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ABSTRACT

As computer-based learning platforms have become ubig-
uitous, there is a growing need to better support teachers.
Particularly in mathematics, teachers often rely on open-
ended questions to assess students’ understanding. While
prior works focusing on the development of automated open-
ended work assessments have demonstrated their potential,
many of those methods require large amounts of student
data to make reliable estimates. We explore whether a prob-
lem specific automated scoring model could benefit from
auxiliary data collected from similar problems to address
this “cold start” problem. We examine factors such as sam-
ple size and the magnitude of similarity of utilized problem
data. We find the use of data from similar problems not only
provides benefits to improve predictive performance by in-
creasing sample size, but also leads to greater overall model
performance than using data solely from the original prob-
lem when sample size is held constant.
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1. INTRODUCTION

The development of online learning platforms [12, 10] have
transformed the instructional practices and learning expe-
riences in traditional and expanded learning environments.
These online-based learning platforms offer automated sup-
ports for assessing students’ work as well as providing feed-
back. While in the past these supports were generally re-
stricted to closed-ended problems with a finite number of
accepted correct responses, advancements in machine learn-
ing and natural language processing methods have led to the
development of tools that support open-ended work [15, 4,
2]. As open-ended questions in mathematics are widely used
by teachers to understand the students’ knowledge state and

their understanding of a topic, these types of tools have great
utility for both teachers and students using these systems.

Automatically scoring mathematical expressions and expla-
nations has several distinctive challenges due to the inter-
leaving of linguistic and non-linguistic terms (e.g. such as
numbers and mathematical expressions). For example, [13]
provides automatic grading and feedback for math open
response questions using clustering techniques, but it ig-
nores all text explanations to focus solely on numerical ex-
pressions. In the past few years, there have been several
works focused on the development and improvement of auto-
mated methods for assessing student open-ended responses
in mathematics [6, 18, 17, 8]. These methods are mostly
based on evaluating given student answers based on histori-
cal student answers and the scores given by teachers to such
data. [6] compared the performance of different models for
scoring math open-ended responses and attempted to estab-
lish a benchmark evaluation procedure to evaluate future
models. Building on that work, [2] improved performance
by using Sentence-BERT (SBERT) [14] embeddings on the
same dataset to score student responses. SBERT modifies
the pre-trained BERT (Bidirectional Encoder Representa-
tions from Transformers) [5] model to generate sentence-
level embeddings. Similar approaches are utilized in recom-
mending feedback messages for teachers to give to students.

As is prevalent in several machine learning applications,
many of these approaches are susceptible to the cold start
problem, where implementations of such methods may lack
sufficient data to make informed estimates. While the im-
pact will vary depending on the model and the context, most
assessment models require non-trivial amounts of data to
make accurate predictions (c.f. [1]) which may take time
and effort to acquire. In cases when there is a newer student
response that has not been encountered in the past, these
types of methods often fall behind in suggesting an accurate
score/feedback message posing this as the cold start prob-
lem. In light of this, mitigating the impact of this cold start
problem would provide support for teachers across a wider
range of problems. Transfer learning [16] is commonly used
as a means of addressing the cold start problem. Within the
field of mathematics education, we may be able to leverage
data from similar content to improve performance in cases
where there would otherwise be insufficient data to train an
automated assessment model.



We seek to explore the effectiveness of leveraging auxiliary
data (student responses) to similar open-ended problems in
the auto-scoring of a new problem with limited labeled data.
With the goal of addressing the cold start problem, we in-
tend to answer the following research questions: 1. Does the
addition of new labeled data from a similar open-response
problem, improve the predictive performance of single prob-
lem based auto-scoring models? 2. Does leveraging data
from a similar problem lead to better model performance in
comparison to using data from a randomly selected prob-
lem? 3. What is the effect of incorporating auxiliary data
into the training of an auto-scoring model and are there any
benefits beyond that of increasing sample size?

2. METHODOLOGY
2.1 Dataset

For this study, data' consists of all student answers that
have ever been submitted to open-ended problems within
ASSISTments. For this study, we arbitrarily selected an
open response problem within this dataset that contained
at least 40 student responses (n=45) to act as a representa-
tive problem. For consistency of terminology, this represen-
tative problem will be referred to as the “original problem”
throughout this paper, and will represent the problem for
which we would like to train an auto-scoring model (e.g. we
will treat it as the problem with insufficient data).

The selected problem pertains to logarithms, and presents
the students with the following equation: “5log(z+4) = 107
students are asked to either solve for x and explain their
steps to solve or to type “no solution” if no viable solu-
tion exists. We then collaborated with a content expert
to select a similar open-ended problem with a comparable
number of existing labeled student answers (n=43) to train
a model. This second problem, referred to as the “similar
problem” throughout the remainder of this paper, had the
same prompt as the original problem but with the follow-
ing equation: “logs(1 —x) = 4”. While we acknowledge that
the selected problems border on the threshold of what might
be considered open-ended, much of the content of open cur-
ricula pair close-ended and open-ended components within
many of their questions (e.g. solve and explain). In this way,
the selected problems result in sufficient variation in stu-
dent answers to examine auto-scoring models, and allow us
to easily identify a problem with undeniable similarity both
in terms of content and structure. As part of our analyses,
we removed any problem from the remaining dataset con-
taining fewer than 10 labeled student responses to mimic a
practical application where such problems would not be con-
sidered sufficient in providing auxiliary data since we will be
sampling from random problems.

Minor preprocessing was performed on the data to match
the format of [2] which introduced the SBERT-Canberra
model. These steps included the removal of HTML tags,
other special characters, and references to images. Like in
[6, 2], teacher-provided scores follow a 5-point integer scale

'The data and code used in this work cannot be publicly
posted due to the potential existence of personally identi-
fiable information contained within student open response
answers. In support of open science, this may be shareable
through an IRB approval process. Inquiries should be di-
rected to the trailing author of this work.

ranging from 0, indicating poor performance, through 4, in-
dicating high performance. While we acknowledge that or-
dinal relationships are lost by representing the labels in this
way, the scale is converted to a 5-valued categorical one-hot
encoded vector and modeled as a multi-class prediction task
(i.e. the model treats each score as a mutually-exclusive
label) to keep consistent with [2].

2.2 Model

The *SBERT-Canberra” model [2] follows a similarity-ranking
procedure to generate its predictions. When producing a
prediction for a given student response, it applies SBERT
to generate an embedding that captures semantic and syn-
tactic meaning, such that similar responses are mapped to
closer points within the embedding space. The SBERT em-
bedding for this student response is compared to SBERT
embeddings of historic labeled student responses. Using
the Canberra distance measure [11], the score for the his-
toric response corresponding to the smallest distance (i.e.
the most similar response) is used as the score prediction.
We chose to use this model as 1) it outperformed existing
benchmarks in assessing student responses in mathematics
[2], 2) no“training” involved in the traditional machine learn-
ing sense so we do not need to optimize hyperparameters,
and 3) the model performance is directly linked to the scale
and diversity of the historic responses.

2.3 Model Evaluation

To examine the use of auxiliary data, we conduct 2 analy-
ses that each compare the SBERT-Canberra model with 3
different training sets. The analyses follow a bootstrapping
procedure which samples with-replacement from the avail-
able data at increasing intervals. At each interval, student
responses are randomly sampled to train and evaluate the
model using 10-fold cross validation, where sampling is con-
ducted within the training folds. This entire process is re-
peated 25 times, with the model performance being averaged
across these iterations (to reduce noise caused by unlucky
sampling). To evaluate the scoring results, the area under
the curve, AUC, (calculated using the simplified multi-class
calculation of ROC AUC from [9]) is used as the primary
metric to compare the model’s predicted score of a student
response to the actual score that was provided by a teacher.

The models are distinguished by their training data. The
Baseline Model uses only student responses from the origi-
nal problem. The Similar Problem Model uses a combina-
tion of student responses from the original problem as well
as auxiliary responses sampled from the similar problem.
Finally, the Random Problem Model uses a combination of
student responses from the original problem as well as stu-
dent responses sampled from 5 randomly-selected problems
from the remaining dataset; per design and due to the scale
of the data used, it is very unlikely for these problems to be
similar to the original problem, allowing for comparisons to
be made in regard to differing magnitudes of similarity.

We randomly sample 40 scored responses from the similar
problem and from the 5 random problems to create a compa-
rable set. Due to the large variations in sample sizes across
problems within the dataset, we sample student responses
for the Random Problem Model using a stratified selection
method. From the 5 randomly-selected problems per inter-
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Figure 1: Average AUC varying original problem sample size.

val, 8 scored student responses are randomly selected per
iteration in the interval and they compose the 40 samples to
supplement the training data from the original problem.

The first analysis replicates a real-world scenario where we
may have a small number of labeled samples for the original
problem, but a larger number of samples that may be lever-
aged from other problems. For each bootstrapping interval,
we randomly sample data from the original problem rang-
ing from 0 to 40. The average performance of each model is
then plotted with 95% confidence intervals calculated over
the 25 repeated runs per interval. While the Baseline model
is limited to only the 0 to 40 original problem samples, both
the Similar Problem Model and Random Problem Model are
able to use 40-80 samples over the set of intervals.

As it is hypothesized that the largest benefit of using aux-
iliary data is the added sample size, we conduct a second
bootstrapping analysis that observes a constant sample size
while varying the proportion of data used from the origi-
nal problem. All models (except for the baseline) utilize 40
samples allowing us to see how the source of content affects
model performance independent of data scale. The percent-
age intervals range from 0% to 100% of the training samples
are from the original problem in 10% increments. So, at the
first interval, all samples are responses from other problems,
while at the end, all 40 samples are from the original prob-
lem. As the Baseline Model only utilizes data from the orig-
inal problem, we are unable to maintain a consistent sample
size across intervals. For comparative purposes, we increase
the training sample size with the increasing percentage (i.e.
using 0 samples, then 4 corresponding with 10%, etc.).

3. RESULTS AND DISCUSSION

For intervals 0 and 0%, no training data was provided for
the baseline model so the average AUC of the baseline model
is assigned to be 0.5 which is equivalent to chance.

Observing the Similar Problem Model in Figure 1, the model
outperforms the average AUC of the baseline model across
every increment of training samples from the original prob-
lem by approximately 0.073 in terms of average AUC per
interval. This difference is also statistically reliable across a
majority of intervals by comparing the confidence intervals.

Regarding the Random Problem Model, the model outper-
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Figure 2: Average AUC varying sample proportion.

forms the average AUC of the baseline model across 43% of
the increments tested. At an average difference of just 0.007
in terms of average AUC per interval, very little difference is
observed between the Random Problem Model and the Base-
line Model. It is worth noting that the performance of the
Random Problem Model does outperform the Baseline over
the initial intervals when sample size is the smallest, sug-
gesting that even randomly-selected problems may provide
benefit. However, this model also exhibited large variations
in performance, leading us to omit the error bars to improve
the readability of the figure; this variation is presumably at-
tributable to the random selection of problems with varying
magnitudes of similarity to the original problem.

An interesting trend emerged in regard to the Similar Prob-
lem Model as seen in Figure 2. When using 40 total train-
ing samples (and keeping this constant) with some percent-
age of samples from the original problem and the remaining
samples from the similar problem, the modified model out-
performs or equals the average AUC of the baseline model
across every increment of training samples from the original
problem by around 0.053 in terms of average AUC per inter-
val. After the peak performance in terms of average AUC,
the model’s performance lessens as the percentage of train-
ing samples coming from the original problem increases.

The Random Problem Model follows closely with the perfor-
mance of the baseline. When using 40 total training samples
with some percentage of samples from the original problem
and the remaining samples from 5 random problems, the
modified model outperforms or equals the average AUC of
the baseline model across 54% of the increments tested and
by around 0.005 in terms of average AUC per interval.

The Baseline Model across both analyses provide insights
into the current implementation of auto-scoring models. While
the performance of the SBERT-Canberra model will likely
vary across problems, we observe here that the model con-
verges within a relatively small set of samples. After train-
ing from 12 samples from the original problem, the baseline
model converges in terms of average AUC performance. It
does seem to matter, however, which samples are used to
train the model. We can see in both analyses that the Base-
line Model’s confidence intervals decrease with more sam-



ples. The relatively wide bounds over low sample sizes sug-
gests that there are subsets of training samples that are bet-
ter than others. This is not surprising as the diversity of data
is often considered just as important as the scale in many
machine learning applications [7].

There is a similar trend in regard to the scale of confidence
bounds for the Similar Problem Model. Although the aver-
age AUC performance stabilized after 10 samples, the confi-
dence intervals continued to shrink in the first analysis, but
remained relatively constant in the second analysis. In both
analyses, however, we see consistent, if not statistically re-
liable differences in comparison to the Baseline Model. In
addressing our first research question, this finding suggests
that the use of auxiliary data can lead to notable benefits
to model performance. We see in the first analysis that the
added sample size leads to notable performance through all
intervals. While our initial hypothesis was that this benefit
would likely be attributable to increased sample sizes, the
trend of this Similar Problem Model in the second analy-
sis contradicts that hypothesis. While this model still out-
performs the baseline, as sample size is held constant, this
cannot be the contributing factor to the differences we ob-
serve. We expected the final interval of Figure 2 to be an
upper bound for model performance as this is when the data
is most closely related to the test set, but we found that
the inclusion of data from a similar problem added benefits
that extend beyond the impact of sample size. This find-
ing addresses our third research question, but still remains
inconclusive as to what benefit is provided. It is possible,
for example, that the auxiliary data acts as a regulariza-
tion method (c.f. [3]), but the analyses conducted here are
only able to rule out sample size being the contributing fac-
tor. These findings further confirm that scoring models can
be improved upon when provided with more varied training
samples from both the problem it is trying to score and sim-
ilar problems rather than only being trained from samples
of the original problem. Even when trained with the same
number of samples, the Similar Problem model’s average
AUC decreases after a peak training percentage composition
which supports the theory that the quality of the training
samples from the original problem are less than the quality
of the combined samples.

What is perhaps most surprising about this comparison in
the second analysis is that the model trained from 100%
of data from the similar problem seems to outperform the
model trained from 100% of the original problem. We be-
lieve that this is an artifact of the selected problems and the
level of similarity that they exhibit. As such, we would not
expect this finding to extend to every open-ended problem,
but rather could extend to a subset where there is strong
similarity between problems both in terms of content and
the structure of student responses; this is the scenario where
we believe this method would provide the most benefit.

This is particularly the case considering that the same level
of benefit was not observed in regard to the Random Prob-
lem Model across the two analyses. Our hypothesis, as pre-
viously introduced, is that the added benefit is likely corre-
lated with the magnitude of problem similarity. Even if this
hypothesis is flawed, we are seeing that certain subsets of
problems lead to better performance than others, emphasiz-

ing the importance in selecting suitable problems from which
to draw auxiliary data. In light of this, we can address our
second research question in that problem similarity, loosely
defined, does seem to impact performance.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we explore a possible solution to the cold-
start problem in automating the assessment of student open-
ended work. We have shown that our SBERT-Canberra
method using similar auxiliary problem data consistently
and significantly outperformed the model using data solely
from the original problem. When there are few training
samples, even the modified SBERT-Canberra method using
random problems’ data to supplement helped improve the
performance. Throughout the exploration of both analyses,
there is a noticeable benefit to supplementing the training
samples with data from other problems. By supplementing
the original training samples with multiple similar problems,
we hypothesize that it will lead to even larger performance
improvements to automatic scoring regardless of the number
of original training samples. This would be particularly the
case if our hypothesis is correct where some of this benefit
is derived from regularizing factors.

The largest limitation is that this paper focuses on predict-
ing the scores of only one specific problem. While we argue
that the analyses conducted here were sufficient to address
our research questions, there is a larger uncertainty that re-
mains in regard to how representative these results are. This
work should be tested across a variety of problems to ensure
that the results generalize well to other problems. When de-
ciding what constitutes a similar problem, future work could
explore other methods that consider a wide range of com-
parison characteristics. Descriptives including the problem
text, knowledge component, grade level, average difficulty,
etc may be utilized in comparing problems to determine sim-
ilarity. Defining such attributes would also provide oppor-
tunities to build models to better understand how matching
characteristics correlate with model performance gains.

Future work should use transfer learning to use the SBERT-
Canberra model of a similar problem as a starting point to
score a new problem’s open-ended response. As more data
from problems are collected, we found that there may still be
benefits to using auxiliary data even beyond addressing the
cold start problem. Furthermore, teachers often need sup-
ports in providing more meaningful feedback beyond that
of a numeric score. ASSISTments is already able to recom-
mend feedback for trained problem models, but it requires
a lot of data in order to do so (more than for the automated
scoring task). The use of auxiliary data as explored in this
work may prove useful in other such contexts.
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