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Abstract

Analytics on video recorded by cameras in public areas
have the potential to fuel many exciting applications, but
also pose the risk of intruding on individuals’ privacy.
Unfortunately, existing solutions fail to practically resolve
this tension between utility and privacy, relying on perfect
detection of all private information in each video frame—an
elusive requirement. This paper presents: (1) a new notion of
differential privacy (DP) for video analytics, (ρ,K,ǫ)-event-
duration privacy, which protects all private information
visible for less than a particular duration, rather than relying
on perfect detections of that information, and (2) a practical
system called Privid that enforces duration-based privacy
even with the (untrusted) analyst-provided deep neural
networks that are commonplace for video analytics today.
Across a variety of videos and queries, we show that Privid
increases error by 1-21% relative to a non-private system.

1 Introduction

High-resolution video cameras are now pervasive in public
settings [1,3–5,10],with deployments throughout city streets,
in our doctor’s offices and schools, and in the places we shop,
eat, or work. Traditionally, these cameras were monitored
manually, if at all, and used for security purposes, such as
providing evidence for a crime or locating a missing person.
However,steadyadvances in computervision [32,51,53,55,65]
have made it possible to automate video-content analytics
(both live and retrospective) at a massive scale across entire
networks of cameras. While these trends enable a variety of
important applications [2,11,13,14] and fuelmuchwork in the
systems community [26, 30, 40, 43, 44, 47, 48, 54, 73], they also
enable privacy intrusions at an unprecedented level [7, 64].

As a concrete example, consider the operator for a network
of city-owned cameras. Different organizations (i.e., “ana-
lysts”) want access to the camera feeds for a range of needs:
(1) health officials want to measure the fraction of people
wearing masks and following COVID-19 social distancing
orders [38], (2) the transportation department wants to mon-
itor the density and flow of vehicles, bikes, and pedestrians to
determine where to add sidewalks and bike lanes [21], and (3)
businesses are willing to pay the city to understand shopping
behaviors for better planning of promotions [19].
Unfortunately, freely sharing the video with these parties

may enable them to violate the privacy of individuals in the
scene by tracking where they are, andwhen. For example, the
“local business” may actually be a bank or insurance company
thatwants to track individuals’ private lives for their riskmod-
els,whilewell-knowncompanies [17]orgovernmentagencies
may succumb tomission creep [18,20]. Further, any organiza-

tions with good intentions could have employees with mali-
cious intent whowish to spy on a friend or co-worker [15,16].

There is an inherent tension between utility and privacy. In
this paper, we ask: is it possible to enable these (untrusted)
organizations to use the collected video for analytics,
while also guaranteeing citizens that their privacy will be
protected? Currently, the answer is no. As a consequence,
many cities have outright banned analytics on public videos,
even for law enforcement purposes [9, 12].

While a wide variety of solutions have been proposed
(§3), ranging from computer vision (CV)-based obfusca-
tion [23, 60, 68, 70] (e.g., blurring faces) to differential privacy
(DP)-based methods [66, 67], they all use some variant of the
same strategy: find all private information in the video, then
hide it. Unfortunately, the first step alone can be unrealistic
in practice (§3.1); it requires: (1) an explicit specification
of all private information that could be used to identify an
individual (e.g., their backpack), and then (2) the ability to
spatially locate all of that information in every frame of the
video—a near impossible task even with state-of-the-art
CV algorithms [6]. Further, if these approaches cannot find
some private information, they fundamentally cannot know
that they missed it. Taken together, they can provide, at
best, a conditional and brittle privacy guarantee such as
the following: if an individual is only identifiable by their
face, and their face is detectable in every frame of the video
by the implementation’s specific CV model in the specific
conditions of this video, then their privacy will be protected.

This paper takes a pragmatic stance and aims to provide
a definitively achievable privacy guarantee that captures
the aspiration of prior approaches (i.e., individuals cannot be
identified in any frame or tracked across frames) despite the
limitations that plague them. To do this, we leverage two key
observations: (1) a large body of video analytics queries are
aggregations [47, 49], and (2) they typically aggregate over
durations of video (e.g., hours or days) that far exceed the
duration of any one individual in the scene (e.g., seconds or
minutes) [47]. Building on these observations, we make three
contributions by jointly designing a new notion of duration-
based privacy for video analytics, a system implementation
to realize it, and a series of optimizations to improve utility.

Duration-based differential privacy. To remove the
dependence on spatially locating all private information in
each video frame, we reframe the approach to privacy to
instead focus on the temporal aspect of private information
in video data, i.e., how long something is visible to a camera.
More specifically, building on the differential privacy (DP)
framework [37], we propose a new notion of privacy for
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video, (ρ,K,ǫ)-event-duration privacy (formalized in §4.1):
anything visible to a camera less thanK times for less than ρ
seconds each time (“(ρ,K)-bounded”) is protected with ǫ-DP.
The video owner expresses their privacy policy using (ρ,K),
whichwe argue is powerful enough to capturemany practical
privacy goals. For example, if they choose ρ= 5min, anyone
visible for less than 5minutes is protectedwith ǫ-DP,which in
turn prevents tracking them.We discuss other policies in §4.2.

This notion of privacy has three benefits. First, it decouples
the definition of privacy from its enforcement. The enforce-
ment mechanism does not need to make any decisions about
what is private or find private information to protect it; ev-
erything (private or not) captured by the bound is protected.
Second,a (ρ,K)boundthatcapturesa setof individuals implic-
itly captures and thus protects any information visible for the
same (or less) time without specifying it (e.g., an individual’s
backpack, or even their gait). Third, protecting all individuals
in a video scene requires only their maximum duration, and
estimating this value is farmore robust to the imperfections of
CV algorithms than precisely locating those individuals and
their associated objects in each frame. For example, even if a
CV algorithmmisses individuals in some frames (or entirely),
it can still capture a representative sample and piece together
trajectories well enough to estimate their duration (§4.2).

Privid: a differentially-private video analytics system.
Realizing (ρ, K, ǫ)-privacy (or more generally, any DP
mechanism) in today’s video analytics pipelines faces several
challenges. In traditional database settings, implementing
DP requires adding random noise proportional to the
sensitivity of a query, i.e., the maximum amount that any
one piece of private information could impact the query
output. However, bounding the sensitivity is difficult in video
analytics pipelines because (1) pipelines typically operate as
bring-your-own-query-implementation to support the wide-
ranging applications described earlier [22,25,26,28,29,39,41],
and (2) these implementations involve video processing algo-
rithms that increasingly relyondeepneuralnetworks (DNNs),
which are notoriously hard to inspect or vet (and thus, trust).

To bound the sensitivity necessary for (ρ,K,ǫ)-privacy
while supporting “black-box” analyst-provided query imple-
mentations (including DNNs), Privid only accepts analyst
queries structured in the following split-process-aggregate for-
mat (§5.2): (i) videos are split into temporally-contiguous
chunks, (ii) each chunk of video is processed by an arbi-
trary analyst-provided processing program to produce an
(untrusted) table, (iii) values in the table are aggregated (e.g.
averaged) to compute a result, and (iv) noise is added to the
result before release. The key in this pipeline is step (ii): we
treat the analyst-provided program as an arbitrary Turing
machinewith restricted inputs (a single chunkof video frames
and somemetadata) and restricted outputs (rows of a table).
As a result, only one chunk can contribute to the value of each
row, andwe knowwhich chunk generated each row. If an indi-
vidual is (ρ,K)-bounded, the number of chunks they appear

in is bounded, and thus the number of rows their presence can
affect is bounded aswell.With a boundon the numberof rows,
we can apply classic differential privacy techniques (§5.5).

Optimizations for improved utility. To further enhance
utility, Privid provides two video-specific optimizations to
lower the required noise while preserving an equivalent level
of privacy: (i) the ability to mask regions of the video frame,
(ii) the ability to split frames spatially into different regions,
andaggregate results from these regions. These optimizations
result in limiting the portion of the aggregate result that any
individual’s presence can impact, enabling a “tighter” (ρ,K)
bound and in turn a higher quality query result.

Evaluation. We evaluate Privid using a variety of public
videos and a diverse range of queries inspired by recent work
in this space. Privid increases error by 1-21% relative to
a non-private system, while satisfying an instantiation of
(ρ,K,ǫ)-privacy that protects all individuals in the video. We
discuss ethics in §9. Source code and datasets for Privid are
available at https://github.com/fcangialosi/privid.

2 Problem Statement

2.1 Video Analytics Background

Video analytics pipelines are employed to answer high-level
questions about segments of video captured from one or
more cameras and across a variety of time ranges. Example
questions include “how many people entered store X each
hour?” or “which roads suffered from the most accidents
in 2020?” (see §7.2 and Table 3 for more specific examples).
A question is expressed as a query, which encompasses all
of the computation necessary to answer that question.1

For example, to answer the question “what is the average
speed of red cars traveling along road Y?”, the “query” would
include an object detection algorithm to recognize cars, an
object tracking algorithm to group them into trajectories, an
algorithm for computing speed from a trajectory, and logic
to filter only the red cars and average their speeds.

2.2 ProblemDefinition

Video analytics pipelines broadly involve four logical roles
(though any combination may pertain to the same entity):

• Individuals, whose behavior and activity are observed
by the camera.

• Video Owner (VO), who operates the camera and thus
owns the video data it captures.

• Analyst, who wishes to run queries over the video.
• Compute Provider, who executes the analyst’s query.

In this work, we are concerned with the dilemma of a VO.
The VOwould like to enable a variety of (untrusted) analysts
to answer questions about its videos (such as those in §2.1),
as long as the results do not infringe on the privacy of the
individuals who appear in the videos. Informally, privacy

1Our definition is distinct from related work, which defines a query as
returning intermediate results (e.g., bounding boxes) rather than the final
answer to the high-level question.
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“leakage” occurs when an analyst can learn something about
a specific individual that they did not know before executing
a query. To practically achieve these properties, a system
must meet three concrete goals:

1. Formal notion of privacy. The system’s privacy
policies should formally describe the type and amount
of privacy that could be lost through a query. Given
a privacy policy, the system should be able to provide
a guarantee that it will be enforced, regardless of
properties of the data or query implementation.

2. Maximize utility for analysts. The system should
support queries whose final result does not infringe on
the privacy of any individuals. Further, if accuracy loss
is introduced to achieve privacy for a given query, it
should be possible to bound that loss (relative to running
the same query over the original video, without any
privacy preservingmechanisms). Without such a bound,
analysts would be unable to rely on any provided results.

3. “Bring Your Own Model”. Computer vision models
are at the heart of modern video processing. However,
there is not one or even a discrete set of models for
all tasks and videos. Even the same task may require
different models, parameters, or post-processing steps
when applied to different videos. Inmany cases, analysts
will want to use models that they trained themselves,
especially when training involves proprietary data.
Thus, a systemmust allow analysts to provide their own
video-processing models.

It is important to note that the class of analytics queries
we seek to enable are distinct from security-oriented queries
(e.g., finding a stolen car or missing child), which require

identification of a particular individual, and are thus directly
at odds with individual privacy. In contrast, analytics queries
involve searching for patterns and trends in large amounts of
data; intermediate steps may operate over the data of specific
individuals, but they do not distinguish individuals in their
final aggregated result (§2.1).

2.3 Threat Model

The VO employs a privacy-preserving system to handle
queries about a set of cameras it manages; the system retains
full control over the video data, analysts can only interact
with it via the query interface. The VO does not trust the
analysts (or their query implementation code). Any number
of analysts may be malicious and may collude to violate the
privacy of the same individual. However, analysts trust the
VO to be honest. Analysts are also willing to share their query
implementation (so that the VO can execute it). The VO views
this code as an untrusted blackbox which it cannot vet.

Analysts pose queries adaptively (i.e., the full set of queries
is not known ahead of time, and analysts may utilize the
results of prior queries when posing a new one). A single
query may operate over video from multiple cameras. We
assume the VO has sufficient computing resources to execute

the query, either via resources that they own, or through the
secure use of third-party resources [62].

The system releases some per-camera metadata publicly
(§8.1), including a sample video clip. The resulting leak is
interpretable and can be minimized by the VO. The system
protects all other information with a formal guarantee of
(ρ,K,ǫ)-privacy (Def 4.3).

3 Limitations of RelatedWork

Before presenting our solution, we consider prior privacy-
preserving mechanisms (both for video and in general). Un-
fortunately, each fails to satisfy at least one of the goals in §2.2.

3.1 Denaturing

The predominant approach to privacy preservation with
video data is denaturing [23, 34, 60, 68, 70, 72], whereby
systems aim to obscure (e.g., via blurring [23] or blocking [68]
as in Fig. 1) any private information in the video before
releasing it for analysis. In principle, if nothing private is left
in the video, then privacy concerns are eliminated.

The fundamental issue is that denaturing approaches
require perfectly accurate and comprehensive knowledge of
the spatial locations of private information in every frame of
a video. Any private object that goes undetected, even in just
a single frame, will not be obscured and thus directly leads
to a leakage of private information.

To detect private information, one must first semantically
definewhat is private, i.e., what is the full set of information
linked, directly or indirectly, to the privacy of each individual?
While some information is obviously linked (e.g., an individ-
ual’s face), it is difficult to determine all such information
for all individuals in all scenarios. For instance, a malicious
analyst may have prior information that a VO does not, such
as knowledge that a particular individual carries a specific
bag or rides a unique bike (e.g., Fig. 1-B). Further, even with a
semantic definition, detecting private information is difficult.
State-of-the-art computer vision algorithms commonly miss
objects or produce erroneous classification labels in favorable
video conditions [74]; performance steeply degrades in more
challenging conditions such as poor lighting, distant objects,
and low resolution, all of which are common in public video.
Taken together, the problem is that denaturing systems
cannot guarantee whether or not a private object was left in
the video, and thus fail to provide a formal notion of privacy
(violating Goal 1).

Denaturing also falls short from the analyst’s perspective.
First, it inherently precludes (safe) queries that aggregate over
private information (violating Goal 2). For example, an urban
planner may wish to count the number of people that walk in
front of cameraA and then camera B. Doing so requires identi-
fying and cross-referencing individuals between the cameras
(which is not possible if they have been denatured), but the ag-
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Figure 1: A video clip after (silhouette) denaturing exemplifying

some of its shortcomings: (A) entirely missed detections, (B)

potentially-identifying objects not incorporated in privacy

definition, (C) silhouette may reveal gait.

gregate countmay be large and safe to release.2 Second, obfus-
cated objects are not naturally occurring and thus video pro-
cessing pipelines are not designed to handle them. If the ana-
lyst’sprocessingcodeandmodelshavenotbeen trainedexplic-
itly on the type of obfuscation the VO is employing, it may be-
have in unpredictable and unboundedways (violating Goal 2).

3.2 Differential Privacy

Differential Privacy (DP) is a strong formal definition of
privacy for traditional databases [37]. It enables analysts to
compute aggregate statistics over a database,while protecting
the presence of any individual entry in the database. DP is
not a privacy-preserving mechanism itself, but rather a goal
that an algorithm can aim to satisfy. Informally speaking, an
algorithm satisfies DP if adding or removing an individual
from the input database does not noticeably change the
output of computation, almost as if any given individual were
not present in the first place. More precisely,

Definition 3.1. Two databasesD andD′ are neighboring
if they differ in the data of only a single user (typically, a
single row in a table).

Definition 3.2. A randomized algorithm A is ǫ-
differentially private if, for all pairs of neighboring databases
(D,D′) and all S⊆Range(A):

Pr[A(D)∈S]≤eǫPr[A(D′)∈S] (3.1)

A non-private computation (e.g., computing a sum of bank
balances) is typically made differentially private by adding
random noise sampled from a Laplace distribution to the
final result of the computation [37]. The scale of noise is set
proportional to the sensitivity (∆) of the computation, or the
maximum amount by which the computation’s output could
change due to the presence/absence of any one individual. For
instance, suppose a database contains a value vi∈V for each
user i, where l≤vi≤u. If a query seeks to sum all values inV ,
any one individual’s vi can influence that sum by atmost∆=
u−l, and thus adding noise with scale u−lwould satisfy DP.

Challenges.Determining the sensitivity of a computation is
the key ingredient of satisfying DP. It requires understanding

2As a workaround, the VO could annotate denatured objects with
query-specific information, but this would conflict with Goal 3.

(a) how individuals are delineated in the data, and (b) how the
aggregation incorporates information about each individual.
In the tabular data structures that DP was designed for, these
are straightforward. Each row (or a set of rows sharing a
unique key) typically represents one individual, and queries
are expressed in relational algebra, which describes exactly
how it aggregates over these rows. However, these answers
do not translate to video data; we next discuss the challenges
in the context of several applications of DP to video analytics.

Regarding requirement (a), as described in §3.1, it is
difficult and error-prone to determine the full set of pixels in
a video that correspond to each user (including all potentially
identifying objects). Accordingly, prior attempts of applying
DP concepts to video analytics [66, 67] that rely on perfectly
defined and detected private information (via CV) fall short
in the same way as denaturing approaches (violating Goal 1).

Regarding requirement (b), typical video processing algo-
rithms (e.g., ML-based CVmodels) are not transparent about
how they incorporate private objects into their results. Thus,
without a specific query interface, the “tightest” possible
bound on the sensitivity of an arbitrary computation over
a video is simply the entire range of the output space. In this
case, satisfying DP would add noise greater than or equal to
any possible output, precluding any utility (violating Goal 2).

Given that DP is well understood for tables, a natural
idea would be for the VO to use their own (trusted) model
to first convert the video into a table (e.g., of objects in the
video), then provide a DP interface over that table3 (instead of
directly over the video itself). However, in order to provide a
guarantee of privacy, the VOwould need to completely trust
the model that creates the table. This entirely precludes using
a model created by the untrusted analyst (violating Goal 3).

4 Event Duration Privacy

We will first formalize (ρ,K, ǫ)-privacy, then provide the
intuition for what it protects and clarify its limitations.

4.1 Definition

We consider a video V to be an arbitrarily long sequence of
frames, sampled at f frames per second, recorded directly
from a camera (i.e., unedited). A “segment” v⊂V of video is
a contiguous subsequence of those frames. The “duration” of
a segment d(v) is measured in real time (seconds), as opposed
to frames. An “event” e is abstractly anything that is visible
within the camera’s field of view.

As a running example, consider a video segment v in
which individual x is visible for 30 seconds before they enter
a building, and then another 10 seconds when they leave
some time later. The “event” of x’s visit is comprised of one
30-second segment, and another 10-second segment.

3This would be equivalent to adding DP to an existing video analytics
interface, such as [30, 47], which treat the video as a table of objects.
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Definition 4.1 ((ρ,K)-bounded events). An event e is
(ρ,K)-bounded if there exists a set of≤K video segments
that completely contain4 the event, and each of these
segments individually have duration≤ρ.

(Ex). The tightest bound on x’s visit is (ρ=30s,K =2). To
be explicit, x’s visit is also (ρ,K)-bounded for any ρ≥ 30s
andK≥2.

Definition 4.2 ((ρ,K)-neighboring videos). Two video
segments v,v′ are (ρ,K)-neighboring if the set of frames in
which they differ is (ρ,K)-bounded.

(Ex). One potential v′ is a hypothetical video in which xwas
never present (but everything else observed in v remained
the same). Note this is purely to denote the strength of
the guarantee in the following definition, the VO does not
actually construct such a v′.

Definition 4.3 ((ρ, K, ǫ)-event-duration privacy). A
randomized mechanismM satisfies (ρ,K,ǫ)-event-duration
privacy 5 iff for all possible pairs of (ρ, K)-neighboring
videos v,v′, any finite set of queriesQ= {q1,q2,...} and all
Sq⊆Range(M(·,q)):

Pr[(M(v,q1),...,M(v,qn))∈Sq1×···×Sqn ]≤

eǫPr[(M(v′,q1),...,M(v′,qn)))∈Sq1×···×Sqn ]

Guarantee. (ρ,K, ǫ)-privacy protects all (ρ,K)-bounded
events (such asx’s visit to the building) with ǫ-DP: informally,
if an event is (ρ,K)-bounded, an adversary cannot increase
their knowledge of whether or not the event happened by
observing a query result from M. To be clear, (ρ, K, ǫ)-
privacy is not a departure from DP, but rather an extension
to explicitly specify what to protect in the context of video.

4.2 Choosing a Privacy Policy

The VO is responsible for choosing the parameter values
(ρ,K) (“policy”) that bound the class of events they wish
to protect. They may use domain knowledge, employ CV
algorithms to analyze durations in past video from the
camera, or a mix of both. Regardless, they express their goal
to Privid solely through their choice of (ρ,K).

Automatic setting of (ρ,K). The primary reason (ρ,K,ǫ)-
privacy is practical is that, despite their imperfections, today’s
CV algorithms are capable of producing good estimates of the
maximum duration any individuals are visible in a scene. We
provide some evidence of this intuition over three representa-
tive videos from our evaluation. For each video,we chose a 10-
minute segment and manually annotate the duration of each
individual (person orvehicle), i.e., “GroundTruth”, then use

4A set of segments is said to completely contain an event if the event
is not visible in any frames outside of those segments.

5We chose to use ǫ-DP rather than the more general (ǫ, δ)-DP for
simplicity, since the difference is not significant to our definition. Our
definition could be extended to (ǫ,δ)-DP without additional insights.

Figure 2: The results of a state-of-the-art object detection algorithm

(filtered to “person” class) on one frame of urban. The algorithm

misses76%of individuals in the frame,but is still able toproduceacon-

servativeboundon themaximumdurationofall individuals (Table 1).

Video
MaximumDuration % Objects

CVMissedGround Truth CV Estimate

campus 81 sec 83 sec 29%

highway* 316 sec 439 sec 5%

urban 270 sec 354 sec 76%

Table 1: Despite the imperfection of current CV algorithms

(exemplified by % objects they failed to detect), they still produce a

conservative estimate on the duration of any individual’s presence.

*For the purposes of this experiment, we ignored cars that were

parked for the entire duration of the segment.

state-of-the-art object detection and tracking to estimate the
durations and report the maximum (“CV”). Our results, sum-
marized in Table 1, show that, while object detection misses a
non-trivial fraction of bounding boxes, the tracking algorithm
is able to fill in the gaps for enough trajectories to capture
a conservative estimate of the maximum duration. In other
words, for our three videos, using these algorithms to param-
eterize a (ρ,K,ǫ)-private systemwould successfully capture
the duration of, and thus protect the privacy of,all individuals,
while using them to implement any prior approachwould not.

Relaxing the set of private individuals. Sometimes pro-
tecting all individuals is unnecessary. Consider a camera in a
store; employeeswill appear significantly longerandmore fre-
quently than customers (e.g., 8 hours every day vs. 30minutes
once a week), but if the fact that the employees work there
is public knowledge, the VO can pick a policy (with smaller
ρ andK) that only bounds the appearance of customers.

Generic policies.Alternatively, the VO can choose a policy
to place a generic limit on the (temporal) granularity of
queries. Consider a policy (ρ = 5min, K = 1). Suppose
individual x stops and talks to a few people on their way to
work each morning, but each conversation lasts less than 5
minutes. Although the policy does not protectx’s presence or
even the fact that they often stop to chat on theirway towork,
it does protect the timing and contents of each conversation.

4.3 Privacy Guarantees in Practice

In Privid’s implementation of (ρ,K,ǫ)-privacy (described in
the following section), the policy provides a relative reference
point: events that exactly match the policy (i.e., made up
of exactly K segments each of duration ρ) are protected
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with ǫ-DP, while events that are visible for shorter or longer
durations are protected with a proportionally (w.r.t. the
duration) stronger or weaker guarantee, respectively.

Theorem4.1. Consider a camerawith a fixed policy (ρ,K,ǫ).
If an individual x’s appearance in front of the camera is
bound by some (ρ̂, K̂), then Privid effectively protects x

with ǫ̂-DP, where ǫ̂ is O( ρ̂K̂
ρK

)ǫ, which grows (degrades) as

(ρ̂,K̂) increase while (ρ,K,ǫ) are fixed, and the constants do
not depend on the query. We provide a formal proof in §A.1.

For example, given (ρ=1hr,K =1), Privid would protect
an a single 2-hour appearance with ∼ 2ǫ-DP (weaker) or a
single half-hour appearance with∼ 1

2ǫ-DP (stronger).

Graceful degradation. An important corollary of this
theorem is that privacy degrades “gracefully”. As an event’s
ρ̂ increases further from ρ (or K̂ from K), its effective ǫ̂
increases linearly, yielding a progressively weaker guarantee.
(The reverse is true, as ρ̂ and K̂ decrease, it yields a stronger
guarantee). Thus, if ρ̂ (or K̂) is onlymarginally greater than ρ
(orK), then the event is not immediately revealed in the clear,
but rather is protectedwith ǫ̂-DP,which is still aDPguarantee,
only marginally weaker: a malicious analyst has only a
marginally higher probability of detecting x in the worst
case. This in effect relaxes the requirement that (ρ,K) be set
strictly to the maximum duration an individual could appear
in the video to achieve useful levels of privacy. We generalize
and provide a visualization of this degradation in §A.2.

Repeated appearances. The larger the time window of
video a query analyzes, the more instances an individual
may appear within the window, even if each appearance
is itself bounded by ρ. Consider our example individual
x and policy (ρ = 30s, K = 2) from §4.1. In the query
window of a single day d, x appears twice; they are properly
(ρ,K)-bounded and thus the event “x appeared on day d” is
protected with ǫ-DP. Now, consider a query window of one
week; x appears 14 times (2 times per day), so the event “x
appeared sometime this week” is (ρ,7K)-bounded and thus
protected with (weaker) 7ǫ-DP. However, the more specific
event “x appeared on day d” (for any d in the week) is still
(ρ,K)-bounded, and thus still protected with the same ǫ-DP.
In other words, while an analyst may learn that an individual
appeared sometime in a given week, they cannot learn on
which day they appeared. Thus, in order to get greater
certainty, the analyst must give up temporal granularity.

Multiple cameras.When an individual appears in front of
multiple cameras, their privacy guarantees are analogous to
the previous case of repeated appearances in a single camera.
If they appear in front ofN different cameras,where the event
of their appearance in camera i is protected with ǫ̂i-DP, then
the event of their appearance across all the cameras is pro-

tectedwith
∑

iǫ̂i-DP. Suppose for 10 cameras,
∑N

i=1ǫ̂i is large
enough for the adversary to detect their appearancewith high

confidence. Then while the adversary can infer that a per-
son appeared somewhere across the 10 cameras, the adversary
cannot learnwhich cameras they appeared in orwhen; appear-
ances within individual cameras are still protected by ǫ-DP.

5 Privid

In this section,we present Privid, a privacy-preserving video
analytics system that satisfies (ρ,K,ǫ)-privacy (§2.2 Goals
1 and 2) and provides an expressive query interface which
allows analysts to supply their own (untrusted by Privid)
video-processing code (Goal 3).

5.1 Overview

Privid supports aggregation queries, which process a “large”
amount of video data (e.g., several hours/days of video)
and produce a “small” number of bits of output (e.g., a few
32-bit integers). Examples of such tasks include counting
the total number of individuals that passed by a camera in
one day, or computing the average speed of cars observed. In
contrast, Privid does not support a query such as reporting
the location (e.g., bounding box) of an individual or car
within the video frame. Privid can be used for one-off ad-hoc
queries or standing queries running over a long period, e.g.,
the total number of cars per day, each day over a year.

The VO decides the level of privacy provided by Privid.
The VO chooses a privacy policy (ρ,K) and privacy budget (ǫ)
for each camera theymanage. Given these parameters,Privid
provides a guarantee of (ρ,K,ǫ)-privacy (Theorem 5.2) for
all queries over all cameras it manages.

To satisfy the privacy guarantee, Privid utilizes the stan-
dard Laplacemechanism fromDP [37] to add randomnoise to
theaggregatequeryresultbefore returning the result to thean-
alyst. The key technical pieces of Privid are: (i) providing an-
alysts the ability to specify queries using arbitrary untrusted
code (§5.2), (ii) adding noise to results to guarantee (ρ,K,ǫ)-
privacy for a single query (§5.5), and (iii) extending the guar-
antee to handle multiple queries over the same cameras (§5.6).

5.2 PrividQuery Interface

Executionmodel. Privid requires queries to be expressed
using a split-process-aggregatemodel in order to tie the dura-
tion of an event to the amount it can impact the query output.
The target video is split temporally into chunks, then each
chunk is fed to a separate instance of the analyst’s processing
code, which outputs a set of rows. Together, these rows form
a traditional tabular database (untrusted by Privid since it
is generated by the analyst). The aggregation stage runs a
SQL query over this table to produce a raw result. Finally,
Privid adds noise (§5.5) and returns only the noisy result to
the analyst, not the raw result or the intermediate table.

Query contents.A Privid query must contain (1) a block of
statements in a SQL-like language, whichwe introduce below
and call PrividQL, and (2) video processing executables.
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(1) PrividQL statements. A valid query contains one or
more of each of the 3 following statements. We provide an
example in §5.7.1 and the full grammar in §E of [33].

• SPLIT statements choose a segment of video (camera, start
and end datetime) as input, and produce a set of video chunks
as output. They specify how the segment should be split into
chunks, i.e., the chunk duration and stride between chunks.

• PROCESS statements take a set of SPLIT chunks as input,
and produce a traditional (“intermediate”) table. They specify
the executable that should process the chunks, the schema of
the resulting table, and themaximumnumber of rows a chunk
can output (max_rows, necessary to bound the sensitivity,
§5.5). Any rows output beyond the max are dropped.

•SELECT statements resemble typical SQLSELECT statements
that operate over the tables resulting from PROCESS state-
ments and output a (ρ,K,ǫ)-private result. Theymust have an
aggregation as the final operation. Privid supports the stan-
dard aggregation functions (e.g.,COUNT,SUM,AVG) and the core
set of typical operators as internal relations. An aggregation
must specify the range of each column it aggregates (just as in
related work on DP for SQL [50]). Each SELECT constitutes at
least one data release: one for a single aggregation ormultiple
for a GROUPBY (one for each key). Each data release receives
its own sample of noise and consumes additional privacy
budget (§5.6). In order to aggregate across multiple video
sources (separate time windows and/or multiple cameras),
the query can use a SPLIT and PROCESS for each video source,
and then aggregate using a JOIN and GROUPBY in the SELECT.

(2) PROCESS executables. Executables take one chunk as
input, and produce a set of rows (e.g., one per object) as output.

5.3 Providing Privacy Despite Blackbox Executables

When running a Privid query, an analyst can observe only
two pieces of information: (1) the query result, and (2) the
time it takes to receive the result.

Query result. In order to link an event’s duration to its
impact on the output, Privid ensures that the output of
processing a chunk i can only be influenced by what is visible
in chunk i (not any other chunk j). Then, an individual can
only impact the outputs of chunks in which they appear, and
the duration of their appearance is directly proportional to
their contribution to the output table.

To achieve this, Privid processes each chunk using a
separate instance of the analyst’s executable, each running
in its own isolated environment. This environment enforces
that the executable can read only the video chunk, camera
metadata, and a random number generator, and can output
only values formatted according to the PROCESS schema.
However, the executable may use arbitrary operations (e.g.,
customMLmodels for CV tasks).

Execution time. To prevent the execution time from leaking
any information, we must add two additional constraints.
First, each chunk must complete and return a value within
a pre-determined time limit T , otherwise a default value is

returned for that chunk (both T and the default value are
provided by the analyst at query time).6 Second, Privid only
returns the final aggregated query result after |chunks| ·T .
By enforcing these constraints, the observed return time is
only a property of the query itself, not the data.

Implementation.Our prototype implementation (described
in §D of [33]) satisfies these requirements using standard
Linux tools. Alternatively, a deployment of Privid could use
related work [8, 24, 35] on strong isolation with low overhead.

5.4 Interface Limitations

Themain limitation ofPrivid’s query interface is the inability
to write queries that maintain state across separate chunks.
However, in most cases this does not preclude queries, it
simply requires them to be expressed in a particular way. One
broad class of such queries are those that operate over unique
objects. Consider a query that counts cars. A straightforward
implementation might detect car objects, output one row for
each object, and count the number of rows. However, if a car
enters the camera view in chunk i and is last visible in chunk
i+n, the PROCESS table will include n rows for the same car
instead of the expected 1. To minimize overcounting, the
executable can incorporate a license plate reader, output
a plate attribute for each car, and then count(DISTINCT

plate) in the SELECT (as in §5.7.1).

Suppose instead the query were counting people, who do
not have globally unique identifiers. To minimize overcount-
ing, thePROCESS executable could choose to output a rowonly
for people that enter the scene during that chunk (and ignore
any people that are already visible at the start of a chunk).

Privid’s aggregation interface imposes some limitations
beyond traditional SQL (detailed in §E of [33], e.g., the SELECT
must specify the range of each column), but these are equiv-
alent to the limitations of DP SQL interfaces in prior work.

5.5 Query Sensitivity

The sensitivity of a Privid query is the maximum amount
the final query output could differ given the presence or
absence of any (ρ,K)-bounded event in the video. This can
be broken down into two questions: (1) what is the maximum
number of rows a (ρ, K)-bounded event could impact in
the analyst-generated intermediate table, and (2) howmuch
could each of these rows contribute to the aggregate output.
We discuss each in turn.

Contribution of a (ρ,K) event to the table.An event that
is visible in even a single frame of a chunk can impact the
output of that chunk arbitrarily, but due to Privid’s isolated
execution environment, it can only impact the output of
that chunk, not any others. Thus, the number of rows a
(ρ, K)-bounded event could impact is dependent on the
number of chunks it spans (an event spans a set of chunks
if it is visible in at least one frame of each).

6Timeouts can impact query accuracy, hence analysts should first profile
their code to select a conservative limit T .
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In the worst case, an event spans the most contiguous
chunks when it is first visible in the last frame of a chunk.
Given a chunk duration c (same units as ρ) a single event seg-
ment of duration ρ can span at mostmax_chunks(ρ) chunks:

max_chunks(ρ)=1+⌈
ρ

c
⌉ (5.1)

Definition 5.1 (Intermediate Table Sensitivity). Consider
a privacy policy (ρ,K), and an intermediate table t (created
with a chunk size of ct and maximum per-chunk rows
max_rowst). The sensitivity of tw.r.t (ρ,K), denoted∆(ρ,K),
is the maximum number of rows that could differ given the
presence or absence of any (ρ,K)-bounded event:

∆(ρ,K)(t)≤max_rowst ·K ·max_chunks(ρ) (5.2)

Proof. In theworst case, none of theK segments overlap, and
eachstarts at the last frameofa chunk. Thus,eachspans a sepa-
ratemax_chunks(ρ)chunks (Eq. 5.1). Foreachofthesechunks,
all of themax_rows output rows could be impacted.

Sensitivity propagation for (ρ,K)-bounded events. Prior
work [45, 50, 57] has shown how to compute the sensitivity
of a SQL query over traditional tables. Assuming that queries
are expressed in relational algebra, they define the sensitivity
recursively on the abstract syntax tree. Beginning with the
maximum number of rows an individual could influence in
the input table, they provide rules for how the influence of
an individual propagates through each relational operator
and ultimately impacts the aggregation function.

Unlike prior work on propagating sensitivity recursively,
the intermediate tables in Privid are untrusted, and thus
require careful consideration to ensure the privacy definition
is rigorously guaranteed. In this work, we determined the set
of operations that can be enabled over Privid’s intermediate
tables, derived the sensitivity for each, and proved their
correctness. Many rules end up being analogous or similar to
those in priorwork, butJOINs are different.Weprovide a brief
intuition for these differences below. Fig. 9 in §B contains
the complete definition for sensitivity of a Privid query.

Privacy semantics of untrusted tables. As an example,
consider a query that computes the size of the intersection
between two cameras, PROCESS’d into intermediate tables t1
and t2 respectively. If∆(t1)=x and∆(t2)=y, it is tempting
to assume ∆(t1 ∩ t2) = min(x, y), because a value needs
to appear in both t1 and t2 to appear in the intersection.
However, because the analyst’s executable can populate the
table arbitrarily, they can “prime” t1 with values that would
only appear in t2, and vice versa. As a result, a value need
only appear in either t1 or t2 to show up in the intersection,
and thus∆(t1∩t2)=x+y.
Theorem 5.1. Privid’s sensitivity definition (Fig. 9, §B)
provides (ρ,K,ǫ)-privacy for a queryQ over V .

We provide the formal proof in §B.

5.6 HandlingMultiple Queries

In traditional DP, the parameter ǫ is viewed as a “privacy
budget”. Informally, ǫ defines the total amount of information
that may be released about a database, and each query
consumes a portion of this budget. Once the budget is
depleted, no further queries can be answered.

Rather than assigning a single global budget to an entire
video, Privid allocates a separate budget of ǫ to each frame
of a video. When Privid receives a query Q over frames
[a,b] requesting budget ǫQ, it only accepts the query if all
frames in the interval [a− ρ,b+ ρ] have sufficient budget
≥ǫQ, otherwise the query is denied (Alg. 1 Lines 1-3). If the
query is accepted, Privid then subtracts ǫQ from each frame
in [a,b], but not the ρmargin (Alg. 1 Lines 4-5). We require
sufficient budget at the ρ margin to ensure that any single
segment of an event (which has duration at most ρ) cannot
span two temporally disjoint queries (§B).

Note thatsinceeachSELECT in aqueryrepresentsa separate
data release, the total budget ǫQ used by a query is the sum of
theǫi usedbyeachofthe iSELECTs. Theanalystcanspecify the
amount of budget theywould like to use for each release (via a
CONSUMING clause,defined in §Eof [33], see example in §5.7.1).

Putting it all together. Algorithm 1 presents a simplified
(single video) version of the Privid query execution process.
We provide the full algorithm in §G of [33].

Algorithm 1: PrividQuery Execution (simplified)

Input :QueryQ, video V , interval [a,b], policy (ρ,K,ǫ)
Output :Query answerA

1 foreach frame f ∈V [a−ρ :b+ρ] do
2 if f.budget<ǫQ then

3 return DENY

4 foreach frame f ∈V [a :b] do
5 f.budget -=Q.budget

6 chunks← Split V [a :b] into chunks of duration c
7 T←Table(schema)

8 foreach chunk∈chunks do
9 rows←F (chunk) // in isolated environment

10 T.append(rows)

11 r← execute PrividQL query S over table T

12 ∆(ρ,K)← compute recursively over the structure of S (§5.5)

13 η←Laplace(µ=0,b= ∆
ǫQ

)

14 A←r+η

Theorem 5.2. Consider an adaptive sequence (§2.3) of n
queriesQ1,...,Qn, each over the same camera C , a privacy
policy (ρC ,KC), and global budget ǫC . Privid (Algorithm 1)
provides (ρC ,KC ,ǫC)-privacy for allQ1,...,Qn.

We provide the formal proof in §B.
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5.7 Example Queries

5.7.1 Benevolent Query

Suppose a VO provides access to camA via Privid, with a
policy (ρ=60s,K=2). The city transportation department
wishes to collect statistics about vehicles passing camA during
October 2021. We formulate two questions as a Privid query:

-- Select 1 month time window from camera, split into chunks

SPLIT camA

BEGIN 10-01-2021/12:00am END 11-01-2021/12:00am

BY TIME 10sec STRIDE 0sec

INTO chunksA;

-- Process chunks using analyst's code, store outputs in tableA

PROCESS chunksA USING traffic_flow.py TIMEOUT 1sec

PRODUCING 20 ROWS

WITH SCHEMA (plate:STRING="", type:STRING="", speed:NUMBER=0)

INTO vehiclesA;

-- S1: Number of unique cars per day

SELECT day,COUNT(DISTINCT plate) FROM vehiclesA WHERE type=="car"

GROUP BY day CONSUMING eps=0.5;

-- S2: Average speed of trucks

SELECT AVG(range(speed, 30, 60)) FROM vehiclesA WHERE type=="truck"

CONSUMING eps=0.5;

The SPLIT selects 1month of video from camA, then divides
the frames into a list of 10-second-long chunks (267k chunks
total). The PROCESS first creates an empty table based on the
SCHEMA (3 columns). Then, for each chunk, it starts a fresh
instance of traffic_flow.py inside a restricted container,
provides the chunkas input,andappends theoutputas rows to
vehiclesA. The executable traffic_flow.py contains off-
the-shelf object detection and trackingmodels, a license plate
reader, and a speed estimation algorithm (source in §F of [33]).

The first SELECT filters all cars, then counts the “distinct”
license plates to estimate the number of unique cars per
day. Each day is a separate data release with an independent
sample of noise. The second SELECT filters all trucks, then
computes the average speed across the entire month of
footage. Ituses the same inputvideoas thefirst select,and thus
draws from the same budget, so in aggregate the two SELECTs
consume ǫ=1.0 budget from all frames in October 2021.

5.7.2 Malicious Query Attempt

Now consider a malicious analyst Mal who wishes to
determine if individual x appeared in front of camA each day.
Assume x’s appearance is bound by the VO’s (ρ,K) policy.

To hide their intent, Mal disguises their query as a traffic
counter,mimickingS1 from the previous example. Theywrite
identical query statements, but their “traffic_flow.py”
instead includes specializedmodels to detectx. Ifx appears, it
outputs 20 rows (the maximum) with random values for each
of the columns, otherwise it outputs 0 rows. This adds 20 rows
to the corresponding daily count for each chunk x appears.

Amplification attempt. Due to the isolated environment
(§5.3), the PROCESS executable can only output rows for a
chunk if x truly appears. It has no way of saving state or com-
municating between executions in order to artificially output
rows for a chunk in which x does not appear. It could output
more than 20 rows for a single chunk, but Privid ignores any
rowsbeyondthePROCESS’s explicitmax (20),so thiswouldnot

increase the count. Increasing the rows per chunk parameter
would also be pointless: Prividwould compute a proportion-
ally higher sensitivity and add proportionally higher noise.

Side channel attempt. The executable could try to encode
the entire contents of a frame in a row of the table, either by
encoding it as a string, or a very large number of individual
integer columns. But in either case, the analyst cannot view
the table directly or even a single row directly, it can only
compute noisy aggregations over entire columns.

Summary. Privid would compute the sensitivity of S1

(identical in both the benevolent and malicious cases) as
∆(60,2)(Q)≤20·2·(1+⌈ 60

10⌉)=280 rows, meaning it would
add noise with scale 280 to each daily count. Regardless of
howMal changes her executable, it cannot output more than
280 rows based on x’s presence. Thus, even if she observed
a non-zero value∼ 280, she could not distinguish whether
it is a result of the noise or x’s appearance.
Mal’s query gets a useless result, because her target (x’s

appearance) was close in duration to the policy. In contrast,
the benevolent query can get a useful result because the
duration of its target (the set of all cars’ appearances) far
exceeds the policy. Privid’s noise will translate toL−1(p=
0.99,u=0,b= ∆

ǫ
= 280

0.5 )≤2200 cars with 99% confidence. If,
for example, there are an average of 10 cars in each chunk (and
thus 86000 in one day), 2200 represents an error of±2.5%.

6 Query Utility Optimization

The noise that Privid adds to a query result is proportional to
both the privacy policy (ρ,K) and the range of the aggregated
values (the larger the range, the more noise Privid must
add to compensate for it). In this section we introduce two
optional optimizations that Privid offers analysts to improve
query accuracy while maintaining an equivalent level of
privacy: one reduces the ρ needed to preserve privacy (§6.1),
while the other reduces the range for aggregation (§6.2).

6.1 Spatial Masking

Observation. In certain settings, a few individuals may be
visible to a camera for far longer than others (e.g., those sitting
on a bench or in a car), creating a heavy-tailed distribution
of presence durations. Fig. 3 (top row) provides some
representative examples. Setting (ρ, K) to the maximum

(a) campus (b) highway (c) urban

Figure 3: (Top) Heatmap measuring the maximum time any object

spent in each pixel, noramlized to the max (yellow) per video. (Bot-

tom)The resultingmasksusedforourevaluation,chosen fromthe list

of masks automatically generated using the algorithm in §I of [33].
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Figure 4: The distribution of private objects’ durations (persistence) is heavy tailed. Applying the mask from Fig. 3 significantly lowers

the maximum duration, while still allowing most private objects to be detected. The key denotes the total number of private objects detectable

before and after applying the mask. The dotted lines highlight the maximum persistence, and the arrow text denotes the relative reduction.

duration in such distributions would result in a large amount
of noise needed to protect just those few individuals; all
others could have been protected with a far lower amount of
noise. We observe that, in many cases, lingering individuals
tend to spend the majority of their time in one of a few fixed
regions in the scene, but a relatively short time in the rest of
the scene. For example, a carmay be parked in a spot for hours,
but only visible for 1 minute while entering/leaving the spot.

Opportunity.Maskingfixed regions (i.e., removing thosepix-
els fromall framesprior to running theanalyst’s videoprocess-
ing) in the scene that contain lingering individualswoulddras-
tically reduce the observablemaximum duration of individu-
als’ presence, e.g., the parked car from abovewould be observ-
able for1minute rather thanhours. This, in turn,wouldpermit
a policywith a smallerρ, but an equivalent level of privacy–all
appearances would still be bound by the policy. Of course,
this technique is only useful to an analyst when the remain-
ing (unmasked) part of the scene includes all the information
needed for the query at hand, e.g., if counting cars, masking
sidewalks would be reasonable but masking roads would not.

Optimization.At camera-registration time, instead of pro-
viding a single (ρ,K) policy per camera, the VO can provide a
(fixed) list of a few framemasks and, for each, a corresponding
(ρ,K)policy thatwouldprovide equivalent privacywhen that
mask is applied. At query time, the analyst can (optionally)
choose amask from the list thatwouldminimally impact their
query goal while maximizing the level of noise reduction (via
the tighter (ρ,K) bound). If a mask is chosen, Privid applies
it to all video frames before passing it to the analyst’s PROCESS
executable (theanalystonly“sees” themaskedvideo),anduses
the corresponding (ρ,K) in the sensitivity calculation (§5.5).

To aid the analyst in discovering a useful set of masks (i.e.,
those that reduce (ρ,K) as much as possible using the fewest
pixels), we provide an algorithm in §I.2 of [33]. Regardless
of how they are chosen, the masks themselves are static (i.e.,
the same pixels are masked in every frame regardless of its
contents), and the set of available masks is fixed. Neither
depend on the query or the target video. Further, the mask
itself does not reveal how the analyst generated it or which
specific objects contributed to it, it only tells the analyst that
some objects appear for a long duration in the masked region.

Noise reduction. We demonstrate the potential benefit
of masking on three queries (Q1-Q3) from our evaluation

Video Max(frame) Max(region) Reduction

campus 6 3 2.00×
highway 40 23 1.74×
urban 37 16 2.25×

Table 2: Reduction in max output range from splitting each video

into distinct regions. Reduction shows the factor by which the noise

could be reduced. 2× cuts the necessary privacy level in half.

(Table 3). Given the query tasks (counting unique people
and cars), we chose masks that would maximally reduce ρ
without impacting the object counts; the bottom row of Fig. 3
visualizes our masks. Fig. 4 shows that these masks reduce
maximum durations by 1.71-9.65×. In §I.1 of [33] we show
that masking provides similar benefits for 7 additional videos
evaluated by BlazeIt [47] andMIRIS [30].

Masking vs. denaturing.Although masking is a form of de-
naturing, Privid uses it differently than the prior approaches
in §3.1, in order to sidestep their issues. Rather than attempt-
ing to dynamically hide individuals as theymove through the
scene, Privid’s masks cover a fixed location in the scene and
are publicly available so analysts can account for them in their
query implementation. Also, masks are used as an optional
modification to the input video; the rest of thePrividpipeline,
and thus its formal privacy guarantees, remain the same.

6.2 Spatial Splitting

Observation. (1) At any point in time, each object typically
occupies a relatively small area of a video frame. (2) Many
common queries (e.g., object detections) do not need to
examine the entire contents of a frame at once, i.e., if the
video is split spatially into regions, they can compute the
same total result by processing each of the regions separately.

Opportunity. Privid already splits videos temporally into
chunks. If each chunk is further divided into spatial regions
and an individual can only appear in one of these chunks
at a time, then their presence occupies a relatively smaller
portion of the intermediate table (and thus requires less noise
to protect). Additionally, the maximum duration of each
individual region may be smaller than the frame as a whole.

Optimization.At camera-registration time, Privid allows
VOs to manually specify boundaries for dividing the scene
into regions. They must also specify whether the boundaries
are soft (individuals may cross them over time, e.g., between
two crosswalks) or hard (individuals will never cross them,
e.g., between opposite directions on a highway). At query
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time, analysts can optionally choose to spatially split the
video using these boundaries. Note that this is in addition to,
rather than in replacement of, the temporal splitting. If the
boundaries are soft, tables created using that split must use a
chunk size of 1 frame to ensure that an individual can always
be in at most 1 chunk. If the boundaries are hard, there are
no restrictions on chunk size since the VO has stated the
constraint will always be true.

Noise reduction. We demonstrate the potential benefit
of spatial splitting on three videos from our evaluation
(Q1-Q3). For each video, we manually chose intuitive regions:
a separate region for each crosswalk in campus and urban (2
and 4, respectively), and a separate region for eachdirection of
the road in highway. Table 2 compares the range necessary to
capture all objects that appear within one chunk in the entire
framecomparedto the individual regions. Thedifference (1.74-
2.25×) represents the potential noise reductions from split-
ting: noise is proportional to max(frame) or max(region)
when splitting is disabled or enabled, respectively.

Grid split. To increase the applicability of spatial splitting,
Privid could allow analysts to divide each frame into a grid
and remove the restrictions on soft boundaries to allow any
chunk size. This would require additional estimates about the
max size of any private object (dictating themax number of re-
gions they could occupy at any time), and themaximum speed
of any object across the frame (dictating themaxnumber of re-
gions they couldmove between).We leave this to futurework.

7 Evaluation

The evaluation highlights of Privid are as follows:

1. Privid supports a diverse range of video analytics
queries, including object counting, duration queries, and
composite queries; for each, Privid increases error by
1-21% relative to a non-private system, while protecting
all individuals with (ρ,K,ǫ)-privacy (§7.2).

2. Privid enables VOs and analysts to flexibly and formally
trade utility loss and query granularity while preserving
the same privacy guarantee (§7.3).

7.1 Evaluation Setup

Datasets. We evaluated Privid primarily using three
representative video streams (campus, highway and urban,
screenshots in Fig. 3) that we collected from YouTube
spanning 12 hours each (6am-6pm). For one case study
(multi-camera), we use the Porto Taxi dataset [58] containing
1.7mil trajectories of all 442 taxis running in the city of Porto,
Portugal from Jan. 2013 to July 2014. We apply the same
processing as [42] to emulate a city-wide camera dataset;
the result is the set of timestamps each taxi would have been
visible to each of 105 cameras over the 1.5 year period.

Implementation. We implemented Privid in 4k lines of
Python. We used the Faster-RCNN [63] model in Detectron-
v2 [71] for object detection, and DeepSORT [69] for object
tracking. For these models to work reasonably given the di-

verse content of the videos, we chose hyperparameters for de-
tection and tracking on a per-video basis (details in §Hof [33]).

Privacy policies.We assume the VO’s underlying privacy
goal is to “protect the appearance of all individuals”. For each
camera, we use the strategy in §6.1, to create a map between
masks and (ρ,K) policies that achieve this goal.

Query parameters. For each query, we first chose a mask
that covered as much area as possible (to get the minimal ρ)
without disrupting the query. The resulting ρ values are in
Table 3. We use a budget of ǫ= 1 for each query. We chose
query windows sizes (W ), chunk durations (c), and column
ranges to best approximate the analyst’s expectations for
each query (as opposed to picking optimal values based on
a parameter sweep, which the analyst is unable to do).

Baselines. For each query, we compute error by comparing
the output of Privid to running the same exact query imple-
mentationwithoutPrivid.We execute each query 1000 times,
and report the mean accuracy value± 1 standard deviation.

7.2 Query Case Studies

Weformulatefive typesofqueries to spanavarietyofaxes (tar-
get object class, number of cameras, aggregation type, query
duration, standing vs. one-offquery). Fig. 5 displays results for
Q1-Q3. Table 3 summarizes the remaining queries (Q4-Q13).

Case 1: Q1-Q3 (Counting private objects over time). To
demonstrate Privid’s support for standing queries and short
(1 hour) aggregation durations, we SUM the number of unique
objects observed each hour over the 12 hours.

Case 2: Q4-Q6 (Aggregating overmultiple cameras with
complex operators). We utilize UNION, JOIN, and ARGMAX

to aggregate over cameras in the Porto Taxi Dataset. Due
to the large aggregation window (1 year), Privid’s noise
addition is small (relative to the other queries using a window
on the order of hours) and accuracy is high.

Case 3: Q7-Q9 (Counting non-private objects, large win-
dow). We measure the fraction of trees (non-private objects)
that have bloomed in each video. Executed over an entire net-
work of cameras, such a query could be used to identify the
regions with the best foliage in Spring. Relative to Case 1, we
achieve high accuracy by using a longer query window of 12
hours (the status of a tree does not change on that time scale),
andminimal chunksize (1 frame,no temporal contextneeded).

Case 4: Q10-Q12 (Fine-grained results using aggressive
masking). We measure the average amount of time a traffic
signal stays red. Since this only requires observing the light
itself, we can mask everything else, resulting in a ρ bound
of 0 (no private objects overlap these pixels), enabling high
accuracy and fine temporal granularity.

Case 5: Q13 (Stateful query). We count only the individuals
that enter from the south and exit at the north. It requires
a larger chunk size (relative to Q1-Q3) to maintain enough
state within a single chunk to understand trajectory.
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Case # Q# Query Description Query Parameters Video ρ Query Output Error

Case 2 Q4
Average Taxi DriverWorking Hours

(union across 2 cameras)

|W |=365 days, c=15 sec,
Agg = avg, range=(0,16)

porto10, porto27 [45, 195] sec 5.87 hrs 5.86%±0.18%

Case 2 Q5
Average # Taxis Traversing 2 Locations on

Same Day (intersection across 2 cameras)

|W |=365 days, c=15 sec,
Agg = avg, range=(0,300)

porto10, porto27 [45, 195] sec 131 taxis 0.20%±0.13%

Case 2 Q6
Identifying Camera with Highest Daily Traffic

(argmax across all 105 cameras)

|W |=365 days, c=15 sec,
Agg = argmax

porto0, ..., porto104 [15, 525] sec porto20 0%

Case 3

Q7

Fraction of trees with leaves (%)
|W |=12 hrs, c=1 frame,

Agg = avg, range=(0,100)

campus 49 sec 15/15 = 1.00 0.10%±0.11%
Q8 highway 6.21 min 3/7 = 0.43 1.76%±1.90%
Q9 urban 3.34 min 4/6 = 0.67 0.61%±0.66%

Case 4

Q10

Duration of Red Light (seconds)
|W |=12 hrs, c=30min,

Agg = avg, range=(0,300)

campus 1 frame 75 sec 0%±1.4×10−4%

Q11 highway 1 frame 50 sec 0%±2.1×10−4%

Q12 urban 1 frame 100 sec 0%±1.0×10−4%

Case 5 Q13
# Unique People (Filter: trajectory

moving towards campus)

|W |=12 hrs, c=10 sec,
Agg = sum, range=(0,5)

campus 49 sec 576 people 20.31%±2.60%

Table 3: Summary of query results for Q4-Q13. For Case 3 and 5, we use the same masks (and thus ρ) from Fig. 3. For Case 4, we mask all

pixels except the traffic light to attain ρ=0. For Case 2 we do not use any masks.
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Figure 5: Time series of Privid’s output for Case 1 queries. “Original” is the baseline query output without using Privid. “Privid (No Noise)”

shows the raw output of Privid before noise is added. The final noisy output will fall within the range of the red ribbon 99% of the time.
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We fix the accuracy target to be 99% of values having error≤5%.
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amount of budget used by each query allows more queries to be

executed over the same video segment, but results in proportionally
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Q1 using a different granularity. The y-axis plots the error for 99% of

values. Error is the amount of noise added relative to the maximum

query output. For example, in Q4, the final output is the average

number of working hours in the range [0,16]. Thus an error of 1%

would mean the noisy result is within 0.16 hours of the true result.

7.3 Budget-Granularity Tradeoff

Analysts have two main knobs for each queryQ to navigate
the utility space: (1) the fraction ǫQ of the total budget ǫ used
by that query, and (2) the duration (granularity) of each aggre-
gation (i.e., “one value per day for a month” has a granularity
ofoneday). Thequerybudget is inverselyproportional toboth
the query granularity and error (the expected value of noise
Privid adds relative to the output range). Thus, to decrease
the amount of budget per query (or equivalently, increase the
numberofqueries sharing thebudget),an analystmust choose
a (temporally) coarser result, a larger expected error bound,
or both. Fig. 6 shows that, for example, 5 instances of Query
3 could release results daily or 40 instances of Query 3 could
release results weekly, while achieving the same expected
accuracy. Fig. 7 shows that, for example, 20 separate instances
of Query 1 (x=20) executed over the same target video could
each expect 4.8% error if they release one result daily, 0.7% er-
ror if they release oneweekly,or 0.16% error if they release one
monthly. Importantly, this tradeoff is transparent to analysts:
Figs. 6 and 7 rely only on information that is publicly available
to analysts and did not require executing any queries.

7.4 Analyzing Sources of Inaccuracy

Privid introduces two sources of inaccuracy to a query result:
(1) intentional noise to satisfy (ρ,K,ǫ)-privacy, and (2) (unin-
tentional) inaccuracies caused by the impact of splitting and
masking videos before executing the video processing. Fig. 5
shows these two sources separately for queries Q1-Q3 (Case
1): the discrepancy between the two curves demonstrates the
impact of (2), while the shaded belt shows the relative scale of
noiseadded(1). In summary,the scaleofnoiseaddedbyPrivid
allows the final result to preserve the trend of the original.
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8 Using Privid

In this section,we summarize the set of decisions that both the
VO and analyst need to make when interacting with Privid.

8.1 Video Owner

First, the VOmust register a set of cameras with Privid. For
each camera, they must supply: (1) a (ρ,K) bound (or more
generallyamapofmasks tobounds),(2) aprivacybudgetǫ,and
(3) somemetadatadescribing the scene toanalysts (e.g.,a short
videoclip,since theycannotviewthecamera feeddirectly). All
of this is public to analysts. Belowwe provide general sugges-
tions for the VO, but ultimately they are responsible for choos-
ing these values. Privid only handles enforcing a given policy.

(1) (ρ,K) bounds. In most cases, we expect the VO will
record a sample of video, measure durations of objects of
interest using off-the-shelf tracking algorithms, and then set
the bound to the longest duration.

To provide better utility for analysts, the VO can offer
a menu of static masks that remove some of the scene in
exchange for tighter noise bounds than the original policy
(which is itself mapped to the empty mask). Note that the
VO must explicitly choose a (ρ,K) policy for each mask.
A mask is only useful if it reduces the amount of time the
longest objects are visible, which enables a tighter bound
while protecting the same set of individuals.

The VO may draw masks manually or generate them
automatically, e.g., by analyzing past trends from the camera.
In general, we expect masks to be static properties of each
scene, dependent only on dynamics of the scene type, rather
than behaviors of any individuals. However, it is ultimately
the VO’s responsibility to ensure anymasks it provides do not
reveal anything private, such as a person’s silhouette. Privid
focuses on preventing the leakage of privacywhen answering
queries. It does notmake any guarantees about themask itself.

(2) Budget ǫ.As in any deployment of DP, the choice of ǫ is
subjective. Academic papers commonly use ǫ≈1 [52] while
recent industry deployments have used 1<ǫ<10 [27, 36, 56].
Note that in Privid, this budget is per-frame (§5.6); two
queries aggregating over disjoint time ranges of the same
video draw from separate budgets. The only Privid-specific
consideration for choosing ǫ is that cameraswith overlapping
fields of view should share the same budget.

(3) Metadata. The VO should release a sample video clip7

representative of the scene so that analysts can calibrate
their executable8 and query9 accordingly. Any privacy loss
resulting from the one-time release of this single clip is
limited, and can bemanually vetted by theVO. Optionally, the
VO can release additional information to aid analysts, such as
the camera’s GPS coordinates, make, or focal length settings.

7While a clip is not needed in principle, without it, the analyst “runs
blind” and will not have confidence in the correctness of their results.

8MLmodels may perform better when retrained on a particular scene.
9For example, queries must specify bounds on the amount of output per

chunk, which depend on the amount of activity in the scene.

8.2 Analyst

In order to formulate a Privid query the analyst must make
the following decisions. For each decision, we provide an
example for the query in §5.7.1 (counting cars crossing a
virtual line on a highway).

Choose amask (from the list provided by the VO) based on
the query goal. For example, they should select a mask that
covers as much of the scene as possible without covering the
area near the virtual line. This would significantly reduce the
bound by removing parking spots and intersections where
objects linger.

Choose a chunk size based on the amount of context
needed. A larger chunk size permits more context for each
execution of the PROCESS, but results in more noise (§5.5).
Thus, the analyst should choose the smallest chunk size that
captures their events of interest. For example, 1 second is
likely sufficient to capture cars driving past a line. If they
instead wanted to calculate car speed, they would need a
larger chunk size (e.g., 10 seconds) and less restrictive mask
to capture more of the car’s trajectory.

Choose upper bound on number of output rows per
chunk based on the expected (via the video sample) level of
activity in each chunk. For counting cars over a short chunk,
especially in less busy scenes, each chunk may see 1-2 cars
and thus need 1-2 rows. For calculating speed over a larger
chunk, especially in more busy scenes, each chunk will see
more cars and may need 10 or 100 rows.

Create a PROCESS executable. This involves tuning their
CV models based on the scene (via the sample video), and
combining all tasks into a single executable. For example,
their executable may include an object detector to find cars,
an object tracker to link them to trajectories, a license plate
reader to link cars across cameras or prevent double counting,
and an algorithm to compute speed or determine car model.

Choose query granularity and budget. The query granu-
larity and budget are directly proportional to accuracy. Given
a fixed value for each, improving one requires worsening an-
other proportionally. We elaborate upon this tradeoff in §7.3.

9 Ethics

In building Privid, we do not advocate for the increase of
public video surveillance and analysis. Instead, we observe
that it is already prevalent and seek to improve the privacy
landscape. Privid’s accuracy and expressiveness makes it
palatable to add formal privacy to existing analytics, and
lowers the barrier to deployment. If privacy legislation is
introduced, Privid could be one way to ensure compliance.
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A Relative Privacy Guarantees

A.1 Proof

In this section, we provide a proof for Theorem 4.1. We begin
with a lemma that will be helpful for the proof:

Lemma A.1. Consider an individual x whose appearance
is bound by (ρ̂, K̂) in front of a camera whose policy is
(ρ,K,ǫ). For every query Q there exists α,β ∈ R such that
αK(1+βρ)≤∆(ρ,K)(Q)≤αK(2+βρ).

Proof. Any Privid query must contain some aggregation
agg as the outer-most relation, and thus we can write
Q := Πagg(R). ∆(ρ,K)(Q) is defined in Figure 9 for five
possible aggregation operators, which are each a function
of∆(ρ,K)(R) (the sensitivity of their inner relationR).

First,wewill prove these bounds are true for the inner relation
∆(ρ,K)(R) by induction onR (all rules for∆(ρ,K)(R) given
by Figure 9):

Case (Base):R := tWhenR is an intermediate Privid table
t, its sensitivity is given directly by Equation 5.2, where
α=max_rowst and β =1/c. Note, the (1+ ···) and (2+ ···)
in the lemma inequalities bound ⌈ρ

c
⌉.

Case (Selection): R := σ(R′). When R is a selection from
R′,∆(ρ,K)(R)=∆(ρ,K)(R

′). If∆(ρ,K)(R
′) is bound by the

inequalities in the lemma statement, then∆(ρ,K)(R) is too.
Case (Projection):R :=Π(R′). Same as selection.

Case (GroupBy and Join): R := γ(R1 ⋊⋉ ...⋊⋉Ri) When
R is a join of relations Ri proceeded by a GroupBy,

∆(ρ,K)(R) =
∑N

i=1∆(ρ,K)(Ri). Let ∆(ρ,K)Ri be parame-
terized by αi and βi. If each of∆(ρ,K)(Ri) are bound by the
inequalities in the lemma, then

∑
i∆(ρ,K)(Ri) is as well, but

with α=
∑N

i=1αi and β=
∑N

i=1βi.

Finally, each of the supported aggregation operators only
involvemultiplying∆(ρ,K)(R)byconstants (withrespect toρ
andK), and thus these constants can be subsumed intoα.

We now restate Theorem 4.1 for the reader’s convenience:

Theorem A.2. Consider a camera with a fixed policy
(ρ,K,ǫ). If an individualx’s appearance in front of the camera
is bound by some (ρ̂, K̂), then Privid effectively protects

xwith ǫ̂-DP, where ǫ̂ isO( ρ̂K̂
ρK

)ǫ, which grows (degrades) as

(ρ̂,K̂) increase while (ρ,K,ǫ) are fixed, and the constants do
not depend on the query.

Proof. Recall from §5 that Privid uses the Laplace mecha-
nism: it returnsQ(V )+η to the analyst, whereQ(V ) is the

raw query result, and η ∼ Laplace(0,b), b =
∆(ρ,K)(Q)

ǫ
and

∆(ρ,K)(Q) is the global sensitivity of the query over any
(ρ,K)-neighboring videos. Note that the sensitivity is purely
a function of the query, and thus Privid samples noise using
the same scale b regardless of how long any individual is
actually visible in the video.
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Figure 8: Plot of Equation A.4 for a few different levels of α. Note

that the x-axis is plotted for absolute values of ǫ and is using a log

scale. The y-axis is the maximum probability that an adversary

with a given confidence level could detect whether or not x was

present. If one draws a vertical line at the value of ǫ being enforced

(e.g., we mark ǫ=1 here), the trend to the left shows how privacy

is improved for individuals who are visible for less time, and the

right shows how it degrades for those who are visible for more.

By Theorem B.2, this mechanism provides ǫ-DP for all
(ρ,K)-bounded events. If we rearrange the equation for b

so that ǫ =
∆(ρ,K)(Q)

b
, we can equivalently say that Privid

guarantees
∆(ρ,K)(Q)

b
-DP for all (ρ,K)-bounded events. Or,

more generally, that a particular instantiation of Prividwith
policy p= (ρ,K,ǫ) guarantees ǫ̂-DP for all (ρ̂,K̂)-bounded
events in queryQ, where 10

ǫ̂p(ρ̂,K̂,Q)=
∆(ρ̂,K̂)(Q)

b
=

∆(ρ̂,K̂)(Q)

∆(ρ,K)(Q)/ǫ
=

∆(ρ̂,K̂)(Q)

∆(ρ,K)(Q)
ǫ

In other words, for a fixed policy, ǫ̂ defines the effective level
of protection provided to an event as a function of the event’s
(not policy’s) (ρ̂,K̂) bound.

From Lemma A.1, we can bound ǫ̂ as αK̂(1+βρ̂)
αK(2+βρ)ǫ ≤ ǫ̂ ≤

αK̂(2+βρ̂)
αK(1+βρ)ǫ. To see where this comes from, note that ǫ̂ is

minimized when the numerator is minimized (the lower
bound from Lemma A.1) and the denominator is maximized
(the upper bound from Lemma A.1). The same logic applies
to the upper bound on ǫ̂.

We can simplify both bounds by first canceling α and then
picking units of time such that β = 1 (β has dimensions of
chunks per unit time). Thus,

ǫ̂≈
ρ̂K̂

ρK
ǫ (A.1)

A.2 Degradation of Privacy

Although ǫ̂ provides a way to quantify the level of privacy
provided to each individual, it can be difficult to reason
about relative values of ǫ and what they ultimately mean
for privacy in practice. We can use the framework of binary
hypothesis testing to develop a more intuitive understanding
and ultimately visualize the degradation of privacy as a
function of ǫ̂ relative to ǫ.

10Note the difference in subscript in the numerator and denominator.
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Consider an adversary who wishes to determine whether
or not some individual x appeared in a given video V . They
submit a queryQ to the system, and observe only the final
result,A, which Privid computed asA=Q(V )+η, where η
is a sample of Laplace noise as defined in the previous section.
Based on this value, the adversary must distinguish between
one of two hypotheses:

H0 : x does not appear in V

H1 : x appears in V

We write the false positive PFP and false negative PFN

probabilities as:
PFP =P(x∈V |H0)

PFN =P(x /∈V |H1)

From Kairouz [46, Theorem 2.1], if an algorithm guarantees
ǫ-differential privacy (δ = 0), then these probabilities are
related as follows:

PFP +eǫPFN ≥1 (A.2)

PFN+eǫPFP ≥1 (A.3)

Suppose the adversary is willing to accept a false positive
threshold of PFP ≤ α. In ther words, they will only accept
H1 (x is present) if there is less than α probability that x is
not actually present.
Rearranging equations A.2 andA.3 in terms of the probability
of correctly detetecting x is present (1−PFN ), we have:

1−PFN ≤ eǫPFP ≤ eǫα

1−PFN ≤ e−ǫ(PFP −(1−eǫ))≤ e−ǫ(α−(1−eǫ))

Then, for a given threshold α, the probability that the
adversary correctly decides x is present is at most the
minimum of these:

P(x∈V |H1)≤min{eǫα,e−ǫ(α−(1−eǫ))} (A.4)

In Fig. 8, we visualize A.4 as a function of ǫ for 4 different
adversarial confidence levels (α=0.1%,1%,10%,20%). As an
example of how to read this graph, suppose Privid uses a
(ρ=60s,K=1,ǫ=1) policy (ǫ=1marked with the dotted
line). An individual who appears 3 times for < 60s each is
(ρ = 60s,K = 3)-bounded, and thus has an effective ǫ̂ = 3
relative to the actual policy for most queries (Eq. A.1). If an
adversary has a α= 1% confidence level, then they would
have at most a ∼ 20% chance of correctly detecting the
individual appeared, even though they appeared for far more
than the policy allowed. We can also see that, for sufficiently
small values of ǫ (e.g., ǫ<1), even if the adversary has a very
liberal confidence level (say, 20%), a marginal increase in
ǫ̂ relative to ǫ only gives the adversary a marginally larger
probability of detection than they would have had otherwise.

An important takeaway is that,when an individual exceeds
the (ρ,K) bound protected by Privid, their presence is not
immediately revealed. Rather, as it exceeds the bound further,
ǫ̂ increases, and it becomes more likely an adversary could
detect the event.

B Privid Sensitivity Definition

Figure 9 provides the complete definition of sensitivity for
a Privid query.

Lemma B.1. Given a relation R, the rules in Figure 9 are
an upper bound on the global sensitivity of a (ρ,K)-bounded
event in an intermediate table t.

Proof. Proof by induction on the structure of the query.
Case: t.∆P (t) is given directly by Equation 5.2.
Case:R′ :=σθ(R). A selection may remove some rows from
R, but it does not add any, or modify any existing ones, so in
the worst case an individual can be in just as many rows inR′

as inR and thus∆P (R
′)≤∆P (R) and the constraints remain

the same. If θ includes a limit = x condition, then R′ will
contain atmostx rows, regardless of the number of rows inR.
Case: R′ := Πa,...(R). A projection never changes the
number of rows, nor does it allow the data in one row to
influence another row, so in the worst case an individual
can be in at most the same number of rows in R′ as in R
(∆P (R

′)≤∆P (R)) and the size constraint C̃s(R) remains the
same. If the projection transforms an attribute by applying
a stateless function f to it, then we can no longer many
assumptions about the range of values in a (C̃r(R

′,a)=∅),
but nothing else changes because the stateless nature of the
function ensures that data in row cannot influence any others.
Case: GroupBy. A GROUP BY over a fixed set of a n keys
is equivalent to n separate queries that use the same
aggregation function over a σWHEREcol=key(R). If the column
being grouped is a user-defined column, Privid requires that
the analyst provide the keys directly. If the column being
grouped is one of the two implicit columns (chunk or region),
then the set of keys is not dependent on the contents of the
data (only its length) and thus are fixed regardless.
Case: Join. Consider a query that computes the size of
the intersection between two cameras, PROCESS’d into
intermediate tables t1 and t2 respectively. If∆(t1)=x and
∆(t2) = y, it is tempting to assume∆(t1∩ t2) = min(x,y),
because a value needs to appear in both t1 and t2 to appear in
the intersection. However, because the analyst’s executable
can populate the table arbitrarily, they can “prime” t1 with
values that would only appear in t2, and vice versa. As a
result, a value need only appear in either t1 or t2 to show up
in the intersection, and thus∆(t1∩ t2) = x+y (the sum of
the sensitivities of the tables).

Theorem B.2. Consider an adaptive sequence (§2.3) of n
queriesQ1,...,Qn, each over the same camera C , a privacy
policy (ρC ,KC), and global budget ǫC . Privid (Algorithm 1)
provides (ρC ,KC ,ǫC)-privacy for allQ1,...,Qn.

Proof. Consider two queriesQ1 (over time interval I1, using
chunk size c1 and budget ǫ1) andQ2 (over I2, using c2 and
ǫ2). Let v1=V [I1] be the segment of videoQ1 analyzes and
v2=V [I2] forQ2. LetE be a (ρ,K)-bounded event.

226    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



N
o
t
a
t
io
n

P Privacy policy for each camera:{(ρ,K)c ∀ c ∈ cameras}

∆P (R) Maximum number of rows in relationR that could differ by the addition
or removal of any (ρ,K)-bounded event.

C̃r(R,a) Range constraint: range of attributea inR

C̃s(R) Size constraint: upper bound on total number of rows inR

∅ Indicates that a relational operator leaves a constraint unbound. If this
constraint is required for the aggregation, it must be bound by a predecessor.
If it is not required, it can be left unbound.

A
g
g
r
e
g
a
t
io
n
F
u
n
c
t
io
n
s

Function Definition Constraints Sensitivity (∆(Q))

Count Q :=Πcount(∗)(R) ∆ 1·∆(R)

Sum Q :=Πsum(a)(R) ∆,C̃r ∆(R)·C̃r(R,a)

Average Q :=Πavg(a)(R) ∆,C̃r,C̃s
∆(R)·C̃r(R,a)

C̃s(R)

Std. Dev Q :=Πstddev(a)(R) ∆,C̃r,C̃s ∆(R)·C̃r(R,a)/
√

C̃s(R)

Argmax Q :=Πargmax(a)(R) ∆,a∈K maxk∈K∆(σa=k(R))

R
e
l
a
t
io
n
a
l
O
p
e
r
a
t
o
r
s

Operator Type Definition ∆P (R′) C̃r(R
′,ai) C̃s(R

′)

Base Case Base Table R mr·K ·(1+⌈
ρ
c
⌉) ∅ ∅

Selection

(σ)
Standard selection: rows fromR that matchWHERE condition R′ :=σ

where(...)(R) ∆P (R) C̃r(R,ai) C̃s(R)

Limit: firstx rows fromR R′ :=σlimit=x(R) ∆P (R) C̃r(R,ai) min(x,C̃s(R))

Projection

(Π)

Standard projection: select attributesai,... fromR R′ :=Πai,...
∆P (R) C̃r(R,ai) C̃s(R)

Apply (user-provided, but stateless)f to columnai R′ :=Πf(ai),...
∆P (R) ∅ C̃s(R)

Add range constraint to columnai R′ :=Πai∈[li,ui],...
∆P (R)

[li,ui] ifai 6=∅

C̃r(R,ai) otherwise
C̃s(R)

GroupBy

(γ)

Group attribute(s) (gi ) are chunk (or binned chunk) or region
R′ :=gj,...

γagg(ai),...

gj := chunk|bin(chunk)
Equation 5.2 ∆(agg(ai))

C̃s(R)
(bin size)

Group attribute(s) (gj ) are not chunk or region R′ :=gj,...
γagg(ai),...

∆P (R) ∅ ∅

... discrete set of keys provided for each group (constrains size) R′ :=gj∈Kj,...
γagg(ai),...

... ... Πj |Kj |

... aggregation constrains range:agg(ai)∈ [li,ui] R′ :=gj,...
γagg(ai)∈[li,ui],...

...
[li,ui] ifai 6=∅

C̃r(R,ai) otherwise
...

Joins*

(⋊⋉)

*When immediately preceeded by GroupBy over the same key(s) R′ :=gγagg(a)(R1 ⋊⋉g ...⋊⋉g Rn)

R′ :=gγagg(a)(R1⋊⋉g ...⋊⋉gRn)

∑n
i=1∆P (Ri)

(GroupBy

rules)

(GroupBy

rules)... equijoin ongj (intersection ongj )

... outer join ongj (union ongj )

Figure 9: Full set of rules for Privid’s sensitivity calculation.

Case 1: I1 and I2 are not ρ-disjoint The budget check
(lines 1-3 in Algorithm 1) ensures that these two queries must
draw from the same privacy budget, because their effective
ranges overlap by at least one frame (but may overlap up
to all frames). By Theorem 5.1, Privid is (ρ,K,ǫ1)-private
forQ1 and (ρ,K,ǫ2)-private forQ2. By Dwork [37, Theorem
3.14], the combination ofQ1 andQ2 is (ρ,K,ǫ1+ǫ2)-private.

Case 2: I1 and I2 are ρ-disjoint In other words,
I1+ρ<I2−ρ, thus the budget check (lines 1-3) allows these
two queries to draw from entirely separate privacy budgets.
Since the intervals are ρ-disjoint, and all segments inE must
have duration≤ρ, it is not possible for the same segment to
appear in even a single frame of both intervals.

LetK1 be the number of segments contained in I1, each of
duration≤ρ, andK2 be the remaining segments contained in
I2, each of duration≤ρ. In otherwords,E is (ρ,K1)-bounded
in v1 and (ρ,K2)-bounded in v2. SinceE has at mostK seg-
ments,K1+K2≤K . We need to show that the probability of
observingbothA1 andA2 if the inputs are the actual segments
v1 and v2 is close (e

ǫ) to the probability of observing those
values if the inputs are the neighboring segments v′1 and v

′
2:

Pr[A1=Q1(v1),A2=Q2(v2)]

Pr[A1=Q1(v′1),A2=Q2(v′2)]
≤exp(e)

Since theprobabilityofobservingA1 is independentofobserv-
ingA2 (randomness is purely over the noise added byPrivid):

Pr[A1=Q1(v1),A2=Q2(v2)]

Pr[A1=Q1(v′1),A2=Q2(v′2)]

≤
Pr[A1=Q1(v1)]Pr[A2=Q2(v2)]

Pr[A1=Q1(v′1)]Pr[A2=Q2(v′2)]

≤
1

2b1
exp(− |A1−Q1(v1)|

b1
) 1
2b2

exp(− |A2−Q2(v2)|
b2

)

1
2b1

exp(− |A1−Q1(v1
′)|

b1
) 1
2b2

exp(− |A2−Q2(v2′)|
b2

)

(By Algorithm 1, Line 13)

= exp(
|A1−Q1(v′

1)|−|A1−Q1(v1)|

b1
+

|A2−Q2(v′
2)|−|A2−Q2(v2)|

b2
)

If K1 segments are in v1 and K2 segments are in v2, the
numerator of each fraction above is the sensitivity of
a (ρ, K1)-bounded event and a (ρ, K2)-bounded event,
respectively. b1 and b2 are the amount of noise actually added
to the query, which are both based onK :

≤exp(
∆(ρ,K1)(Q1)

∆(ρ,K)(Q1)/ǫ
+

∆(ρ,K2)(Q2)

∆(ρ,K)(Q2)/ǫ
)

=exp(ǫ·(
K1(⌈

ρ
c1
⌉+1)

K(⌈ ρ
c1
⌉+1)

+
K2(⌈

ρ
c2
⌉+1)

K(⌈ ρ
c2
⌉+1)

))

(by Equation 5.2)

=exp(ǫ·(
K1

K
+
K2

K
)) (recallK≥K1+K2)

≤exp(ǫ)
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C Query Details

C.1 Case 1 Query Statements

Case 1: Query 1

SPLIT campus

BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm

BY TIME 30sec STRIDE 0sec

BY REGION

WITH MASK C1

INTO campusChunks;

PROCESS campusChunks USING count_ppl_campus.py TIMEOUT 1sec

PRODUCING 1 ROWS

WITH SCHEMA (ppl:NUMBER=0)

INTO campusTable;

SELECT hour,sum(RANGE(ppl,0,6)) from campusTable

GROUP BY hour

CONSUMING eps=1.0;

Case 1: Query 2

SPLIT highway

BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm

BY TIME 30sec STRIDE 0sec

BY REGION

WITH MASK H2

INTO highwayChunks;

PROCESS highwayChunks USING count_cars.py TIMEOUT 1sec

PRODUCING 1 ROWS

WITH SCHEMA (cars:NUMBER=0)

INTO highwayTable;

SELECT hour, sum(RANGE(cars,0,100)) from highwayTable

GROUP BY hour

CONSUMING eps=1.0;

Case 1: Query 3

SPLIT urban

BEGIN 06-01-2019/06:00am END 06-01-2019/06:00pm

BY TIME 30sec STRIDE 0sec

BY REGION

WITH MASK U2

INTO urbanChunks;

PROCESS campusChunks USING count_ppl_urban.py TIMEOUT 1sec

PRODUCING 1 ROWS

WITH SCHEMA (ppl:NUMBER=0)

INTO campusTable;

SELECT hour, sum(RANGE(ppl,0,23)) from campusTable

GROUP BY hour

CONSUMING eps=1.0;

C.2 Case 2: Complex Sensitivity Example

The code block for Case 2 contains Queries 4-6, which are
computed over the same set of intermediate tables.

To demonstrate the sensitivity computation for a complex
Privid query, we focus on Query 4. This query aims to
estimate the typical working hours of taxis in the city of
Porto, Portugal; it first computes the difference between the
first and last time each taxi (identified by plate) was seen (by
either camera 10 or 27) on a given day, then averages across
all taxis and days (over a year).

In order to ensure all variables needed for the aggregation
are properly constrained, we make two assumptions: most
taxis will not work more than 16 hours in a day, and there are
roughly300public taxis inPorto (basedonpublic information).
We can express this query in relational algebra as follows:

ΠAvg(hrs)(σlimit(plates)=300(plate,dayγrange(chunks)∈[0,16](t1∪t2)))

Case 2: Queries 4-6

-- Repeat for portoCam1...portoCam127:

SPLIT portoCam1

BEGIN 07-01-2013/12:00am END 07-01-2014/12:00am

BY TIME 15sec STRIDE 0sec

INTO chunks1;

-- Repeat for chunks1...chunks127:

PROCESS chunks1 USING porto.py TIMEOUT 1sec

PRODUCING 3 ROWS

WITH SCHEMA (plate:STRING="")

INTO table1;

-- Query 4: Average Taxi Working Hours

SELECT avg(avg_shift) FROM

(SELECT plate,avg(RANGE(shift, [0,16])) FROM

(SELECT plate,day,(max(chunk)-min(chunk) as shift) FROM

table10 UNION table27 GROUP BY plate,day(chunk))

GROUP BY plate LIMIT 300)

CONSUMING eps=0.33;

-- Query 5: # Taxis Traversing Both Locations On Same Day

SELECT day,count(DISTINCT plate) FROM

(SELECT day,plate FROM

table10 INNER JOIN table27 ON

(table10.plate=table27.plate AND table10.day=table27.day)

)

GROUP BY day

CONSUMING eps=0.33;

-- Query 6: Camera with highest daily traffic

SELECT argmax(arg=cam, target=avg_daily) FROM

(SELECT "cam1" as cam, avg(daily) as avg_daily FROM

(SELECT day,count(DISTINCT plate) as daily FROM

table1 GROUP BY day))

UNION

// ...

UNION

(SELECT "cam127" as cam, avg(daily) as avg_daily FROM ...)

CONSUMING eps=0.33;

We use the policy P = {(ρ = 45s,K = 1)c1 , (195s,1)c2}
(the max observed persistence over historical data for each
camera) and an ǫ of 1.
First, we compute the base sensitivity of each table.

The SPLIT statement specifies the video will be split
into 15 second chunks with 0 stride, and that each
chunk will produce a maximum of 3 rows. With this we

can compute: ∆P (t1) = ⌈ (45∗fps−1
15∗fps ⌉ + 1 = 4 · 3 = 12

and ∆P (t2) = ⌈ 195∗fps−1
15∗fps ⌉ + 1 = 14 · 3 = 42. When

we combine them with a union, their sensitivities add:
∆P (t1 ∪ t2) = 12 + 42 = 54. The GROUP BY creates a new
table with a row per plate per day, and constrains the range
of the aggregate value shift to [0,16] (range(a,b) returns
|b− a|, i.e., the time between the first and last appearance
of a taxi on a given day), but we don’t know how many
unique plates there might be, so the size C̃s(γ(...)) is
unconstrained.We add σlimit to manually enforce amaximum
of 300 plates per day,which gives us a constraint C̃s(σ(...))=
300plates ∗ 365days = 109,500. We now have all the con-
straints necessary to compute the sensitivity of the average

aggregation:∆AVG
P

(R)= ∆P (R)C̃r(R,shift,)

C̃s(R)
= 54·16

109,500 =0.0079.

Since Privid uses the Laplace mechanism to add noise, we
can use the inverse CDF of the Laplace distribution to bound
the expected error based on∆with a given confidence level.
For example, L−1(p= 0.999,u= 0,b= ∆

ǫ
= 0.0079

0.33 )≤ 0.15
hours with 99.9% confidence.
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