
Approximate optimization of convex functions
with outlier noise

Anindya De
University of Pennsylvania
anindyad@cis.upenn.edu

Sanjeev Khanna
University of Pennsylvania
sanjeev@cis.upenn.edu

Huan Li
University of Pennsylvania
huanli@cis.upenn.edu

Hesam Nikpey
University of Pennsylvania
hesam@cis.upenn.edu

Abstract

We study the problem of minimizing a convex function given by a zeroth order ora-
cle that is possibly corrupted by outlier noise. Specifically, we assume the function
values at some points of the domain are corrupted arbitrarily by an adversary, with
the only restriction being that the total volume of corrupted points is bounded. The
goal then is to find a point close to the function’s minimizer using access to the
corrupted oracle.
We first prove a lower bound result showing that, somewhat surprisingly, one
cannot hope to approximate the minimizer nearly as well as one might expect, even
if one is allowed an unbounded number of queries to the oracle. Complementing
this negative result, we then develop an efficient algorithm that outputs a point
close to the minimizer of the convex function, where the specific distance matches
exactly, up to constant factors, the distance bound shown in our lower bound result.

1 Introduction

Unconstrained convex optimization is among the most well-studied problems in mathematical
optimization and has extensive applications in machine learning [7]. In the classic unconstrained
convex minimization problem, we are given oracle access to a convex function f : Rd → R, and seek
to efficiently find a point x̃ that is close to the minimizer of f (call it x∗)1. To obtain meaningful
guarantees for approximating the minimizer x∗, one needs to make certain assumptions on the
convexity and smoothness of f . In particular, f is commonly assumed to be α-strongly convex and
β-smooth for some β > α > 0. This means that, when f is twice differentiable, its second derivative
in any direction is between α and β. For ease of presentation, we will say a convex function is
(α, β)-nice if it satisfies these two conditions.

It is well known that the minimizer of an (α, β)-nice function can be approximated arbitrarily
well in polynomial time by the classic gradient descent algorithm, or its accelerated version due
to Nesterov [18]. To formally state the performance of these two algorithms, let us suppose an
(α, β)-nice function f : Rd → R is given to us as a zeroth order oracle, which returns the function
value f(x) on any input point x ∈ Rd. Then we have:

Theorem 1.1 ([7]). Given any initial point x0 ∈ Rd and ε > 0, the classic gradient descent algorithm
outputs a point x̃ s.t. ‖x̃− x∗‖2 ≤ ε using O(d(β/α) log ‖x0−x∗‖

ε) oracle queries.

1Sometimes, instead of finding a point close to x∗, the goal is to find a point whose function value is close to
f(x∗). However, as we point out later, it is more natural to study approximations in the domain in our setting.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Theorem 1.2 ([18]). Given any initial point x0 ∈ Rd and ε > 0, the accelerated gradient descent
algorithm outputs a point x̃ s.t. ‖x̃− x∗‖2 ≤ ε using O(d

√
β/α log ‖x0−x∗‖

ε) oracle queries.

We note that the quantity β/α is called the condition number of the function f . The efficiency of a
convex minimization algorithm is usually measured with respect to such a quantity.

Given that the complexity of convex minimization with exact oracles has been well understood, a
natural question is “can we still minimize a convex function efficiently if the oracle is to some extent
inaccurate?” There has in fact been a rich body of work in efforts to answer this question. Roughly,
they can be divided into two categories based on their assumptions on the oracle’s inaccuracy.

The first category studies the case when the oracle is corrupted by stochastic noise2 — namely, the
errors of the oracle are assumed to be random and independently drawn from some distribution [10,
20, 19]. Notice that as the oracle is correct in expectation, one can obtain good estimates to the true
values efficiently by averaging over sufficiently many points in a small neighborhood. As a result, it
is still possible to approximate the minimizer x∗ to within arbitrarily small distance in polynomial
time. The main focus of these results is thus to obtain optimal algorithm efficiency, ideally matching
that of Nesterov’s accelerated gradient descent.

The second category, on the other hand, considers the adversarial noise. That is, the errors are no
longer drawn from certain distributions, but rather are added adversarially, while obeying certain
constraints. A representative such model is what we call pointwise-bounded noise model [22, 5],
in which the only assumption on the noise is that it is pointwise bounded in magnitude; other
than that, the specific perturbation on each point can be arbitrary. Formally, it is allowed for the
oracle to return, on an input point x, a value in the range [f(x)− ε, f(x) + ε] (absolute errors) or
[(1 − ε)f(x), (1 + ε)f(x)] (relative errors), for some ε > 0. [5] shows that when the errors are
absolute and ε is on the order of 1/d, there is a polynomial-time algorithm that can find a point with
function value arbitrarily close to f(x∗). Whereas [22] shows that, in sharp contrast, when ε is about
1/
√
d or larger, no polynomial-time algorithm is able to find a point with function value within some

constant error of f(x∗), for both absolute and relative errors.

Our model. Following the second line of research above, in this paper we study another type of
adversarial noise model, called outlier noise model, which can be seen as a natural variant of the
pointwise-bounded noise model in [22, 5]. In this model, the only assumption we make is a bound on
the “number” of points corrupted by the noise; apart from that, we do not assume any bounds on the
magnitude of the errors on the corrupted points. Formally, we are given access to an exact zeroth
order oracle of a function f̂ that differs from the true convex function f only on a set C ⊂ Rd, with the
guarantee that the volume of C is at most that of a d-dimensional ball of radius K, for some K > 0.
Notice that although C is bounded in volume, for any x ∈ C, f̂(x) and f(x) can differ arbitrarily.

Though variants of each other, both the pointwise-bounded noise model in [22, 5] and our model
may be considered as special cases of a more general type of adversarial noise model, namely the
`p-bounded noise model. To see this, let us write the noise as a function η : Rd → R, such that
the noisy zeroth order oracle given to us corresponds to the function f + η. Then, in the (absolute)
pointwise-bounded noise model, η is bounded in `∞-norm (they assume ‖η‖∞ ≤ ε), whereas in
the outlier noise model, η is bounded in `0-norm (we assume ‖η‖0 ≤ vol(radius-K ball)). It will
certainly be an interesting future direction to explore what can be achieved for minimizing convex
functions with general `p-bounded noise.

We would also like to point out that in our noise model, it is more natural to consider getting as close
as possible to x∗ as opposed to finding a point with function value close to f(x∗). This is because our
only assumption on the noise is that the corrupted region C, which is in the domain of the function f ,
is bounded in volume, and in particular, it may be located around x∗. Therefore, we believe it makes
the most sense to measure the quality of the solution of a minimization algorithm by its distance to
the optimal in the domain (specifically, how the distance compares with the corruption radius K).

Our results. Let us first consider what one might expect to achieve in the outlier noise model. By
the observation made above, it is not hard to see that we cannot hope to always find a point that is
within distance K of the minimizer x∗, as an adversary could potentially corrupt some radius-K ball

2This model more often deals with the first order oracle, which gives the (noisy) gradient∇f(x) at a point x.

2

around x∗, making it impossible for us to know where the true minimizer lies. However, is it possible
to obtain a distance bound that is close to K (e.g. O(K))?

Our first result in this paper is a lower bound showing that, somewhat surprisingly, this goal is in
general impossible to achieve, even for algorithms that are allowed an unbounded number of queries
to the oracle. In fact, our lower bound indicates that the best distance bound one can hope for is
at least Ω(K

√
β/α), where we recall that α,β are the “niceness” of the function. This result is a

consequence of the existence of two (α, β)-nice functions that only differ in a small region of the
domain, but whose minimizers are sufficiently far apart. We then develop, as our second result, an
efficient algorithm that finds a point within distance O(K

√
β/α) of the minimizer x∗, thus matching

our lower bound up to constant factors. Roughly, our algorithm performs two stages of gradient
descent, using approximate gradients computed from the noisy zeroth order oracle.

We state our results formally in the theorems below. For simplicity, let us say a zeroth order oracle of
a function f is K-corrupted if it is perturbed by an outlier noise of corruption radius K.

Theorem 1.3 (Lower bound; formal version appears as Theorem 3.1). For α, β,K > 0 and suffi-
ciently large d, there exist two (α, β)-nice functions f0, f1 : Rd → R which satisfy the following
conditions: (i) The `2-distance between the minimizers of f0, f1 is Ω(K

√
β/α); (ii) The total volume

of points where f0 and f1 differ is at most that of a d-dimensional ball of radius K.

To see the implication of this theorem, consider an adversary that randomly picks an index i ∈ {0, 1}
and lets fi be the true convex function, but always uses f0 as the K-corrupted oracle. Then no
matter which point our algorithm outputs, with probability at least 1/2 over the randomness of i, it is
Ω(K

√
β/α) away from the minimizer of the true convex function fi.

Theorem 1.4 (Algorithm; formal version appears as Theorems 4.2, 5.1). Let α, β,K > 0 and d be
sufficiently large. There is an algorithm that, given access to a K-corrupted oracle of an (α, β)-nice
function f : Rd → R and an initial point x0 ∈ Rd, makes Õ(d · (β2/α2) · log ‖x0 − x∗‖)3 queries
to the oracle and outputs a point x̂ s.t. ‖x̂− x∗‖2 ≤ O(K

√
β/α). Here x∗ is the minimizer of f .

We note that in both our results, our conditions on d are roughly that d ≥ Ω(log β/α). In other words,
we require the function’s condition number β/α to be at most 2O(d), a quantity exponential in d.

Our techniques. We now briefly describe our techniques used to obtain the above results.

Our lower bound proceeds by proving the existence of two (α, β)-nice functions f0 and f1 s.t. (i)
they differ only in an ellipsoid with volume at most that of a ball of radius K; (ii) their minimizers are
at `2-distance Ω(K

√
β/α)-away from each other. As mentioned above, this implies that even with

infinitely many queries, one cannot approximate the minimizer x∗ to within distance o(K
√
β/α).

More concretely, we start by letting f0 be a simple (α, β)-nice quadratic function whose minimizer is
at the origin. Then the existence of our desired function f1 will follow by two steps: first we show that
there exists another function f ′ with certain good properties, then we obtain f1 by taking a piecewise
combination of f0 and f ′. Specifically, the properties that we need f ′ to satisfy is as follows: (i) f ′
is (α, β)-nice; (ii) both the function values and the gradients of f0 and f ′ agree on all points on the
periphery of an ellipsoid E that is centered at the origin and has bounded volume; (iii) the minimizer
of f ′ has coordinate of the form (Ω(K

√
β/α), 0, . . . , 0). We show that this essentially boils down

to a convex function interpolation task where the function values and gradients at some infinitely
many points are given. To this end, we adapt an interpolation result from [23], which was proposed
to accommodate interpolation from finitely many points, to prove the existence of f ′. Finally, we
construct the function f1 by letting f1 = f ′ inside the ellipsoid E , but f1 = f0 outside of E .

For the upper bound, our algorithm proceeds in two stages. In the first stage, we come to within
distance O(K(β/α)) of the minimizer x∗ and in the subsequent stage, we improve it to O(K

√
β/α).

The first algorithm essentially follows a gradient descent, but using an approximate gradient at each
step. In order to estimate the gradient at a point x, we set up a system of linear equations, where
each equation adds a constraint on the derivative at x along a uniformly random direction. There are
however two types of noise in these equations, one from using a zeroth order oracle to compute first

3Here and throughout the paper, we write Õ(f) to denote O(f · poly(log f)).

3

order information, and the other from the outlier noise added to the oracle. While we can solve this
noisy linear system with good enough accuracy via an exhaustive search, we show that using an LP
decoding routine in [12], we can solve it more efficiently in polynomial time. We note that using the
latter is only to improve the running time, as both approaches result in the same query complexity.

However, the one bottleneck in this approach is that at any point, the ball of radius < K around it
could potentially be (nearly) completely corrupted. Thus, to get a meaningful estimate of the gradient,
we have to sample points which are more than distance K-far apart. This tradeoff eventually allows
us to get O(K(β/α))-close to the minimizer.

To get to the optimal closeness of O(K
√
β/α), we next start at a point which is guaranteed to be

O(K(β/α))-close to the true minimizer. We now consider the function f̄ which is defined as the
average of f in a ball of radius (say) 2K. It is not hard to verify that f̄ continues to be (α, β)-nice.
Moreover, the minimizers of f̄ and f can be shown to be O(K

√
β/α)-close to each other. Thus, it

suffices to get close to the minimizer of f̄ . We will do so by simulating a gradient descent on f̄ . It
therefore boils down to how we can efficiently approximate the gradients of f̄ .

By the definition of f̄ , the gradient∇f̄(x) is also equal to the average of the gradients∇f(y) over
all points y within distance 2K of x. This suggests that we can approximate ∇f̄(x) by averaging
the gradients ∇f(y) at sufficiently many randomly sampled y’s, and bounding the error using
concentration inequalities for sums of random vectors. Now a key observation is that, since these y’s
are sampled randomly from a radius 2K-ball, it is highly likely that each sampled y sits in a mostly
uncorrupted neighborhood, as long as the dimension is sufficiently high. Consequently, we can use
the LP decoding approach above to obtain an accurate estimate of the gradient at each of these points.

Prior work on noisy convex optimization. Other than the works mentioned above, noisy convex
optimization has also been investigated in the context of multi-armed bandits and regret minimiza-
tion [2, 8, 1]. In the direction of convex optimization under adversarial noise, the early results in fact
date back to the 90s by [3]. Specifically for the pointwise-bounded noise model, there are subsequent
works such as [21, 24, 17] that have improved on the guarantees of [5].

Due to space limitation, we include some other related work in Appendix A.

Organization. In Section 2, we set up a few notations and give some basic definitions and technical
preliminaries. In Section 3, we prove our lower bound result. In Section 4, we give a first algorithm
that gets us to within distance O(K(β/α)) of x∗. In Section 5, we give a second algorithm that gets
us to within distance O(K

√
β/α) of x∗. In Section 6, we propose several future directions.

2 Preliminaries

Note that due to space limitation, we defer some of the preliminaries to Appendix B.

While there are many known equivalent definitions of strong convexity and smoothness of a function,
the specific ones that we use in this paper are as follows.
Definition 2.1. A function f : Rd → R is β-smooth if it is differentiable and for all pairs x, y ∈ Rd
we have ‖∇f(x)−∇f(y)‖ ≤ β ‖x− y‖4.

Definition 2.2. A function f : Rd → R is α-strongly convex if f(x)− α
2 ‖x‖

2 is convex.

We next set up notations of a ball and the uniform distribution over it.

Definition 2.3. Let B(x, r)
def
= {y : ‖y − x‖ ≤ r} denote the ball of radius r centered at x. Let

U(x, r) denote the uniform distribution over all points in the ball B(x, r).

As a result, the fraction of corrupted volume in a ball B(x, r) is Pry∼U(x,r)[f(y) 6= f̂(y)], where we
recall that f̂ denotes the corrupted version of f .

For our second algorithm in Section 5, we will need to consider the “average” function, whose value
at a point x is the average of f(y)’s where y is within some distance of x.

4Here and going forward, all norms are `2-norms unless stated otherwise

4

Definition 2.4. For any r > 0, define the function f̄r as f̄r(x)
def
= Ey∼U(x,r) [f(y)].

It is not hard to verify the strong convexity and smoothness of f̄r:
Lemma 2.5. If f is α-strongly convex and β-smooth, f̄r is also α-strongly convex and β-smooth.

As a result of α-strong convexity and β-smoothness, we can upper bound the distance between the
minimizers of f and f̄r by O(r

√
β/α).

Lemma 2.6. Let x∗, x̄r be the minimizers of f and f̄r respectively. Then ‖x∗ − x̄r‖ ≤ 2r
√
β/α.

A proof of this lemma is included in Appendix B.

3 An Ω(K
√
β/α) lower bound

In this section we show that getting O(K
√
β/α)-close to x∗ is the best we can hope for even if we

are allowed to query the function value at every point of the domain. We will prove this by showing
that when the dimension is sufficiently high in terms of β/α, there exist two α-strongly convex,
β-smooth functions that differ only in an ellipsoid of volume equal to a ball of radius K, but whose
minimizers are Ω(K

√
β/α)-apart.

Theorem 3.1. Given 0 < α ≤ β with 1 + log β
α ≤ d where d is the dimension, and a K > 0, there

exist two α-strongly convex, β-smooth functions whose values differ only in an ellipsoid of volume

equal to a radius-K ball, but whose minimizers are Ω(
√

β
αK)-far from each other.

In order to prove Theorem 3.1, we shall prove several intermediate lemmas first, which are built on the
interpolation results from [23]. We remark that the main results in [23] are stated for interpolating a
set of finitely many points, while for our purpose we need to interpolate infinitely many. Therefore we
cannot use their results directly in a black-box manner, but instead have to make certain adaptations.

3.1 Some interpolation results from [23]

First let us define the notion of (α, β)-interpolability.
Definition 3.2 ((α, β)-interpolability). Suppose we are given a set of (possibly infinitely many) tuples
{(xi, gi, fi)}i∈I where each xi, gi ∈ Rd, fi ∈ R. Let α ∈ R≥0, β ∈ R≥0∪{+∞} where α < β. We
say this set is (α, β)-interpolable if there is a proper and closed convex function f : Rd → R∪{+∞}
that is α-strongly convex and β-smooth such that for all i ∈ I , gi ∈ ∂f(xi) and f(xi) = fi, where
∂f(xi) denotes the set of subgradients of f at xi.

Note here that when α = 0, we only require f to be convex. When β =∞, we do not require f to
be smooth and thus f is not necessarily differentiable; when β <∞, the condition gi ∈ ∂f(xi) is
equivalent to gi = ∇f(xi) as the gradient is unique at any point when f is differentiable.

The following two lemmas are proved in [23]. The first lemma enables us to reduce the (α, β)-
interpolation of some tuple set to the (0, β′)-interpolation of another tuple set, while the second
lemma allows us to further reduce it to the (α′,∞)-interpolation of some other tuple set. We note
that although [23] only states these lemmas for sets containing finitely many tuples, their proofs work
for sets containing infinitely many tuples as well.
Lemma 3.3. Given a set of (possibly infinitely many) tuples {(xi, gi, fi)}i∈I where xi, gi ∈ Rd,
fi ∈ R and 0 ≤ α < β ≤ +∞. The following two statements are equivalent:

1. {(xi, gi, fi)}i∈I is (α, β)-interpolable.

2.
{

(xi, gi − αxi, fi − α
2 ‖xi‖

2
)
}
i∈I

is (0, β − α)-interpolable.

Lemma 3.4. Given a set of (possibly infinitely many) tuples {(xi, gi, fi)}i∈I where xi, gi ∈ Rd,
fi ∈ R and 0 < β ≤ +∞. The following two statements are equivalent:

1. {(xi, gi, fi)}i∈I is (0, β)-interpolable.

5

2.
{

(gi, xi, x
>
i gi − fi)

}
i∈I is (1/β,∞)-interpolable.

Then as in [23], by alternately applying Lemmas 3.3 and 3.4 twice each, we are able to reduce any
(α, β)-interpolation problem to a (0,∞)-interpolation problem, where we only want to interpolate
some points with a proper and closed convex function. Formally, we have the following lemma,
whose proof is deferred to Appendix C.
Lemma 3.5. Given a set of (possibly infinitely many) tuples {(xi, gi, fi)}i∈I where xi, gi ∈ Rd,
fi ∈ R and 0 ≤ α < β ≤ +∞. The following two statements are equivalent:

1. {(xi, gi, fi)}i∈I is (α, β)-interpolable.

2.
{(

βxi

β−α −
gi
β−α , gi − αxi,

αx>i gi
β−α + fi − βα‖xi‖2

2(β−α) −
‖gi‖2

2(β−α)

)}
i∈I

is (0,∞)-interpolable.

3.2 Our lower bound

We first show that there exists an Ω(1)-strongly convex, O(1)-smooth function whose minimizer is
1/2-far from the origin, but whose function values and gradients agree with the quadratic function
‖x‖2 on all points on the surface of a unit ball. Formally, we have the following lemma. For ease
of presentation, let us define X=1

def
= {x : ‖x‖ = 1} and similarly X≥1

def
= {x : ‖x‖ ≥ 1}. We also

write e1 = (1, 0, . . . , 0)T to denote the first standard basis vector.

Lemma 3.6. Let f(x)
def
= ‖x‖2 which is 2-strongly convex and 2-smooth. There exists a 1

2 -strongly
convex, 16-smooth function f̃ such that

1. f̃ ’s minimizer is 1
2e1.

2. For all x ∈ X=1 we have f̃(x) = f(x) and ∇f̃(x) = ∇f(x).

The proof of this lemma is deferred to Appendix C. Roughly, the proof consists of three steps: (i)
formulate proving the existence of f̃ as a (1

2 , 16)-interpolation problem; (ii) use Lemma 3.5 to reduce
it to the (0,∞)-interpolation of some infinitely many points; (iii) explicitly construct a proper and
closed convex function that does interpolate these points.

Now by taking a piecewise combination of the function f̃ in Lemma 3.6 and the quadratic function
‖x‖2, we can show that there exists an Ω(1)-strongly convex, O(1)-smooth function f̂ whose
minimizer is 1/2-far from the origin, but whose function values and gradients agree with ‖x‖2 on
every point with `2-norm greater than or equal to 1.

Lemma 3.7. Let f(x)
def
= ‖x‖2 which is 2-strongly convex and 2-smooth. Define f̂ such that

f̂(x) = f̃(x) if ‖x‖ ≤ 1 and f̂(x) = f(x) otherwise (‖x‖ > 1). Then we have

1. f̂ is 1
2 -strongly convex and 16-smooth.

2. f̂ ’s minimizer is 1
2e1.

3. For all x ∈ X≥1 we have f̂(x) = f(x) and ∇f̂(x) = ∇f(x).

The proof of this lemma is included in Appendix C.

Then by scaling the domains of f, f̂ in Lemma 3.7, we prove that for any κ ≥ 1, when the dimension
is sufficiently high in terms of κ, there exist two Ω(1/κ)-strongly convex, O(1)-smooth functions
whose function values and gradients agree on every point outside of an ellipsoid of volume equal to a
unit ball, but whose minimizers are

√
κ/2-apart. Here κ shall be thought of as β/α where β = Θ(1).

Lemma 3.8. Given κ ≥ 1 with 1+log κ ≤ dwhere d is the dimension. Let γ def
= (1/κ)

1
d−1 ∈ [1/2, 1].

Let Sd×d = DIAG(κ, γ, . . . , γ). Define s(x) = x>S−1x, which is (2/κ)-strongly convex and (2/γ)-
smooth. Let Xs≥1 = {x : s(x) ≥ 1}. Also define ŝ(x) = f̂(S−1/2x). Then we have

1. ŝ is 1/(2κ)-strongly convex and (16/γ)-smooth.

6

2. ŝ’s minimizer is
√
κ

2 e1.

3. For all x ∈ Xs≥1 we have ŝ(x) = s(x) and ∇ŝ(x) = ∇s(x).

Finally, by further scaling (the domain and the function values of) s, ŝ in Lemma 3.8, we can prove
Theorem 3.1. The proofs of Lemma 3.8 and Theorem 3.1 are both included in Appendix C.

4 An O(K(β/α))-close algorithm

In this section we give an algorithm GDSTAGEI that finds a pointO(K(β/α))-close to the minimizer
of f . GDSTAGEI essentially implements a gradient descent algorithm, but uses approximate gradient
computed from the noisy oracle at each step. To begin with, we present a subroutine GRADIENTCOMP
for computing the gradient at a point where a small neighborhood is mostly uncorrupted.

Algorithm 1: GRADIENTCOMP(f̂ , x, β, τ)

Input : f̂ : Rd → R, x ∈ Rd, β > 0, and τ > 0.
Output : g ∈ Rd.

1 Randomly choose 1000d pairs of points a1, b1 . . . , a1000d, b1000d in the ball B(x, τ).
2 Query the function values f̂(aj), f̂(bj) for all j = 1, 2, . . . , 1000d.
3 Let g ∈ Rd be any vector such that, for at least 800d of the j’s, the following holds:

∣∣∣g>(bj − aj)−
(
f̂(bj)− f̂(aj)

)∣∣∣
‖bj − aj‖

≤ βτ. (1)

If no such g exists, set g to be an arbitrary vector.

We summarize the performance of GRADIENTCOMP below, with the proof deferred to Appendix D.
Essentially, the error in the gradient computed by GRADIENTCOMP tends to zero as τ → 0.
Lemma 4.1. Fix d > 0 and β > 0. There exists a function err(τ) satisfying limτ→0+ err(τ) = 0
such that the following holds. Fix any x ∈ Rd and τ > 0 such that the radius-τ ball centered at x is
mostly uncorrupted:

Pry∼U(x,τ)

[
f(y) 6= f̂(y)

]
≤ 1

100
. (2)

Then we have that with probability 1− 2−3d, the vector g returned by GRADIENTCOMP satisfies

‖g −∇f(x)‖ ≤ err(τ). (3)

The number of queries made by GRADIENTCOMP is O(d).

We now describe GDSTAGEI in Algorithm 2. Its performance is characterized in Theorem 4.2.

Algorithm 2: GDSTAGEI(f̂ , α, β, x0, R0, δ)

Input : f̂ : Rd → R, 0 < α < β, x0 ∈ Rd, R0 ≥ ‖x0 − x∗‖, and δ ∈ (0, 1).
Output : x̂ ∈ Rd.

1 Let the iteration count be T ← 100βα log R0

(β/α)K .
2 for t = 0, 1, . . . , T − 1 do
3 Let the sample count be s← 200 log(T/δ).
4 Sample s random points y1, y2, . . . , ys in the ball B(xt, 99K).
5 Compute gradients gi ← GRADIENTCOMP(f̂ , yi, β, τ) for some sufficiently small τ > 0.
6 Find a vector ĝ ∈ Rd such that at least (2s)/3 of the gi’s are within euclidean distance

99.5βK of ĝ; if no such ĝ exists, set ĝ to be an arbitrary vector.
7 Perform a descent step: xt+1 ← xt − 1

2β ĝ.

8 return xt.

7

Theorem 4.2. Let d ≥ 2. Given an initial point x0 with ‖x0 − x∗‖ ≤ R0 and a δ ∈ (0, 1), the algo-
rithm GDSTAGEI returns a point x̂ with ‖x̂− x∗‖ ≤ 10000(β/α)K with probability 1−δ, where x∗

is the minimizer of f . The number of queries made by GDSTAGEI is Õ(d(β/α) log R0

(β/α)K log(1/δ)).

Crucial to proving this theorem is to show that the gradients used by GDSTAGEI are accurate enough:

Lemma 4.3. Let d ≥ 2. The ĝ computed at Line 6 of GDSTAGEI satisfies with probability 1− δ
T

that ‖ĝ −∇f(xt)‖ ≤ 200βK.

Full proofs of Theorem 4.2 and Lemma 4.3 are presented in Appendix D.

A note on the running time of our algorithms. While we are mainly concerned about the query
complexity, we remark that both of our algorithms above can be implemented in polynomial time.

For GRADIENTCOMP, all steps except Line 3 are easily seen to be implementable in polynomial
time (in particular, linear time). Therefore it suffices to show that Line 3 can be done efficiently.
Claim 4.4. A vector g satisfying the condition at Line 3 of GRADIENTCOMP, if it exists, can be
found in time polynomial in d.

Our proof of this claim proceeds by presenting a poly(d)-time algorithm based on an LP-decoding
routine in [12]. Therefore let us first introduce the specific result that we need from [12].

Let A ∈ Rn×d be a matrix and z ∈ Rd be a vector. Consider the linear system Ax = Az, to which
x = z is clearly a solution. If n ≥ d and A has full rank, then we can retrieve the vector z given A
and Az by solving the linear system Ax = Az in polynomial time using, e.g., Gaussian elimination.

Now suppose the RHS of the linear system is corrupted by some noise e ∈ Rn, and we are only given
A and the corrupted RHS Az + e, then can we still retrieve the vector z efficiently? [12] showed that
under certain assumptions, we can obtain good estimates of z in poly-time by linear programming.
Theorem 4.5 ([12]). There exist constants ρ∗ ≈ 0.239 and γ ≥ 1 such that the following holds.
Suppose n ≥ γd and An×d’s entries are drawn independently from a standard Gaussian distribution.
Suppose also the noise e can be written as e = e1 + e2 where ‖e1‖0 ≤ ρ∗n. Then given A and
Az + e, we can find in polynomial time a vector z′ s.t. ‖z − z′‖2 ≤ O(‖e2‖∞), for any z ∈ Rd.

Basically, this theorem assumes that the noise can be decomposed into the sum of two parts, one
with small nonzero support, and the other with small entry-wise magnitude. Then the `2-error of the
solution is on the order of the largest entry-wise magnitude of the second part of the noise.

Proof of Claim 4.4. Let us define a matrix B ∈ R1000d×d whose ith row is equal to (bi−ai)T
‖bi−ai‖ , where

ai, bi’s are the sampled points at Line 1 of GRADIENTCOMP. We also define vectors b, b̂ ∈ R1000d

with b(i) = ∇f(x)T (bi−ai)
‖bi−ai‖ and b̂(i) = f̂(bi)−f̂(ai)

‖bi−ai‖ , where x is the input point of GRADIENTCOMP.
Notice that each b(i) is the inner product of the ith row of B and ∇f(x), and therefore we have
B∇f(x) = b. Consequently, given B and b we can retrieve ∇f(x) by solving the linear system
By = b (y are the variables). Thus our goal becomes solving this linear system when only B and b̂
(a.k.a. a corrupted version of b) are given. While this looks like the task in Theorem 4.5, note that the
entries of B are not drawn from independent Gaussian distributions, so we will need go a step further.

As the ai, bi’s are sampled uniformly at random from a ball, each row (bi−ai)T
‖bi−ai‖ of B is a unit vector

with a uniformly random direction. It is well known that a vector with independent standard Gaussian
entries also points to a uniformly random direction. In fact, we can sample a d-dimensional such
vector by a three-step process: (i) sample a unit vector with a random direction; (ii) sample a length
` from the χ2-distribution with d degrees of freedom (i.e., the sum of the squares of d independent
standard Gaussians); (iii) scale the unit vector by

√
`. In light of this, let us generate a diagonal matrix

D ∈ R1000d×1000d such that each D(i, i) is independently sampled as in step (ii). Then we consider
the linear system D1/2By = D1/2b to which y = ∇f(x) is a solution. Notice that we now have that
each entry of D1/2B follows a standard Gaussian.

By thinking of D1/2b̂ as a corrupted version of Db, we then need to show that the noise e def
=

D1/2(b̂− b) can be written as e1 + e2 such that ‖e1‖0 ≤ ρ∗(1000d) and ‖e2‖∞ is small. To this end,

8

we notice that for each i such that both ai, bi are uncorrupted, we have by β-smoothness that

∣∣∣b(i)− b̂(i)
∣∣∣ =

∣∣∣∣∣
∇f(x)T (bi − ai)
‖bi − ai‖

− f̂(bi)− f̂(ai)

‖bi − ai‖

∣∣∣∣∣ ≤ O(βτ), (4)

where τ is the radius of the ball B(x, τ) from which ai, bi’s are sampled. Thus, if B(x, τ) is mostly
(say 99%) uncorrupted, with probability 1− exp(−Ω(d)), (4) holds for most (say 90%) of the i’s.

Also, by standard Markov’s inequality and Chernoff bounds, with probability 1− exp(−Ω(d)), for
most (say 99%) of the i’s we have D(i, i) ≤ O(d). Combining this with (4), we have for 80% of
the i’s that

√
D(i, i)

∣∣∣b̂(i)− b(i)
∣∣∣ ≤ O(

√
dβτ), implying the existence of e1, e2 s.t. e = e1 + e2

and ‖e1‖0 ≤ 0.2(1000d), ‖e2‖∞ ≤ O(
√
dβτ). This means that by Theorem 4.5 we can use linear

programming to find a g with ‖g −∇f(x)‖ ≤ O(
√
dβτ), matching the guarantee in Lemma 4.1.

Finally, to address a technicality about the constant γ in Theorem 4.5, we note that we can increase
the number of sampled ai, bi pairs to max {1000d, γd}, and the rest of the analysis still follows.

Then we consider the running time of GDSTAGEI. By Claim 4.4 and straightforward observations,
all steps other than Line 6 run in polynomial time. Thus we focus on the efficiency of Line 6.

Claim 4.6. A vector ĝ satisfying the condition at Line 6 of GDSTAGEI, if it exists, can be found in
nearly-linear time in s, at the cost of an extra constant factor in the radius of the ball.

We note that an extra constant factor in the radius of the ball will not affect the final distance to x∗
by more than a constant factor. The proof of this claim is deferred to Appendix D. Roughly, the
proof proceeds by sampling Õ(1) points from g1, . . . , gs and checking for each sampled gj if at least
2/3 fraction of the total points are within euclidean distance 200βK of gj . Note that the radius now
becomes 200βK as opposed to 100βK at Line 6 of GDSTAGEI.

5 An O(K
√
β/α)-close algorithm

In this section we give an algorithm GDSTAGEII that, when given an initial point which is
O(K(β/α))-close to the minimizer x∗ of f , finds a point that is O(K

√
β/α)-close to x∗.

GDSTAGEII basically performs a gradient descent on the average function f̄2K (Definition 2.4).

Algorithm 3: GDSTAGEII(f̂ , α, β, x0)

Input : f̂ : Rd → R, 0 < α < β, and x0 ∈ Rd with ‖x0 − x∗‖ ≤ 10000(β/α)K.
Output : x̂ ∈ Rd.

1 Let the iteration count be T ← 100βα log(βα + 1).
2 for t = 0, 1, . . . , T − 1 do
3 Let the sample count be s← 400βα log(dT).
4 Sample s random points y1, y2, . . . , ys in the ball B(xt, 2K).
5 Compute gradients gi ← GRADIENTCOMP(f̂ , yi, β, τ) for sufficiently small τ > 0, and

their average ḡ ← 1
s

∑s
i=1 gi.

6 Perform a descent step: xt+1 ← xt − 1
2β ḡ.

7 return xt.

The performance of GDSTAGEII is characterized in Theorem 5.1, with the proof in Appendix E.
Note that while the success probability in Theorem 5.1 is not arbitrarily large, we can amplify it to
any 1− δ by repeating the algorithm O(log(1/δ)) times, as we show in Corollary E.2.

Theorem 5.1. Suppose that d ≥ 100 log(β/α + 1). Then given an initial point x0 that satisfies
‖x0 − x∗‖ ≤ 10000(β/α)K, GDSTAGEII returns a point x̂ with ‖x̂− x∗‖ ≤ 1000

√
β/αK with

probability at least 1 − 2−d/8, where x∗ is the minimizer of f . The number of queries made by
GDSTAGEII is Õ(d(β/α)2). Moreover, the algorithm runs in polynomial time.

9

The proof of Theorem 5.1 builds on a lemma showing that the gradients that GDSTAGEII uses are
sufficiently precise. The lemma relies on an `2-concentration inequality for the sum of random
vectors (i.e., the Vector Bernstein Inequality in Theorem E.1). Its proof also appears in Appendix E.
Lemma 5.2. Let d ≥ 100 log(β/α+ 1). The vector ḡ computed at Line 5 of GDSTAGEII satisfies
the following with probability at least 1− 2−d/8/T :

∥∥ḡ −∇f̄2K(xt)
∥∥ ≤ 16

√
αβK.

6 Future directions

We obtained asymptotically matching upper and lower bounds on how well the minimizer of a convex
function can be identified in presence of outlier noise. There are several natural directions for future
work. First, while our algorithm’s query complexity has essentially the same dependence on d and
‖x0 − x∗‖ as Nesterov’s accelerated gradient descent, it is still off by a factor of (β/α)1.5. It will thus
be interesting to understand if this remaining performance gap can be eliminated. Also, we note that
both our results require the dimension to be sufficiently high. While we believe the high dimension
regime is of the most interest, it will be an interesting exercise to understand how these bounds
change in the low-dimensional setting. Finally, as pointed out in the introduction, an appealing future
direction is to study convex minimization with the more general `p-bounded noise.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their valuable feedback. This work was supported in part
by NSF awards CCF-1763514, CCF-1934876, CCF-2008305, CCF-1910534, CCF-1926872, and
CCF-2045128.

References
[1] A. Agarwal, O. Dekel, and L. Xiao. Optimal Algorithms for Online Convex Optimization with

Multi-Point Bandit Feedback. In COLT, pages 28–40, 2010.

[2] Alekh Agarwal, Dean P Foster, Daniel Hsu, Sham M Kakade, and Alexander Rakhlin. Stochastic
convex optimization with bandit feedback. SIAM Journal on Optimization, 23(1):213–240,
2013.

[3] David Applegate and Ravi Kannan. Sampling and integration of near log-concave functions.
In Proceedings of the twenty-third annual ACM symposium on Theory of computing, pages
156–163, 1991.

[4] Sanjeev Arora and Subhash Khot. Fitting algebraic curves to noisy data. Journal of Computer
and System Sciences, 67(2):325–340, 2003.

[5] Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, and Alexander Rakhlin. Escaping
the local minima via simulated annealing: Optimization of approximately convex functions. In
Conference on Learning Theory, pages 240–265. PMLR, 2015.

[6] Elwyn R Berlekamp. Algebraic coding theory (revised edition). World Scientific, 2015.

[7] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[8] Sébastien Bubeck, Nicolò Cesa-Bianchi, et al. Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems. Foundations and Trends R© in Machine Learning, 5(1):1–122,
2012.

[9] Xue Chen and Anindya De. Reconstruction under Outliers for Fourier-Sparse Functions. In
Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’20, page 2010–2029, 2020.

[10] Michael Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. On acceleration with noise-
corrupted gradients. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 1018–1027, 2018.

10

[11] Anindya De, Sanjeev Khanna, Huan Li, and Hesam Nikpey. Nearly tight bounds for discrete
search under outlier noise. To appear in SOSA 2022.

[12] Cynthia Dwork, Frank McSherry, and Kunal Talwar. The price of privacy and the limits of LP
decoding. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, June 11-13, 2007, pages 85–94, 2007.

[13] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 25–32,
1989.

[14] Venkatesan Guruswami and David Zuckerman. Robust fourier and polynomial curve fitting.
In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
751–759. IEEE, 2016.

[15] Daniel Kane, Sushrut Karmalkar, and Eric Price. Robust polynomial regression up to the
information theoretic limit. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 391–402. IEEE, 2017.

[16] Jonas Moritz Kohler and Aurélien Lucchi. Sub-sampled cubic regularization for non-convex
optimization. In Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, pages 1895–1904, 2017.

[17] Oren Mangoubi and Nisheeth K. Vishnoi. Convex Optimization with Unbounded Nonconvex
Oracles using Simulated Annealing. In Proceedings of the 31st Conference On Learning Theory,
pages 1086–1124, 2018.

[18] Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course. Lecture
notes, 3(4):5, 1998.

[19] Aaditya Ramdas, Barnabas Poczos, Aarti Singh, and Larry Wasserman. An analysis of active
learning with uniform feature noise. In Artificial Intelligence and Statistics, pages 805–813.
PMLR, 2014.

[20] Aaditya Ramdas and Aarti Singh. Optimal rates for stochastic convex optimization under
tsybakov noise condition. In International Conference on Machine Learning, pages 365–373.
PMLR, 2013.

[21] Andrej Risteski and Yuanzhi Li. Algorithms and matching lower bounds for approximately-
convex optimization. Advances in Neural Information Processing Systems, 29:4745–4753,
2016.

[22] Yaron Singer and Jan Vondrák. Information-theoretic lower bounds for convex optimization with
erroneous oracles. In Advances in Neural Information Processing Systems, pages 3204–3212,
2015.

[23] Adrien B Taylor, Julien M Hendrickx, and François Glineur. Smooth strongly convex interpo-
lation and exact worst-case performance of first-order methods. Mathematical Programming,
161(1-2):307–345, 2017.

[24] Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time analysis of stochastic gradient
Langevin dynamics. In Conference on Learning Theory, pages 1980–2022. PMLR, 2017.

11

