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Abstract

Structured nonsmooth convex finite-sum opti-
mization appears in many machine learning ap-
plications, including support vector machines
and least absolute deviation. For the primal-
dual formulation of this problem, we propose
a novel algorithm called Variance Reduction

via Primal-Dual Accelerated Dual Averaging

(VRPDA2
). In the nonsmooth and general con-

vex setting, VRPDA2 has the overall complex-
ity O(nd logmin{1/✏, n}+ d/✏) in terms of the
primal-dual gap, where n denotes the number of
samples, d the dimension of the primal variables,
and ✏ the desired accuracy. In the nonsmooth and
strongly convex setting, the overall complexity of
VRPDA2 becomesO(nd logmin{1/✏, n}+d/

p
✏)

in terms of both the primal-dual gap and the
distance between iterate and optimal solution.
Both these results for VRPDA2 improve signifi-
cantly on state-of-the-art complexity estimates—
which are O(nd logmin{1/✏, n} +

p
nd/✏) for

the nonsmooth and general convex setting and
O(nd logmin{1/✏, n}+

p
nd/

p
✏) for the nons-

mooth and strongly convex setting—with a sim-
pler and more straightforward algorithm and anal-
ysis. Moreover, both complexities are better than
lower bounds for general convex finite-sum opti-
mization, because our approach makes use of addi-
tional, commonly occurring structure. Numerical
experiments reveal competitive performance of
VRPDA2 compared to state-of-the-art approaches.

1. Introduction

We consider large-scale regularized nonsmooth convex em-
pirical risk minimization (ERM) of linear predictors in ma-
chine learning. Let bi 2 Rd, i = 1, 2, . . . , n, be sample
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vectors with n typically large; gi : R ! R, i = 1, 2, . . . , n,
be possibly nonsmooth convex loss functions associated
with the linear predictor hbi,xi; and ` : Rd ! R be an
extended-real-valued, �-strongly convex (� � 0) and pos-
sibly nonsmooth regularizer that admits an efficiently com-
putable proximal operator. The problem we study is

min
x2Rd

f(x) := g(x)+`(x) :=
1

n

nX

i=1

gi(b
T
i x)+`(x), (P)

where g(x) := 1
n

Pn
i=1 gi(b

T
i x). Instances of the non-

smooth ERM problem (P) include `1-norm and `2-norm
regularized support vector machines (SVM) and least abso-
lute deviation. For practicality of our approach, we require
in addition that the convex conjugates of the functions gi,
defined by g⇤i (yi) := supzi(ziyi� gi(zi)), admit efficiently
computable proximal operators. (The examples mentioned
above have this property.) From the statistical perspective,
nonsmoothness in the loss function is essential for obtaining
a model that is both tractable and robust. But from the opti-
mization viewpoint, nonsmooth optimization problems are
intrinsically more difficult to solve. On one hand, the lack of
smoothness in g precludes the use of black-box first-order
information to obtain efficient methods. On the other hand,
the use of structured composite optimization methods that
rely on the proximal operator of g is out of question here too,
because the proximal operator of the sum 1

n

Pn
i=1 gi(bi

Tx)
may not be efficiently computable w.r.t. x, even when the
proximal operators of the individual functions gi(·) are.

Driven by applications in machine learning, computational
statistics, signal processing, and operations research, the
nonsmooth problem (P) and its variants have been studied
for more than two decades. There have been two main lines
of work: deterministic algorithms that exploit the underly-
ing simple primal-dual structure to improve efficiency (i.e.,
dependence on the accuracy parameter ✏) and randomized
algorithms that exploit the finite-sum structure to improve
scalability (i.e., dependence on the number of samples n).

Exploiting the primal-dual structure. A naı̈ve approach
for solving (P) would be subgradient descent, which requires
access to subgradients of g(x) and `(x). To find a solution
x with f(x)� f(x⇤)  ✏, where x⇤ is an optimal solution
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of (P) and ✏ > 0 is the desired accuracy, the subgradient
method requires O(1/✏2) iterations for the nonsmooth con-
vex setting. This complexity is high, but it is also the best
possible if we are only allowed to access “black-box” in-
formation of function value and subgradient. To obtain
improved complexity bounds, we must consider approaches
that exploit structure in (P). To begin, we note that (P)
admits an explicit and simple primal-dual reformulation:

min
x2Rd

�
f(x) = max

y2Rn
L(x,y)

 
,

L(x,y) := hBx,yi � g
⇤(y) + `(x),

(PD)

where B = 1
n [b1, b2, . . . , bn]

T , g⇤(y) = 1
n

Pn
i=1 g

⇤
i (yi)

with the convex conjugate functions g
⇤
i (·) satisfying

gi(bTi x) = supyi
{yihbi,xi � g

⇤
i (yi)}. The nonsmooth

loss g(x) in (P) is thereby decoupled into a bilinear term
hBx,yi and a separable function g⇤(y) that admits an effi-
ciently computable proximal operator. Due to the possible
nonsmoothness of g(x), we can assume only that L(x,y) is
concave w.r.t. y—but not strongly concave. Therefore, Prob-
lem (PD) is �-strongly convex-(general) concave (� � 0).

By adding a strongly convex regularizer to the dual variable
of (PD), Nesterov (2005b) optimized a smoothed variant
of (P) using acceleration, thus improving the complexity
bound fromO(1/✏2) toO(1/✏). Later, Nemirovski and Nes-
terov, respectively, showed that extragradient methods such
as mirror-prox (Nemirovski, 2004) and dual extrapolation
(Nesterov, 2007) can obtain the same O(1/✏) complexity
bound for (PD) directly, without the use of smoothing or
Nesterov’s acceleration. (Extragradient methods perform
updates twice per iteration, for both primal and dual vari-
ables.) Chambolle & Pock (2011) introduced an (extrapo-
lated) primal-dual hybrid gradient (PDHG) method to obtain
the same O(1/✏) complexity, using an extrapolation step on
either the primal or dual variable rather than an extragradient
step. Thus, PDHG needs to update primal and dual variables
just once per iteration. All three kinds of methods have been
extensively studied from different perspectives (Nesterov,
2005a; Chen et al., 2017; Tran-Dinh et al., 2018; Song et al.,
2020b; Diakonikolas et al., 2020). For large n, the focus
has been on randomized variants with low per-iteration cost
(Zhang & Lin, 2015; Alacaoglu et al., 2017; Tan et al., 2018;
Chambolle et al., 2018; Carmon et al., 2019; Lei et al., 2019;
Devraj & Chen, 2019; Alacaoglu et al., 2020).

Exploiting the finite-sum structure. The deterministic
methods discussed above have per-iteration cost O(nd),
which can be prohibitively high for large n. There has been
much work on randomized methods whose per-iteration cost
is independent of n. To be efficient, the iteration count of
such methods cannot increase too much over the determinis-
tic methods. A major development in the past decade of re-
search has been the use of variance reduction in randomized
optimization algorithms, which reduces the per-iteration

cost and improves the overall complexity. For the variant
of Problem (P) in which g(x) is smooth, there exists a vast
literature on developing efficient finite-sum solvers; see
for example Roux et al. (2012); Johnson & Zhang (2013);
Lin et al. (2014); Zhang & Lin (2015); Allen-Zhu (2017);
Zhou et al. (2018); Lan et al. (2019); Song et al. (2020a).
The Variance Reduction via Accelerated Dual Averaging

(VRADA) algorithm of Song et al. (2020a) matches all three
lower bounds from Woodworth & Srebro (2016); Hannah
et al. (2018) for the smooth and (general/ill-conditioned
strongly/well-conditioned strongly) convex settings, using
a simple, unified algorithm description and convergence
analysis. As discussed in Song et al. (2020a), the efficiency,
simplicity, and unification of VRADA are due to a novel
initialization strategy and to randomizing accelerated dual

averaging rather than accelerated mirror descent (as was
done in Allen-Zhu (2017)). These results provide the main
motivation for our current work.

When the loss function is nonsmooth, classical variance
reduction approaches such as SVRG and SAGA (Johnson
& Zhang, 2013; Defazio et al., 2014) are no longer ap-
plicable. Allen-Zhu & Hazan (2016); Allen-Zhu (2017)
propose to smoothen and regularize (P) and then apply ex-
isting finite-sum solvers, such as Katyusha. As shown by
Allen-Zhu (2017), in the nonsmooth and general convex
setting, the resulting overall complexity is improved from
O
�
nd
✏

�
to O

�
nd logmin{ 1

✏ , n}+
p
nd
✏

�
; in the nonsmooth

and strongly convex setting, it is improved from O
�
ndp
✏

�

to O
�
nd logmin{ 1

✏ , n} +
p
ndp
✏

�
. Both of these improved

complexity results match the lower bounds of Woodworth
& Srebro (2016) for general nonsmooth finite-sums when ✏
is small. However, the smoothing and regularization require
tuning of additional parameters, which complicates the al-
gorithm implementation. Meanwhile, it is not clear whether
the complexity can be further improved to take advantage
of the additional ERM structure of (P).

For the nonsmooth ERM problem (P) considered here,
and its primal-dual formulation, the literature is much
scarcer (Dang & Lan, 2014; Alacaoglu et al., 2017; Cham-
bolle et al., 2018; Carmon et al., 2019; Latafat et al., 2019;
Fercoq & Bianchi, 2019; Alacaoglu et al., 2020). All ex-
isting methods target (PD) directly and focus on extending
the aforementioned deterministic algorithms to this case.
Because sampling one element of the finite sum from (P) is
reduced to sampling one dual coordinate in (PD), all these
methods can be viewed as coordinate variants of the de-
terministic counterparts. For convenience, we explicitly
rewrite (PD) in the following finite-sum primal-dual form:

min
x2Rd

max
y2Rn

L(x,y)

L(x,y) :=
1

n

nX

i=1

(yihbi,xi � g
⇤
i (yi)) + `(x).

(FS-PD)
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Table 1. Overall complexity and per-iteration cost for solving (FS-PD) in the �-strongly convex-general concave setting (� � 0). (“—”
indicates that the corresponding result does not exist or is unknown.)

Algorithm General Convex Strongly Convex Strongly Convex Per-Iteration
(Primal-Dual Gap) (Primal-Dual Gap) (Distance to Solution) Cost

RPD
O
�
n3/2d

✏

�
O
�
n3/2dp

✏

� —
O(d)Dang & Lan (2014)

SMART-CD
O
�
nd
✏

�
— — O(d)Alacaoglu et al. (2017)

Carmon et al. (2019) O
�
nd+

p
nd(n+d) log(nd)

✏

�
— — O(n+ d)

SPDHG
O
�
nd
✏

�
— O

�
nd
�
p

✏

�1
O(d)Chambolle et al. (2018)

PURE-CD
O
�
n2d
✏

�
— — O(d)Alacaoglu et al. (2020)

VRPDA2

O(nd logmin{ 1
✏ , n}+

d
✏ ) O(nd logmin{ 1

✏ , n}+
dp
�✏
) O(nd logmin{ 1

✏ , n}+
d

�
p

✏
) O(d)(This Paper)

1 It is only applicable when ✏ is small enough (see Chambolle et al. (2018, Theorem 5.1)).

Existing approaches. Table 1 compares VRPDA2 to ex-
isting randomized algorithms for solving (FS-PD) in terms
of the overall complexity and per-iteration cost under the
setting of uniform sampling and general (i.e., not necessar-
ily sparse) data matrix. The algorithms RPD, SMART-CD,
SPDHG, and PURE-CD all attain O(d) per-iteration cost, but
have overall complexity no better than that of the determin-
istic algorithms in both the nonsmooth and general/strongly
convex settings. Meanwhile, the algorithms of Carmon et al.
(2019) perform full-coordinate updates with O(n+ d) per-
iteration cost and improve the dependence on the dimension
dwhen n � d.However, the overall dependence on the dom-
inant term n is still not improved, which raises the question
of whether it is even possible to simultaneously achieve the
low O(d) per-iteration cost and reduce the overall complex-
ity compared to the deterministic algorithms. Addressing
this question is the main contribution of our work.

Our contributions. We propose the VRPDA2 algorithm
for (FS-PD) in the �-strongly convex-general concave set-
ting (� � 0), which corresponds to the nonsmooth and
�-strongly convex setting of (P) (� � 0). For both � = 0
and � > 0, VRPDA2 has O(d) per-iteration cost and signifi-
cantly improves the best-known overall complexity results
in a unified and simplified way. As shown in Table 1, to find
an ✏-accurate solution in terms of the primal-dual gap, the
overall complexity of VRPDA2 is

(
O
�
nd log

�
min{ 1

✏ , n}
�
+ d

✏

�
, if � = 0,

O
�
nd log

�
min{ 1

✏ , n}
�
+ dp

�✏

�
, if � > 0,

which is significantly better than any of the existing results
for (FS-PD). In particular, we only need O(nd log n) over-
all cost to attain an ✏-accurate solution with ✏ = ⌦( 1

n log(n) ).
Meanwhile, when ✏ is sufficiently small compared to 1/n,
so that the second term in the bound becomes dominant, the
overall complexity (O(d✏ ) for � = 0 andO( dp

�✏
) for � > 0)

is independent of n, thus showing a⇥(n) improvement com-
pared to the deterministic algorithms. To the best of our
knowledge, even for smooth gi’s, the improvement of exist-
ing algorithms is at most ⇥(

p
n) and is attained by acceler-

ated variance reduction methods such as Katyusha (Allen-
Zhu, 2017) and VRADA (Song et al., 2020a).

Comparison to lower bounds. Our results may seem to
contradict the iteration complexity lower bounds for com-
posite objectives, which are ⌦(n+

p
n
✏ ) for nonsmooth and

general convex objectives and ⌦(n+
p

n
�✏ ) for nonsmooth

and �-strongly convex objectives (Woodworth & Srebro,
2016). In Woodworth & Srebro (2016, Section 5.1), the
hard instance for proving the lower bounds has the form
f(x) = 1

n

Pn
i=1 fi(x)—but each fi is a sum of k + 1

“simple” terms, each having the form of our gi’s. The com-
plexity in Woodworth & Srebro (2016) for this hard instance
is enabled by hiding the individual vectors corresponding
to each simple term, an approach that is typical for oracle
lower bounds. In their example, k = ⇥( 1p

n✏
), so the total

number of simple terms is nk = ⇥(
p
n
✏ ), which leads to the

second term in the lower bound. (The first ⌦(n) term in this
lower bound comes from setting ✏ = O( 1p

n
).) Applying

our upper bound for iteration complexity to this hard case,
we replace n by nk = ⇥(

p
n
✏ ) to obtain O(

p
n
✏ log(

p
n
✏ ))—

higher than the Woodworth & Srebro (2016) lower bound
would be if we were to replace n by nk. Thus, our results
do not contradict these well known lower bounds.

Remarkably, our upper bounds show that use of the finite-
sum primal-dual formulation (FS-PD) can lead not only to
improvements in efficiency (dependence on ✏), as in Nes-
terov (2005b), but also scalability (dependence on n). As the
ERM problem (P) is one of the main motivations for convex
finite-sum solvers, it would be interesting to characterize
the complexity of the problem class (P) from the aspect of
oracle lower bounds and determine whether VRPDA2 attains
optimal oracle complexity. (We conjecture that it does, at



Variance Reduction via Primal-Dual Accelerated Dual Averaging

least for small values of ✏.) Since the primary focus of the
current paper is on algorithms, we leave the study of lower
bounds for future research.

Our techniques. Our VRPDA2 algorithm is founded on a
new deterministic algorithm Primal-Dual Accelerated Dual

Averaging (PDA2
) for (PD). Similar to PDHG (Chambolle &

Pock, 2011), PDA2 is a primal-dual method with extrapola-
tion on the primal or dual variable. However, unlike PDHG,
which is based on mirror-descent-type updates (a.k.a. agile
updates (Allen-Zhu & Orecchia, 2017)), PDA2 performs up-
dates of dual averaging-style (Nesterov, 2015) (a.k.a. lazy
mirror-descent updates (Hazan et al., 2016)).

Our analysis is based on the classical estimate sequence
technique, but with a novel design of the estimate sequences
that requires careful coupling of primal and dual portions of
the gap; see Section 3 for a further discussion. The resulting
argument allows us to use a unified parameter setting and
convergence analysis for PDA2 in all the (general/strongly)
convex-(general/strongly) concave settings. Thus, by build-
ing on PDA2 rather than PDHG, the design and analysis of
VRPDA2 is unified over the different settings and also signif-
icantly simplified. Moreover, the dual averaging framework
allows us to use a novel initialization strategy inspired by
the VRADA algorithm (Song et al., 2020a), which is key
to cancelling the randomized error of order n in the main
loop and obtaining our improved results from Table 1. It is
worth noting that although PDA2 can be used in all the (gen-
eral/strongly) convex-(general/strongly) concave settings,
VRPDA2 is applicable only to the specific (general/strongly)
convex-general concave settings that correspond to the non-
smooth and (general/strongly) convex settings of (P). Study
of VRPDA2 in the (general/strongly) convex-strongly con-
cave settings is deferred to future research.

2. Notation and Preliminaries

Throughout the paper, we use k · k to denote the Euclidean
norm. In the case of matricesB, kBk is the standard opera-
tor norm defined by kBk := maxx2Rd, kxk1 kBxk.

In the following, we provide standard definitions and proper-
ties that will be used in our analysis. We start by stating the
definition of strongly convex functions that captures both
strong and general convexity, allowing us to treat both cases
in a unified manner for significant portions of the analysis.
We use R̄ = R [ {+1} to denote the extended real line.

Definition 1. Given � � 0, we say that a function f : Rd !
R̄ is �-strongly convex, if 8x, x̂ 2 Rd

, and all ↵ 2 (0, 1)

f((1� ↵)x+ ↵x̂)  (1� ↵)f(x) + ↵f(x̂)

� �

2
↵(1� ↵)kx̂� xk2.

When � = 0, we say that f is (general) convex.

When f is subdifferentiable at x and gf (x) 2 @f(x) is any
subgradient of f at x, where @f(x) denotes the subdiffer-
ential set (the set of all subgradients) of f at x, then strong
convexity implies that for all x̂ 2 Rd

, we have

f(x̂) � f(x) + hgf (x), x̂� xi+ �

2
kx̂� xk2.

Since we work with general nonsmooth convex functions f ,
we require that their proximal operators, defined as solutions
to problems of the form minx2Rd

�
f(x) + 1

2⌧ kx � x̂k2
 

are efficiently solvable for any ⌧ > 0 and any x̂ 2 Rd
.

Problem definition. As discussed in the introduction, our
focus is on Problem (PD) under the following assumption.
Assumption 1. g

⇤(y) is proper, l.s.c., and �-strongly con-

vex (� � 0); `(x) is proper, l.s.c., and �-strongly convex

(� � 0); the proximal operators of g⇤ and ` can be com-

puted efficiently; and kBk = R for some R 2 (0,1).

Observe that since g⇤ and ` are assumed only to be proper,
l.s.c., and (strongly) convex, they may contain indicators
of closed convex sets in their description. Thus, certain
constrained optimization problems are included in the prob-
lem class described by Assumption 1. We use X and Y to
denote the domains of ` and g

⇤, respectively, defined by
X = dom(`) = {x : `(x) < 1}, Y = dom(g⇤) = {y :
g
⇤(y) < 1}. When X ,Y are bounded, we use DX , DY

to denote their diameters: DX = maxx,u2X kx � uk,
DY = maxy,v2Y ky � vk.

Note that Assumption 1 does not enforce a finite-sum struc-
ture of g⇤ (and g). Thus, for the results that utilize variance
reduction, we will make a further assumption.
Assumption 2. g

⇤(y) = 1
n

Pn
i=1 g

⇤
i (yi), where each

g
⇤
i (yi) is convex and has an efficiently computable prox-

imal operator. Further, kbik  R
0
, for all i 2 {1, . . . , n}.

Recall that B = 1
n [b1, b2, . . . , bn]

T . Observe that R =

kBk  1
n

⇣Pn
i=1 kbik2

⌘1/2
 1

n

Pn
i=1 kbik  R

0
.

Observe further that, under Assumption 2, g⇤(y) is separa-
ble over its coordinates. As a consequence, the domain Y
of g⇤ can be expressed as the Cartesian product of dom(g⇤i ).
This structure is crucial for variance reduction, as the algo-
rithm in this case relies on performing coordinate descent
updates over the dual variables y.

Primal-dual gap. Given x 2 Rd, the primal value of the
problem (PD) is P (x) = maxv2Rn L(x,v). Similarly, the
dual value (PD) is defined by D(y) = minu2Rd L(u,y).
Given a primal-dual pair (x,y) 2 Rd ⇥ Rn

, primal-dual
gap is then defined by Gap(x,y) = P (x) � D(y) =
max(u,v)2Rd⇥Rn Gapu,v(x,y), where we define

Gapu,v(x,y) = L(x,v)� L(u,y). (1)
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Observe that, by definition of P (x) and D(y), the max-
imum of Gapu,v(x,y) for fixed (x,y) is attained when
(u,v) 2 X ⇥ Y, so we can also write Gap(x,y) =
max(u,v)2X⇥Y Gapu,v(x,y).

For our analysis, it is useful to work with the relaxed gap
Gapu,v(x,y). In particular, to bound the primal-dual gap
Gap(x,y) for a candidate solution pair (x,y) constructed
by the algorithm, we first bound Gapu,v(x,y) for arbitrary
(u,v) 2 X ⇥ Y. The bound on Gap(x,y) then follows
by taking the supremum of Gapu,v(x,y) over (u,v) 2
X ⇥ Y. In general, Gap(x,y) can be bounded by a finite
quantity only when X ,Y are compact (Nesterov, 2005b;
Ouyang & Xu, 2019). If either of X ,Y is unbounded, to
provide meaningful results and similar to Chambolle &
Pock (2011), we assume that an optimal primal-dual pair
(x⇤

,y⇤) for which Gap(x⇤
,y⇤) = 0 exists, and bound the

primal-dual gap in a ball around (x⇤
,y⇤).

Auxiliary results. Additional auxiliary results on growth
of sequences that are needed when establishing convergence
rates in our results are provided in Appendix C.

3. Primal-Dual Accelerated Dual Averaging

In this section, we provide the PDA2 algorithm for solving
Problem (PD) under Assumption 1. The results in this
section provide the basis for our results in Section 4 for the
finite-sum primal-dual setting.

PDA2 is described in Algorithm 1. Observe that the points
u, v in the definitions of estimate sequences �k(x), k(y)
do not play a role in the definitions of xk, yk, as the cor-
responding argmins are independent of u and v. They
appear in the definitions of �k(x), k(y) only for the con-
venience of the convergence analysis; the algorithm itself
can be stated without them.

We now outline the main technical ideas in the PDA2 algo-
rithm. To bound the relaxed notion of the primal-dual gap
Gapu,v(x̃k, ỹk) discussed in Section 2, we use estimate se-
quences �k(x) and  k(y) defined in the algorithm. Unlike
the classical estimate sequences used, for example, in Nes-
terov (2005b), these estimate sequences do not directly esti-
mate the values of the primal and dual, but instead contain
additional bilinear terms, which are crucial for forming an
intricate coupling argument between the primal and the dual
that leads to the desired convergence bounds. In particular,
the bilinear term in the definition of  k is defined w.r.t. an
extrapolated point x̄k�1. This extrapolated point is not
guaranteed to lie in the domain of `, but because this point
appears only in bilinear terms, we never need to evaluate
either ` or its subgradient at x̄k�1. Instead, the extrapolated
point plays a role in cancelling error terms that appear when
relating the estimate sequences to Gapu,v(x̃k, ỹk).

Our main technical result for this section concerning the

Algorithm 1 Primal-Dual Accelerated Dual Averaging
(PDA2)
1: Input: (x0,y0) 2 X ⇥ Y, (u,v) 2 X ⇥ Y,� �

0, � � 0, kBk = R > 0,K.

2: a0 = A0 = 0.
3: x0 = x�1 2 Rd

,y0 2 Rn
.

4: �0(·) = 1
2k ·�x0k2, 0(·) = 1

2k ·�y0k2.
5: for k = 1, 2, . . . ,K do

6: ak =
p

(1+�Ak�1)(1+�Ak�1)p
2R

, Ak = Ak�1 + ak.
7: x̄k�1 = xk�1 +

ak�1

ak
(xk�1 � xk�2).

8: yk = argminy2Rn{ k(y) =  k�1(y) +
ak(h�Bx̄k�1,y � vi+ g

⇤(y))}.
9: xk = argminx2Rd{�k(x) = �k�1(x) + ak(hx �

u,BTyki+ `(x))}.
10: end for

11: return ỹK = 1
AK

PK
k=1 akyk, x̃K =

1
AK

PK
k=1 akxk.

convergence of PDA2 is summarized in the following theo-
rem. The proof of this result and supporting technical results
are provided in Appendix A.

Theorem 1. Under Assumption 1, for Algorithm 1, we have,

8(u,v) 2 X ⇥ Y and k � 1,

Gapu,v(x̃k, ỹk) 
ku� x0k2 + kv � y0k2

2Ak
,

where x̃k = 1
Ak

Pk
i=1 aixi, ỹk = 1

Ak

Pk
i=1 aiyi.

Further, if (x⇤
,y⇤) is a primal-dual solution to (PD), then

(1 + �Ak)kxk � x⇤k2 + 1 + �Ak

2
kyk � y⇤k2

 kx0 � x⇤k2 + ky0 � y⇤k2.
(2)

In both cases, the growth of Ak can be bounded below as

Ak � 1p
2R

max
n
k,

⇣
1 +

p
��

p
2R

⌘k�1
,

�

9
p
2R

⇣
[k � k0]+ +max

�
3.5

p
R, 1

 ⌘2
,

�

9
p
2R

⇣
[k � k

0
0]+ +max

�
3.5

p
R, 1

 ⌘2o
,

where [·]+ = max{·, 0}, k0 = d �
9
p
2R

e, and k00 = d �
9
p
2R

e.

Remark 1. As � � 0 and � � 0, Theorem 1 guarantees

that all iterates of PDA2
remain within a bounded set, due to

Eq. (2). In particular, xk 2 B(x⇤
, r0), yk 2 B(y⇤

,
p
2r0),

where r0 =
p
kx0 � x⇤k2 + ky0 � y⇤k2 and B(z, r) de-

notes the Euclidean ball of radius r, centered at z.Moreover,

by rearranging Eq. (2), we can conclude that kx⇤�xkk2 
r0

2

1+�Ak
and ky⇤ � ykk2  2r0

2

1+�Ak
.
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Remark 2. Observe that when the domains of g
⇤
and `

are bounded (i.e., when DX < 1, DY < 1, and, in

particular, in the setting of constrained optimization over

compact sets), Theorem 1 implies the following bound on the

primal-dual gap Gap(x̃k, ỹk)  DX
2+DY

2

2Ak
. This bound

can be shown to be optimal, using results from Ouyang & Xu

(2019). For unbounded domains of g
⇤
and `, it is generally

not possible to have any finite bound on Gap(x,y) unless
(x,y) = (x⇤

,y⇤) (for a concrete example, see, e.g., Di-

akonikolas (2020)). In such a case, it is common to restrict

u,v to bounded sets that include x⇤
,y⇤

, such as B(x⇤
, r0),

B(y⇤
,
p
2r0) from Remark 1 (Chambolle & Pock, 2011).

Remark 3. To bound the function value gap f(x̃k)�f(x⇤)
for Problem (P) using Theorem 1, we need only that DY is

bounded, leading to the bound f(x̃k)�f(x⇤)  4r0
2+DY

2

Ak
,

where r0 =
p
kx0 � x⇤k2 + ky0 � y⇤k2 as in Remark 1,

since for u 2 B(x⇤
, r0) we have that ku� x0k  2r0. To

see this, note that, as the iterates xi of PDA2
are guaranteed

to remain in B(x⇤
, r0) (by Remark 1), there is no difference

between applying this algorithm to f or to f + IB(x⇤,r0),

where IB(x⇤,r0) is the indicator function of B(x⇤
, r0). This

allows us to restrict u 2 B(x⇤
, r0) when bounding f(x̃k)�

f(x⇤) by Gapu,v(x̃k, ỹk). Note that for typical instances
of nonsmooth ERM problems, the domain Y of g

⇤
is com-

pact. Further, if g
⇤
is strongly convex (� > 0), then the set

Ỹ := {argmaxy2Rn hBx,yi � g
⇤(y) : x 2 B(x⇤

, r0)}
is guaranteed to be compact. This claim follows from

standard results, as in this case argmaxy2Rn hBx,yi �
g
⇤(y) = rg(Bx) (by the standard Fenchel-Young in-

equality; see, e.g., Rockafellar & Wets (2009, Proposition

11.3)) and g is
1
� -smooth. Thus, supv,y2Ỹ kv � yk =

supx,u2B(x⇤,r0) krg(Bx)�rg(Bu)k  R
� r0.

4. Variance Reduction via Primal-Dual

Accelerated Dual Averaging

We now study the finite-sum form (FS-PD) of (PD), making
use of the properties of the finite-sum terms described in
Assumption 2. In Algorithm 2, we describe VRPDA2 which
is a randomized coordinate variant of the PDA2 algorithm
from Section 3. By extending the unified nature of PDA2,
VRPDA2 provides a unified and simplified treatment for
both the general convex-general concave (� = 0) setting
and the strongly convex-general concave setting.

To provide an algorithm with complexity better than the de-
terministic counterpart PDA2, we combine the deterministic
initialization strategy of full primal-dual update in Steps 4-6
with randomized primal-dual updates in the main loop—a
strategy inspired by the recent paper of Song et al. (2020a).
The use of the factor n during initialization, in Step 7, helps
to cancel an error term of order O(n) in the analysis.

The main loop (Steps 8-15) randomizes the main loop of

PDA2 by introducing sampling in Step 10 and adding an
auxiliary variable zk that is updated with O(d) cost in Step
13. (z1 is initialized in Step 5.) In Step 11, we update
the estimate sequence  k by adding a term involving only
the jk component of the finite sum, rather than the entire
sum, as is required in Step 8 of Algorithm 1. As a result,
although we define the estimate sequence for the entire
vector yk, each update to yk requires updating only the jk
coordinate of yk. In Step 12, we use a “variance reduced
gradient” zk�1+(yk,jk �yk�1,jk)bjk to update �k, helping
to cancel the error from the randomized update of Step 11.
The update of the sequences {ak}, {Ak} appears at the end
of the main loop, to accommodate their modified definitions.
The modified update for ak+1 ensures that ak cannot have
exponential growth with a rate higher than

�
1+ 1

n�1

�
, which

is an intrinsic constraint for sampling with replacement (see
Song et al. (2020a); Hannah et al. (2018)).

Finally, as Algorithm 2 is tailored to the nonsmooth ERM
problem (P), we only return the last iterate xk or the
weighed average iterate x̃k on the primal side, even though
we provide guarantees for both primal and dual variables.

Algorithm 2 provides sufficient detail for the convergence
analysis, but its efficient implementation is not immediately
clear, due especially to Step 11. An implementable version
is described in Appendix D, showing that the per-iteration
cost is O(d) and that O(n) additional storage is required.

Our main technical result is summarized in Theorem 2. Its
proof relies on three main technical lemmas that bound the
growth of estimate sequences �k(xk) and  k(yk) below
and above. Proofs are provided in Appendices B and C.
Theorem 2. Suppose that Assumption 2 holds. Then for any

(u,v) 2 X ⇥ Y, the vectors xk, yk, k = 2, 3, . . . ,K and

the average x̃k = 1
Ak

Pk
i=1 aixi generated by Algorithm 2

satisfy the following bound for k = 2, 3, . . . ,K:

E[Gapu,v(x̃k, ỹk)] 
n(ku� x0k2 + kv � y0k2)

2Ak
,

where ỹk :=
nakyk+

Pk�1
i=2 (nai�(n�1)ai+1)yi

Ak
.

Moreover, if (x⇤
,y⇤) is a primal-dual solution to (PD), then

E
h
n

4
ky⇤ � ykk2 +

n+ �Ak

2
kx⇤ � xkk2

i

 n(kx⇤ � x0k2 + ky⇤ � y0k2)
2

.

In both cases, Ak is bounded below as follows:

Ak � max
n
n� 1

2R0

⇣
1 +

1

n� 1

⌘k
1kk0 ,

(n� 1)2�

(4R0)2n
(k � k0 + n� 1)21k�k0 ,

n(k �K0 + n� 1)

2R0 1k�K0

o
,
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Algorithm 2 Variance Reduction via Primal-Dual Accelerated Dual Averaging (VRPDA2 )
1: Input: (x0,y0) 2 X ⇥ Y, (u,v) 2 X ⇥ Y , � � 0, R0

> 0,K, n.

2: �0(·) = 1
2k ·�x0k2, 0(·) = 1

2k ·�y0k2.
3: a0 = A0 = 0, ã1 = 1

2R0 .
4: y1 = argminy2Rn{ ̃1(y) :=  0(y) + ã1(h�Bx0,y � vi+ g

⇤(y))}.
5: z1 = BTy1.
6: x1 = argminx2Rd{�̃1(x) := �0(x) + ã1(hx� u, z1i+ `(x))}.
7:  1 := n ̃1,�1 := n�̃1, a1 = A1 = nã1, a2 = 1

n�1a1, A2 = A1 + a2.
8: for k = 2, 3, . . . ,K do

9: x̄k�1 = xk�1 +
ak�1

ak
(xk�1 � xk�2).

10: Pick jk uniformly at random in [n].
11: yk = argminy2Rn{ k(y) =  k�1(y) + ak(�bTjk x̄k�1(yjk � vjk) + g

⇤
jk(yjk))}.

12: xk = argminx2Rd{�k(x) = �k�1(x) + ak(hx� u, zk�1 + (yk,jk � yk�1,jk)bjki+ `(x))}.
13: zk = zk�1 +

1
n (yk,jk � yk�1,jk)bjk .

14: ak+1 = min
⇣�

1 + 1
n�1

�
ak,

p
n(n+�Ak)

2R0

⌘
, Ak+1 = Ak + ak+1.

15: end for

16: return xK or x̃K := 1
AK

PK
i=1 aixi.

where 1 denotes the indicator function, K0 =⌃ log(n)
log(n)�log(n�1)

⌥
, k0 =

⌃ logBn,�,R0

log(n)�log(n�1)

⌥
, and

Bn,�,R0 =
�n(n� 1)

4R0 +

r⇣
�n(n� 1)

4R0

⌘2
+ n2

� nmax
n
1,

�(n� 1)

2R0

o
.

Observe that, due to the randomized nature of the algorithm,
the convergence bounds are obtained in expectation w.r.t. the
random choices of coordinates jk over iterations.

Now let us comment on the iteration complexity of VRPDA2,
given target error ✏ > 0. For concreteness, let D2 := ku�
x0k2 + kv � y0k2, where D

2 can be bounded using the
same reasoning as in Remarks 2 and 3. To bound the gap by
✏, we need Ak � nD2

2✏ . When ✏ � nR0D2

(n�1)Bn,R0,�
, then k =

l
log(nR0D2

(n�1)✏ )

log(n)�log(n�1)

m
= O

�
n log(R

0D
✏ )

�
iterations suffice, as

in this case k  k0. When ✏ < nR0D2

(n�1)Bn,�,R0
, then the bound

on k is obtained by ensuring that either of the last two terms
boundingAk below in Theorem 2 is bounded below by nD2

2✏ ,

leading to k = O
�
n log(Bn,�,R0) + min{R0Dp

�✏
,

R0D2

✏ }
�
.

5. Numerical Experiments

We study the performance of VRPDA2 using the elastic-net-
regularized support vector machine (SVM) problem, which
corresponds to (P) with gi(bTi x) = max{1 � cibTi x, 0},
ci 2 {1,�1} and `(x) = �kxk1 + �

2 kxk
2
2, � � 0, � � 0.

This problem is nonsmooth and general convex if � = 0 or
strongly convex if � > 0. Its primal-dual formulation is

min
x2Rd

max
�1yi0, i2[n]

L(x,y),

L(x,y) =
1

n

nX

i=1

yi (hcibi,xi � 1) + �kxk1 +
�

2
kxk22.

We compare VRPDA2 with two competitive algorithms
SPDHG (Chambolle et al., 2018) and PURE CD (Alacaoglu
et al., 2020) on standard a9a and MNIST datasets from
the LIBSVM library (LIB).1 Both datasets are large, with
n = 32, 561, d = 123 for a9a, and n = 60, 000, d = 780
for MNIST. For simplicity, we normalize each data sam-
ple to unit Euclidean norm, so that the Lipschitz con-
stants appearing in the analysis (such as R

0 in VRPDA2)
are at most 1. We then scale these Lipschitz constants by
{0.1, 0.25, 0.5, 0.75, 1}2. As is standard for ERM, we plot
the function value gap of the primal problem (P) in terms
of the number of passes over the dataset. The plotted func-
tion value gap was evaluated using an estimated value f̃⇤

of f⇤ = argminx f(x). For the plots to depict an accurate
estimate of the function value gap, the true function value
gap f �f

⇤ must dominate the error of the estimate f̃⇤�f
⇤
.

In our numerical experiments, this is achieved by running
the algorithms 30 times as many iterations as are is shown in
the plots, choosing the lowest function value fmin observed
over this extended run and over all algorithms, and setting
f̃
⇤ = fmin � �, where � is either 10�8 or 10�13, depending

on the value of �.

We fix the `1-regularization parameter � to 10�4 and vary
� 2 {0, 10�8

, 10�4}, to represent the general convex, ill-
1For each sample of MNIST, we reassign the label as 1 if it is

in {5, 6, . . . , 9} and �1 otherwise.
2In our experiments, all the algorithms diverge when the Lips-

chitz constant is set to 0.1.
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(a) a9a, � = 0, average (b) a9a, � = 0, last (c) MNIST, � = 0, average (d) MNIST, � = 0, last

(e) a9a, � = 10�8
, average (f) a9a, � = 10�8

, last (g) MNIST, � = 10�8
, average (h) MNIST, � = 10�8

, last

(i) a9a, � = 10�4
, average (j) a9a, � = 10�4

, last (k) MNIST, � = 10�4
, average (l) MNIST, � = 10�4

, last

Figure 1. Comparison of VRPDA2 to SPDHG and PURE CD run for the elastic net-regularized SVM, on a9a and MNIST datasets. In all
the plots, � is the strong convexity parameter of the regularizer `; “last” refers to the last iterate, “average” to the average iterate. For all
problem instances, VRPDA2 attains either similar or improved convergence compared to other algorithms.

conditioned strongly convex, and well-conditioned strongly
convex settings, respectively. For all the settings, we provide
the comparison in terms of the average and last iterate3.
As can be observed from Figure 1, the iterate averaging
yields much smoother curves, decreasing monotonically,
and is generally more accurate than the last iterate. This is
expected for the nonsmooth and general convex setting, as
there are no theoretical guarantees for the last iterate, while
for other cases the guarantee for the last iterate is on the
distance to optimum, not the primal gap. As can be seen in
Figure 1, the average iterate of VRPDA2 is either competitive
with or improves upon SPDHG and PURE CD.

As can be observed from Figure 1, there is a noticeable dif-
ference in the performance of all the algorithms when their
function value gap is evaluated at the average iterate versus
the last iterate. For VRPDA2 , a dual averaging-style method
that has a sparsity-promoting property (Xiao, 2010), this

3SPDHG and PURE CD provide no results for the average iterate
in the nonsmooth and strongly convex setting, so we use simple
uniform average for both.

difference comes from the significantly different sparsity of
the average iterate and last iterate. As shown in Figure 2, the
average iterate is less sparse but provides a more accurate
fit, while the last iterate is sparser (and thus more robust)
but less accurate. For SPDHG, the last iterate is signifi-
cantly more accurate than the average iterate in the strongly
convex settings (� 2 {10�8

, 10�4}), because simple uni-
form average we use may not be the best choice for the two
settings. Meanwhile, the better performance of SPDHG com-
pared with VRPDA2 in terms of the last iterate is due partly
to the fact that it is a mirror descent-style algorithm with
less-sparse last iterate. In our experiments, the PURE CD al-
gorithm is always worse than VRPDA2 and SPDHG, which
is partly consistent with its worse convergence guarantee
as shown in Table 1. However, as PURE CD is targeted to
sparse datasets, it may have a better runtime performance in
such settings, as shown in Alacaoglu et al. (2020).

Meanwhile, the performance of the average iterate of VR-
PDA2 and the last iterate of SPDHG is almost the same (the
figures for the average iterate and the last iterate under the
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(a) a9a, � = 0, average (b) a9a, � = 0, last (c) MNIST, � = 0, average (d) MNIST, � = 0, last

(e) a9a, � = 10�8
, average (f) a9a, � = 10�8

, last (g) MNIST, � = 10�8
, average (h) MNIST, � = 10�8

, last

(i) a9a, � = 10�4
, average (j) a9a, � = 10�4

, last (k) MNIST, � = 10�4
, average (l) MNIST, � = 10�4

, last

Figure 2. Comparison of sparsity for VRPDA2, SPDHG, and PURE CD run for the elastic net-regularized SVM problem, on a9a and
MNIST datasets. In all the plots, � is the strong convexity parameter of the regularizer `; “last” refers to the last iterate, “average” to the
average iterate. For all problem instances, VRPDA2 generally constructs the sparsest solutions out of the three algorithms. (The number of
nonzeros is computed by counting the elements with absolute value larger than 10�7.)

same setting use the same scale), which is surprising in
that VRPDA2 has n-times better theoretical guarantees than
SPDHG for small ✏. The better theoretical guarantee of
VRPDA2 comes from the particular initialization strategy
inspired by Song et al. (2020a). Nevertheless, similar to
the experimental results in Song et al. (2020a), no signif-
icant performance gain (or loss) due to this initialization
strategy is observed in practice. Thus, it is of interest to
explore whether the initialization strategy is essential for
improved algorithm performance or if it is needed only for
the theoretical argument to go through.

6. Discussion

We introduced VRPDA2, a variance-reduced primal-dual
accelerated dual averaging algorithm for structured nons-
mooth ERM problems in machine learning. We show that
VRPDA2 leverages the separable structure of common ERM
problems to achieves the best known convergence rates on
this class of problems, with good practical performance. It

even improves upon the lower bounds for (general, non-
structured) composite optimization. It remain an open ques-
tion to obtain tighter lower bounds for the problem class to
which VRPDA2 applies, possibly certifying its optimality, at
least for small target error ✏. Another direction is addressing
settings with strongly convex loss functions currently not
addressed by VRPDA2, which may require very different
techniques.
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