of PbRL by Wirth et al. [64] identifies
critical differences in this setup from traditional RL, categorizes recent algorithmic approaches, and
highlights important open questions. Recent work focuses on analysing the sample efficiency of such
methods [65, 38] with close connections to learning from human feedback in real time [23, 32, 7].

Teaching and Inverse RL. The inverse RL (IRL) and apprenticeship learning literature examine
the problem of learning directly from behavior [37, 1]. The classical problem of IRL is to identify
which reward function (often up to an equivalence class) a given demonstrator is optimizing. We
emphasize the relevance of two approaches: First, work by Syed et al. [55], who first illustrate the
applicability of linear programming [22] to apprenticeship learning; and second, work by Amin
et al. [4], who examine the repeated form of IRL. The methods of IRL have recently been expanded
to include variations of cooperative IRL [14], and assistive learning [43], which offer different
perspectives on how to frame interactive learning problems.

Reward Misspecification. Reward is also notoriously hard to specify. As pointed out by Littman
et al. [30], “putting a meaningful dollar figure on scuffing a wall or dropping a clean fork is chal-
lenging.” Along these lines, Hadfield-Menell et al. [16] identify cases in which well-intentioned
designers create reward functions that produce unintended behavior [39]. MacGlashan et al. [33] find
that human-provided rewards tend to depend on a learning agent’s entire policy, rather than just the
current state. Further, work by Hadfield-Menell et al. [15] and Kumar et al. [27] suggest that there
are problems with reward as a learning mechanism due to misspecification and reward tampering
[10]. These problems have given rise to approaches to reward learning, in which a reward function is
inferred from some evidence such as behavior or comparisons thereof [20].

Other Notions of Task. As a final note, we highlight alternative approaches to task specification.
Building on the Free Energy Principle [13, 12], Hafner et al. [17] consider a variety of task types in
terms of minimization of distance to a desired target distribution [3]. Alternatively, Littman et al. [30]
and Li et al. [28] propose variations of linear temporal logic (LTL) as a mechanism for specifying
a task to RL agents, with related literature extending LTL to the multi-task [58] and multi-agent
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[18] settings, or using reward machines for capturing task structure [19]. Jothimurugan et al. [21]
take a similar approach and propose a task specification language for RL based on logical formulas
that evaluate whether trajectories satisfy the task, similar in spirit to the logical task compositions
framework developed by Tasse et al. [57]. Many of these notions of task are more general than those
we consider. A natural direction for future work broadens our analysis to include these kinds of task.

3 An Account of Reward’s Expressivity: The TASKQ and EXPRESSIONQ

Consider an onlooker, Alice, and an earnest learning agent, Bob, engaged in the interaction pictured
in Figure 1. Suppose that Alice has a particular task in mind that she would like Bob to learn to solve,
and that Alice constructs a reward function to incentivize Bob to pursue this task. Here, Alice is
playing the role of “all of what we mean by goals and purposes” for Bob to pursue, with Bob playing
the role of the standard reward-maximizing RL agent.

Two Questions About Task. To give us leverage to study the expressivity of reward, it is useful to
draw a distinction between two stages of this process: 1) Alice thinks of a task that she would like
Bob to learn to solve, and 2) Alice creates a reward function (and perhaps chooses γ) that conveys
the chosen task to Bob. We inspect these two separately, framed by the following two questions. The
first we call the task-definition question (TASKQ) which asks: What is a task? The second we call
the task-expression question (EXPRESSIONQ) which asks: Which learning signal can be used as a
mechanism for expressing any task to Bob?

Reward Answers The EXPRESSIONQ. We suggest that it may be useful to treat reward as an
answer to the EXPRESSIONQ rather than the TASKQ. On this view, reward is treated as an expressive
language for incentivizing reward-maximizing agents: Alice may attempt to translate any task into a
reward function that incentivizes Bob to pursue the task, no matter which environment Bob inhabits,
which task Alice has chosen, or how she has represented the task to herself. Indeed, it might be the
case that Alice’s knowledge of the task far exceeds Bob’s representational or perceptual capacity.
Alice may know every detail of the environment and define the task based on this holistic vantage,
while Bob must learn to solve the task through interaction alone, relying only on a restricted class of
functions for modeling and decision making.

Under this view, we can assess the expressivity of reward as an answer to the EXPRESSIONQ
conditioned on how we answer the TASKQ. For example, if the TASKQ is answered in terms of
natural language descriptions of desired states of affairs, then reward may fail to convey the chosen
task due to the apparent mismatch in abstraction between natural language and reward (though some
work has studied such a proposal [31, 62]).

3.1 Answers to the TASKQ: What is a Task?

In RL, tasks are often associated with a choice of goal, reward function (R), reward-discount pair
(R, γ), or perhaps a choice of optimal policy (alongside those task types surveyed previously, such as
LTL). However, it is unclear whether these constructs capture the entirety of what we mean by “task”.

For example, consider the Russell and Norvig [42] grid world: A 4×3 grid with one wall, one terminal
fire state, and one terminal goal state (pictured with a particular reward function in Figure 4a). In such
an environment, how might we think about tasks? A standard view is that the task is to reach the goal
as quickly as possible. This account, however, fails to distinguish between the non-optimal behaviors,
such as the costly behavior of the agent moving directly into the fire and the neutral behavior of the
agent spending its existence in the start state. Indeed, characterizing a task in terms of choice of π∗ or
goal fails to capture these distinctions. Our view is that a suitably rich account of task should allow
for the characterization of this sort of preference, offering the flexibility to scale from specifying only
the desirable behavior (or outcomes) to an arbitrary ordering over behaviors (or outcomes).

In light of these considerations, we propose three answers to the TASKQ that can convey general
preferences over behavior or outcome: 1) A set of acceptable policies, 2) A partial ordering over
policies, or 3) A partial ordering over trajectories. We adopt these three as they can capture many
kinds of task while also allowing a great deal of flexibility in the level of detail of the specification.
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Name Notation Generalizes Constraints Induced by T

SOAP ΠG task-as-π∗
equal: V πg (s0) = V πg′ (s0) > V πb(s0), ∀πg,πg′∈ΠG,πb∈ΠB

range: V πg (s0) > V πb(s0), ∀πg∈ΠG,πb∈ΠB

PO LΠ SOAP (π1 ⊕ π2) ∈ LΠ =⇒ V π1(s0)⊕ V π2(s0)

TO Lτ,N task-as-goal (τ1 ⊕ τ2) ∈ Lτ,N =⇒ G(τ1; s0)⊕G(τ2; s0)

Table 1: A summary of the three proposed task types. We further list the constraints that determine
whether a reward function realizes each task type in an MDP, where we take ⊕ to be one of ‘<’, ‘>’,
or ‘=’, and G is the discounted return of the trajectory.

3.2 SOAPs, POs, and TOs

(SOAP) Set Of Acceptable Policies. A classical view of the equivalence of two reward functions
is based on the optimal policies they induce. For instance, Ng et al. [36] develop potential-based
reward shaping by inspecting which shaped reward signals will ensure that the optimal policy is
unchanged. Extrapolating, it is natural to say that for any environment E, two reward functions
are equivalent if the optimal policies they induce in E are the same. In this way, a task is viewed
as a choice of optimal policy. As discussed in the grid world example above, this notion of task
fails to allow for the specification of the quality of other behaviors. For this reason, we generalize
task-as-optimal-policy to a set of acceptable policies, defined as follows.

Definition 3.1. A set of acceptable policies (SOAP) is a non-empty subset of the deterministic policies,
ΠG ⊆ Π, with Π the set of all deterministic mappings from S to A for a given E.

With one task type defined, it is important to address what it means for a reward function to properly
realize, express, or capture a task in a given environment. We offer the following account.

Definition 3.2. A reward function is said to realize a task T in an environment E just when the
start-state value (or return) induced by the reward function exactly adheres to the constraints of T .

Precise conditions for the realization of each task type are provided alongside each task definition,
with a summary presented in column four of Table 1.

For SOAPs, we take the start-state value V π(s0) to be the mechanism by which a reward function
realizes a SOAP. That is, for a given E and ΠG, a reward function R is said to realize the ΠG in
E when the start-state value function is optimal for all good policies, and strictly higher than the
start-state value of all other policies. It is clear that SOAP strictly generalizes a task in terms of a
choice of optimal policy, as captured by the SOAP ΠG = {π∗}.

We note that there are two natural ways for a reward function to realize a SOAP: First, each πg ∈ ΠG

has optimal start-state value and all other policies are sub-optimal. We call this type equal-SOAP,
or just SOAP for brevity. Alternatively, we might only require that the acceptable policies are each
near-optimal, but are allowed to differ in start-state value so long as they are all better than every
bad policy πb ∈ ΠB . That is, in this second kind, there exists an ε ≥ 0 such that every πg ∈ ΠG is
ε-optimal in start-state value, V ∗(s0)− V πg (s0) ≤ ε, while all other policies are worse. We call this
second realization condition range-SOAP. We note that the range realization generalizes the equal
one: Every equal-SOAP is a range-SOAP (by letting ε = 0). However, there exist range-SOAPs that
are expressible by Markov rewards that are not realizable as an equal-SOAP. We illustrate this fact
with the following proposition. All proofs are presented in Appendix B.

Proposition 3.1. There exists a CMP, E, and choice of ΠG such that ΠG can be realized under the
range-SOAP criterion, but cannot be realized under the equal-SOAP criterion.

One such CMP is pictured Figure 2b. Consider the SOAP ΠG = {π11, π12, π21}: Under the equal-
SOAP criterion, if each of these three policies are made optimal, any reward function will also make
π22 (the only bad policy) optimal as well. In contrast, for the range criterion, we can choose a reward
function that assigns lower rewards to a2 than a1 in both states. In general, we take the equal-SOAP
realization as canonical, as it is naturally subsumed by our next task type.

5



(PO) Partial Ordering on Policies. Next, we suppose that Alice chooses a partial ordering on
the deterministic policy space. That is, Alice might identify a some great policies, some good, and
some bad policies to strictly avoid, and remain indifferent to the rest. POs strictly generalize equal
SOAPs, as any such SOAP is a special choice of PO with only two equivalence classes. We offer the
following definition of a PO.

Definition 3.3. A policy order (PO) of the deterministic policies Π is a partial order, denoted LΠ.

As with SOAPs, we take the start-state value V π(s0) induced by a reward function R as the mech-
anism by which policies are ordered. That is, given E and LΠ, we say that a reward function R
realizes LΠ in E if and only if the resulting MDP, M = (E,R), produces a start-state value function
that orders Π according to LΠ.

(TO) Partial Ordering on Trajectories. A natural generalization of goal specification enriches
a notion of task to include the details of how a goal is satisfied—that is, for Alice to relay some
preference over trajectory space [63], as is done in preference based RL [64]. Concretely, we suppose
Alice specifies a partial ordering on length N trajectories of (s, a) pairs, defined as follows.

Definition 3.4. A trajectory ordering (TO) of length N ∈ N is a partial ordering Lτ,N , with each
trajectory τ consisting of N state–action pairs, {(s0, a0), . . . , (aN−1, sN−1)}, with s0 the start state.

As with PO, we say that a reward function realizes a trajectory ordering Lτ,N if the ordering
determined by each trajectory’s cumulative discounted N -step return from s0, denoted G(τ ; s0),
matches that of the given Lτ,N . We note that trajectory orderings can generalize goal-based tasks at
the expense of a larger specification. For instance, a TO can convey the task, “Safely reach the goal
in less than thirty steps, or just get to the subgoal in less than twenty steps.”

Recap. We propose to assess the expressivity of reward by first answering the TASKQ in terms of
SOAPs, POs, or TOs, as summarized by Table 1. We say that a task T is realized in an environment
E under reward function R if the start-state value function (or return) produced by R imposes the
constraints specified by T , and are interested in whether reward can always realize a given task in
any choice of E. We make a number of assumptions along the way, including: (1) Reward functions
are Markov and deterministic, (2) Policies of interest are deterministic, (3) The environment is a finite
CMP, (4) γ is part of the environment, (5) We ignore reward’s role in shaping the learning process,
(6) Start-state value or return is the appropriate mechanism to determine if a reward function realizes
a given task. Relaxation of these assumptions is a critical direction for future work.

4 Analysis: The Expressivity of Markov Reward

With our definitions and objectives in place, we now present our main results.

4.1 Express SOAPs, POs, and TOs

We first ask whether reward can always realize a given SOAP, PO, or TO, for an arbitrary E. Our first
result states that the answer is “no”—there are tasks that cannot be realized by any reward function.

Theorem 4.1. For each of SOAP, PO, and TO, there exist (E,T ) pairs for which no Markow reward
function realizes T in E.

Thus, reward is incapable of capturing certain tasks. What tasks are they, precisely? Intuitively,
inexpressible tasks involve policies or trajectories that must be correlated in value in an MDP. That is,
if two policies are nearly identical in behavior, it is unlikely that reward can capture the PO that places
them at opposite ends of the ordering. A simple example is the “always move the same direction” task
in a grid world, with state defined as an (x, y) pair. The SOAP ΠG = {π←, π↑, π→, π↓} conveys this
task, but no Markov reward function can make these policies strictly higher in value than all others.

Example: Inexpressible SOAPs. Observe the two CMPs pictured in Figure 2, depicting two kinds
of inexpressible SOAPs. On the left, we consider the SOAP ΠG = {π21}, containing only the policy
that executes a2 in the left state (s0), and a1 in the right (s1). This SOAP is inexpressible through
reward, but only because reward cannot distinguish the start-state value of π21 and π22 since the
policies differ only in an unreachable state. This is reminiscent of Axiom 5 from Pitis [40], which
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Figure 2: Two CMPs in which there is a SOAP that is not expressible under any Markov reward
function. On the left, ΠG = {π21} is not realizable, as π21 can not be made better than π22 because
s1 is never reached. On the right, the XOR-like-SOAP, ΠG = {π12, π21} is not realizable: To make
these two policies optimal, it is entailed that π22 and π11 must be optimal, too.

explicitly excludes preferences of this sort. On the right, we find a more interesting case: The chosen
SOAP is similar to the XOR function, ΠG = {π12, π21}. Here, the task requires that the agent choose
each action in exactly one state. However, there cannot exist a reward function that makes only these
policies optimal, as by consequence, both policies π11 and π22 must be optimal as well.

Next, we show that Theorem 4.1 is not limited to a particular choice of transition function or γ.

Proposition 4.2. There exist choices of E¬T = (S,A, γ, s0) or E¬γ = (S,A, T, s0), together with
a task T , such that there is no (T,R) pair that realizes T in E¬T or (R, γ) in E¬γ .

This result suggests that the scope of Theorem 4.1 is actually quite broad—even if the transition
function or γ are taken as part of the reward specification, there are tasks that cannot be expressed. We
suspect there are ways to give a precise characterization of all inexpressible tasks from an axiomatic
perspective, which we hope to study in future work.

4.2 Constructive Algorithms: Task to Reward

We now analyze how to determine whether an appropriate reward function can be constructed for any
(E,T ) pair. We pose a general form of the reward-design problem [34, 51, 9] as follows.

Definition 4.1. The REWARDDESIGN problem is: Given E = (S,A, T, γ, s0), and a T , output a
reward function Ralice that ensures T is realized in M = (E,Ralice).

Indeed, for all three task types, there is an efficient algorithm for solving the reward-design problem.

Theorem 4.3. The REWARDDESIGN problem can be solved in polynomial time, for any finite E,
and any T , so long as reward functions with infinitely many outputs are considered.

Therefore, for any choice of finite CMP, E, and a SOAP, PO, or TO, we can find a reward function
that perfectly realizes the task in the given environment, if such a reward function exists. Each of
the three algorithms are based on forming a linear program that matches the constraints of the given
task type, which is why reward functions with infinitely many outputs are required. Pseudo-code
for SOAP-based reward design is presented in Algorithm 1. Intuitively, the algorithms compute the
discounted expected-state visitation distribution for a collection of policies; in the case of SOAP,
for instance, these policies include ΠG and what we call the “fringe”, the set of policies that differ
from a πg ∈ ΠG by exactly one action. Then, we use these distributions to describe linear inequality
constraints ensuring that the start-state value of the good policies are better than those of the fringe.

As highlighted by Theorem 4.1 there are SOAPs, POs, and TOs that are not realizable. Thus, it is
important to determine how the algorithms mentioned in Theorem 4.3 will handle such cases. Our
next corollary illustrates that the desirable outcome is achieved: For any E and T , the algorithms
will output a reward function that realizes T in E, or output ‘⊥’ when no such function exists.

Corollary 4.4. For any task T and environment E, deciding whether T is expressible in E is
solvable in polynomial time.

Together, Theorem 4.1 and Theorem 4.3 constitute our main results: There are environment–task
pairs in which Markov reward cannot express the chosen task for each of SOAPs, POs, and TOs.
However, there are efficient algorithms for deciding whether a task is expressible, and for constructing
the realizing reward function when it exists. We will study the use of one of these algorithms in
Section 5, but first attend to other aspects of reward’s expressivity.
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Algorithm 1 SOAP Reward Design

INPUT: E = (S,A, T, γ, s0), ΠG.
OUTPUT: R, or ⊥.

1: Πfringe = compute_fringe(ΠG)
2: for πg,i ∈ ΠG do . Compute state-visitation distributions.
3: ρg,i = compute_exp_visit(πg,i, E)

4: for πf,i ∈ Πfringe do
5: ρf,i = compute_exp_visit(πf,i, E)

6: Ceq = {} . Make Equality Constraints.
7: for πg,i ∈ ΠG do
8: Ceq.add(ρg,0(s0) ·X = ρg,i(s0) ·X)

9: Cineq = {} . Make Inequality Constraints.
10: for πf,j ∈ Πfringe do
11: Cineq.add(ρf,j(s0) ·X + ε ≤ ρg,0(s0) ·X)

12: Rout, εout = linear_programming(obj. = max ε, constraints = Cineq, Ceq) . Solve LP.

13: if εout > 0 then . Check if successful.
return Rout

14: else
return ⊥

4.3 Other Aspects of Reward’s Expressivity

We next briefly summarize other considerations about the expressivity of reward. As noted, The-
orem 4.3 requires the use of a reward function that can produce infinitely many outputs. Our next
result proves this requirement is strict for efficient reward design.

Theorem 4.5. A variant of the REWARDDESIGN problem with finite reward outputs is NP-hard.

We provide further details about the precise problem studied in Appendix B. Beyond reward functions
with finitely-many outputs, we are also interested in extensions of our results to multiple environments.
We next present a positive result indicating our algorithms can extend to the case where Alice would
like to design a reward function for a single task across multiple environments.

Proposition 4.6. For any SOAP, PO, or TO, given a finite set of CMPs, E = {E1, . . . , En}, with
shared state–action space, there exists a polynomial time algorithm that outputs one reward function
that realizes the task (when possible) in all CMPs in E .

A natural follow up question to the above result asks whether task realization is closed under a set of
CMPs. Our next result answers this question in the negative.

Theorem 4.7. Task realization is not closed under sets of CMPs with shared state-action space.
That is, there exist choices of T and E = {E1, . . . , En} such that T is realizable in each Ei ∈ E
independently, but there is not a single reward function that realizes T in all Ei ∈ E simultaneously.

Intuitively, this shows that Alice must know precisely which environment Bob will inhabit if she is
to design an appropriate reward function. Otherwise, her uncertainty over E may prevent her from
designing a realizing reward function. We foresee iterative extensions of our algorithms in which
Alice and Bob can react to one another, drawing inspiration from repeated IRL by Amin et al. [4].

5 Experiments

We next conduct experiments to shed further light on the findings of our analysis. Our focus is on
SOAPs, though we anticipate the insights extend to POs and TOs as well with little complication. In
the first experiment, we study the fraction of SOAPs that are expressible in small CMPs as we vary
aspects of the environment or task (Figure 3). In the second, we use one algorithm from Theorem 4.3
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