
Batch Active Learning with Graph Neural Networks via Multi-Agent Deep
Reinforcement Learning

Yuheng Zhang1, Hanghang Tong1, Yinglong Xia2, Yan Zhu2, Yuejie Chi3, Lei Ying4

1 University of Illinois at Urbana-Champaign
2 Facebook AI

3 CMU
4 University of Michigan, Ann Arbor

yuhengz2@illinois.edu, htong@illinois.edu, yxia@fb.com, yzhu@fb.com, yuejiechi@cmu.edu, leiying@umich.edu

Abstract

Graph neural networks (GNNs) have achieved tremendous
success in many graph learning tasks such as node classifica-
tion, graph classification and link prediction. For the classifi-
cation task, GNNs’ performance often highly depends on the
number of labeled nodes and thus could be significantly ham-
pered due to the expensive annotation cost. The sparse litera-
ture on active learning for GNNs has primarily focused on se-
lecting only one sample each iteration, which becomes ineffi-
cient for large scale datasets. In this paper, we study the batch
active learning setting for GNNs where the learning agent can
acquire labels of multiple samples at each time. We formu-
late batch active learning as a cooperative multi-agent rein-
forcement learning problem and present a novel reinforced
batch-mode active learning framework (BIGENE). To avoid
the combinatorial explosion of the joint action space, we in-
troduce a value decomposition method that factorizes the to-
tal Q-value into the average of individual Q-values. More-
over, we propose a novel multi-agent Q-network consisting
of a graph convolutional network (GCN) component and a
gated recurrent unit (GRU) component. The GCN compo-
nent takes both the informativeness and inter-dependences
between nodes into account and the GRU component enables
the agent to consider interactions between selected nodes
in the same batch. Experimental results on multiple public
datasets demonstrate the effectiveness and efficiency of our
proposed method.

Introduction

Graph data are pervasive in many real-world scenarios, e.g.,
social networks, citation networks, protein-protein interac-
tion networks and many more. Recently, graph neural net-
works (GNNs) have attracted tremendous attention because
of significant success in downstream tasks such as node clas-
sification (Kipf and Welling 2016), link prediction (Zhang
and Chen 2018), and graph classification (Morris et al.
2019). However, many of these successes have been lim-
ited due to expensive annotation costs. Active learning is
a promising direction to tackle this challenge. With effec-
tive active learning algorithms for graphs, the learning agent
could identify samples which are most informative for im-
proving the training. Thus, a high accuracy GNN could be
trained with minimal labeling effort.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Although there exist many effective active learning algo-
rithms for computer vision and natural language process-
ing (Aggarwal et al. 2014) (Settles 2009), these methods
are primarily designed for independent and identically dis-
tributed (i.i.d.) data which is quite different from graph-
structured data containing inter-dependent connections be-
tween different samples (i.e., nodes). How to design an
effective and efficient active learning method for graphs
largely remains a challenge.

Recently, several methods have been proposed (Cai,
Zheng, and Chang 2017) (Gao et al. 2018) (Hu et al. 2020)
to incorporate the graph characteristics into active learn-
ing. They design several selection metrics such as infor-
mation entropy, node centrality, and information density to
measure the informativeness of candidate unlabeled nodes.
To balance the weights of different metrics, (Cai, Zheng,
and Chang 2017) proposes to use a time-sensitive parame-
ter drawn from a beta distribution. (Gao et al. 2018) uti-
lizes a multi-armed bandit mechanism to learn an adaptive
weight vector with performance improvement as the reward.
To further exploit the topology information on graphs, (Hu
et al. 2020) proposes a transferable reinforcement learning
framework and parameterizes the policy network as a graph
convolutional network (GCN) (Kipf and Welling 2016). At
each iteration, they select the sample with the highest ac-
tion probability output from the policy network. Although
(Hu et al. 2020) has achieved remarkable results with small
query budgets, it becomes inefficient when applied to a large
scale dataset where selecting samples one by one takes pro-
longed time. Hence, in order to improve the efficiency of the
active learning method, a more promising setting is batch
active learning where the agent acquires labels of multiple
samples at each time.

Different from one-by-one active learning, batch active
learning poses several unique challenges as follows. First, in
the batch setting, the agent not only needs to select the most
informative samples but also needs to avoid selecting redun-
dant samples. Effective acquisition strategies should simul-
taneously consider informativeness and diversity. Second,
when applying reinforcement learning to batch active learn-
ing, each action represents the selection of multiple nodes
instead of a single node, which causes a combinatorial ex-
plosion of the action space. One has to carefully design a
batch-mode algorithm in order to train the policy network

PRELIMINARY PREPRINT VERSION: DO NOT CITE

The AAAI Digital Library will contain the published

version some time after the conference.



efficiently. To overcome the above challenges, we propose a
novel multi-agent reinforced active learning framework. We
formulate batch active learning as a cooperative multi-agent
reinforcement learning problem. Suppose we want to select
n samples in each iteration, then there are n agents in our
framework. At each time step, each agent chooses an ac-
tion (i.e., an unlabeled sample), forming a joint action (i.e.,
a selected batch). Every agent shares the same joint reward
function and their goal is to collaborate with each other to
maximize the improvement of the classification model.

Inspired by the prior arts on multi-agent reinforcement
learning (MARL) (Sunehag et al. 2017) (Son et al. 2019),
we employ the paradigm of centralized training with de-
centralized execution (CTDE) (Oliehoek, Spaan, and Vlas-
sis 2008). The key idea lies in the Individual-Global-Max
(IGM) principle (Son et al. 2019): the optimal joint action
of the team is equivalent to the union of the optimal indi-
vidual actions of each agent. In CTDE, all the agents share
the same global reward and learn decentralized policies that
allow each agent to take optimal actions simply with indi-
vidual observations.

Due to the exponentially growing joint action space, it is
intractable to directly model the joint action-value function.
Therefore, we introduce a value-decomposition approach
factorizing the joint Q-function Qtot into the average value
of individual Q-functions Qi. We show that this approach
provides a good approximation to Qtot and works very well
in practice.

Furthermore, we propose a novel multi-agent Q-network
to learn the batch active learning policy. Our proposed Q-
network consists of two parts, including a graph convolu-
tional network (GCN) component QGCN and a gated recur-
rent unit (GRU) component QGRU. The GCN component
takes both the informativeness and the inter-dependent con-
nections between candidate nodes into account and selects
the first node of the batch. The GRU component is employed
to select the remaining n− 1 nodes. The hidden state of the
GRU component represents the aggregated information of
the previously selected nodes which enables it to consider
the interactions between different agents. Our Q-network ad-
mits a variety of state representation including both informa-
tiveness and diversity.

The main contributions of the paper are summarized as
follows:

1. We propose a novel multi-agent reinforced active learn-
ing framework for GNNs (BIGENE), which is based on
Q-learning and value decomposition. To the best of our
knowledge, we are the first to introduce multi-agent rein-
forcement learning to batch active learning.

2. We propose a novel multi-agent Q-network consisting of
a GCN component and a GRU component. The GCN
component considers both the informativeness and the
inter-dependences between candidate nodes. The GRU
component aggregates information from the selected
nodes in the batch and thus considers the interactions be-
tween different agents.

3. We implement BIGENE on the semi-supervised node
classification task and conduct extensive experiments to

demonstrate its effectiveness and efficiency.

Related Work
Active Learning with Reinforcement Learning. To
maximize the performance gain in the training process,
there are several active learning studies that employ deep
reinforcement learning methods to learn a labeling policy.
(Fang, Li, and Cohn 2017) uses deep Q-learning to tackle
the stream-based active learning problem where unlabeled
data arrive one by one. (Konyushkova, Sznitman, and Fua
2018) (Casanova et al. 2020) propose a reinforced active
learning framework for pool-based active learning, which
means all the unlabeled data are provided at the beginning.
Similar to ours, (Casanova et al. 2020) also deals with the
batch mode active learning setting. They randomly divide
the candidate samples into several groups and learn a policy
to select one sample from each group. The reward of each
selected node is approximated with the reward of the entire
batch. This strategy decomposes the batch selection into sev-
eral independent single sample selections which overlooks
the relationship between selected samples. In contrast, we
consider batch active learning from the perspective of multi-
agent learning and model the collaboration between differ-
ent agents. Unlike these methods which are proposed for
i.i.d. data, our paper focuses on graph data with the goal of
reducing the labeling cost of training GNNs.

Active Learning on Graphs. Recently, there have been
several studies focusing on active learning with GNNs. AGE
(Cai, Zheng, and Chang 2017) proposes an active query
strategy with a combination of several selection criteria in-
cluding information entropy, embedding representativeness
and graph centrality. To balance different criteria, they in-
troduce time-sensitive parameters drawn from a beta dis-
tribution. Similarly, ANRMAB (Gao et al. 2018) also uses
these criteria and employs a multi-armed bandit mechanism
to learn the weights of the linear combination adaptively.
To deal with active learning on heterogeneous graphs, Ac-
tiveHNE (Chen et al. 2019) introduces several query strate-
gies and also assembles them with the multi-armed ban-
dit mechanism. All these methods consider each node in-
dependently with a combination of different selection cri-
teria but overlook the connections between nodes in the
graph-structured data. GPA (Hu et al. 2020) proposes a rein-
forcement learning framework to tackle the active learning
on graphs and parameterizes the policy network as another
GNN which could model node interactions. However, their
method is designed for one by one selection setting, which
is inefficient compared with the batch mode setting. More-
over, they measure the informativeness of samples but ne-
glect the diversity of selected samples which plays an im-
portant role in active learning. Our proposed method is ca-
pable of considering both informativeness and diversity and
achieves promising results in the batch mode active learning
setting.

Multi Agent Reinforcement Learning (MARL). Value-
based MARL algorithms have recently achieved state-of-
the-art performance on challenging tasks, e.g., unit micro-
management tasks built in StarCraft II (Samvelyan et al.



2019). (Sunehag et al. 2017) develops value decomposi-
tion networks (VDN) decomposing the joint action-value
function into the sum of individual action-value functions.
Instead of assuming additivity, QMIX (Rashid et al. 2018)
employs a neural network to model the relationship between
joint Q-function and individual Q-functions. QPLEX (Wang
et al. 2020) proposes to use the dueling network architec-
ture (Wang et al. 2016) and reformalizes the IGM principle
as an advantage-based IGM. Despite the success achieved
on micromanagement tasks, none of the previous work has
studied how to apply MARL to active learning problems.

Preliminary

Given a graph denoted as G = (V, E) along with its adja-
cency matrix A ∈ R

N×N , node feature matrix X ∈ R
N×F .

V is the node set, and E is the edge set, N denotes the num-
ber of nodes and F denotes the dimensionality of the node
input feature. In this paper, we focus on the semi-supervised
node classification task on G and train a graph convolutional
network (GCN) (Kipf and Welling 2016) as the classifica-
tion model. The propagation rule of GCN is written as:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)), (1)

where Ã is the adjacency matrix with self-connections Ã =
A+ I , D̃ is the degree matrix D̃ii =

∑
j Ãij and σ denotes

the ReLU function (Glorot, Bordes, and Bengio 2011). W (l)

denotes the layer-specific trainable weight matrix and H(l)

denotes the matrix of activations in the lth layer. H(0) = X .
We split the node set V into three disjoint subsets Vtrain,
Vvalidation, Vtest and employ cross entropy loss to optimize
the GCN model f with labeled nodes from Vtrain. The per-
formance of model f is validated on Vvalidation and tested on
Vtest.

For batch active learning with GNNs, we first initialize
the labeled dataset L0 by querying the oracle for the labels
of M samples drawn uniformly from the unlabeled pool
U = Vtrain. At each iteration t, we are allowed to select
a batch of n samples u1

t , u
2
t , . . . , u

n
t from unlabeled pool

U = Vtrain \ Lt−1, query the oracle for their labels, and
expand our labeled dataset Lt = Lt−1 ∪ {u

1
t , u

2
t , . . . , u

n
t }.

This process is continued until the query budget B is used
up and our goal is to maximize the performance of classifi-
cation model f on Vtest in each iteration. Notice, the one by
one selection setting studied in (Hu et al. 2020) is a special
case of our batch mode setting when we set the size of query
batch n to be 1.

We summarize four desired properties for effective batch
active learning strategies to train GNNs: (1) Informative-
ness, the amount of information a single node contains for
training GNNs. It includes both uncertainty and centrality.
(2) Diversity measures the redundancy of selected nodes.
Training sets with high diversity are often more representa-
tive of the underlying data distribution. (3) Inter-dependence
captures the graph structural information which makes it dif-
ferent from i.i.d. data. (4) Batch interaction means consid-
ering the interactions between selected nodes in the same
batch. From Table 1, we can see that our proposed BIGENE

is the only method possessing all the desired properties.

Property AGE ANRMAB ActiveHNE GPA Ours

Informativeness X X X X X

Diversity X X X X

Inter-dependence X X

Batch Interaction X

Table 1: The properties of methods for active learning on
graphs.

Methodology

Batch Active Learning as Cooperative Multi-Agent
Reinforcement Learning

Effective batch active learning query strategies should be
capable of selecting not only informative but also diverse
samples. It requires us to consider the relationship between
samples in the same batch. To achieve this goal, we formu-
late batch active learning as a cooperative multi-agent rein-
forcement learning problem. Here, we describe the multi-
agent task as a Markov Decision Process (MDP) consist-
ing of a tuple G = 〈S,U, P, r, n, γ〉. State s ∈ S is de-
fined as the combination of the original graph-structured
data and the current condition of the trained classification
model. n denotes the number of agents which is equiva-
lent to the batch size of active learning. At each time step,
each agent i ∈ N := {1, . . . , n} chooses an unlabeled
node ui ∈ U , forming a joint action (i.e., the selected
batch) u ∈ U ≡ Un. P describes the transition function
P (s′ | s,u) : S×U×S 7→ [0, 1]. Specifically, it depicts the
change of the status of the classification model after trained
on an expanded dataset. All agents share the same reward r
defined as the performance gain of the classification model
with expanded training set and γ is the discount factor. In
our setting, all agents share the same observation and do not
have the individual action-observation history which is dif-
ferent from the general MARL (Oliehoek and Amato 2016).

State

Node Centrality. Different from active learning methods
commonly used in other domains such as computer vision
and natural language processing, active learning on graphs
needs to handle non i.i.d. samples with inter-dependent con-
nections between them. The intuition behind using node cen-
trality is that with a higher centrality score, the node is more
likely to be a hub in the graph. Therefore, when we obtain
the ground-truth label of the node, it is more likely to provide
more information about other surrounding nodes. Various
node centrality metrics have been proposed such as close-
ness centrality (Stephenson and Zelen 1989), betweenness
centrality (Brandes 2001) and PageRank centrality (Page
et al. 1999; Tong, Faloutsos, and Pan 2006). In our exper-
iments, we observe that PageRank centrality outperforms
others, which is also consistent with (Cai, Zheng, and Chang
2017). Hence, we adopt PageRank centrality to measure the
informativeness of node vi in the graph as follows:

φc
i = d

∑

j

Aij

φc
j∑

k Ajk

+
1− d

N
, (2)

where 0 < d < 1 is the damping parameter.





selected nodes. It is further used as the hidden state hi
t. Hid-

den state hi
t enables us to consider the actions of the previous

agents. Hence, we could take the interaction between differ-
ent agents into account. The joint action ut is the union of
individual action taken by each agent. For the total Q-Value
Qtot, we propose to approximate it with the average of indi-
vidual Q-Value Qi:

Qtot(st,ut) ≈
1

n

n∑

i=1

Qi(st, u
i
t). (6)

Multi-Agent DQN Training

We use deep Q-learning (Mnih et al. 2013) to learn an opti-
mal multi-agent policy. Q-learning is an off-policy learning
algorithm and it aims to fit the Bellman optimality equation
as follows.

Q∗(st,ut) = r(st,ut) + γmax
u′

Q∗(st+1,u
′). (7)

To train the Q-network, we build a replay buffer ε which
stores the transition tuples τk = (st,ut, rt+1, st+1) and op-
timize the Q-network with a loss based on temporal differ-
ence (TD) error (Sutton 1988):

Eτk∼ε[(Yt −Q(st,ut)]
2, (8)

where Yt is the TD target. In our experiments, we observe
that the training of Q-network is unstable due to the overes-
timation phenomenon. To address this issue, we use double
DQN (Van Hasselt, Guez, and Silver 2016) to stabilize the
training process. In double DQN, the max operation in the
target is decomposed into action selection and action evalu-
ation. We use the online network to select actions and evalu-
ate the Q-values with the target network. With double DQN,
the TD target becomes:

Yt = r(st,ut) + γQ(st+1, argmax
ut+1

Q(st+1,ut+1; θt); θ
′

t),

(9)
where θt is the parameter of the online network and θ′t is the
parameter of the target network.

Similar to (Hu et al. 2020), we adopt a transferable active
learning scheme. Specifically, we use a source graph Gs with
full label information to train our DQN and directly test it
on the target graph Gt without any adaptation. Our overall
framework is summarized in Algorithm 1.

Experiment

Experiment settings

Dataset Nodes Edges Features Classes

Cora 2,708 5,278 1,433 7
Citeseer 3,327 4,676 3,703 6
Pubmed 19,718 44,327 500 3
Reddit 4,584 19,460 300 10
Co-CS 18,333 81,894 6,805 15
Co-Phy 34,493 247,962 8,415 5

Table 2: Statistics of the datasets used in our experiments.

Algorithm 1: BIGENE: Batch Active Learning with GNNs

Input: Target graph Gt, adjacency matrix A, node fea-
ture matrix X , multi-agent Q-network trained on source
graph Gs, unlabeled pool of samples U , initial number
of samples M , number of iterations T , number of sam-
ples in a batch n.

1: L0 ←M samples selected randomly from U and query
the oracle for their labels.

2: Train an initial GNN model θ0 on L0 with the cross en-
tropy loss.

3: for t = 1, 2, · · · , T : do
4: For each node vi, compute the embedding xi with

current model θt−1.
5: Compute the state st based on Eqs. (2)-(4)
6: Compute the Q-value Q1(st, u

1
t ) of the first agent

with QGCN and obtain the graph embeddings of can-
didate nodes Ct.

7: Initialize the hidden state h1
t of QGRU as the graph

embedding C1
t of the first selected node u1

t .
8: for i = 2, · · · , n: do
9: Feed Ct together with hi−1

t into QGRU and com-
pute the Q-value Qi(st, u

i
t) of the ith agent.

10: hi
t ← Ei

t the corresponding embedding from QGRU

of ui
t.

11: end for
12: Query the oracle for the labels of {u1

t , u
2
t , . . . , u

n
t }

and update labeled dataset Lt = Lt−1 ∪
{u1

t , u
2
t , . . . , u

n
t }.

13: Train the GNN model θt on Lt.
14: end for
15: return Final GNN model θT on Gt.

Datasets. We consider 6 widely used benchmark datasets,
including Cora, Citeseer, Pubmed1, Reddit2, Coauthor-CS
(Co-CS) and Coauthor-Physics (Co-Phy) (Shchur et al.
2018). In the first three citation datasets, each node repre-
sents a document and edges between them represent citation
links. For Reddit dataset, the posts are regarded as nodes and
two posts are connected with an edge if there are at least two
users both of whom comment or post them. We follow (Hu
et al. 2020) to process Reddit dataset in our experiments.
Co-CS and Co-Phy are co-authorship networks where each
node represents an author. There is an edge between two
nodes only if they have coauthored with each other. Table 2
summarizes the statistics of the datasets. We train our BI-
GENE model and GPA on Cora dataset and evaluate them
together with other baselines on the other five datasets. Our
BIGENE works in both same domain transfer setting (Cite-
seer, Pubmed) and different domain transfer setting (Reddit,
Co-CS, Co-Phy).

Baselines. We compare our proposed BIGENE method
with the following baselines. We use PyTorch (Paszke et al.
2019) as our backend and all experiments were conducted
on a server with NVIDIA Tesla V100 SXM2 GPU.

1https://linqs.soe.ucsc.edu/data
2https://bit.ly/3bumUtv



1. Random: In each iteration, randomly select nodes to be
labeled.

2. Entropy-based method (Entropy): In each iteration, se-
lect nodes with the highest prediction entropy from the
classification model.

3. Centrality-based method (Centrality): In each itera-
tion, select nodes with the highest centrality scores.

4. Coreset (Sener and Savarese 2017): For each candidate
node, calculate the minimum distance between the node’s
embedding and labeled nodes’ embeddings, and select
nodes with the maximum distances.

5. AGE (Cai, Zheng, and Chang 2017): AGE combines
three criteria to select samples, including the prediction
entropy, the node centrality score, and the distance be-
tween the node’s embedding and its nearest cluster cen-
ter. AGE introduces a time sensitive parameter to bal-
ance these three criteria and select nodes with the highest
weighted sum of three criteria.

6. GPA (Hu et al. 2020): GPA formulates active learning
problem as a Markov Decision Process (MDP) and trains
a policy network to learn the optimal selection strategy.
Since GPA is proposed for selecting nodes one by one,
we adopt its batch-mode variant which selects a batch of
nodes with the highest action probabilities in each itera-
tion.

Parameter settings. For deep Q-network, the GCN com-
ponent is implemented as a two-layer GCN, and we set the
hidden layer size to be 8. The hidden size of the GRU com-
ponent is also set to be 8. Discount factor γ is set to be 0.99.
We use Adam (Kingma and Ba 2014) as the optimizer with
learning rate 0.001 and batch size 16. The GCN classifica-
tion model contains one hidden layer with a size of 16. We
train it with Adam optimizer and set the learning rate to be
0.01. For batch active learning setting, we set the initial num-
ber of samples M = 20.

Evaluation metrics. We use 1,000 labeled nodes as the
test set and randomly sample 500 labeled nodes from the
remaining nodes for validation. We run 50 independent ex-
periments with different initializations for the classification
model and report the average classification accuracy on the
test set.

Results and Analysis

Fixed Active Learning Batch Size. Firstly, we set the ac-
tive learning batch size n to be 20. Figure 2 show the perfor-
mance comparisons with different labeled nodes for train-
ing. We could see that our proposed BIGENE method con-
sistently outperforms other baselines under different query
budgets. The advantages are more obvious when the query
budget is small. For instance, when the total number of la-
beled nodes is 60, our BIGENE outperforms the best base-
line by at least 2% on Co-CS and Co-Phy. In addition, since
Pubmed, Co-CS, and Co-Phy have more candidate nodes to
select, the performance improvement brought by BIGENE is
more evident. The improvement of BIGENE over GPA (the
best competitor) is statistically significant on these datasets
with a p-value smaller than 0.05. The superior performance

of the proposed BIGENE can be mainly attributed to the
MARL design scheme. It enables the agents to simultane-
ously consider the informativeness of single nodes and the
interactions between selected nodes in the same batch.

Varied Active Learning Batch Size. We fix the total
query budget to be 80 and study the active learning perfor-
mance under different batch sizes. The batch size is varied
from 1 to 20 and results on Reddit and Co-CS are shown
in Figure 3. For ‘Random’ and ‘Centrality’, the selection
strategies are independent of batch size. Therefore, their per-
formances remain the same. We can see that the performance
gap between GPA and proposed BIGENE becomes larger
when the batch size increases. This is because, the main ad-
vantage of BIGENE over GPA is that it takes the interactions
between selected nodes in the same batch into account. If
the batch size increases, it becomes more critical to encode
the batch interaction to avoid selecting redundant samples.
GPA slightly outperforms BIGENE when the batch size is
1 in Figure 3(b). This is expected since GPA was designed
for selecting unlabeled nodes one by one by formulating the
problem as a sequential decision process.

Efficiency Comparison. Here, we compare the efficiency
of our BIGENE with the original one-by-one GPA. The run-
ning time and classification accuracy are shown in figure 4.
‘BiGeNe (10)’ and ‘BiGeNe (20)’ represents performing ac-
tive learning with batch size 10 and 20 respectively. We can
see that our BIGENE is 10× ∼ 20× faster than GPA with-
out loss of performance. This demonstrates the scalability of
our BIGENE when applied to large-scale graphs.

Comparison of Different RL Algorithms. We also in-
vestigate the contribution of our proposed multi-agent de-
sign scheme. We adopt the batch active learning algorithm
in (Casanova et al. 2020) for images as the baseline ‘DQN’.
The idea is to divide the candidate nodes into n disjoint
groups and select one node from each group. The reward of
the single node is approximated as the reward of the entire
batch. Results on Co-CS and Co-Phy are shown in Figure 5.
We can see our BIGENE outperforms the baseline by a clear
margin, especially with small query budgets. The reason is
that individual selections may receive spurious reward sig-
nals due to the approximation method used in (Casanova
et al. 2020). The improvement of the batch samples is ac-
tually attributed to the other nodes in the same batch. As
a result, it misleads the learning process. Furthermore, base-
line ‘DQN’ decomposes the batch selection into independent
individual selections which might overlook the interactions
between selected samples in the same batch.

Ablation Study of State Representations. We conduct
experiments on Pubmed and Co-Phy to study the contri-
bution of each metric in the state representations. In Fig-
ure 6, ‘centrality’ means that we only use node centrality,
‘centrality+entropy’ means that we use both prediction en-
tropy and node centrality, and ‘centrality+entropy+diversity’
means that we use all the three metrics including the node
embedding distance. As illustrated in Figure 6, with the in-
creasing number of metrics in the state representation, the
performance of the classification model improves. This is





Acknowledgments

The work of Y. Zhang and H. Tong is supported in part
by National Science Foundation under grant No. 1947135
and 2134079, by NIFA award 2020-67021-32799, and Face-
book. The work of Y. Chi is supported in part by ONR un-
der the grant N00014-19-1-2404, and NSF under the grants
1901199, 2134080 and 2106778. The content of the infor-
mation in this document does not necessarily reflect the po-
sition or the policy of the Government or Facebook, and no
official endorsement should be inferred. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright nota-
tion here on.

References

Aggarwal, C. C.; Kong, X.; Gu, Q.; Han, J.; and Philip, S. Y.
2014. Active learning: A survey. In Data Classification:
Algorithms and Applications, 571–605. CRC Press.

Brandes, U. 2001. A faster algorithm for betweenness cen-
trality. Journal of mathematical sociology, 25(2): 163–177.

Cai, H.; Zheng, V. W.; and Chang, K. C.-C. 2017.
Active learning for graph embedding. arXiv preprint
arXiv:1705.05085.

Casanova, A.; Pinheiro, P. O.; Rostamzadeh, N.; and Pal,
C. J. 2020. Reinforced active learning for image segmenta-
tion. arXiv preprint arXiv:2002.06583.

Chen, X.; Yu, G.; Wang, J.; Domeniconi, C.; Li, Z.; and
Zhang, X. 2019. Activehne: Active heterogeneous network
embedding. arXiv preprint arXiv:1905.05659.

Fang, M.; Li, Y.; and Cohn, T. 2017. Learning how to ac-
tive learn: A deep reinforcement learning approach. arXiv
preprint arXiv:1708.02383.

Gao, L.; Yang, H.; Zhou, C.; Wu, J.; Pan, S.; and Hu, Y.
2018. Active discriminative network representation learn-
ing. In IJCAI International Joint Conference on Artificial
Intelligence.

Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier neural networks. In Proceedings of the fourteenth
international conference on artificial intelligence and statis-
tics, 315–323.

Hu, S.; Xiong, Z.; Qu, M.; Yuan, X.; Côté, M.-A.; Liu, Z.;
and Tang, J. 2020. Graph Policy Network for Transferable
Active Learning on Graphs. Advances in Neural Information
Processing Systems, 33.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

Konyushkova, K.; Sznitman, R.; and Fua, P. 2018. Dis-
covering general-purpose active learning strategies. arXiv
preprint arXiv:1810.04114.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen,
J. E.; Rattan, G.; and Grohe, M. 2019. Weisfeiler and le-
man go neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 4602–4609.

Oliehoek, F. A.; and Amato, C. 2016. A concise introduction
to decentralized POMDPs. Springer.

Oliehoek, F. A.; Spaan, M. T.; and Vlassis, N. 2008. Op-
timal and approximate Q-value functions for decentralized
POMDPs. Journal of Artificial Intelligence Research, 32:
289–353.

Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999. The
PageRank citation ranking: Bringing order to the web. Tech-
nical report, Stanford InfoLab.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32: 8026–8037.

Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Fo-
erster, J.; and Whiteson, S. 2018. Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learn-
ing, 4295–4304. PMLR.

Samvelyan, M.; Rashid, T.; De Witt, C. S.; Farquhar, G.;
Nardelli, N.; Rudner, T. G.; Hung, C.-M.; Torr, P. H.; Fo-
erster, J.; and Whiteson, S. 2019. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043.

Sener, O.; and Savarese, S. 2017. Active learning for con-
volutional neural networks: A core-set approach. arXiv
preprint arXiv:1708.00489.

Settles, B. 2009. Active learning literature survey. Techni-
cal report, University of Wisconsin-Madison Department of
Computer Sciences.

Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann,
S. 2018. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868.

Son, K.; Kim, D.; Kang, W. J.; Hostallero, D. E.; and Yi,
Y. 2019. Qtran: Learning to factorize with transformation
for cooperative multi-agent reinforcement learning. In In-
ternational Conference on Machine Learning, 5887–5896.
PMLR.

Stephenson, K.; and Zelen, M. 1989. Rethinking centrality:
Methods and examples. Social networks, 11(1): 1–37.

Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W. M.; Zam-
baldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo,
J. Z.; Tuyls, K.; et al. 2017. Value-decomposition net-
works for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296.

Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine learning, 3(1): 9–44.

Tong, H.; Faloutsos, C.; and Pan, J.-Y. 2006. Fast random
walk with restart and its applications. In Sixth international
conference on data mining (ICDM’06), 613–622. IEEE.



Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.

Wang, J.; Ren, Z.; Liu, T.; Yu, Y.; and Zhang, C. 2020.
Qplex: Duplex dueling multi-agent q-learning. arXiv
preprint arXiv:2008.01062.

Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling network architectures for deep
reinforcement learning. In International conference on ma-
chine learning, 1995–2003. PMLR.

Zhang, M.; and Chen, Y. 2018. Link prediction based on
graph neural networks. In Advances in Neural Information
Processing Systems, 5165–5175.


