IET Research Journals

I The Institution of
Engineering and Technology

A Secure Contact Tracing Platform from

Simplest PSI-Cardinality

Jiahui Gao' , Chetan Surana?, Ni Trieu**

! Arizona State University
?Amazon
* E-mail: nitrieu@asu.edu

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Abstract: Contact tracing is an essential tool for controlling the spread of disease through human populations. However, existing
contact tracing applications are either vulnerable to privacy and security attacks or heavy bandwidth/computational requirements
on the client’s devices. In this work, we introduce SecureCT, a Secure Contact Tracing platform with strong privacy protection and
lightweight cost. SecureCT prevents linkage attacks, eliminates replay and relay attacks, and allows the phone’s holder to delegate
their contact tracing computation to untrusted servers while maintaining the user’s privacy.

The technical core of our scheme is an efficient Private Set Intersection Cardinality (PSI-CA) protocol which only relies on
symmetric-key primitives. We evaluate its performance to show the feasibility of our proposed system in practice.

1 Introduction

In the past two years, our life has been dramatically changed by
the pandemic of coronavirus SARS-CoV-2 which is also known as
COVID-19. This virus can be spread via air and droplets. When
an infected person has contact with others physically, it is likely to
spread the virus to them. By tracking down the spread route of the
virus, medical workers can make the right plan to contain the spread
and inform the potential infection to the related people timely. This
process is called contact tracing (CT). At the beginning of the pan-
demic, CT was done in the form of interviewing to ask the patient to
recall the place they have been and the people they have met, which
has low efficiency and a high error rate. A more powerful technique
is required to implement contact tracing digitally and efficiently.

A large number of CT mobile applications (apps) have been
developed and deployed, with most of them based on the exchange of
random and anonymous tokens using Bluetooth (BT) [ga20, cov20,
TPH ™20, Coa20, tra20]. These are generally decentralized systems
that alert users if they may have come in close proximity with other
positively diagnosed users (infected users). A high adoption rate is
critical for the success of CT apps in helping curb the spread of
severe diseases. However, adoption is low as these systems are prone
to a host of attacks, like linkage attack, relay attack, and replay attack
[Pie20, CIY20, Gvi20].

Most CT apps have a service provider (server) in the loop which
stores tokens of infected users. User devices periodically query the
server and download tokens of infected users. They check whether
there is a match between the set of downloaded tokens and the set of
tokens received from other users they were in close contact with.
This involves a download of a huge set of data from the server,
periodically, hence making it computationally inefficient for client
mobile devices. Moreover, the coronavirus spread through common
surfaces that have been touched by infected users. Informing users
to avoid geographical areas where many positively diagnosed users
have visited can help lessen the spread of the disease through surface
transmission. Decentralized, BT-based systems based on proximity
of devices cannot handle this case. GPS-based methods that match
location traces of users may not be as accurate as BT-based systems
and are vulnerable to dictionary attacks [BBV120]. Hence a secure,
efficient, and scalable protocol for CT that considers both contact
transmission and surface transmission is needed.

No matter using the BT-based method or the GPS-based method,
the privacy of the user is another concern. There is a need for a
framework that is robust against attacks and information leakage,
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and is computationally light and efficient. In this work, we aim to
prevent two important attacks: linkage attack and replay/relay attack.
In the linkage attack, we consider valid tokens which are generated
from the same device and may be broadcast at several places. The
tokens of the same client cannot be linked together by any partici-
pant. Most BT-based contact tracing systems are vulnerable to this
attack. For example, Seiskari [Sei] installed BLE-sniffing devices
to different known physical locations and collect contact tracing
tokens. By keeping track of when and where they received which
tokens, [Sei] can identify the travel route of the individuals. To
prevent the linkage attack, prior work [DPT20, DILT20] relies on
private set intersection cardinality (PSI-CA), which is used to check
how many tokens held by a user match the tokens in a set stored on
a server without the user revealing their token. In this work, we pro-
pose a more efficient PSI-CA protocol, which can be integrated into
a contact tracing system to improve the system’s performance.

To prevent the replay and relay attacks, prior work [Vau20, Pie20]
propose delayed authentication so that the CT server uses public ver-
ification to authenticate user tokens. However, their authenticated
system is not efficient, especially on the user’s device. In addition,
the identity of COVID-19 positive users might be revealed during
the authenticated process. To eliminate the replay and relay attacks,
we integrate the random tokens generation of the BT approach with
GPS and time-stamps [Mor66] such that the transformed token con-
tains the user’s secret BT token and location only in an encrypted
form.

1.1  Our Contribution

In this work, we make the following contributions:

e We propose a novel and deployment-friendly Private Set Inter-
section Cardinality (PSI-CA) protocol which relies only on
symmetric-key primitives (e.g. AES).

e We design and implement a contact tracing system, SecureCT,
that can provide strong privacy guarantees. It is able to eliminate
replay and relay attack using GPS.

e We implement SecureCT and evaluate it on the client’s phone
using Google Pixel 3. For the client set size n = 211 with-
out including the time spent waiting on the server’s response,
the client requires a running time of 208 milliseconds and only
32 KBs of communication. The server requires 35 seconds to
perform CT for the server set size N = 10°.



1.2 Organization

In Section 2, we begin with the related work of Contact Tracing sys-
tems as well as the protocols of private set intersection cardinality
(PSI-CA). Then we give the details of primitives for our design,
security model, and potential attacks in Section 3. The PSI-CA is
presented in Section 4. The SecureCT contact tracing system is
demonstrated in Section 5. Finally, we present the details and the
result of our implementation in Section 6.

2 Related Work

In this section, we overview the state of the art in contact tracing and
private set intersection cardinality (PSI-CA).

2.1  Decentralized Contact Tracing

There are two main categories of CT approach: centralized and
decentralized. In a centralized approach, a trusted third party is
required. The TraceTogether app [tra20] is a typical example that
is launched by the Singapore government. In TraceTogether, the
central authority (the government server) registers and stores user
details and unique identifiers, and assigns a set of contact tokens to
be broadcast at specific times. An infected user shares all received
broadcast tokens with the central authority, who then uses the tokens
to identify and follow up with users who have come in contact with
him. This system could be misused as a surveillance system, where
the central authority can learn graphs of user interaction.

In this work, we focus on decentralized contact tracing and review
two popular types of contact tracing systems.

2.1.1 GPS-based Construction: 1t is very important for the
patient to recall the place they visited and the people they met
before they tested positive. Based on this information, the analyst
can rebuild the trajectory of the patient and make the corresponding
plan to track and contain the spread of the virus. A natural way to
implement contact tracing digitally is to record the physical location
of the people and find the potential contact upon that.

In the GPS-based construction, the location information of the
user is collected for contact tracing analysis. In the work [TZBT21],
the authors proposed a network-centric WiFi sensing approach for
digital contact tracing. By collecting the Wifi logs of device associa-
tions to access points within the network, a graph structure capturing
the user device trajectory can be generated. The intersection of the
trajectories can be gain by using efficient time-evolving graphs and
algorithms.

Safe Paths [RSB120], extended to Path Check [pat], is one con-
tact tracing approach that is based on GPS location traces of users.
The app logs the user’s GPS location periodically. The location
is quantized to a geographical area using Geohash [Mor66]. The
app then uses a one-way hash function to mask the Geohash and
timestamp. An infected user’s hashes are shared to a central server
maintaining a public list. Other devices can download this list and
detect an exposure using set intersection. This approach may not
be as effective as BT-based techniques and involves a large num-
ber of hashes to be stored locally and downloaded from a server. It is
susceptible to dictionary attacks [BBV"'ZO], where a one-way deter-
ministic hash used to mask private information can be potentially
reversed.

2.1.2  BLE-based Construction: Most of the current decentral-
ized CT systems are based on Bluetooth Low Energy (BLE). BLE
is a radio specification for short-range communication and is well
suited for proximity detection due to its accuracy and feasibility.
The BLE-based CT protocols are designed in a very similar way
as follows:

1. Alice and Bob are two users of the contact tracing protocol.
They download and install the app on their smartphone.

2. When Alice and Bob meet each other, their phone will generate
and exchange the token.

3. Suppose Alice is tested positive for the disease. She will upload
all the tokens she generates to a third-party server.

4. At the server, a list of tokens from the user who is tested positive
can be maintained and published or a query mechanism can be
provided to the user for checking their contacts.

Google/Apple Exposure Notification (GAEN) solution [ga20]
and Decentralized Privacy-Preserving Proximity Tracing (DP3T)
[TPHT20] are built based on this idea of sharing tokens via Blue-
tooth devices. As discussed in Section 1, the typical BLE-based CT
approach remains susceptible to various attacks. For example, in
GAEN, when Alice is diagnosed with the disease, her daily diagnosis
keys (used to generate the tokens) are uploaded to the server. Thus,
Alice’s anonymous identifier tokens, as they are broadcast each day,
can be linked to each other. The tokens can also be linked across
days if Alice frequently appears at the same place. According to
calculation in [DPT20], DP3T with Cuckoo filters requires users to
download 110 MB each day for 40,000 new daily infections. It costs
each user $1/day using Google Fi network $10/GB. The GAEN solu-
tion would cost $0.10/day although their design is more vulnerable
to linkage attacks than the DP3T. PSI-CA was introduced to prevent
the linkage attack in the CT [DPT20, DIL+20, TSS+20]. We review
their PSI-CA protocols in Section 2.2.

2.2 Server-aided PSI-Cardinality

Private set intersection (PSI) allows two parties to compute the
intersection of their datasets without revealing any additional infor-
mation. The description of functionality is given in section 3.5 Over
the last several years PSI has become truly practical with extremely
fast cryptographically secure implementations [CM20, RS21]. We
refer the reader to [PRTY19] for additional discussion and motiva-
tion of PSI. Recently, private contact tracing applications related to
COVID-19 [TSS 120, BBV 20, DPT20, DIL " 20] found PSI-CA as
the ultimate cryptographic tool, allowing multiple participants (users
and healthcare providers) to privately match contact information and
notify users who may have been infected. In this work, we mainly
focus on a variant of PSI problems, PSI cardinality (PSI-CA). The
functionality of PSI-CA is to allow parties to learn the size of the
intersection and nothing else. Particularly, this functionality can be
achieved in a "server-aided" way in which there is a helping cloud
server to do some of the computation for the participants. Below we
consider the works most relevant to ours.

e DH-based PSI-CA [TSS+20] : Epione [TSS+20] is one of the
first works that apply PSI-CA into CT to prevent the linkage
attack. Instead of using CT tokens (refering the token in some
of earlier contact tracing schemes that do not hide the identity of
the corresponding user) for matching, their protocol uses PRF
values of these tokens. The PRF computation is implemented
via DH-based OPRF [HFH99]. To make PSI-CA efficient for a
large server-side database and a small client-side database, Epi-
one relies on keyword-PIR [CGN98, DRRT18] which allows a
client to check whether their PRF is in the server’s data, with-
out revealing the PRF itself to the server. As a result, their
PSI-CA protocol has communication complexity O(nlog N)
which is linear in the size of the smaller set (n), and logarith-
mic in the larger set size N. However, it requires each user to
perform O(n) exponentiations (public-key operations) for DH-
based OPRF and O(N) symmetric-key operations for keyword
PIR computation.

e Delegated PSI-CA[DPT20]: Catalic, a delegated contact trac-
ing system proposed in [DPT20], allows multiple untrusted
cloud servers to do the most of contact tracing computation so
that the efficiency of the PSI-CA protocol on the client’s device
can be improved. A set of non-colluding cloud servers take the
secret shares of the token from the client and jointly perform
oblivious distributed key PRF (Odk-PRF) [DPT20] with a back-
end server holding a set of tokens from infected patients. In the
end, only one cloud server learns the PRF value of the client’s
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token and nothing else. By having these values, the cloud server
can compute PSI-CA with less computation for the client. The
client’s computation and communication complexity of the PSI-
CA protocol in Catalic is linear in the size of the smaller set
O(n), and is independent of the larger set’s size N. How-
ever, Catalic system requires a least two non-colluding cloud
servers with a heavy computation/communication cost of Odk-
PRE. In addition, the underlying OPRF of Odk-PRF is based on
Oblivious Transfer [Rab05], which is not deployment-friendly.

e Function Secret Sharing (FSS) based PSI-CA [DIL20]:
Dittmer et al. [DILT20] introduces a variant of PSI-CA (so-
called weighted PSI-CA) in which each token of the client has
an associated secret weight. The weight indicates a proximity
estimate (e.g., “is there a wall between us?”) that enables a
more fine-grained tracing response. The weighted PSI-CA is
based on a cheap FFS constructions [BGI15, BGI16], thus it
is efficient on both client’s and server’s sides. Concretely, in the
FSS-based PSI-CA, the computation complexity of the client
and server is O(n) and O(N), respectively. The communica-
tion complexity is O(n). However, their construction assumes
that there exist two non-colluding servers, each holding an iden-
tical set of infected tokens. This assumption is not realistic in
the context of contact tracing.

3  Preliminaries

In this section, we introduce the notation and the primitives for
our contact tracing system and the PSI-CA protocol which will be
discussed in the later sections.

3.1  Notations

In this work, the computational and statistical security parameters
are denoted by &, respectively. We use [.] notation to refer to a set.
For example, [m] implies the set {1, 2, ..., m}. Additionally, we use
[i, 7] to denote the set {i,¢ + 1, ..., 5}. Other special notations for
the data structure will be introduced before the usage.

3.2 Geohash

Geohashing [Mor66, Nie] is a convenient geocoding system that can
encode a location latitude and longitude into a string of letters and
digits, with the length of encoding defining the precision. It is a hier-
archical spatial data structure that divides geographical areas into
the grid like buckets. A useful property of a geohash is arbitrary pre-
cision, allowing one to gradually remove characters from the end,
reducing the length while losing precision. The longer the prefix of
geohashes of two locations, the closer they are spatially.

A geohash from GPS coordinates is computed by interleaving two
binary strings, one each for the latitude and longitude, with bits
recursively splitting the grid into intervals. The calculation of a geo-
hash can be elucidated with an example. The interval is between
-90 to 90 degrees for latitude and between -180 to 180 degrees for
longitude. For example, the first four bits of a GPS coordinate with
latitude 19.5 is 1001. The first bit is 1 for it lies in the second half
of the first interval. Then, O is noted for it lies in the first half of
the interval 0 to 90, followed by O for the interval O to 45, 1 for
interval O to 22.5, and so on recursively, until the desired accuracy
is reached. The interleaved binary strings for longitude and latitude
are represented as letters and digits using the base-32 encoding. In
the implementation of the BT plus GPS protocol proposed in this
work, geohash of length 8 is chosen, to accommodate for reasonable
accuracy of proximity detection.

3.3 Oblivious Key-Value Store (OKVS)

An OKVS [GPR+21] is a data structure in which a sender, holding
a set of key-value mapping P = {(z;,v;),% € [n]} with pseudo-
random values y;, wishes to hand that mapping over to a receiver
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PARAMETERS:
e A Sender S with input Y = {y1,...,yn}-
e A Receiver R with input X = {z1,...,2n}.
e A cloud server C.

FUNCTIONALITY:

e Wait for input set X and Y from the S and R.

e Give the server C nothing.

e Give the R an intersection set size | X (Y]

Fig. 1: Functionality of PSI-CA

who is able to evaluate the mapping on any input but without reveal-
ing the keys x;. Formally, an Oblivious Key-Value Store consists of
two algorithms:

e Encode(P) — T': arandomized algorithm that takes as input a
set of n key-value pairs P = {(k;, vi) [, } from the key-value
domain K x V), and outputs an OKVS tabﬂe T.

e Decode(x,T) — y: a deterministic algorithm that takes as
input a table 7', a key « and outputs a value y.

The correctness of the OKVS is that if for all key-value pair A C
K x 'V with distinct keys and pseudo-random values, Encode(A) =
T and (k,v) € A then Decode(T, k) = v.

An OKVS is secure if the values v; are chosen uniformly then the
output of Encode hides the choice of the keys k;.

3.4 Hash Table Data Structures

Cuckoo Hashing: In the scheme of Cuckoo hashing, there is a
hash table of 3 bins denoted BJ[1...[]. k random hash functions
hi,...,hg : {0,1}* — [B] are chosen to generate position index
for the input element. There is an additional storage called stash in
case some of elements are failed to find an empty bin. The client uses
a variant of Cuckoo hashing such that each item x € X is placed in
exactly one of 3 bins. Using the Cuckoo analysis [DRRT18] based
on the set size | X|, the parameters 3, k are chosen so that with high
probability (1 — 2_)‘) every bin contains at most one item, and no
item has to place in the stash during the Cuckoo eviction (.i.e. no
stash is required) It is a scheme with worst case constant lookup and
deletion time, and amortised constant insertion time. On inserting an
item, it uses the first hash function. If an item already exists there,
the current item replaces it, and the evicted item is re-inserted using
the subsequent hash function. Repeat till the process settles. If there
is a cycle, a rehash is performed by choosing new hash functions
ha,... by {0,137 — [B].

Simple Hashing: With simple hashing, items in the input set Y are
inserted into 3 bins using the same set of & Cuckoo hash functions
(i.e,eachitem y € Y appears k times in the hash table). Using a stan-
dard ball-and-bin analysis based on k, /3, and the input size of client
| X|, one can deduce an upper bound 7 such that no bin contains
more than 7 items with high probability .

3.5 PSI-CA

Private set intersection cardinality is a security protocol allow parties
to learn the size of the intersection of their input sets and noth-
ing else. We consider two parties setting with a helping server. The
description of its functionality is given by Figure 1.

3.6  Security Models

The protocols in this work are scrutinized under specific security and
adversarial models. Consider that multiple parties agree to coopera-
tively compute a function f, and also agree to share the evaluation



result to a particular party. Two classical security models are the col-
luding and non-colluding models [TSS+20]. In a colluding model, a
subset of parties may be dishonest and collude during the execution
of the protocol. In a non-colluding model, the parties are independent
and do not collude.

There are two adversarial model definitions. In the honest but
curious model (semi-honest model), the parties strictly follow the
protocol without deviation but may attempt to learn extra infor-
mation from the execution script apart from that intended by the
protocol. In the malicious model, the adversary or dishonest party
may attempt any polynomial time strategy such as supplying invalid
inputs, deviating and executing different computation, so as to
disrupt the protocol to leak information.

In this work, the non-colluding and semi-honest setting is consid-
ered, where the parties are assumed not to collude and follow the
protocol’s description.

3.7 Attacks

The aforementioned approaches introduced in section 2 are all vul-
nerable to some of the attacks including relay attacks, linkage attacks
by users or servers, and also false reporting by users. We list and
illustrate these possible attacks below.

e Linkage Attack: Linkage attack allows attacker to refer the
identify of anonymous data by link it to some non-anonymous
dataset. In the case of contact tracing, linkage attack can be
applied by both the server and the client. The server can do
it by observing the contact token it received. In our proposed
SecureCT, this is prevented by having all the token random
generated. For clients, all they will receive from the protocol is
the number of infected people they have been in contact, they
can not apply linkage attack to any arbitrary client.

e Social graph reconstruction: A determined malicious adversary
can learn a part of the social graph in a centralized system.
The server can learn the social subgraphs with contacts between
diagnosed users and the people they have come in contact
with. A determined user can obtain proof of encounter with a
diagnosed person in a decentralized system [ Vau20].

e Replay and relay attack - Identification of diagnosed users: An
adversary, whether an individual, group, or organization, can
collect contact tokens, from the app or using strong Bluetooth
receivers, along with the time and place of collection. In a decen-
tralized system, the tokens of diagnosed users are public. The
adversary can use this to a posteriori identify the user that was
diagnosed [Vau20].

e False encounter and false reporting: An adversary may install
artificial broadcasters, and/or falsely report as positively diag-
nosed, to increase false positive exposure alerts.

In this work, our proposed SecureCT framework is robust
against all the attacks listed above.

4  Simplest Server-aided PSI-CA

In this section, we present the simplest server-aided PSI-CA
in which the computation utilizes a third-party non-colluding
cloud server. Our proposed protocol does not require OT-based
OPRF [KKRT16] or Odk-PRF [DPT20] (e.g. public-key base-OT),
thus, it relies only on symmetric-key primitives. To the best of our
knowledge, this is the only construction with such a property.

4.1  Technical Overview

Considering an untrusted cloud server C who helps to perform PSI-
CA on behalf of the receiver R. Our protocol consists of two main
phases. In the first phase, the receiver R chooses a random key &
which is sent to the sender S. On the other hand, R computes PRF

values x} < F(k, x;),Vi € [n], and sends them to the cloud server
C. One can consider this phase as executing oblivious PRF where
the sender S knows the PRF key k& and the cloud server C learns
PRF values F'(k, z;) without knowing the key k. However, different
from traditional OPREF, C learns nothing about the underlying values
x;. Having the PRF key k, the sender computes PRF values y, <
F(k,y:), Vi € [N].

Our second phase replies on OKVS and takes PRF values mg, yg
as inputs. More precisely, the sender S encodes the points P =
{(},v1),--., (Yn,vn)} into an OKVS table T + Encode(P)
which is sent to the cloud server C. Here, the set V = {v1,...,vnx}
are randomly chosen by the sender S. The cloud server C knows
a table 7', so she decodes it on every acg and obtains a set W =
{w1,...,wn}. According the OKVS’s functionality, we have w; €
V if «} was encoded in T, otherwise, w; is random. In addition, the
cloud server C cannot infer any information from W due to the ran-
domness’s property of the OKVS. To allow the receiver R to learn
only the intersection size, the sender S and the cloud server C respec-
tively sends a set V and W to the receiver R in a randomly shuffled
order. At this point, the receiver can count how many items are in
the intersection by computing W NV as W NV| = |{mg}ie[n] N
{vi}ie (v)| = [X NY]. In addition, the shuffling makes the receiver
learn nothing about which specific item was in common (i.e. which
wj corresponds to the item z; € X). Thus, the intersection set is not
revealed which can prevent the linkage attack in the contact tracing
scenarios.

[GPRT21] lists several OKVS constructions with different encod-
ing/decoding costs. The most efficient OKVS scheme is based on a
3-Hash Garbled Cuckoo Table (3H-GCT) in which: the encoding
time for encoding N items in the OKVS is O(NN)); the decoding
time for decoding n elements is O(n\); and the length of the OKVS
table T"is 1.27N + log(N) + A.

However, 3H-GCT is not deployment-friendly as it involves
complicated peeling/unpeeling processes. Thus, in the implementa-
tion of SecureCT, we use a deployment-friendly OKVS variant,
a polynomial-based OKVS scheme, in which the encoding and
decoding algorithms are exactly polynomial interpolation and eval-
uation. In polynomial-based OKVS, the encoding/decoding time
takes O(N log(N)?) and the table’s length is N.

4.2  Construction

Our server-aided PSI-CA protocol is presented in Figure 2. It closely
follows the technical overview described in Section 4.1. Recall that
the set V' is pseudo-random and known by both parties, S and R.
Thus, the set V' can be generated from a PRG seed known by these
parties. In our construction, we reuse the PRF key k as the PRG
seed. Clearly, the outputs of PRG and PRF are independent, and their
distributions are uniform.

4.2.1 Correctness: To show correctness of our construction,
we consider two following cases based on whether x; € X is in the
intersection of X and Y :

e Case 1: Suppose x; is an element in the set of Y, Jy; € Y,
such that y; = x;. Then we have x; = F(k,z;) which equals to
y§~ = F(k,y;). When decoding the OKVS table T using z, the
receiver obtains w;. Based on the correctness of OKVS, w; =
v; where v; is the corresponding value of y;. from the encode
process of OKVS. In other words, there is one-to-one mapping
from xz; = y; to w; = v;. Thus, this gives a contribution to
|W N V| so that the receiver R can learn.

e Case 2: Suppose z; is not an element in the set of Y. The decode
result of 2} = F'(k, x;) is a random value since ; never used in
the encode process of OKVS. There is no contribution to |W N
V| from z;.

4.2.2  Security: We turn to show the security of our PSI-CA
construction by the following theorem.
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PARAMETERS:
e Setsizen and N.
e A sender S, areceiver R, and a cloud server C

e A pseudo-random generator PRG : {0,1}" — {0,1}*

INPUTS:
e Sender S has input Y = {y1,...
e Receiver R has input X = {z1,..
e Cloud server C has no input.

ProOTOCOL:

2. Upon receiving the key k from R, the sender S computes:
e A pseudo-random set V = {vy, ...

o PRF values y} = PRF(k,y;),Vy; €Y
e AnOKVS table T + Encode({(y;,vi)}ic[n)

3. The sender S sends T to the cloud server C.

6. R generates a pseudo-random set V' = {v1,.

e A pseudo-random function F : ({0,1}*,{0,1}*) — {0,1}"

e An OKVS primitive with Encode and Decode algorithms described in Section 3.3.

,yn }, where y; € {0,1}" for ¢ € [N].

., &n}, where z; € {0,1}" fori € [n].

1. The receiver R chooses a random PRF key k and sends it to the sender S

,un } generated by PRG as v1]| ... ||y < PRG(k), where each v; has k-bit length.

4. The receiver R computes ;c; + F(k,x;),Yz; € X, and sends aset X' = {z],..

5. Upon receiving T from the sender S and X’ from the receiver R, the cloud server C computes w; = Decode (T, z}), vV, € X',
and sends W = {w (1), ..., Wr(n)} to the receiver R, where 7 : ([n]) — ([n]) is a random shuffled function chosen by C.

..,un} from PRG as vq]|...||lvy < PRG(k), and outputs |V N W|.

.,z } to the cloud server C.

Fig. 2: Our Server-aided PSI-CA Construction

Theorem 1. Given the OKVS functionality described in Section 3.3,
the PSI-CA construction of Figure 2 securely implements the PSI-
CA functionality with the presence of an untrusted semi-honest cloud
server C, malicious sender S and malicious receiver R.

Proof: We exhibit simulators for simulating these three following
cases: corrupt sender S, corrupt receiver R, and corrupt cloud server
C. For the first two cases, we describe simulation in both the semi-
honest and malicious settings. We argue the indistinguishability of
the produced transcript from the real execution.

Simulating sender. The simulator is given the sender’s input ¥ and
obtains the PRF key k& from the honest receiver. Since the key k is
randomly chosen by the receiver, we can replace k& with random.

In the semi-honest setting, the sender gives the set Y and & to the
ideal world and receives nothing. In the real world, he receives an
empty output. Therefore, The simulation is perfect.

In the malicious setting, the simulator runs the sender internally
and might encode a malicious pair into the OKVS. One can simu-
late this action as changing the sender’s input, thus, which trivially
concludes the simulation.

Simulating receiver. The simulator is given the receiver’s input X,
the set W = {wr (1), ., Wr(n)} in a randomly permuted order 7 :
([n]) = ([n]) chosen by the cloud server combiner C, a set of V/,
and the intersection size | X NY|.

In the semi-honest setting, we consider two cases. For each x; ¢
X NY, we can replace the term w; with an independently random
element due to the obliviousness property of OKVS table T'. For
each common item z; € X N'Y, the value w; + Decode(T, z}) is
equal to a value in the set V. We assume that the receiver and C do
not collude, thus the shuffle function 7 is hidden from the simulator’s
view. Therefore, we can replace w -1 ;) with a random element in
V' (i.e, the permutation hides the common items). In other words, the
simulator only learns | X NY| and Y. The simulation is perfect.
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In the malicious setting, the simulation is elementary as it is sim-
ilar to simulating malicious sender. More precisely, any malicious
action can be considered as the receiver changes his input.

Simulating cloud server. The simulator simulates the view of adver-
sary A, which consists of PRF values x} = F(k, ;) from the
receiver, and an OKVS table T’ <+ Encode({(y}, vi) tien)) from
the sender. We consider two following cases:

e Security for the receiver R: In Step 1 of our protocol, the
receiver R randomly chooses the PRF key k and sends it to the
sender S. We assume that A does not collude with the sender,
thus the key k is unknown to A. Thanks to the cryptographic
guarantees of the underlying PRF protocol, the PRF outputs can
be replaced with randoms. In Step 5, A evaluates Decode which
also produces output indistinguishable from the real world.

e Security for the sender S: In Step 2 of our protocol, S encodes
a set of key-value pairs {(v;, vi) }ie[n) via Encode algorithm,
where y, = F(k,y;) is a PRF value on the item y; € Y with the
key k unknown by A, and v; is generated from the secret PRG
seed. Because of the PRF property, we replace y, with random.
In our protocol, the cloud server does not know the PRG seed,
we can also replace v; with random. The Encode functionality
takes a set of random pairs thus its distribution is uniform.

In summary, the output of A is indistinguishable from the real
execution.
d

4.2.3 Complexity: We begin by the analysis of the computa-
tional complexity. The sender requires to perform 2N AES calls
to generate the set V and compute N PRF values y,. The sender
also encodes NN items into an OKVS. Denote the computational
cost of encoding/decoding OKVS as |OKVS | which is O(N ) or
O(N log(N)?) depending on which OKVS variant is used. The



PARAMETERS:

e Setsize n and N.
e A sender S, a receiver R, and a cloud server C

e An one-way hash function H : {0,1}* — {0,1}"

A pseudo-random generator PRG : {0,1}" — {0,1}*

INPUTS:
e Sender S has input Y = {yq,...
e Receiver R has input X = {z1,...
e Cloud server C has no input.

PrROTOCOL:

items in the receiver’s bth bucket.

PRG(k), where each v; has x-bit length.

and sends a set X' = {z,..., 2}, } to the cloud server C.

6. For each bucket b € [m]:
(a) The sender S:
e computes PRF values y; = F(k,y:), Vy; € Bgpy)

e sends T}, to the cloud server C.

7. The cloud server C sends W = {wﬂ(l), .
chosen by C.

A pseudo-random function F : ({0,1}*,{0,1}*) — {0,1}"

An OKVS primitive with Encode and Decode algorithms described in Section 3.3.

e Hashing parameters: a number of bins m, maximum bin sizes (3 for receiver’s bins, a number of hash functions h.

, YN}, where y; € {0,1}" for i € [N].

,&n }, where z; € {0,1}" for i € [n].

1. The receiver R hashes items x; € X into m bins using the Cuckoo hashing scheme with k hash functions. Let By, denote the

2. The sender S hashes items y; € Y into mm bins under h hash functions. Let B[y denote the set of items in the sender’s bth bucket.
3. The receiver R chooses a random PRF key k& and sends it to the sender S

4. Upon receiving the key k from R, the sender S generate a pseudo-random set V' = {vq, ..

5. For each bucket b € [m], the receiver R computes z;, < F(k,zy),Vr, € B R[p) Ot chooses a random value xy, < $ for empty bin,

e creates a set of points P, = {(y}, H(y,) ® vp)}, then pads P;, with dummy pairs to the maximum bin size 3

e encodes Py into an OKVS table T}, < Encode(P,)

(b) Upon receiving T}, from S and zj, from R, the cloud server C computes wy, = Decode(Ty, z;,) @ H(x})

s Wr(n)} to the receiver R, where 7 : ([n]) — ([n]) is a random shuffled function

8. R generates a pseudo-random set V' = {v1,...,vm} from PRG as v1]| ... ||lvy = PRG(k), and outputs |V N W|.

., Um } from PRG as v1||...||lvm +

Fig. 3: Our Server-aided Unbalanced PSI-CA Construction

sender computational complexity is 2N + | OKVS|. The receiver
requires to compute n + N AES calls. The cloud server needs to
decode n items, which costs | OKVS |.

For the communication complexity, the sender sends an OKVS
table encoded with O(NN) values to the cloud server. The receiver
sends an k-bit PRF key from the sender, sends n PRF values to the
cloud server, and receives n OKVS decoding values from him. In
summary, the communication complexity of the sender, the receiver,
and the cloud server is x + |T|-bit, k + n(x + A + log(N))-bit,
and |T'| + n(A + log(N))-bit, respectively. Here, T is the size of
the OKVS table with O (V) values.

Finally, we consider the round complexity. It is easy to see that
our protocol is 1-round.

4.3 Optimization: Unbalanced PSI-CA

We present a server-aided PSI-CA protocol in the unbalanced set-
ting where the receiver’s set size n is much smaller than the sender’s
set size N. The unbalanced PSI-CA is a good fit for our running
application, contact tracing, where the sender has million diagno-
sis tokens (e.g. N = 109) while the receiver has a few thousand
tokens (e.g. n = 10%). Recall our primary goal aims to minimize the
communication and computation cost on the receiver’s side. How-
ever, the construction in Figure 2 requires the receiver compute
N + n AES executions. When N is larger, the computation might
be a bottleneck, especially on the resource-constrained devices, e.g.
end-user’s phone or edge device. In this section, we describe an opti-
mization based on hashing to bins that enables large cost savings on
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the receiver’s side. In particular, the receiver’s computation complex-
ity of our optimized construction is linear in the size of the smaller
set O(n) and independent of the larger set’s size N.

Our main idea is that the receiver and sender use hashing to
partition its items into m = O(n) buckets. Each bucket contains a
smaller fraction of inputs, which allows all participants to perform
computation bin-by-bin. Concretely, we use Cuckoo-and-Simple
hashing scheme [PSSZ15] such that each bin of the R consists
of at most one item. Thus, the sender is allowed to use only one
value v; for all items in the " bin. The amount of data the sender
has to touch per query is now only the items that were mapped to
the same bin as the receiver query. Thus, it is much more efficient
computationally on the sender’s side. In addition, the receiver only
needs to generate O(n) values V = {v1,...,vm} before comput-
ing V' N W. Thus, the receiver’s computation complexity reduces to
O(n) from O(N + n). Note that variants of this idea have appeared
in previous work [PSSZ15].

We now discuss concrete hashing schemes and present a formal
description of our unbalanced PSI-CA in Figure 3. In this construc-
tion, the receiver uses Cuckoo hashing with h hash functions and
inserts her set of size n into m buckets. The sender maps his set of
size N into m buckets using the same set of h hash functions, so-
called simple hashing. With the high probability, each of the sender’s
items appears h times across all over bins. Using a standard ball-
and-bin analysis [PSSZ15] based on h, m, and n, one can deduce an
upper bound /3 such that no sender bin contains more than /3 items
with high probability p. Let Bg;) and Bgy;) denote the items in the

sender’s and receiver’s i bucket, respectively.

The receiver R computes a PRF 2’ + F(k, z) for an item x €
BRrj;) bucket, or chooses a dummy value for empty bin. He then
sends all PRF values to the cloud server C in order. Since each C’s
bucket contains exactly one item, it allows C and S to execute OKVS
bin-by-bin with a particular default value v. That is, the v; values
must be assigned bin-wise, instead of item-wise as before in Figure
2. By doing so, the receiver only needs to generate m values v; from
the PRG seeds, which speeds up the receiver’s computation cost.

However, all values in the OKVS data structure should be pseudo-
random. In the unbalanced PSI-CA, the sender computes encodes a
set of points (y., H(y,) ® vp) into OKVS. Here, y; = F(k,y;) for
each item y; in the b*" bucket, vy, is assigned for that bin, and H is
an one-way hash function. Upon receiving an OKVS table, the cloud
server C decodes it using the PRF value z’ corresponding to that bin,
and then removes the mask H (2'). We observe that this modification
does not impact any of our applications, since the cloud server C can
learn either vy, or random, and all vy, values are different across over
bins.

4.3.1 Correctness and Security Proofs: Our unbalanced
PSI-CA construction is correct by observation, except with the
negligible probability of Cuckoo hashing failure. In particular, our
constructions fail to be correct if the receiver is unable to hash its
items into m bucket. However, we note that we can set parameters
so that the probability of such failures is negligible.

The security of our unbalanced PSI-CA construction fol-
lows straightforwardly from the security of PSI-CA construction
described in Figure 2. Thus, we omit the proof of the following
theorem.

Theorem 2. Given the OKVS functionality described in Section 3.3
and Cuckoo hashing scheme described in Section 3.4, the unbal-
anced PSI-CA construction of Figure 3 securely implements the
PSI-CA functionality with the presence of an untrusted semi-honest
cloud server C, semi-honest sender S, and malicious receiver R.

Note that our unbalanced PSI-CA approach is not secure against
a malicious sender. The sender may map y; only to a subset of the
required bins instead of all of them. For example, if the sender put
the point (y;, H(y;) ® vp) only in one bin Bgj and the receiver
indeed counted y into the intersection size X N Y. It means that the
cloud service (so is the receiver) put its query z; in bin Bgjp). This
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leaks information related to other queries that could have been put in
that bin.

4.3.2  Complexity: We first discuss the computation complexity
of our server-aided unbalanced PSI-CA construction.

e The receiver first hash its n elements into m = O(n) bins
via the cuckoo hashing scheme with complexity O(nh). The
receiver also need to run m = O(n) AES to generate the set of
V and compute 7 PRF values of =’ The receiver computational
complexity is O((h 4+ 1)n)

e Sender also needs to generate the set of V' which cost m =
O(n) AES calls and compute N PRF values 3. The sender has
to hash all its N elements into the same m bins using those
h hash functions so basic there is h - N AES calls. After the
hashing, the sender needs to encode the items into an OKVS
for each of m bins with a cost of m - |OKVS|. It should be
noted that the computational cost of encoding/decoding OKVS
is much smaller than that without the hash scheme.The sender
computational complexity is m + (h + 1)N +m - |OKVS|.

e The cloud sever decode all the OKVS values of 2’ with the cost
of m - |OKVS |

For the communication complexity, the sender sends the cloud
server m OKVS tables, each encodes with O(N/n) values on aver-
age. The receiver receives a x-bit PRF key from the sender, sends m
PREF values to the cloud server, and receives n decoded values from
him.

Finally, it is easy to see that our server-aided unbalanced PSI-CA
construction is 1-round.

5 SecureCT System

In this section, we describe the SecureCT system in detail. The
PSI-CA protocol is used in the query CT process. We also propose
an enhancement for token generation in Section 5.3, which allows
SecureCT to eliminate the replay and relay attacks.

5.1  System’s Overview

We build a digital CT system aiming to identify and alert per-
sons potentially exposed to an infected user. The framework of
our SecureCT system is shown in Figure 4. Bluetooth low energy
(BLE) is used here to detect whether people were in close proximity.
The contact tracing systems comprise apps running on users’ mobile
devices, a cloud server, a backend server, and a health provider. We
design this system following the idea described in Section 2.1.2.
The working flow of the system goes like this. Users’ apps use
BLE to broadcast and receive anonymous tokens. Suppose there
are two users, Alice and Bob, in close proximity. Alice stores the
token broadcasted by Bob and vice versa. In this way, each user’s
app stores a list of tokens it has received from other users who have
been in close proximity. When Bob is infected and tested positive, he
uploads the seed used to generate the tokens, or all the tokens, to the
backend server. Other users make the query through the cloud server
to determine if they have come in contact with an infected user. The
query is done by running the PSI-CA protocol shown in Figure 3
between cloud server and backend server. Since Alice was in contact
with Bob, she will be alerted because the intersection between the
set of tokens she has received from other users and the set of tokens
of infected users maintained by the server is non-zero.

The potential vulnerabilities associated with solely BLE-based
contact tracing systems, including linkage and replay attacks, iden-
tification of diagnosed users, false reporting and false encounters,
are covered in section 3.7. Hence we propose the SecureCT system
which is a secure, scalable, and efficient contact tracing system with
strong privacy guarantees which is robust against these vulnerabili-
ties. The framework takes a step further to aid in the prevention of
contacts between users and infected users. We also propose a token
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Alice and Bob’s devices exchange tokens via BLE
when they are in close proximity
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Fig. 4: Our SecureCT Framework

generation method containing the GPS information and timestamps
to eliminate the replay and relay attack.

5.2  End-to-end Framework

Now we describe our SecureCT system design in detail. There is an
app on users’ mobile devices to broadcast and receive the token. The
cloud server and backend server can be assumed untrustworthy. The
healthcare provider is needed for diagnosis and certification. There
are mainly five phases for computing as follow:

1. Inmitialization: During this phase, the cloud server randomly
chooses a permutation function IT : [N] — [N], and provides
it to the healthcare provider. The healthcare provider randomly
chooses N certificates C; and gives the backend server I1(C})
in order. This can be done by randomly choosing a PRG seed ¢
for generating valid certificates. The healthcare provider sends
the seed to the backend server, which can locally compute
certificate C; <— PRG(c||t). The backend server generates a
public-private key pair (pk, sk) and sends the public key to
every user. Each user/phone u; randomly chooses a PRG seed
s; which is used to generate the Bluetooth tokens. As long as
the server’s configuration does not change, this phase does not
need to be run more than once. Whenever a new user registers,
they only need to generate their own PRG seed and receive the
public key from the backend server.

2. At Contact: The BLE device is used to exchange tokens
whenever users are in close proximity. The user can gener-
ate the 7 tokens per day to be broadcast by using a PRG
as t; 1| ... ||ti, = PRG(s;]|d), where s; is the user’s secret
PRG seed, d is the current day, 7 is an upper bound on the num-
ber of tokens needed for that day. Figure (4, 1) illustrates this
phase of token exchange and storage. In Section 5.3, we pro-
pose a method to add GPS information into the token and here
we can consider the token is generated via a PRG function and
a corresponding seed.

3. At Test: When a user u; is diagnosed by the healthcare provider,
the healthcare provider computes a certificate C; <— PRG/(c|7)
using their own secret PRG seed, and gives it to the user u;.
The certificate validates that this user tested positive for the dis-
ease and is used to detect false-positive claims if any. Note that
before adding the user’s tokens to the infected tokens database,

the backend server checks whether the certificate is valid. If not,
the backend server has permission to ask the cloud server to
reveal the identity (e.g. the IP address) of this nefarious user.

. Token Collection: Figure (4, III) describes the process of col-
lecting diagnosis tokens, which involves the computation and
communication of every user, the cloud server, and the backend
server. The goal is to have the backend server collect all diagnos-
tic tokens in a privacy-preserving manner. This phase contains
three steps as follows:

a) At the beginning of the phase, every ith diagnosed user
encrypts their PRG seed s; together with their received cer-
tificate C; using the public key pk of the backend server as
Enc(pk, s;||C;) and sends it to the cloud server.

b

=~

After receiving the encrypted values from diagnosed users,
the cloud server permutes and then forwards them to the
backend server.

C

~

Using its secret key, the backend server decrypts cipher-
texts to obtain plaintexts as s;||C;. First, the backend server
verifies whether C; is valid. This can be done as follows.
The backend server uses the PRG seed c of the health-
care provider, generates all possible certificates as C =
{C; + PRG(c||¥),Vi € [N]}, and checks whether C; €
C. If so, the backend server computes all diagnosis tokens
as ti 1| ... ||ti,n = PRG(s;]|d), for every d in the infec-
tion period, and adds them to the list of diagnosis tokens
T. Otherwise, a false-positive claim is easily detected. A
nefarious actor has been caught by communicating with the
cloud server and can be held accountable to the law.

The privacy of diagnosed users can be enhanced by allowing
every user, including those who have not tested positive yet,
to send an encrypted zero value and an "empty" certificate as
Enc(pk,0]|-L) to the cloud server in Step a. Then, at Step c, the
backend server decrypts ciphertexts and removes all zero values,
which belong to non-diagnosed users. By doing so, the cloud
server will not know whether a message it receives has come
from a diagnosed user. We only require a random subset of the
non-diagnosed users, as large as the set of diagnosed users, to
be involved.

. Model Compute and Release: Finally, the backend server
holds the uploaded tokens from infected users T while the ith
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user holds the received tokens 7; obtained from the "contact"
phase. The it" user can make the query by invoking the unbal-
anced PSI-CA protocol described in Figure 3 with the backend
server with the help of the cloud server. The user plays the role
of receiver R with the input of the token from other users during
the collection phase, the backend server plays the role of sender
S with the input of tokens T. If there is a match, the ith user
was in close proximity to a user that has been diagnosed with
the disease.

5.3  Resilient SecureCT with GPS

In this section, we describe a method to modify the SecureCT
system with tokens containing GPS and timestamp information.
The proposed decentralized BLE-based contact tracing scheme in
Section 5.2 is used as a baseline. It becomes robust against a variety
of attacks by utilizing GPS location and timestamp data. As men-
tioned in Section 3.7, linkage attacks exploit the fact that tokens
broadcast by user devices can be captured and linked, to reveal
the seed used to generate the tokens and thereby track a diagnosed
user retroactively when the list of infected users’ tokens is available.
Also, replay and relay attack can be prevented.

Rather than only using tokens generated by a PRG with a seed,
GPS and timestamp are also stored in a list when users during
contact. App on user’s device continuously broadcasts anonymous
tokens T'p that are rotated periodically. The app also listens for
any tokens received T’ from other users within a valid range. In
addition, the app logs the location [oc and timestamp ¢ of the user
periodically. Suppose Alice and Bob are two users and they are in
close proximity. Alice broadcasts 1'4;;.. and Bob broadcasts T'5.y.
They are at location loc at time t. Both Alice and Bob do the
following:

1. Store H(Tr +loc+t) in list Ly, where Tg is received
token, H is a public hash function and Lp is the list/table
of tokens received. Alice stores H(Tg,p + loc +t) and Bob
stores H (T 4j;ce + loc + t) in their respective L.

2. Store H(Tp +loc+t) in list L, where T is broadcast
token, H is a hash function and L g is the list/table of tokens
broadcast. Alice stores H (T pz;cc + loc+t) and Bob stores
H(T'gop + loc + t) in their respective L.

Suppose Bob is positively diagnosed with the disease. He will fol-
low the protocol to certificate their test result and upload all tokens
in his list L g to the backend server. Note that these tokens are the
hash of broadcasted Bluetooth token, location, and timestamp com-
bined so Bob has to upload the entire list rather than a single seed
as mentioned in the SecureCT token collection phase. The list L
may be prepared in two ways:

e Store H(Tg + loc + t) in L g with periodicity of location logs.

e Store {loc,t} entries in a separate table. Compute hash of T
and {loc, t} entries and prepare L g only when user is positively
diagnosed.

In the query phase, Alice can invoke PSI-CA protocol to securely
match tokens in her list L g with the tokens stored by the backend
server, and receive the number of her potential exposures.

The list of tokens can be maintained for a certain time period and
then deleted, depending on the infectious period of the pathogen.

Security Discussion. The fact that location and timestamp fea-
tures are incorporated along with the tokens makes it impossible
for an adversary, whether the untrusted server or external, to cap-
ture and link broadcast Bluetooth tokens and attempt to track an
infected user. Replay attacks by attempting to rebroadcast a captured
Bluetooth token at another location to cause false exposure events
are avoided as well since the location mismatch would result in an
entirely different token that would not be uploaded to the backend
server.
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5.4  Hotspots Histogram Computation

In addition, we proposed a protocol for secure histogram computa-
tion. This protocol determines geographical areas which are visited
at least a threshold number of times by infected users. With knowl-
edge of such hotspots, users can avoid such areas to limit the spread
through exposure prevention. The complete protocol specification is
described in figure 5. The protocol involves three parties - a client,
cloud server, and backend server. The protocol involves each user’s
device maintaining a count vector V' representing the number of
times a user visited a location. The vector V' associates each index
with a predetermined location of interest. Additive secret sharing
is used to distribute shares of V' to the servers. The servers then
aggregate shares received from multiple users.

Security Discussion: From each server’s view, it obtains a share of
the count vector from each client. The share reveals nothing about
the count vector, and hence, the server cannot learn an individual
user’s location trace or visits. The aggregate of shares received from
multiple users are uniformly random. The recombination of aggre-
gate shares results in the correct aggregate of count vectors, the
intended result of the protocol, available to servers and clients. Nei-
ther the client nor the servers can deduce anything more than the
histogram of hotspots, as the aggregate does not reveal the count
vector of an individual or subset of clients.

6 Implementation and Evaluation

We implement our contact tracing framework SecureCT and esti-
mate the cost of PSI-CA based on the cost of polynomial operations.
In this section, we begin with discussing relevant implementation
considerations, algorithm choices, and parameter values for the pro-
tocols described in Sections 5.1. We then evaluate our SecureCT
and report its performance in Section 6.2.

6.1 Implementation Details

The SecureCT system and the enhancement with GPS are described
in Sections 5.2 and 5.3 mainly involves three parties - client app
on the mobile device, the cloud server, and the backend server.
The client functionality for the protocols is developed in Java as an
Android mobile application. The cloud server and the backend server
are implemented in Java using the Spring framework.

6.1.1 SecureCT System: We implement our SecureCT for
testing and evaluation. The GPS enhancement is used for the
implementation. The implementation builds on the legacy DP3T
[TPHT20] Android app and server whose code is available on
Github*. The location module is inspired with ideas from the Safe
Paths approach [BBV120], whose code is also available on Github'.

In the implementation of SecureCT, the client application
involves the following major modules:

e Bluetooth server - to broadcast rotating proximity identi-
fiers/tokens, register handshakes.

e Bluetooth client - to scan for nearby devices, receive rotating
proximity identifiers/tokens, and store associated metadata like
signal strength, duration of the handshake.

e Sync - to sync with backend server periodically to get expo-
sure alerts, either through a download of infected users tokens,
or using PSI-CA protocol, as well as to upload tokens when
positively diagnosed with the disease.

*http://github.com/dp-3T/dp3t-sdk—-backendand http:
//github.com/DP-3T/dp3t—-sdk—android
thttps://github.com/Path-Check/safeplaces—dct-app



PARAMETERS:

e Count vector V of size n

e A client U4, a backend server S, and a cloud server C

[a] = {a1,a2} suchthata; + a2 = a
INPUTS:

e Client I/ has count vector V'

e Backend server S and Cloud server C have no input.

PROTOCOL:

server S and V5 to cloud server C

OUTPUT:
Hotspots histogram Viz; ¢

e Additive secret sharing scheme: If a is the original item, [a] represents the set of shares. A two-out-of-two secret sharing scheme results in

1. Each user device maintains count vector V' from location logs. If user visits location loc associated with index ¢ in V, then increment V[4]

2. If user is positively diagnosed, obtain shares of V, [V] = {Vq, Va} such that V1 [i] + Va[i] = V[i], Vi € [1,...,n]. Send V; to backend

3. Each server, S and C, maintains an aggregate of shares received, Vs and V¢ respectively: Vs = Vg + Vi and Ve = Ve + Va

4. On aggregating a threshold number of shares, cloud server sends V to backend server S. Backend server recovers and outputs hotspots
histogram, the correct aggregate, by recombining the aggregate of shares as Vst = Vs + V¢

Fig. 5: Hotspots Histogram Construction

e Cryptography - to help with key generation, rotation, pseudo-
random generation (PRG), encryption and hashing.

e Database - to assist in creating, reading, and deleting data
in relevant tables including tokens broadcast, tokens received,
infected users tokens, and associated metadata.

e Location - module to periodically log user’s location and get
associated geohashes.

Similar to the Safe Paths approach [BBV+20], when a user is at a
given set of coordinates, there is a radius r within which another
user is said to be in close proximity. Points in the circle of radius r
may lie in a neighboring geohash. Hence, for a given location, the
geohash of the exact coordinates, as well as a set of neighboring
geohashes covering the circle of proximity, is determined. This is
done by considering the set of nearby points at a distance 7 along the
cardinal and ordinal directions and determining the geohash of these
points as well.

The broadcast Bluetooth tokens are rotated every fifteen minutes.
Location logs are recorded every five minutes. When storing the hash
of received token with geohash and timestamp, AES is chosen for its
efficiency. The resulting hash has 128 bits. The app syncs with the
backend server every two hours to receive tokens of infected users
(legacy approach). The app can instead invoke PSI-CA protocol to
securely match tokens and receive exposure alerts. The app deletes
tokens broadcast and received that are older than 14 days, which is
the infectious period of COVID-19.

The backend server exposes API endpoints, handling user
requests to fetch and upload infected users’ tokens. It maintains a
database to store tokens, where tokens older than 14 days are deleted.

6.1.2  Server-aided PSI-CA Imflementation: Amongst dif-
ferent OKVS constructions [GPR™21], we choose polynomial-
based construction for SecureCT as it is easy to deploy. We
integrate the polynomial-based OKVS to our server-aided PSI-CA
protocol.

10

Both cloud and backend servers are implemented in Java using
Spring framework. These servers expose RESTful APIs to com-
municate and consume services. The Cloud server exposes a get-
Matches API, used by client device to provide its list of received
tokens and to get count of matches/exposures in return. The back-
end server exposes a getPolynomials API used by the cloud server
to provide the CHT hash functions and get the polynomial coef-
ficients for each bin of the hash tables. The tokens are 128 bits
long. To support polynomial interpolation and evaluation for such
large data, the Java library implementations for polynomial interpo-
lation using Lagrange’s algorithm, and polynomial evaluation using
Neville’s algorithm, are modified and extended to support the Java
BigDecimal data type. The cuckoo hashing implementation utilizes
two hash functions to insert the user uploaded tokens into bins such
that there is at the most one item per bin. The same two hash func-
tions are used by the backend server to insert infected tokens into the
simple hash table. AES is used as the hash function algorithm.

6.2  Performance

The performance of BT plus GPS based contact tracing when carried
out using the legacy approach to determine matches by downloading
infected tokens from the backend server is shown. The major costs
involve storage of tokens, upload and download of tokens, and time
taken for matching tokens to get exposure alerts.

Parameters: If a user generates a new token every 15 minutes and
runs the proximity tracing process for approximately 18 hours a day,
then each user sends 72 distinct, 128-bit tokens per day. Assuming
that the user meets people and receives the same number of tokens,
then each user device has a total of n = 1008 ~ 1000 tokens over
a 14-day period. With 1,000 new cases per day, the backend server
will receive N & 1000 x 1000 = 10° new tokens per day.

Token storage: Storing both broadcast and received tokens for
a 14 day period requires ~ 31K B on the client device. Assuming
the server stores tokens for 15 days to accommodate offline clients,
the total storage needed is ~ 0.25G B for 1000 daily new cases and
~ 1.25G B for 5000 daily new cases. If the client uses the legacy
approach to download new infected tokens uploaded for that day and
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Table 1 Contact tracing system comparison: Comparison of SecureCT system with other contact tracing systems, in terms of privacy, infrastructure requirements,
runtime and communication cost. #-Rounds is the number of interaction rounds between client and server. Travel route refers to learning the travel route of diagnosed
user, while infection status refers to identification of diagnosed user. Each user has 2** tokens. neg refers to negligible cost.

Protocols Linkage Attack System Req. Client
Travel Route Infection Status #Rounds #Servers Runtime(ms) Comm.Cost(MB)
Google Apple yes yes 172 1 331.96 7.34
DP3T no yes 1/2 1 0.02 469.76
PACT no yes 172 1 neg 1073.74
Epione no no 2 2 394.01 1.27
Catalic no no 1 3 0.86 0.095
PSI-WCA no no 1 2 0.064 2.048
SecureCT no no 1 2 208 0.032

match with received tokens on the device, the client incurs download
and storage costs.

Testing platform configuration: The client application is
installed as a Java Android app on a Google Pixel 3 device
with Snapdragon 845 processor, 4 GB RAM, and 64 GB storage.
The backend server and cloud server are deployed on an AWS
m5.2xlarge instance with 8 vCPUs, 32 GB memory, and upto 10
Gbps network bandwidth.

Table 2 Running time for interpolating all polynomials on the back-end server.
Performance of the polynomial interpolation is given by having different amount
of bins (8) and different amount of tokens (V).

# Bins (3) # Server tokens (N) Time (s)

40,000 500,000 19.2
80,000 500,000 14.2
80,000 1,000,000 37.7
100,000 1,000,000 34.7

The SecureCT system performance is compared with other
works, including the Google Apple approach [ga20], DP3T
[TPH'20], PACT [CGH™T20], Epione [TSS™20], Catalic [DPT20),
and PSI-WCA protocol in [DILT20] with respect to security and
privacy guarantees, infrastructure requirements and client side cost
in terms of computation and communication. The comparison is pre-
sented in Table 1. The method of evaluation followed is as explained
in [DPT20], and outlined briefly here. The Google Apple approach,
DP3T, and PACT publicly release tokens of diagnosed users, and
hence they are all vulnerable to the identification of the diagnosed
user. In the Google Apple approach, keys or seeds used to gener-
ate the tokens are publicly available, hence allowing an adversary
to learn the travel route of an infected user. Similar to Epione
and Catalic, SecureCT keeps the tokens private and hence secure
against these vulnerabilities.

Each user has k = 144 new tokens per day and receives a total
of n = 2'! tokens approximately over the 14-day infection window,
according to the Google Apple agproach. Also, with K = 21% =
32768 new cases per day, N = 225 new tokens are added daily.

In the Google Apple approach, the client device downloads 14K
keys per day. Each key is 128 bits long, resulting in 7.34 MB
of communication cost. The device needs to compute 14Kk =
66, 060, 288 AES operations, taking 0.33 seconds to complete the
contact tracing query on a phone with 1.99 GHz processor.

The DP3T approach utilizes a Cuckoo filter to share the tokens of
diagnosed users. They store a 56-bit fingerprint with each item. With
N = 226 pew diagnosed tokens, the client incurs a communication
cost is 226 x 56 = 469.76 MB when downloading the Cuckoo fil-
ter. For computation, the device computes 2n AES hash functions,
taking 0.02 milliseconds.

For the PACT approach, the client device downloads 226 %
128(bits) = 1073.74 MB for N = 226 pew diagnosis tokens. Its
running time is considered negligible as it does not carry out any
cryptographic operations.
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In Epione, private set intersection using Private Information
Retrieval is used, for which the client device incurs 1.79 MB and
takes 394 milliseconds. For Catalic, with 1 backend and 2 cloud
servers, each running with a single thread, the protocol requires 0.86
milliseconds 96 KB.

For the contact tracing system built upon the function secret shar-
ing PSI-WCA protocol in [DILT20], the computation on the users
side is from generation n secret sharing point functions of the cost
nA AES where ) is the security parameter. The communication cost
is nAIAESI. The estimation runtime and communication cost are
0.064ms and 2.048MB shown in table 1 with A = 128.

For our SecureCT system using one cloud server and backend
server, the client device has 1 round of interaction with the cloud
server and backend server and is required to download n results from
the cloud server. Thus the communication cost is 0.032 MB. The
client device computes n AES hash functions to encrypt the tokens
and generates 3 = n secret values, where 3 is the number of bins,
taking a total of 208 ms.

For the server performance, the major cost for the servers is
the polynomial interpolation. We implement the polynomial-based
OKYVS structure in Java to estimate the performance of SecureCT
if using our PSI-CA protocol. Table 2 summarizes the time taken
by the backend server, deployed on AWS m5.2xlarge instance, to
generate the polynomials for all bins, which is the major computa-
tion involved in the PSI-CA protocol. The polynomial interpolation
for separate bins can be parallelized on more threads, resulting in a
speedup for the performance. The code has been parallelized to run
the polynomial interpolation on 7 threads. With 2 hash functions,
the number of tokens in the hash table is doubled. The number of
tokens per bin varies as per the hash function distribution. The per-
formance is compromised because of the programming language,
other languages like C++ may give a much faster result. A very sim-
ilar implementation in C++ is given in the Table 2 of [DPT20]. We
use the polynomial-based OKVS as the pack & unpack algorithm.
The concrete running performance for the OKVS can be found in
Appendix A of [GPRT21].

Overall, our SecureCT shows the best communication cost for
clients among all the other contact tracing systems while still hav-
ing a reasonable runtime on the clients’ device. As for the server,
our protocol has a similar performance with the state of art Catalic
[DPT20] system while their work requires at least two non-colluding
cloud servers which is a much stronger system requirement.
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