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Abstract
Langevin Monte Carlo (LMC) is a popular Markov chain Monte Carlo sampling method. One
drawback is that it requires the computation of the full gradient at each iteration, an expensive
operation if the dimension of the problem is high. We propose a new sampling method: Ran-
dom Coordinate LMC (RC-LMC). At each iteration, a single coordinate is randomly selected to
be updated by a multiple of the partial derivative along this direction plus noise, while all other
coordinates remain untouched. We investigate the total complexity of RC-LMC and compare it
with the classical LMC for log-concave probability distributions. We show that when the gradient
of the log-density is Lipschitz, RC-LMC is less expensive than the classical LMC if the log-density
is highly skewed for high dimensional problems. Further, when both the gradient and the Hessian
of the log-density are Lipschitz, RC-LMC is always cheaper than the classical LMC, by a factor
proportional to the square root of the problem dimension. In the latter case, we use an example to
demonstrate that our estimate of complexity is sharp with respect to the dimension.
Keywords: Bayesian inference, Random coordinate descent, Langevin Monte Carlo

1. Introduction

Monte Carlo sampling plays an important role in machine learning (Andrieu et al., 2003) and
Bayesian statistics. Sampling is essential to such applications as atmospheric science (Fabian,
1981), epidemiology (Li et al., 2020), and petroleum engineering (Nagarajan et al., 2007). It is
often needed in data assimilation (Reich, 2011), volume computation (Vempala, 2010) and bandit
optimization (Russo et al., 2018).

In many of these applications, the dimension of the problem is extremely high. For example,
for weather prediction, one measures the current state temperature and moisture level to infer the
flow of the air, before running the Navier–Stokes equations into the near future (Evensen, 2009). In
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a global numerical weather prediction model, the degrees of freedom in the air flow can be as high
as 109. Another example is from epidemiology. One measures the everyday new infection cases to
infer the transmission rate in different regions. In a county-level model of the us, the parameter to
be inferred has dimension at least 3, 141 (Li et al., 2020).

In this work, we focus on Monte Carlo sampling of log-concave probability distributions on
Rd, meaning the probability density can be written as p(x) ∝ e−f(x) where f(x) is a convex
function. The goal is to generate (approximately) i.i.d. samples according to the target probability
distribution with density p(x). Several sampling frameworks have been proposed in the literature,
including importance sampling and sequential Monte Carlo (Geweke, 1989; Neal, 2001; Del Moral
et al., 2006); ensemble methods (Reich, 2011; Iglesias et al., 2013; Ding et al., 2020a; Liu, 2017;
Chewi et al., 2020); Markov chain Monte Carlo (MCMC) (Roberts and Rosenthal, 2004), including
Metropolis-Hasting based MCMC (MH-MCMC) (Metropolis et al., 1953; Hastings, 1970; Roberts
and Tweedie, 1996); Gibbs samplers (Geman and Geman, 1984; Casella and George, 1992); and
Hamiltonian Monte Carlo (Neal, 1993; Duane et al., 1987; Lee and Vempala, 2018). Langevin
Monte Carlo (LMC) (Rossky et al., 1978; Parisi, 1981; Roberts and Tweedie, 1996) is a popular
MCMC method that has received intense attention in recent years due to the recent progress in
the non-asymptotic analysis of its convergence properties (Durmus and Moulines, 2017; Dalalyan,
2017; Dalalyan and Karagulyan, 2019; Durmus et al., 2019).

Denoting by xm the location of the sample at m-th iteration, LMC updates by setting

xm+1 = xm −∇f(xm)h+
√

2hξmd , (1)

where h is the time stepsize and ξmd is drawn i.i.d. from N (0, Id), where Id denotes identity matrix
of size d× d. LMC can be viewed as the Euler-Maruyama discretization of the following stochastic
differential equation (SDE):

dXt = −∇f(Xt) dt+
√

2 dBd,t , (2)

whereBd,t is a d-dimensional Brownian motion. It is well known that under suitable conditions, the
distribution of Xt converges exponentially fast to the target distribution (see e.g., (Markowich and
Villani, 1999)). Since (1) approximates the SDE (2) with anO(h) discretization error, the probabil-
ity distribution of xm produced by LMC (1) converges exponentially to the target distribution up to
a discretization error (Dalalyan and Karagulyan, 2019).

A significant drawback of LMC is that the algorithm requires the evaluation of the full gradient
at each iteration. This could be potentially very expensive in most practical problems. Indeed,
when the analytical expression of the gradient is not available, each partial derivative component
in the gradient needs to be computed separately, either through finite differencing or automatic
differentiation (Baydin et al., 2017), so that the total number of evaluations of gradient components
can be as many as d times the number of iterations. In the weather prediction and epidemiology
problems discussed above, f stands for the map from the parameter space of measured quantities
via the underlying partial differential equations (PDEs), and each dimensional partial derivative
calls for one forward and one adjoint PDE solve. Thus, 2d PDE solves are required in general
at each iteration. Another example comes from the study of directed graphs with multiple nodes.
Denote the nodes by N = {1, 2, . . . , d} and directed edges by E ⊂ {(i, j) : i, j ∈ N}, and
suppose there is a scalar variable xi associated with each node. When the function f has the form
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f(x) =
∑

(i,j)∈E fij(xi, xj), the partial derivative of f with respect to xi is given by

∂f

∂xi
=

∑
j:(i,j)∈E

∂fij
∂xi

(xi, xj) +
∑

l:(l,i)∈E

∂fli
∂xi

(xl, xi) .

Note that the number of terms in the summations equals the number of edges that touch node i, the
expected value of which is about 2/d times the total number of edges in the graph. Meanwhile,
evaluation of the full gradient would require evaluation of both partial derivatives of each fij for all
edges in the graph. Hence, the cost difference between these two operations is a factor of order d.

In this paper, we study how to modify the updating strategies of LMC to reduce the numerical
cost, with the focus on reducing dependence on d. In particular, we will develop and analyze
a method called Random Coordinate Langevin Monte Carlo (RC-LMC). This idea is inspired by
the random coordinate descent (RCD) algorithm from optimization (Nesterov, 2012). RCD is a
version of Gradient Descent (GD) in which one coordinate (or a block of coordinates) is selected at
random for updating, often by adding a negative multiple of the gradient component corresponding
to this coordinate. In optimization, RCD can be significantly cheaper than GD, especially when the
objective function is skewed and the problem dimension is high. In RC-LMC, we use the same basic
strategy: At iteration m, a single coordinate of xm is randomly selected for updating according to a
certain random selection process, while all others are left unchanged.

Although each iteration of RC-LMC is cheaper than conventional LMC, more iterations are
required to achieve the target accuracy, and delicate analysis is required to obtain bounds on the
total cost. As in the optimization setting, the savings of RC-LMC by comparison with LMC de-
pend on the structure of the dimensional Lipschitz constants. Under the assumption that there is a
factor-of-d difference in per-iteration costs, we compare our results with current results for classical
LMC (Dalalyan and Karagulyan, 2019; Durmus et al., 2019) and conclude the following. (Here the
notation Õ(·) omits possible log terms.)

1. (Theorem 3) When the gradient of f is Lipschitz but the Hessian is not, RC-LMC requires
Õ(d2/ε2) iterations to attain an ε-accurate solution. This order is the same as that for LMC.
However, the constant depends on the Lipschitz structure of the gradient ∇f . In particular in
Remark 5, we compare the numerical cost of RC-LMC and LMC, and show that if f is skewed
and the dimension of the problem is high, RC-LMC outperforms. We furthermore show that
the optimal numerical cost in this setting is achieved when the probability of choosing the i-th
direction is proportional to the i-th directional Lipschitz constant.

2. (Theorem 6) When both the gradient and the Hessian of f are Lipschitz, RC-LMC requires
Õ(d3/2/ε) iterations to achieve ε-accuracy. This cost is strictly smaller than the cost for the clas-
sical LMC (Õ(d2/ε) in this setting), meaning RC-LMC saves a factor of at least d1/2 regardless
of the stiffness structure of f , as discussed in Remark 8.

3. (Proposition 9) We show by means of an example that the Õ(d3/2/ε) complexity bound for
RC-LMC is sharp when both the gradient and the Hessian of f are Lipschitz.

We make three additional remarks. (a) Throughout the paper we assume that one element of the
gradient is available at an expected cost of approximately 1/d of the cost of the full gradient evalua-
tion. Although this property is intuitive, and often holds in many situations (such as the graph-based
example presented above), it does not hold for all problems (Wright, 2015). (b) Besides replacing
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gradient evaluation by coordinate algorithms, one might also improve the dimension dependence of
LMC by utilizing a more rapidly convergent method for the underlying SDEs than (2). One such
possibility is to use underdamped Langevin dynamics, see e.g., (Rossky et al., 1978; Dalalyan and
Riou-Durand, 2018; Cheng et al., 2018; Eberle et al., 2019; Shen and Lee, 2019; Cao et al., 2019),
which can also be combined with coordinate sampling (Ding et al., 2020b). For clarity of presenta-
tion, we focus only on LMC in this work. (c) The cost of full gradient evaluation can be reduced by
using stochastic gradient (Welling and Teh, 2011) or MALA-in-Gibbs sampling (Tong et al., 2020).
Both of these methods require specific forms of the objective function that we do not consider here.

We summarize the notations and assumptions on f in Section 2, where we also recall theoretical
results for the classical LMC method for the later comparison. In Section 3 we present the RC-LMC
algorithm. The main theoretical results are presented in Section 4 and numerical experiments are
shown in Section 5. Proofs of the main results are deferred to the Appendix.

2. Notations, assumptions and previous results

Here we unify notations and assumptions and summarize and discuss the classical results on LMC.
The Wasserstein distance defined here quantifies the distance between two probability distributions:

W (µ, ν) =

(
inf

(X,Y )∈Γ(µ,ν)
E|X − Y |2

)1/2

, (3)

where Γ(µ, ν) is the set of distribution of (X,Y ) ∈ R2d whose marginal distributions, for X and Y
respectively, are µ and ν. The distributions in Γ(µ, ν) are called the couplings of µ and ν.

Here and in the sequel, we use |·| to denote the Euclidean norm of a vector.
We assume that f is strongly convex, so that p is strongly log-concave. We obtain results under

two different assumptions: First, Lipschitz continuity of the gradient of f (Assumption 1) and
second, Lipschitz continuity of the Hessian of f (Assumption 2 together with Assumption 1).

Assumption 1 The function f is twice differentiable, f is µ-strongly convex for some µ > 0 and
its gradient ∇f is L-Lipschitz. That is, for all x, x′ ∈ Rd, we have

f(x)− f(x′)−∇f(x′)>(x− x′) ≥ µ

2
|x− x′|2 , (4)

and
|∇f(x)−∇f(x′)| ≤ L|x− x′| . (5)

It is an elementary consequence of (4) that

(∇f(x′)−∇f(x))>(x′ − x) ≥ µ|x′ − x|2, for all x, x′ ∈ Rd. (6)

Since each coordinate direction plays a distinct role in RC-LMC, we distinguish the Lipschitz
constants in each such direction. When Assumption 1 holds, partial derivatives in all coordinate
directions are also Lipschitz. Denoting them as Li for each i = 1, 2, . . . , d, we have

|∂if(x+ tei)− ∂if(x)| ≤ Li|t| (7)

for any x ∈ Rd and any t ∈ R. We further denote Lmax := maxi Li and define condition numbers:

κ = L/µ ≥ 1, κi = Li/µ ≥ 1 , κmax = max
i
κi . (8)

4



RANDOM COORDINATE LANGEVIN MONTE CARLO

As shown in (Wright, 2015), we have

Li ≤ Lmax ≤ L ≤ dLmax, κi ≤ κmax ≤ κ ≤ dκmax . (9)

These assumptions together imply that the spectrum of the Hessian is bounded above and below for
all x, specifically, µId � ∇2f(x) � LId, meaning all eigenvalues of ∇2f are in [µ,L]. Further-
more, [∇2f(x)]ii ≤ Li ≤ Lmax for all x ∈ Rd.

Both upper and lower bounds of L in term of Lmax in (9) are tight. If∇2f is a diagonal matrix,
then Lmax = L, both being the largest diagonal element of∇2f , so that κmax = κ. (This is the case
in which all coordinates are independent of each other, for example, f =

∑
i λix

2
i .) On the other

hand, if ∇2f = e · e> where e ∈ Rd satisfies ei = 1 for all i, then L = dLmax and κ = dκmax. In
this situation, f is highly skewed, with f = (

∑
i xi)

2/2.

Assumption 2 The function f is three times differentiable and ∇2f is H-Lipschitz, that is

‖∇2f(x)−∇2f(x′)‖2 ≤ H|x− x′|, for all x, x′ ∈ Rd. (10)

When this assumption holds, we further define Hi to satisfy

|∂iif(x+ tei)− ∂iif(x)| ≤ Hi|t| , (11)

for any i = 1, 2, . . . , d, all x ∈ Rd, and all t ∈ R, where ∂iif is [∇2f(x)]ii, the (i, i) diagonal entry
of the Hessian matrix ∇2f . Known results for classical LMC can be summarized as follows.

Theorem 1 (Durmus et al. (2019, Theorem 9), Dalalyan and Karagulyan (2019, Theorem 5))
Let qm be the probability distribution of the m-th iteration of LMC (1), and p be the target

distribution. Using the notation Wm := W (qm, p), we have the following:

• Under Assumption 1, setting h ≤ 1/L, we have

Wm ≤ exp (−µhm/2)W0 + 2(κhd)1/2 ; (12)

• Under Assumptions 1 and 2, setting h < 2/(µ+ L), we have

Wm ≤ exp (−µhm)W0 +
Hhd

2µ
+ 3κ3/2µ1/2hd1/2 . (13)

This theorem yields stopping criteria for the number of iterations M to achieve a user-defined
accuracy of ε. When the gradient of f is Lipschitz, to achieve ε-accuracy, we can require both terms
on the right hand side of (12) to be smaller than ε/2, which occurs when

h = Θ(ε2/dκ) , M = Θ

(
1

µh
log

(
W0

ε

))
= Θ

(
dκ

µε2
log

(
W0

ε

))
, (14)

leading to a cost of Õ(d2κ/(µε2)) evaluations of gradient components (when we assume that each
full gradient can be obtained at the cost of d individual components of the gradient). (The notation
A = Θ(B) indicates that cloB ≤ A ≤ chiB for some positive constants clo and chi, when B is
sufficiently large.) When both the gradient and the Hessian are Lipschitz, we can achieve ε-accuracy
by requiring all three terms on the right hand side of (13) to be smaller than ε/3. Assuming that
d� 1 and all other constants are O(1), the choices

h = Θ(εµ/(dH + d1/2L3/2)) , M = Θ

(
dH + d1/2L3/2

µ2ε
log

(
W0

ε

))
, (15)

yield a cost of Õ(d2H/(µ2ε)) evaluations of gradient components.
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3. Random Coordinate Langevin Monte Carlo

In our proposed Random Coordinate Langevin Monte Carlo (RC-LMC) method, one coordinate is
chosen at random and updated at each iteration, while the other components of x are unchanged.
Specifically, denoting by rm the index of the random coordinate chosen at iteration m, we obtain
xm+1
rm according to a single-coordinate version of (1) and set xm+1

i = xmi for i 6= rm.
The coordinate index rm can be chosen uniformly from {1, 2, . . . , d}; but we will consider

more general possibilities. Let φi be the probability of component i being chosen, we denote the
distribution from which rm is drawn by Φ, where

Φ := {φ1, φ2, . . . , φd}, where φi > 0 for all i and
∑d

i=1 φi = 1. (16)

The stepsize may depend on the choice of coordinate; we denote the stepsizes by {h1, h2, . . . , hd}
and assume that they do not change across iterations. In this paper, we choose hi to be inversely
dependent on probabilities φi, as follows:

hi =
h

φi
, i = 1, 2, . . . , d , (17)

where h > 0 is a parameter that can be viewed as the expected stepsize. In Section 4.2-4.3, we
will find the optimal form of Φ under different scenarios. The initial iterate x0 is drawn from a
distribution q0, which can be any distribution that is easy to draw from (the normal distribution, for
example). We present the complete method in Algorithm 1.

Algorithm 1 Random Coordinate Langevin Monte Carlo (RC-LMC)
Input: Coordinate distribution Φ := {φ1, φ2, . . . , φd}; parameter h > 0 and stepsize set
{h1, h2, . . . , hd} defined in (16)–(17); M (stop index).

Sample x0 from an initial distribution q0

for m = 0, 1, 2, . . .M − 1 do
1. Draw rm ∈ {1, . . . , d} according to probability distribution Φ;
2. Draw ξm from N (0, 1);
3. Update xm+1 by

xm+1
i =

{
xmi − hi∂if(xm) +

√
2hi ξ

m, i = rm

xmi , i 6= rm.
(18)

end
return xM

When we compare (18) with the classical LMC (1), we see that only one random coordinate is
updated per iteration, meaning:

∇f(xm)→ ∂rmf(xm)erm , ξmd → ξmerm

where ei is the unit vector for i-th direction and ξm is drawn from N (0, 1).
We note that, as will be shown below, the optimal choice of Φ depends on the directional Lip-

schitz constants. These constants, however, are usually not available. One may need to compute it
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on-the-fly. Let L0
i be the approximate local directional Lipshitz constant at the initial point:

L0
i =

∂if(x0 + hei)− ∂if(x0)

h
, ∀ 1 ≤ i ≤ d ,

and one updates Li at each step.:

Lm+1
rm = max

{
Lmrm ,

∣∣∣∣∂rmf(xm+1)− ∂rmf(xm)

xm+1
rm − xmrm

∣∣∣∣} .

Φ and {hi} can be updated correspondingly as well. This adaptive version of the algorithm, termed
ARC-LMC, is summarized in Appendix A.

As other LMC sampling methods, RC-LMC has a continuous-time counterpart: Define the
elapsed time at m-th iteration as

Tm :=

m−1∑
n=0

hrn , with T 0 := 0 , (19)

then for t ∈ (Tm, Tm+1], the updating formula (18) in the algorithm can be viewed as the Euler-
Maruyama discretization to the following coordinate SDE:Xrm(t) = Xrm(Tm)−

∫ t

Tm
∂rmf(X(s)) ds+

√
2

∫ t

Tm
dBs ,

Xi(t) = Xi(T
m) , ∀i 6= rm ,

(20)

where Bt is a 1-dimensional Brownian motion. Note that each time point, only one coordinate is
changed in the SDE (20). We will show in Section 4.1 that this SDE preserves the invariant measure,
that is, X(t) ∼ p for any t > 0 if X(0) ∼ p. Thus, under very mild conditions, the distribution
of X(t) converges to p even if that of X(0) does not follow p. Consequently, xm, viewed as the
discrete counterpart of X(Tm), has a distribution density converging to p exponentially fast in m.

4. Main results

In Section 4.1 we examine the stationary distribution of the underlying SDE (20), which will be used
in the convergence proof of RC-LMC. The main results on the convergence of RC-LMC algorithm
are presented in Section 4.2 and 4.3 under two different assumptions. Section 4.4 shows that when
both Assumption 1 and 2 are satisfied, our bound is tight with respect to d and ε. We sketch the
proof ideas of the results in Section 4.5, deferring the technical proofs to the appendix.

4.1. Convergence of the coordinate SDE

To study the convergence of the coordinate SDE (20), we use notation Xm = X(Tm) and denote
the probability filtration by Fm =

{
x0, rn≤m, Bs≤Tm

}
. Then {Xm}∞m=0 is a Markov chain and

the following proposition (proved in Appendix B) shows its geometric ergodicity.

Proposition 2 Let Xm = X(Tm) solve the stochastic differential equation (20), then p(x) is a
stationary probability density of the Markov chain {Xm}.

7
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Though not the main goal of the current paper, we can prove further that the distribution density
of Xm converges to the target distribution exponentially fast under mild assumptions; see Propo-
sition 10. Since the samples xm generated by the algorithm can be viewed as discrete version of
Xm, our algorithm could be expected to converge as well, up to a discretization error. We show
in the upcoming two subsections that this is indeed the case; we present there the non-asymptotic
convergence rate and the complexity of the algorithm.

4.2. Convergence of RC-LMC. Case 1: Lipschitz gradient

Under Assumption 1, we have the following result, proved in Appendix C.

Theorem 3 Assume that f satisfies Assumption 1, and hi = h/φi with h ≤ µmin{φi}
8L2 .

Let qm be the probability distribution of xm computed in (18), let p be the target distribution,
and denote Wm := W (qm, p). Then we have

Wm ≤ exp

(
−µhm

4

)
W0 +

5h1/2

µ

√√√√ d∑
i=1

L2
i

φi
. (21)

We make a few comments here. (1) The requirement on h is rather weak. When both µ and
L are moderate (both O(1) constants), the requirement is essentially h . 1/d. (2) The estimate
(21) consists of two terms. The first is an exponentially decaying term and the second comes from
the variance of random coordinate selection. If we assume all Lipschitz constants Li to be O(1),
this remainder term is roughly O(h1/2d). (3) The theorem suggests a stopping criterion: Assuming
again that Li = O(1) for all i, we obtain WM ≤ ε by setting h < ε2/d2 and M = Õ(d2/ε2). In
terms of ε and d dependence, this puts M at the same order as (14), as in the classical LMC.

Theorem 3 holds for all choices of {φi} satisfying (16). By using the explicit formula (21), we
can choose {φi} to minimize the right-hand side of the bound. Nesterov (2012) proposed distribu-
tions Φ that depend on the dimensional Lipschitz constants Li, i = 1, 2, . . . , d from (7). For α ∈ R,
we can let φi(α) ∝ Lαi , specifically,

φi(α) :=
Lαi∑
j L

α
j

, and Φ(α) := {φ1(α), φ2(α), . . . , φd(α)} . (22)

Note that when α = 0, we have the uniform distribution φi(0) = 1/d for all i. When α > 0, the
directions that with larger Lipschitz constants are chosen with higher probability. Since hi = h/φi,
one uses smaller stepsizes for stiffer directions. (On the other hand, when α < 0, the directions
with larger Lipschitz constants are less likely to be chosen, and the stepsizes are larger in stiffer
directions, a situation that is not favorable and should be avoided.)

The following corollary discusses various choices of α and the corresponding computational
cost.

Corollary 4 Under the same conditions as in Theorem 3, with φi = φi(α) defined in (22), the
number of iterations M required to attain WM ≤ ε is M = Θ

(
K2−αKα
µε2

log
(
W0
ε

))
, where Kα =∑d

i=1 κ
α
i . This cost is optimized when α = 1, for which choice we have

M = Θ

(
(
∑

i κi)
2

µε2
log

(
W0

ε

))
. (23)

8
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See proof in Appendix C. We note that the initial error W0 enters only through a log term.

Remark 5 We now compare the numerical cost of RC-LMC and LMC in Case 1.

• Optimal sampling: According to Corollary 4, the optimal sampling strategy is achieved when
α = 1, meaning φi ∝ Li. In this case, we compare (23) with (14), adjusting (14) by a factor of d to
account for the higher cost per iteration. RC-LMC has more favorable computational cost if

d2κ ≥

(∑
i

κi

)2

.

Considering κi ≤ κmax ≤ κ ≤ dκmax, as presented in (9), this is guaranteed if κ ≥ κ2
max. In the

regime when κ ∼ dκmax this holds so long as d > κmax, meaning the dimension of the problem
is high. In the regime of κmax ∼ κ, RC-LMC still outperforms when κi decreases rapidly. One
example of such a case is the separable function f(x) = dx2

1 +
∑d

i=2 x
2
i with d� 1.

• Uniform sampling: Uniform sampling means φi = 1/d for all i, with α = 0 in Corollary 4.

This leads to a cost of Θ
(∑

κ2i
µε2

log
(
W0
ε

))
. Comparing with (14) adjusted by a factor of d, we see

that RC-LMC still has a more favorable computational cost if

d2κ ≥
∑
i

κ2
i .

As in the optimal case, this happens when f is highly skewed.

Under Assumption 1, Dalalyan and Karagulyan (2019) obtains an estimate of Õ(d2κ2/(µε2))
for the cost of the classical LMC. This is weaker than the optimal cost of LMC obtained in Durmus
et al. (2019). It is not clear whether the latter proof technique can be adapted to the coordinate
setting to obtain an improved estimate, so we followed the strategy of Dalalyan and Karagulyan
(2019). Compared with the latter result for LMC, our estimate for the cost of RC-LMC is always
cheaper, since κ2 ≥ κ2

max.

4.3. Convergence of RC-LMC. Case 2: Lipschitz Hessian

We now assume that Assumption 1 and 2 hold, that is, both the gradient and the Hessian of f are
Lipschitz continuous. In this setting, we obtain the following improved convergence estimate. The
proof can be found in Appendix D.

Theorem 6 Assume f satisfies Assumptions 1 and 2 and let hi = h/φi, with h ≤ µmin{φi}
8L2 .

Denoting by qm(x) the probability density function of xm computed from (18) and by p the
target distribution, and letting Wm := W (qm, p), we have:

Wm ≤ exp

(
−µhm

4

)
W0 +

3h

µ

√√√√ d∑
i=1

(
L3
i +H2

i

)
φ2
i

. (24)

We see again two terms in the bound, an exponentially decaying term and a variance term.
Assuming all Lipschitz constants are O(1), the variance term is of O(hd3/2). By comparing with
Theorem 3, we see that ε error can be achieved with the looser stepsize requirement h . ε

d3/2
.

By choosing {φi} to optimize the bound in Theorem 6, we obtain the following corollary.

9
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Corollary 7 Under the same conditions as in Theorem 6, the optimal choice of {φi} is to set:

φi =

(
L3
i +H2

i

)1/3∑d
i=1

(
L3
i +H2

i

)1/3 .
For this choice, the number of iterations M required to guarantee WM ≤ ε satisfies

M = Θ


(∑d

i=1

(
L3
i +H2

i

)1/3)3/2

µ2ε
log

(
W0

ε

) . (25)

If µ, κi, and Hi are all O(1) constants, the total cost is Õ(d3/2/ε), regardless of the choice of {φi}.

We emphasize that when f satisfies Assumption 1 and 2, the discretization error that measures
the difference betweenXm and xm is smaller than in the case in which only Assumption 1 holds. A
similar observation is made in Dalalyan and Karagulyan (2019); it explains a faster non-asymptotic
convergence rate in terms of d and ε.

Remark 8 We now compare RC-LMC with LMC in Case 2 using Theorem 6 and Corollary 7.
Note the cost of LMC is revealed by (15) adjusted by a factor of d to account for the higher cost per
iteration, we see that the cost of RC-LMC with optimal sampling, seen in (25), is always smaller.
Furthermore, if one uses uniform sampling by setting φi = 1/d, then by (24), the cost is

M = Θ

d
(∑d

i=1

(
L3
i +H2

i

))1/2

µ2ε
log

(
W0

ε

) .

This is still cheaper than LMC. Suppose L and H are all constants of O(1), then the cost of RC-
LMC is roughly Õ(d3/2/ε), while the classical LMC requires Õ(d2/ε), according to Dalalyan and
Riou-Durand (2018)—a factor of d1/2 in savings, regardless of the structure of f .

4.4. Tightness of the complexity bound

When both the gradient and the Hessian are Lipschitz, the estimate Õ(d3/2/ε) obtained in Corol-
lary 7 is tight. The following proposition is proven in Appendix E.

Proposition 9 Let φi = 1/d for all i, and set the initial distribution and the target distribution as

q0(x) =
1

(4π)d/2
exp(−|x− e|2/4) , p(x) =

1

(2π)d/2
exp(−|x|2/2) , (26)

where e ∈ Rd satisfies ei = 1 for all i. Let qm be the probability distribution of xm generated by
Algorithm 1, and denote Wm := W (qm, p). We then have that

Wm ≥ exp (−2mh)

√
d

3
+
d3/2h

6
, m ≥ 1 . (27)

In particular, to have WM ≤ ε, one needs at least M = Õ(d3/2/ε).

10
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4.5. Sketch and discussion of the proof

Our proof of the convergence of the RC-LMC algorithm follows the coupling approach seen in pre-
vious works on convergence of LMC-type algorithms (Dalalyan and Riou-Durand, 2018; Dalalyan
and Karagulyan, 2019; Cheng et al., 2018).

To explain this claim, we let x̃(t) satisfy the coordinate SDE (20) with x̃0 drawn from the target
distribution induced by p, and let x̃m = x̃(Tm). According to Proposition 2, the distribution of x̃m

is given by p for all m, and thus

W (qm, p) ≤ E |xm − x̃m|2 .

For this reason, it suffices to bound the difference: ∆m = xm − x̃m, and to establish the decay of
its L2 norm in m. This analysis is carried out in Appendix C.

Unlike the existing results in literature, we encounter a special technical difficulty here. In the
previous papers studying LMC-type algorithms, the associated SDEs typically enjoy the contraction
property. For example, it is shown that two different trajectories that follow SDE (2) with different
initial data will contract in time. Therefore, in (Dalalyan and Riou-Durand, 2018; Dalalyan and
Karagulyan, 2019), the authors only need to control the discretization errors. This contraction
property, however, is not available in our setup. The continuous version of RC-LMC, the coordinate
SDE (20) investigated here, cannot be shown to contract, because only one random coordinate is
updated per step, preventing us to utilize the convexity property of f .

For this reason, we switch to derive the contraction property on the discrete level directly. This
usually requires a much more delicate analysis. In the end, we find that for RC-LMC, the contraction
property holds true only on average, instead of component-wisely. Namely, if we denote xm and
ym two solutions to the algorithm (18) with x0 drawn from q0 and y0 drawn from the target p, we
can only show:

Erm
(
|xm+1 − ym+1|2

)
< |xm − ym|2 .

instead of |xm+1
rm − ym+1

rm |2 < |xmrm − ymrm |2. This contraction property on the algorithm level,
incorporated with a careful control over the discretization error, allows us to compare xm with x̃m,
the solution to the underlying SDE. In the process of controlling the error, one needs to analyze
each coordinate of ∆m separately, and combine these estimates by taking expectation of coordinate
according to Φ. Due to the difference of directional parameters such as Li and hi, a careful analysis
is needed to establish the optimal contraction rate.

5. Numerical examples

We provide some numerical results in this section. Since it is extremely challenging to estimate
the Wasserstein distance between two distributions in high dimensions, we demonstrate instead the
convergence of an estimated expectation for a given observable. Denoting by {x(i),M}Ni=1 the list of
N samples, with each of them computed through Algorithm 1 (or the adaptive version Algorithm 2)
independently with M iterations, we define the error as follows:

ErrorM,N =

∣∣∣∣∣ 1

N

N∑
i=1

ψ(x(i),M )− EpX(ψ)

∣∣∣∣∣ , (28)

where ψ is a real-valued function, | · | is the absolute value, and Ep(ψ) is the expectation of ψ
under the target distribution p. As h → 0 and Mh → ∞, we have WM → 0, and x(i),M can

11
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be regarded as approximately sampled from p. According to the central limit theorem, we have
limh→0,Mh→∞ ErrorM,N = O(1/

√
N).

We consider first a problem with the graph structure, discussed in Section 1. Set

g(z) =
∑

1≤i,j≤d
gij(zi, zj) , where gij(zi, zj) =



(zi − zj)2

4d
, if i > j

(zi + zj)
2

4d
, if i < j

(zi)
2

2d
+ cos(zi), if i = j

.

We then set the target distribution function to be

pX(x) ∝ exp (−g (L(x))) ,

where L(x) = (xΓ, x11, . . . , xd), x = (x1, x2, . . . , x10) is the list of first 10 entries, and Γ =
T + d

10I . Here I is the 10 × 10 identity matrix and T is a random matrix whose entries are i.i.d.
standard Gaussian random variables. This example has an ill-conditioned f . The Lipschitz constants
are E(L1≤i≤10) = 3d2

200 and Li≥10 = 3
2 . Thus µ = 1

2 , and E(κ1≤i≤10) = 3d2

100 . When d� 1, we have∑d
j=1 κ

p
i � dκp for p ≥ 1.

In the simulation we set d = 100, N = 105, and let ψ(x) = |x|. Initially, all particles are drawn
from N (0.5ed, Id), where ed is a vector in Rd and all entries equal to 1 and Id is the d× d identity
matrix. The result is plotted in Figure 1. To run (A)RC-LMC, we use time stepsize h = 6× 10−5.
For comparison we also run LMC, however, due to the cost difference per iteration, there is no
standard choice of h for LMC for a fair comparison. Since d = 100 in this example, the per-
iteration cost of LMC is about 100 times of that of (A)RC-LMC, we first experiment LMC with
h = 6 × 10−3 (blue (diamond) line). It is clear that (A)RC-LMC, presented by the (purple dotted)
green dashed line achieves a lower error than LMC with the same amount of cost. We then test
LMC with different choices of h, hoping to find its best performance. With smaller h, the error
plateau is also lower, meaning the error will eventually saturate at a lower value, but the decay rate
of error with respect to the cost also decrease, as one can see by comparing the blue (diamond), red
(circle), and yellow (plus) lines in Figure 1, all produced by LMC with different values of h. None
of them are competitive with (A)RC-LMC regarding the level of error at the same cost.
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Figure 1: The decay of error with respect to the cost (the number ∂f calculations).
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Appendix A. The adaptive version of RC-LMC

The adaptive version of RC-LMC updates the approximation to the dimensional Lipschitz constants.
The configuration of Φ and the stepsizes hi are thus changed accordingly. We summarize it in
Algorithm 2.

Algorithm 2 Adaptive Random Coordinate Langevin Monte Carlo (ARC-LMC)
Input: Stepsize h > 0; M (stop index).

Sample x0 from an initial distribution q0.
Define L0

i for 1 ≤ i ≤ d:

L0
i =

∣∣∣∣∂if(x0 + hei)− ∂if(x0)

h

∣∣∣∣ .
Define φ0

i and h0
i for 1 ≤ i ≤ d:

φ0
i =

L0
i∑d

j=1 L
0
j

, h0
i =

h

φ0
i

.

for m = 0, 1, 2, . . .M − 1 do
1. Draw rm ∈ {1, . . . , d} according to probability distribution Φm = {φm1 , φm2 , · · · , φmd };
2. Draw ξm from N (0, 1);
3. Update xm+1 by

xm+1
i =

{
xmi − hmi ∂if(xm) +

√
2hmi ξ

m, i = rm

xmi , i 6= rm
. (29)

4. Update Lm+1 for 1 ≤ i ≤ d

Lm+1
i =

max

{
Lmrm ,

∣∣∣∣∂rmf(xm+1)−∂rmf(xm)

xm+1
rm −xmrm

∣∣∣∣} , i = rm

Lmi , i 6= rm
. (30)

5. Update φm+1
i and hm+1

i for 1 ≤ i ≤ d

φm+1
i =

Lm+1
i∑d
i L

m+1
i

, hm+1
i =

h

φm+1
i

.

end
return xM
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Appendix B. Proof of Proposition 2 and further discussions

We recall the SDE (20):Xrm(t) = Xrm(Tm)−
∫ t

Tm
∂rmf(X(s)) ds+

√
2

∫ t

Tm
dBs ,

Xi(t) = Xi(T
m) , ∀i 6= rm ,

(31)

where rm is randomly selected from 1, . . . , d.
Proof [Proof of Proposition 2]

To prove Proposition 2, we assume the distribution of Xm is Π and we need to prove:

For any choice of rm, the conditional distribution of Xm+1 is also Π.

Without loss of generality, we consider rm = 1. Under this condition, we have the following.

• The distribution of X2≤j≤d(t) between [Tm, Tm+1] is preserved.

• For fixed z2, z3, . . . , zd, the stationary density of SDE

dz = −∂1f(z, z2, z3, . . . , zd) dt+
√

2 dBs , (32)

is exp(−f(z,z2,...,zd)∫
exp(−f(z,z2,...,zd) dz

. This implies that the conditional distribution of X1(t) with fixed
X2≤j≤d(t) is also preserved.

Combining these two points, we find that under condition rm = 1, the conditional distribution of
Xm+1 is Π.

Since the statement holds true for all other values of rm as well, and thus Π is the stationary
distribution and Proposition 2 holds.

We note that in Proposition 2 we do not claim the convergence of the Markov chain. With more
technical derivation, we can in fact show:

Proposition 10 Denote Πm the probability distribution of Xm and Π be the probability distribu-
tion induced by p(x), then under the conditions of Proposition 2, and assuming the second moment
of Π0 is finite, then there are constants R > 0 and r > 1, independent of m, such that for any
m ≥ 0, we have:

dTV (Πm,Π) dx ≤ Rr−m . (33)

The proof for this result is rather technical, and is only remotely related to the core of the current
paper, and thus is omitted from this paper. We mostly follow the theory presented in (Mattingly
et al., 2002), and justify the Lyapunov condition together with minorization condition called for
there.

We also note that according to Mattingly et al. (2002), the constants R and r do not depend on
m, but their dependence on other parameters such as h, d, and L is hard to trace. This contrasts
with the results in Dalalyan and Karagulyan (2019) for the classical Langevin dynamics, where
clear dependence on all parameters can be established. The new complication comes mainly from
the complicated coordinate selection process. We should reiterate, however, this convergence result
only concerns the SDE, the continuous version of RC-LMC, so the explicit dependence of the
convergence rate is not sought after.
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Appendix C. Proof of Theorem 3

The proof of this theorem requires us to design a reference solution to explicitly bound W (qm, p).
Let x̃0 be a random vector drawn from target distribution induced by p, so that W 2

2 (q0, p) = E|x0−
x̃0|2. We then require x̃ to solve the following SDE: for t ∈ (Tm, Tm+1], with Tm defined in (19):x̃rm(t) = x̃rm(Tm)−

∫ t

Tm
∂rmf(x̃(s)) ds+

√
2

∫ t

Tm
dBs ,

x̃i(t) = x̃i(T
m), i 6= rm .

(34)

If we use the same Brownian motion as in (29), we have

x̃m+1 = x̃m +

[
−
∫ Tm+1

Tm
∂rmf(x̃(s)) ds+

√
2hrmξ

m

]
erm , (35)

where erm is the unit vector in rm direction. According to Proposition 2, the distribution of x̃(t) is
preserved to be p for all t. Therefore, by the definition Wm = W (qm, p), we have

W 2
m ≤ E|∆m|2 = E|xm − x̃m|2 ,

where
∆m := x̃m − xm . (36)

Bounding Wm now amounts to evaluating E|∆m|2. Under Assumption 1, we have the following
result.

Proposition 11 Suppose the assumptions of Theorem 3 are satisfied and let {xm}, {x̃m}, and
{∆m} be defined in (29), (34), and (36), respectively. Then, we have

E|∆m+1|2 ≤
(

1− hµ

2

)
E|∆m|2 +

10h2

µ

d∑
i=1

L2
i

φi
. (37)

The proof of this proposition appears in Appendix C.1. The proof for Theorem 3 is now immediate.
Proof [Proof of Theorem 3] By iterating (37), we obtain

E|∆m|2 ≤
(

1− hµ

2

)m
E|∆0|2 +

20h

µ2

d∑
i=1

L2
i

φi
,

and since hµ/2 ∈ (0, 1), we have

E|∆m|2 ≤ exp

(
−µhm

2

)
E|∆0|2 +

20h

µ2

d∑
i=1

L2
i

φi
. (38)

By construction, we have W 2(q0, p) = E|∆0|2 and W 2(qm, p) ≤ E|∆m|2. By taking the square
root of both sides and using a2 ≤ b2 + c2 ⇒ a ≤ b+ c for any nonnegative a, b, and c, we arrive at
(21).
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The proof for Corollary 4 is also obvious.
Proof [Proof of Corollary 4] To ensure that Wm ≤ ε, we set the two terms on the right hand side
of (21) to be smaller than ε/2, which implies that

h = O

 µ2ε2

100
∑d

i=1
L2
i

φi(α)

 and m ≥ 4

µh
log

(
2W0

ε

)
. (39)

By using the definition of φi(α) according to (22), we obtain

d∑
i=1

L2
i

φi(α)
=

(
d∑
i=1

L2
i

Lαi

) d∑
j=1

Lαj

 = µ2K2−αKα ,

which implies that m = Õ
(
(K2−αKα) /(µε2)

)
. Furthermore, α = 1 gives the optimal cost,

because:

K2−αKα =
(∑

καi

)(∑
κ2−α
i

)
≥

(∑
i

κi

)2

= K2
1 ,

due to Hölder’s inequality.

C.1. Proof of Proposition 11

To prove Proposition 11, we first present the following lemma.

Lemma 12 Under the conditions of Proposition 11, for m ≥ 0 and i = 1, 2, . . . , d, we have

E|∆m+1
i |2 ≤

(
1 + hµ+

h2µ2

φi

)
E|∆m

i |2 − 2hE [∆m
i (∂if(x̃m)− ∂if(xm))]

+
3h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

(
2h3L3

i

µφ2
i

+
8h2L2

i

µφi

)
.

(40)

Proof In the m-th time step, we have

P(rm = i) = φi, P(rm 6= i) = 1− φi ,

so that
E|∆m+1

i |2 = φiE
(
|∆m+1

i |2 | rm = i
)

+ (1− φi)E
(
|∆m+1

i |2 | rm 6= i
)

= φiE
(
|∆m+1

i |2 | rm = i
)

+ (1− φi)E |∆m
i |

2 .
(41)
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We now analyze the first term on the right hand side under condition rm = i. By definition of
∆m+1
i , we have

∆m+1
i = ∆m

i + (x̃m+1
i − x̃mi )− (xm+1

i − xmi )

= ∆m
i +

(
−
∫ Tm+hi

Tm
∂if(x̃(s)) ds+

√
2hiξm

)
−
(
−
∫ Tm+hi

Tm
∂if(xm) ds+

√
2hiξm

)
= ∆m

i −
∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(xm)) ds

= ∆m
i −

∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(x̃m) + ∂if(x̃m)− ∂if(xm)) ds

= ∆m
i − hi (∂if(x̃m)− ∂if(xm))−

∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(x̃m)) ds

= ∆m
i − hi (∂if(x̃m)− ∂if(xm))− V m ,

(42)
where we have defined

V m :=

∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(x̃m)) ds . (43)

By Young’s inequality, we have

E
(
|∆m+1

i |2 | rm = i
)

= E
(
|∆m+1

i + V m − V m|2 | rm = i
)

≤ (1 + a)E
(
|∆m+1

i + V m|2 | rm = i
)

+

(
1 +

1

a

)
E
(
|V m|2 | rm = i

)
, (44)

where a > 0 is a parameter to be specified later.
For the first term on the right hand side of (44), we have

E
(
|∆m+1

i + V m|2 | rm = i
)

= E|∆m
i − hi (∂if(x̃m)− ∂if(xm)) |2

= E|∆m
i |2 − 2hiE [∆m

i (∂if(x̃m)− ∂if(xm))] + h2
iE |∂if(x̃m)− ∂if(xm)|2 . (45)

Note that the second term will essentially become the second line in (40), and the third term will
become the third line in (40) (upon the proper choice of a). For very small h, this term is negligible.
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For the second term on the right-hand side of (44), we recall the definition (43) and obtain

E
(
|V m|2

∣∣rm = i
) (I)
≤ hi

∫ Tm+hi

Tm
E
(
|∂if(x̃(s))− ∂if(x̃m)|2

∣∣∣rm = i
)

ds

(II)
≤ hiL

2
i

∫ Tm+hi

Tm
E
(
|x̃(s)− x̃m|2

∣∣∣rm = i
)

ds

= hiL
2
i

∫ Tm+hi

Tm
E

(∣∣∣∣∫ s

Tm
∂if(x̃(t)) dt+

√
2(Bs −BTm)

∣∣∣∣2
∣∣∣∣∣rm = i

)
ds

(III)
≤ 2h2

iL
2
i

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂if(x̃(t))|2

∣∣∣rm = i
)

dt ds

+ 4h2
iL

2
i

∫ Tm+hi

Tm
E|ξm|2 ds

(IV)
= h4

iL
2
iE
(
|∂if(x̃m)|2

)
+ 4h3

iL
2
i

(V)
= h4

iL
2
iEp|∂if |2 + 4h3

iL
2
i

(VI)
≤ h4

iL
3
i + 4h3

iL
2
i , (46)

where (II) comes from L-Lipschitz condition (7), (I) and (III) come from the use of Young’s in-
equality and Jensen’s inequality when we move the | · |2 from outside to inside of the integral, and
(IV) and (V) hold true because x̃(t) ∼ p for all t. In (VI) we use Ep|∂if |2 ≤ Li using (Dalalyan
and Karagulyan, 2019, Lemma 3).

By substituting (45) and (46) into the right hand side of (44), we obtain

E
(
|∆m+1

i |2 | rm = i
)

≤ (1 + a)E|∆m
i |2 − 2hi(1 + a)E [∆m

i (∂if(x̃m)− ∂if(xm))]

+ h2
i (1 + a)E |∂if(x̃m)− ∂if(xm)|2 +

(
1 +

1

a

)(
h4
iL

3
i + 4h3

iL
2
i

)
. (47)

By substituting (47) into (41), we have

E|∆m+1
i |2 ≤ (1 + aφi)E|∆m

i |2 − 2(1 + a)hE [∆m
i (∂if(x̃m)− ∂if(xm))]

+
(1 + a)h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

(
1 +

1

a

)(
h4L3

i

φ3
i

+
4h3L2

i

φ2
i

)
, (48)

where we have used hiφi = h.
Now, we need to choose a value of a > 0 appropriate to establish (40). By comparing the two

formulas, we see the need to set

aφi = hµ ⇒ a = hiµ =
hµ

φi
≤ 1 .

since h ≤ min{φi}/µ. It follows that 1 + 1
a ≤

2φi
hµ . By substituting into (48), we obtain

E|∆m+1
i |2 ≤ (1 + hµ)E|∆m

i |2 − 2hE [∆m
i (∂if(x̃m)− ∂if(xm))]

− 2h2µ

φi
E [∆m

i (∂if(x̃m)− ∂if(xm))] +
2h2

φi
E |∂if(x̃m)− ∂if(xm)|2

+

(
2h3L3

i

µφ2
i

+
8h2L2

i

µφi

)
. (49)
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We conclude the lemma by using the following Cauchy-Schwartz inequality to control the third
term on the right hand side of this expression:

−2h2µ

φi
E [∆m

i (∂if(x̃m)− ∂if(xm))] ≤ h2µ2

φi
E|∆m

i |2 +
h2

φi
E|∂if(x̃m)− ∂if(xm)|2 .

Proposition 11 is obtained by simply summing all components in the lemma.
Proof [Proof of Proposion 11] Noting

E|∆m+1|2 =

d∑
i=1

E|∆m+1
i |2 ,

we bound the right hand side by (40) and get

E|∆m+1|2 ≤
(

1 + hµ+
h2µ2

min{φi}

)
E|∆m|2 − 2hE 〈∆m,∇f(x̃m)−∇f(xm)〉

+
3h2

min{φi}
E |∇f(x̃m)−∇f(xm)|2 +

(
2h3

µ

d∑
i=1

L3
i

φ2
i

+
8h2

µ

d∑
i=1

L2
i

φi

)
.

(50)

The second and third terms on the right-hand side can be bounded in terms of E|∆m|2:

• By convexity, we have

E 〈∆m,∇f(x̃m)−∇f(xm)〉 ≥ µE|∆m|2 . (51)

• As the gradient is L-Lipschitz, we have

E |∇f(x̃m)−∇f(xm)|2 ≤ L2E|∆m|2 . (52)

By substituting (51) and (52) into (50) and using µ ≤ L, we obtain

E|∆m+1|2 ≤
(

1− hµ+
4h2L2

min{φi}

)
E|∆m|2 +

(
2h3

µ

d∑
i=1

L3
i

φ2
i

+
8h2

µ

d∑
i=1

L2
i

φi

)
. (53)

If we take h sufficiently small, the coefficient in front of E|∆m|2 is strictly smaller than 1, ensuring
the decay of the error. Indeed, by setting h ≤ µmin{φi}

8L2 , we have

4h2L2

min{φi}
≤ hµ

2
, and

hLi
φi
≤ µ

8L
≤ 1 ,

which leads to the iteration formula (37).
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Appendix D. Proof of Theorem 6

Theorem 6 is based on the following proposition.

Proposition 13 Suppose the assumptions of Theorem 6 and let {xm}, {x̃m}, and {∆m} be defined
as in (29), (34), and (36), respectively. Then we have

E|∆m+1|2 ≤
(

1− hµ

2

)
E|∆m|2 +

4h3

µ

d∑
i=1

(
L3
i +H2

i

)
φ2
i

. (54)

We prove this result in Appendix D.1. The proof of the theorem is now immediate.
Proof [Proof of Theorem 6] Use (54) iteratively, we have

E|∆m+1|2 ≤
(

1− hµ

2

)m
E|∆0|2 +

8h2

µ2

d∑
i=1

(
L3
i +H2

i

)
φ2
i

≤ exp

(
−µhm

2

)
E|∆0|2 +

8h2

µ2

d∑
i=1

(
L3
i +H2

i

)
φ2
i

.

Using W 2(q0, p) = E|∆0|2 and W 2(qm, p) ≤ E|∆m|2, we take the square root on both sides, we
obtain (24).

The proof of Corollary 7 is also immediate.
Proof [Proof of Corollary 7] Use (24), to ensure Wm ≤ ε, we set two terms on the right hand side
of (24) to be smaller than ε/2, which implies that

h = O

 εµ√∑d
i=1

(L3
i+H

2
i )

φ2i

 , m ≥ 4

µh
log

(
2W0

ε

)
. (55)

To find optimal choice of φi, we need to minimize

d∑
i=1

(
L3
i +H2

i

)
φ2
i

under constraint
∑d

i φi = 1 and φi > 0. Introducing a Lagrange multiplier λ ∈ R, define the
Lagrangian function as follows:

F (φ1, φ2, . . . , φd, λ) =
d∑
i=1

(
L3
i +H2

i

)
φ2
i

+ λ

(
d∑
i=1

φi − 1

)
.

By setting ∂F/∂φi = 0 for all i, and substituting into the constraint
∑d

i φi = 1 to find the appro-
priate value of λ, we find that the optimal (φ1, φ2, . . . , φd) satisfies

φi =

(
L3
i +H2

i

)1/3∑d
i=1

(
L3
i +H2

i

)1/3 , i = 1, 2, . . . , d.

By substituting into (55), we obtain (25).
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D.1. Proof of Proposition 13

The strategy of the proof for this proposition is almost identical to that of the previous section. The
reference solution x̃ is defined as in (34). We will use the following lemma:

Lemma 14 Under the conditions of Proposition 13, for m ≥ 0 and i = 1, 2, . . . , d, we have

E|∆m+1
i |2 ≤

(
1 + hµ+

h2µ2

φi

)
E|∆m

i |2 − 2hE [∆m
i (∂if(x̃m)− ∂if(xm))]

+
3h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

4h3
(
L3
i +H2

i

)
φ2
iµ

. (56)

Proof In the m-th time step, we have

P(rm = i) = φi, P(rm 6= i) = 1− φi ,

meaning that

E|∆m+1
i |2 = φiE

(
|∆m+1

i |2 | rm = i
)

+ (1− φi)E
(
|∆m+1

i |2 | rm 6= i
)

= φiE
(
|∆m+1

i |2 | rm = i
)

+ (1− φi)E |∆m
i |

2 .
(57)

To bound the first term in (41) we use the definition of ∆m+1
i . Under the condition rm = i, we

have, with the same derivation as in (42):

∆m+1
i = ∆m

i − hi (∂if(x̃m)− ∂if(xm))−
∫ Tm+hi

Tm
(∂if(x̃(s))− ∂if(x̃m)) ds

= ∆m
i − hi (∂if(x̃m)− ∂if(xm))− V m ,

(58)

where we denoted V m =
∫ Tm+hi
Tm (∂if(x̃(s))− ∂if(x̃m)) ds.

However, different from (46), since f has higher regularity, we can find a tighter bound for the
integral. Denote

Um =

∫ Tm+hi

Tm

(
∂if(x̃(s))− ∂if(x̃m)−

√
2

∫ s

Tm
∂iif(x̃(z)) dBz

)
ds (59)

and

Φm =
√

2

∫ Tm+hi

Tm

∫ s

Tm
∂iif(x̃(z)) dBz ds . (60)

Then (58) can be written as

∆m+1
i = ∆m

i − hi (∂if(x̃m)− ∂if(xm))− Φm − Um , (61)

which implies, according to Young’s inequality, that, for any a:

E
(
|∆m+1

i |2
∣∣rm = i

)
= E

(
|∆m+1

i + Um − Um|2
∣∣rm = i

)
≤(1 + a)E

(
|∆m+1

i + Um|2
∣∣rm = i

)
+

(
1 +

1

a

)
E
(
|Um|2

∣∣rm = i
)
.

(62)
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Both terms on the right-hand side of (62) are small. We now control the first term. Plug in the
definition (61), we have:

E
(
|∆m+1

i + Um|2 | rm = i
)

= E
(
|∆m

i − hi (∂if(x̃m)− ∂if(xm))− Φm|2
∣∣rm = i

)
. (63)

Noting that

E ((∆m
i − hi (∂if(x̃m)− ∂if(xm))) · Φm)

=
√

2

∫ Tm+hi

Tm
E
[∫ s

Tm
(∆m

i − hi (∂if(x̃m)− ∂if(xm))) · ∂iif(x̃(z)) dBz

]
ds = 0

because

E
[∫ s

Tm
(∆m

i − hi (∂if(x̃m)− ∂if(xm))) · ∂iif(x̃(z)) dBz

]
= 0 ,

according to the property of Itô’s integral, we can discard the cross terms with Φm in (63) to obtain

E
(
|∆m+1

i + Um|2 | rm = i
)

= E|∆m
i |2 − 2hiE [∆m

i (∂if(x̃m)− ∂if(xm))]

+ h2
iE |∂if(x̃m)− ∂if(xm)|2 + E

(
|Φm|2

∣∣rm = i
)
. (64)

For the last term of (64), we have the following control:

E
(
|Φm|2

∣∣rm = i
)

= E

(
2

∣∣∣∣∫ Tm+hi

Tm

∫ s

Tm
∂iif(x̃(z)) dBz ds

∣∣∣∣2
∣∣∣∣∣rm = i

)
(I)
≤ 2E

[(∫ Tm+hi

Tm
ds

)(∫ Tm+hi

Tm

∣∣∣∣∫ s

Tm
∂iif(x̃(z)) dBz

∣∣∣∣2 ds

)∣∣∣∣∣rm = i

]

≤ 2hi

∫ Tm+hi

Tm
E

(∣∣∣∣∫ s

Tm
∂iif(x̃(z)) dBz

∣∣∣∣2
∣∣∣∣∣rm = i

)
ds

(II)
= 2hi

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂iif(x̃(z))|2

∣∣∣rm = i
)

dz ds

(III)
= h3

iEp|∂iif |2 = h3
iL

2
i ,

where we use Hölder’s inequality in I and x̃(t) ∼ p for all t in III. In II, we use the following
property of Itô’s integral:

E

(∣∣∣∣∫ s

Tm
∂iif(x̃(z)) dBz

∣∣∣∣2
∣∣∣∣∣rm = i

)
=

∫ s

Tm
E
(
|∂iif(x̃(z))|2

∣∣∣rm = i
)

dz .

By substituting into (64), we obtain

E
(
|∆m+1

i + Um|2 | rm = i
)
≤E|∆m

i |2 − 2hiE [∆m
i (∂if(x̃m)− ∂if(xm))]

+ h2
iE |∂if(x̃m)− ∂if(xm)|2 + h3

iL
2
i (65)

To bound the second term on the right-hand side of (62), we first note that f is three times
continuously differentiable, and (11) implies ‖∂iiif‖∞ ≤ Hi. Take dt on both sides of (34), under
condition rm = i, we first have

dx̃i(t) = −∂if(x̃(s)) ds+
√

2 dBs . (66)
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According to Itô’s formula, we obtain

∂if(x̃(t))− ∂if(x̃m) =

∫ t

Tm
∂iif(x̃(s)) dx̃i(s) +

∫ t

Tm
∂iiif(x̃(s)) ds . (67)

Substituting (66) into (67), we have

∂if(x̃(t))− ∂if(x̃m)−
√

2

∫ t

Tm

∂iif(x̃(s)) dBs

=

∫ t

Tm
−∂iif(x̃(s))∂if(x̃(s)) + ∂iiif(x̃(s)) ds .

(68)

By substituting into (59), we obtain

E
(
|Um|2 | rm = i

)
(I)
≤ hi

∫ Tm+hi

Tm
E

(∣∣∣∣∂if(x̃(s))− ∂if(x̃m)−
√

2

∫ s

Tm
∂iif(x̃(z)) dBr

∣∣∣∣2
∣∣∣∣∣rm = i

)
ds

(II)
= hi

∫ Tm+hi

Tm
E

(∣∣∣∣∫ s

Tm
(−∂iif(x̃(z))∂if(x̃(z)) + ∂iiif(x̃(z))) dz

∣∣∣∣2
∣∣∣∣∣rm = i

)
ds

(III)
≤ h2

i

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂iif(x̃(z))∂if(x̃(z)) + ∂iiif(x̃(z))|2

∣∣∣rm = i
)

dz ds

(IV)
≤ 2h2

i

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂iif(x̃(z))∂if(x̃(z))|2

∣∣∣rm = i
)

dz ds

+ 2h2
i

∫ Tm+hi

Tm

∫ s

Tm
E
(
|∂iiif(x̃(z))|2

∣∣∣rm = i
)

dz ds

(V)
≤ h4

i

(
L3
i +H2

i

)
. (69)

In the derivation, (II) comes from plugging in (68), and (I) and (III) come from the use of Jensen’s
inequality, (V) comes from the use of Lipschitz continuity in the first and the second derivative ((7)
and (11) in particular), and the fact that x̃(t) ∼ p for all t. Note also Ep|∂if |2 ≤ Li by (Dalalyan
and Karagulyan, 2019, Lemma 3).

By plugging (65) and (69) into (57) and (62), we obtain

E|∆m+1
i |2 ≤ (1 + aφi)E|∆m

i |2 − 2(1 + a)hE [∆m
i (∂if(x̃m)− ∂if(xm))]

+
(1 + a)h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

(1 + a)h3L2
i

φ2
i

+

(
1 +

1

a

)
h4
(
L3
i +H2

i

)
φ3
i

,

(70)

where we use hiφi = h. Comparing with (56), we need to set

a = hiµ =
hµ

φi
< 1 ,
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where we use h < µmin{φi}
8L2 . This leads to 1 + 1

a ≤
2φi
hµ . By substituting into (48), we obtain

E|∆m+1
i |2 ≤

(
1 + hµ+

h2µ2

φi

)
E|∆m

i |2 − 2hE [∆m
i (∂if(x̃m)− ∂if(xm))]

+
3h2

φi
E |∂if(x̃m)− ∂if(xm)|2 +

2h3L2
i

φ2
i

+
2h3

(
L3
i +H2

i

)
φ2
iµ

.

Noting Li/µ > 1, we conclude the lemma.

The proof of Proposition 13 is obtained by summing up all components and applying Lemma 14.
Proof [Proof of Proposition 13] Noting that

E|∆m+1|2 =
d∑
i=1

E|∆m+1
i |2 ,

we substitute using (56) to obtain

E|∆m+1|2 ≤
(

1 + hµ+
h2µ2

min{φi}

)
E|∆m|2 − 2hE 〈∆m,∇f(x̃m)−∇f(xm)〉

+
3h2

min{φi}
E |∇f(x̃m)−∇f(xm)|2 +

4h3

µ

d∑
i=1

(
L3
i +H2

i

)
φ2
i

. (71)

The second and third terms in the right-hand side of this bound can be controlled by E|∆m|2,
as follows. By convexity, we have

E 〈∆m,∇f(x̃m)−∇f(xm)〉 ≥ µE|∆m|2 . (72)

By the L-Lipschitz property, we have

E |∇f(x̃m)−∇f(xm)|2 ≤ L2E|∆m|2 . (73)

By substituting (72) and (73) into (50), and using µ < L, we have

E|∆m+1|2 ≤
(

1− hµ+
4h2L2

min{φi}

)
E|∆m|2 +

4h3

µ

d∑
i=1

(
L3
i +H2

i

)
φ2
i

. (74)

Since h < µmin{φi}
8L2 , we obtain (54).

Appendix E. Proof of Proposition 9

We now give the proof to Proposition 9 to show the convergence rate we obtain is sharp.
Proof [Proof of Proposition 9] For this special target distribution p, the objective function is f(x) =∑d

i=1
|xi|2

2 . With α = 0 and φi = 1/d, we have: xm+1
i = xmi for all i 6= rm and

xm+1
rm = (1− dh)xmrm +

√
2dhξm .

27



DING LI LU WRIGHT

Therefore for all i = 1, 2, . . . , d, we have

E|xm+1
i |2 =

1

d
E
(
|xm+1
i |2

∣∣rm = i
)

+

(
1− 1

d

)
E
(
|xm+1
i |2

∣∣ rm 6= i
)

=
1

d
E
(
|(1− dh)xmi +

√
2dhξm|2

∣∣∣rm = i
)

+

(
1− 1

d

)
E
(
|xmi |2

)
=
(
1− 2h+ dh2

)
E|xmi |2 + 2h (75)

where we use Eξ
∣∣∣xmi − dhxmi +

√
2dhξm

∣∣∣2 = (1 − dh)2|xmi |2 + 2dh in the last equation. By
summing (75) over i, we obtain

E|xm+1|2 =
(
1− 2h+ dh2

)
E|xm|2 + 2dh .

Using it iteratively, and considering E|x0|2 = 3d, we have:

E|xm|2 ≥ 3d
(
1− 2h+ dh2

)m
+
(
1−

(
1− 2h+ dh2

)m) 2dh

2h− dh2

= d
(
1− 2h+ dh2

)m
+

2d

2− dh
+ 2d

(
1− 1

2− dh

)(
1− 2h+ dh2

)m
≥ d (1− 2h)m +

2d

2− dh
,

where we use dh ≤ 1 in the last inequality.
Since

W (qm, p) ≥
(∫
|x|2qm(x) dx

)1/2
−
(∫
|x|2p(x) dx

)1/2
=
(∫
|x|2qm(x) dx

)1/2
−
√
d ,

we have

W (qm, p) ≥
(∫
|x|2qm(x) dx

)1/2
−
√
d ≥

d (1− 2h)m + 2d
2−dh − d√

d (1− 2h)m + 2d
2−dh +

√
d

≥
√
d

3
(1− 2h)m +

d3/2h

6

≥ exp (−2mh)

√
d

3
+
d3/2h

6
,

where in the last inequality we use√
d (1− 2h)m +

2d

2− dh
+
√
d ≤ 3

√
d.

Therefore, we finally prove (27).

28
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