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Abstract—Decision trees and tree ensembles are popular super-
vised learning models on tabular data. Two recent research trends
on tree models stand out: (1) bigger and deeper models with
many trees, and (2) scalable distributed training frameworks.
However, existing implementations on distributed systems are IO-
bound leaving CPU cores underutilized. They also only find best
node-splitting conditions approximately due to row-based data
partitioning scheme. In this paper, we target the exact training of
tree models by effectively utilizing the available CPU cores. The
resulting system called TreeServer adopts a column-based data
partitioning scheme to minimize communication, and a node-
centric task-based engine to fully explore the CPU parallelism.
Experiments show that TreeServer is up to 10× faster than
models in Spark MLlib. We also showcase TreeServer’s high
training throughput by using it to build big “deep forest” models.

I. INTRODUCTION

Decision tree is a supervised model trained over a data table

to predict the value of a target attribute Y for an entity based

on the observed values of its other attributes A1, A2, . . . , Am.

For example, given a customer data table in Fig. 1(a), Fig. 1(b)

shows a decision tree to predict whether someone may default

on a credit card payment. To reach a decision (Y -value at a

leaf), a list of questions on attributes like “Age” and “Income”

are gone through starting from the root.

Recently, deeper ensemble models with many trees like deep

forests [37] and mGBDTs [21] were shown to outperform

deep neural networks in a number of tasks. Moreover, the

distributed tree training algorithm, Google’s PLANET [30],

has been implemented as a standard model in distributed data

science libraries such as Mahout [29] and Spark MLlib [27].

However, since PLANET was originally proposed for

MapReduce that keeps data on HDFS as row blocks, while

nodes in tree models are split by conditions on attributes

(i.e., columns), PLANET cannot support efficient computation

of the best node-splitting conditions. Note that since the

values of each individual column are stored in a distributed

manner, excessive communication is necessary to find the

best node-splitting conditions. To mitigate this issue, most

existing implementations compute approximate node-splitting

conditions, such as in Spark MLlib [27] and XGBoost [18].

Note that a Spark-based system such as MLlib cannot fun-

damentally address this problem, since RDDs are distributed
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Fig. 1. Data Table and Tree Notations

in-memory row blocks. Even though Spark is switching to a

“DataFrame” data organization to support column abstractions,

the DataFrames are still row-based and actually immutable.

New columns can be computed from DataFrames but they are

still stored in a distributed manner, and a machine still cannot

access an entire column without communication.

Another efficiency issue with PLANET is that, it adopts a

top-down approach for node construction. Due to row-based

data partitioning, upper-level node processing is IO-bound,

making CPU utilization low initially during tree construction.

Recently, T-thinker [33] has been proposed as a parallel

computing paradigm to overcome the problem of CPU under-

utilization in existing data-intensive Big Data systems, which

were found to have a comparable or lower throughput than a

single-threaded program [22], despite the use of aggregate IO

throughput from many machines. T-thinker has seen success

in data mining problems [19], [23]–[25], [31], [32], [34]–[36].



T-thinker targets divide-and-conquer problems where a com-

puting task over a big dataset can be recursively divided

into independent tasks over smaller data subsets for parallel

computation. Since the communication cost of collecting data

for a task is linear to the data size, while computing workloads

grow quickly with the data size, the latter cost can surpass

the former as long as the data of a task is not too small. If

a task is waiting for data, T-thinker suspends it to release a

CPU core for use by other tasks, and the task will be timely

resumed when its requested data are all received. This allows

communication to be overlapped with computation to keep

CPU cores busy with the actual computation.

Following the T-thinker paradigm, we propose TreeServer,

a distributed system for training tree models where each task

corresponds to the construction of a subtree rooted at a node

x, denoted by ∆x; this task can be divided into subtasks

that construct subtrees rooted at x’s child nodes. If the set of

training data that fall into x is small enough for processing by

a machine, a task pulls these data to build the entire ∆x locally

without additional communication to keep a core busy.

We identify three challenges in realizing the above idea:

(1) how to schedule such CPU-bound tasks early to utilize the

idle CPU cores in contrast to PLANET’s top-down level-by-

level node processing which delays effective CPU utilization?

(2) how to compute the best attribute splitting conditions at

each node exactly without excessive communication as experi-

enced by current systems? (3) since we adopt a master-workers

architecture where the master manages tree construction tasks,

how to effectively direct the data-pulling requests from work-

ers to different other workers without master involvement, so

that data communication would not overwhelm any machine?

TreeServer provides elegant solutions to all the above 3

challenges. The main contributions of this paper are as follows:

• TreeServer partitions tabular data among machines by

columns, which allows each attribute to be checked for

node splitting without excessive communication.

• TreeServer schedules node-centric tasks in a hybrid

scheme combining breadth-first with depth-first traversal,

to schedule CPU-bound subtree construction tasks early.

• TreeServer keeps the data rows associated with different

tree nodes in different machines to avoid a single point

of communication-bottleneck for transmitting the subset

of records requested by child-node tasks.

• Sound algorithms are developed to realize the above

designs, plus a cost model for load balancing.

Besides the above desirable designs, TreeServer supports

all types of attributes and handles missing data and attribute

values unseen during training. TreeServer is fully compatible

with the Hadoop ecosystem and loads data in parallel from

Hadoop Distributed File System (HDFS). TreeServer is an

ideal building block for training larger tree ensembles such as

deep forests [37] in a Hadoop analytics workflow. Extensive

experiments show that TreeServer is up to 10× faster than

Spark MLlib, and constructs deep forests efficiently.

The rest of this paper is organized as follows. Section II re-

views our notations and the related work. Section III overviews

the design and features of TreeServer. Section IV describes

the computation workflow of TreeServer threads. Following

that, Section V presents our approach to release master from

the duty of relaying row indices of nodes to workers to

avoid delaying the transmission of task control messages, and

Section VI introduces our approach to assign task workloads to

worker machines. Finally, Section VII provides a case study

of using TreeServer to construct deep forests, Section VIII

reports our experiments, and Section IX concludes this paper.

To ensure reproducibility, we have released our code for

TreeServer [12] and deep forest on top [14]. We also provide

demo videos for TreeServer (short [11] and full [10] versions)

and deep forest [13] with detailed steps to repeat experiments.

II. PRELIMINARIES

Notations and Decision Tree Review. We now introduce our

notations, and a complete list of notations used in this paper

can be found in Appendix A [6] for quick reference.

We consider a data table D with m attributes A =
{A1, A2, . . . , Am} where one of them is the attribute Y to

predict. In Fig. 1(a), we have m = 5 and Y = A5. We also

denote the set of rows that fall into node x by Dx, and denote

their IDs by Ix. In Fig. 1(b), Ix2
= {1, 2, 4, 5, 7}. Finally, we

denote the subtree rooted at node x by ∆x.

During training, at each node x, we want to find a split-

condition to partition the rows of Dx into child nodes such

that an impurity score is reduced the most. We only consider

binary node splitting since any multi-way splitting can be

represented as a series of binary splitting. Each node x splits

Dx based on an attribute Ai called the split-attribute.

There are 2 cases for the split-condition: (1) if Ai is ordinal,

then the split-condition is “Ai ≤ v”, e.g., node x1 has A1 ≤ 40
in Fig. 1(b); (2) if Ai is categorical, and its possible values

constitute a set Si, then the split-condition is “Ai ∈ Sℓ”

where Sℓ ⊂ Si. If a row in Dx has an attribute value of

Ai that falls in Sℓ, it goes to the left child node (right child

otherwise). In Fig. 1, Attribute A2 has 5 possible values

Si = {Primary, Secondary, Bachelor, Master, PhD}, and

Sℓ = {Bachelor, Master, PhD}. Note that if Ai is categorical,

there are exponentially many possible split-conditions.

The split-attribute Ai and its split-condition (i.e., v or Sℓ)

are greedily selected from a set of candidate attributes C ⊆ A
to minimize impurity after shattering Dx into the two child

nodes. The quality of node splitting is evaluated quantitatively

using an impurity function such as the entropy of Y -labels

for classification and variance of Y -values for regression. At

each node x, one may randomly sample a subset C ⊆ A of

attributes, and then greedily select the best attribute Ai ∈ C
and its split-condition. A special case is completely random

decision tree [20] where to split each node, only one feature

is randomly sampled (i.e., |C| = 1). In other cases, C may be

sampled beforehand and then used throughout the building of

a tree, as is in the ensemble model random forest where each

tree is trained on a randomly sampled attribute subset.

At each tree node x, we select the best split-condition for

each individual attribute (column) Ai independently (hence



can run in parallel), often just need one pass over the values of

Ai and Y for rows in Dx using well-known methods for deci-

sion tree training. The details can be found in Appendix B [6].

The best conditions of different attributes Ai ∈ C are then

compared to select x’s overall best split-condition.

A node x becomes a leaf for reasons such as (1) all rows

in Dx have the same Y -label and thus the prediction at the

node is unique; (2) |Dx| ≤ τleaf where τleaf is a user-defined

threshold; (3) the depth of node x, denoted by d(x), reaches

the maximum allowed threshold dmax. Conditions (2) and (3)

are to avoid overfitting the training data, and in classification,

the label is predicted as the label that most rows in Dx have,

or simply a PMF (probability mass function) vector over all

labels. For example, in Fig. 1, if we stop at node x7 as a leaf,

since Dx7
contains Row 8 with label “No” and 9 with label

“Yes”, x7 will output a PMF vector {“Yes”: 50%, “No”: 50%}
or a predicted label “Yes” (or “No” as we have a tie). For

regression where Y is numerical, only conditions (2) and (3)

applies, and the predicted value is the average Y -value of Dx.

Related Systems. Since MapReduce and Spark’s RDD par-

tition input data among machines by rows, to find the best

value v for a split-condition “Ai ≤ v” for a node x, every

machine needs to check its own portion of those rows that

belong to Dx. Since there can be up to n = |Dx| different

Ai-values for rows in Dx, we need to consider up to (n− 1)
different split-values for v. For each value of v, different

machines need to compare the Ai-values of their portion of

rows against v, and the resulting statistics need to be globally

aggregated to compute the impurity of splitting. This cost is

prohibitive since (n−1) statistics transmissions are needed to

examine just one attribute Ai for a node x. As a result, existing

systems sacrifice accuracy for efficiency by only sampling

a small set of splitting values of Dx for examination. For

example, PLANET (adopted by MLlib and Mahout) computes

approximate equi-depth histograms for each attribute [30], and

a single splitting value is considered from every histogram

bucket; XGBoost proposes a weighted quantile sketch for a

similar purpose [18] but additionally updates sketches for each

node x to reflect attribute values only in Dx rather than in the

entire table.

PLANET also proposes to construct an entire subtree ∆x

in a single machine when Dx is small enough, but such CPU-

bound computation does not happen until towards the very

end of tree construction, before which CPU cores remain

underutilized. This is because PLANET constructs nodes top-

down level by level, where upper-level nodes require inter-

machine collaboration to find the best split-conditions (due

to the row partitioning scheme of MapReduce upon which

PLANET is built). PLANET constructs all nodes in a level by

one MapReduce job, so that each row is read exactly once by

a mapper task from HDFS to be IO-efficient. However, this

design prevents tasks that build entire subtrees in a machine

from being scheduled to run earlier to utilize idle CPU cores.

Among other related works, PV-Tree [26] proposes a

communication-efficient heuristic to find split-condition ap-
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Fig. 2. Master-Workers Architecture of TreeServer

proximately in 3 steps: (1) selecting K attributes with the

largest information gain from rows in each local machine,

(2) finding 2K global attributes among these candidates by

majority voting, and (3) collecting histograms of these 2K
attributes to identify the best attribute and its split-condition.

Yggdrasil [16] proposes to significantly reduce the data foot-

print by compression, and it finds the best split-conditions

exactly. Their paper also analytically characterizes the impact

of PLANET’s approximation to justify the need of exact com-

putation. However, Yggdrasil still adopts a top-down level-by-

level node construction order which is IO-bound and does not

allow an entire subtree ∆x to be built in a single machine.

Yggdrasil also uses a master to broadcast a bitvector of “row

to child-node” assignment to all machines causing a single

point of transmission bottleneck. Our TreeServer’s algorithm

addresses both these problems. We remark that TreeServer

can be extended to utilize compression similarly for further

speedup, but as different attributes need different compression

schemes which require additional user efforts to specify, we

do not adopt it to keep our user API data-type transparent.

III. SYSTEM OVERVIEW

TreeServer Architecture. Fig. 2 illustrates how TreeServer

works. Specifically, TreeServer adopts a master-workers ar-

chitecture. Users submit their model training jobs only to

a master machine, which disassembles each tree model into

individual decision trees for training. The master manages the

training progress of each decision tree by distributing tasks

to worker machines for computation and then collecting their

results. The master then assembles the completed trees back

into the target tree models to output. For example, in Fig. 2, a

user submitted three jobs to train two decision trees DT1 and

DT2, and a random forest RF3 with three trees, respectively.

The master manages the training of all these decision trees

(5 in total), and when completed, reassembles the trees into

models DT1, DT2 and RF3 for output. Here, our master-

workers architecture basically acts as a server for training

individual decision trees (hence the name TreeServer).

Recall that TreeServer partitions the columns A1, A2, . . .,
Am of a data table among machines so that a machine holding

Ai can compute the split-condition of Ai on its own. The

columns are partitioned among the worker machines in a
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balanced manner: (1) the target column Y to predict is loaded

into (the memory of) every machine since the impurity scores

at node x are evaluated based on the Y -values of Dx; (2) each

other data column Ai is loaded into k machines. Fig. 2 shows

the scenario where k = 1, but TreeServer uses k = 2
by default since column replicas allow more room for load

balancing: the task to compute the split-condition of a column

Ai can be assigned to any machine that holds Ai, and we

select the one with the minimum current workloads to avoid

overloading busy machines; column replicas also support fault

tolerance to avoid data loss due to a machine crash.

Task Types. In TreeServer, each task tx is associated with

a node x which builds the subtree ∆x. If Dx is large, tx is

split into subtasks associated with the child nodes of x to

allow concurrent processing; while if Dx is small, tx builds

the entire ∆x. There are two possible task types for a task tx:

• Column-task. To find the best split-condition of a node x,

we need to first compute the best split-condition of each

attribute Ai ∈ C. When Dx is large, we let a machine that

holds column Ai to compute the best split-condition of Ai

for rows of Dx, which is called as a column-task. The best

split-conditions computed by concurrent column-tasks are

then gathered to find the overall best to split x.

• Subtree-task. If Dx is sufficiently small, we let a ma-

chine request attribute values of all the rows of Dx from

other machines, which are then used to build subtree ∆x.

Fig. 3 illustrates these two types of tasks. Specifically, if

a task tx has a large Dx, the master (1) distributes the

column IDs to worker machines as column-tasks to find the

best column-level split-conditions; it then (2) collects them

to determine the overall best condition to split node x (see

Fig. 3(a)); finally, the master (3) generates two subtasks txℓ

and txr
for x’s left child node xℓ and right child node xr,

respectively, to build subtrees ∆xℓ
and ∆xr

. This essentially

partitions the rows of Dx into Dxℓ
and Dxr

using the chosen

split-condition. On the other hand, if Dx is small, the master

lets a worker (called as the key worker) collect data of Dx from

other machines to its local machine to build the subtree ∆x,

which is then sent back to the master to be hooked to node x
of the tree under construction (see Fig. 3(b)).

For now, let us assume each task tx keeps Ix (i.e., the row

indices of Dx), but transmitting Ix during task assignment

chokes the master’s sending channel and is actually avoided

in our design as shall be explained later in Section V.

Tree Scheduling. In T-thinker, only the master tracks the deci-

sion trees under construction; the other workers are only aware

of column-tasks and subtree-tasks assigned by the master.

While our node-centric tasks allow parallel computation

within each individual decision tree, in reality, we often need

to train many tree models with different hyperparameters

for model selection, or train ensemble models with many

trees. T-thinker trains all these trees together so that we can

have more node-centric tasks to keep CPUs busy. Individual

decision trees and those in bagging (e.g., random forest, or

a layer in deep forest) can be scheduled in parallel, while in

boosting (e.g, gradient boosted trees, or layers in deep forest),

sequential dependencies exist where the next layer of trees can

only be scheduled for training when all trees in the previous

layer is fully constructed. The master keeps track of the tree

dependencies, and only considers a tree as a candidate for task

scheduling if its prerequisite trees have all been constructed.

The master also controls the pace of tree construction when

scheduling the tasks for eligible tree candidates: only a pool

of npool trees are being actively constructed at any time. This

keeps the memory usage bounded (as subtree-tasks gather

Dx and thus consume memory) and prevents communication

overload. When some trees are fully built and thus outputted to

release the occupied memory, new eligible tree candidates can

then have their tasks scheduled to use the available memory.

Note that no matter how many trees are specified to be

trained by users (including those of ensemble models), a tree

is flushed to disk by the master as soon as it receives the results

from the tree’s last task and completes the tree construction,

which is tracked with the help of a progress table Tprog at the

master. See Appendix C [6] for the implementation details.

Task Scheduling. Within each decision tree, upper-level nodes

are processed by TreeServer in parallel using multiple ma-

chines to generate enough tasks as soon as possible to be

assigned to the available CPU cores, while subtree-tasks of

lower-level nodes are also scheduled timely to keep the CPU

cores busy. This is achieved through a hybrid task scheduling

scheme that combines breadth-first with depth-first traversal.

Specifically, TreeServer takes a job parameter τD such that

if |Dx| ≤ τD, task tx is treated as a subtree-task (column-task

otherwise). While subtree-tasks are CPU-bound, column-tasks

incur IO workloads due to transmitting Ix (so that workers

know which rows to check for columns Ai and Y ). TreeServer

adopts a hybrid task scheduling scheme combining breadth-

first with depth-first node examination to allow subtree-tasks

and column-tasks to run concurrently to overlap computation

with communication. When there are enough subtree-tasks,

whenever a column-task is waiting for Ix, it is suspended so

that its CPU core can be used to compute another task (e.g., a

CPU-bound subtree-task). But when a TreeServer job begins,

there are not enough subtree-tasks to saturate the available



CPU cores, so it is favorable to expand each tree level by

level to generate more nodes x (hence tasks tx) to increase

parallelism opportunities.
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Fig. 4 illustrates

the order that nodes

(and also their tasks)

in a tree are processed

in our hybrid schedul-

ing scheme, where

upper-level nodes are

processed in breadth-

first order to quickly

generate enough tasks

for parallelism. Given

a user-defined thresh-

old τdfs (> τD),

when |Dx| ≤ τdfs,

nodes in subtree ∆x are then processed in depth-first order

(see the dashed subtree); moreover, during this depth-first node

traversing, if |Dx| ≤ τD, then the entire ∆x is built by a

subtree-task executed in one thread (see the black subtrees), in

which case compute-bound subtree-tasks are timely scheduled.

Recall that TreeServer dissembles models to train as individ-

ual trees which are then trained concurrently, but only at most

npool trees are under construction at any time. This design also

helps to schedule subtree-tasks earlier to utilize CPU cores,

since otherwise, we have to wait until all (and potentially

many) tree “root” tasks have been expanded level by level

to where depth-first node traversal begins. Now, when earlier

trees in the pool are trained towards the end with subtree-

tasks dominating, later comers are still at an early stage with

column-tasks dominating, so both kinds of tasks are mixed.
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To implement this task

scheduler, the master

maintains new tasks

to be scheduled for

computation in a deque

Bplan as shown in Fig. 5

right, which is updated

by 2 threads: (1) a main

thread θmain that fetches

tasks from the head of

Bplan to be assigned for

worker computation, and (2) a receiving thread θrecv that

receives the results of column-tasks to find the best split-

condition of each node x and that splits the node into subtasks

of x’s child-nodes to be inserted to Bplan. Specifically, when

inserting a task tx: (1) if tx has |Dx| > τdfs, then we append

it to Bplan (like a queue) which essentially performs level-by-

level breadth-first node examination, while if |Dx| ≤ τdfs, we

add tx to the head of Bplan (like a stack) which essentially

performs depth-first examination of the nodes in ∆x.

To illustrate, consider Fig. 5 where a decision tree to build is

shown on the left with |Dx| of each node x shown beside x. In

Fig. 5 right, when the last column-task of node 3 is received by

θrecv (see 1©), master obtains the overall best split-condition

which splits rows of node 3 into child nodes 4 and 5 (see 2©).

As a result, child tasks for nodes 4 and 5 are created: node 4

is added to the head of Bplan since |Dx| ≤ τdfs, while node 5

is added to the tail of Bplan since |Dx| > τdfs (see 3©).

We tuned system parameters τD, τdfs and npool and found

the following default setting that works well consistently on

various datasets: τD = 10, 000, τdfs = 80, 000, npool = 200.

The experiments in Section VIII provide more details.

Other TreeServer Features. TreeServer also allows a tree

path traversal to stop at any depth to output the predicted

label at the current node, which provides additional flexibility

in handling missing values and attribute values unseen during

training. More details can be found in Appendix D [6].

IV. SYSTEM COMPONENTS

This section introduces the communication channels in T-

thinker, and components of the master and workers. We also

illustrate the workflow of task creation and processing.

Communication Channels.

w1 w2

w5 w3

w4

wi = Worker i

Data Comm.

Task Comm.

Master

Fig. 6. Communication Channels

As Fig. 6 shows, there

are 2 types of com-

munication channels:

(1) “Task Comm.” for

the master to send

tasks to workers, and

for workers to send

task results back to

the master; (2) “Data Comm.” among workers for data re-

questing and serving: recall that workers pull data from other

workers to create Dx when they process subtree-tasks.

Master Components. The master is dedicated to task mana-

gement and does not compute tasks by itself. Recall

from Fig. 5 that the master has two threads: (1) main thread

θmain for task assignment and (2) receiving thread θrecv that

receives task results and updates the master status.

In T-thinker, tasks are maintained by containers imple-

mented with concurrent data structures for multi-threaded

access, such as Bplan and Ttask shown in Fig. 5. The task table

Ttask keeps the status for every task tx in processing, so that it

can be updated properly when θrecv receives the results related

to tx. For example, in Fig. 5, the task for node 3 (denoted

by t3) was added to Ttask after θmain fetches it from Bplan

and assigns its column-tasks to the workers. Whenever θrecv
receives the split-condition result w.r.t. t3 from a worker, θrecv
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uses it to update the current best split-condition of t3 in Ttable,

and updates t3’s ’progress bar.’ If the last split-condition result

w.r.t. t3 is received by θrecv , the overall best split-condition

is found, then node 3 is computed and thus added to its tree

under construction, and t3’s entry in Ttable is freed.

Due to space limit, please refer to Appendix E [6] for more

details on task containers and thread workflows in the master.
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Worker Components.

Workers are the actual

workhorses of task

computation. Fig. 7

illustrates the components

in a worker, where

besides (1) a main

thread θmain (see 1©) for

receiving tasks from the

master and (2) a receiving

thread θrecv (see 2©) that

receives data from other

workers, the worker also

maintains (3) a pool of

computing threads (aka. compers) that fetch tasks from a

task buffer Btask to compute their results (see 4©), which are

then sent back to the master.

Here, Btask keeps those tasks whose data are locally ready.

If a subtree-task tx is waiting for data from other works to

construct Dx, then tx is kept in the task table Ttask, and only

moved by θrecv to Btask when all required data are received.

Fig. 7 illustrates the execution flow of subtree-task t6 for

node 6 (recall from Fig. 5 left that its |Dx| = 8, 000 ≤ τD =
10, 000) in its key worker (recall from Fig. 3(b) that the key

worker of a node x is the worker that collects Dx to build

∆x). Specifically, when θmain receives the subtree task t6, it

sends requests for the columns of Dx to other workers which

loaded these data columns, and meanwhile, it puts t6 to the

task table Ttask to wait for these columns to be collected (see

1©). When θrecv receives the last few columns of Dx from

another worker (see 2©), Dx is fully collected so θrecv moves

t6 out from Ttask into Btask (see 3©) to be fetched by an

available comper to construct ∆x, which is then sent back to

the master (see 4©) to be added to the corresponding tree.

Due to space limit, please refer to Appendix E [6] for more

details on task containers and thread workflows in a worker.

Fault Tolerance. Since a TreeServer program is master-driven,

master failure is fatal but can be addressed by keeping a

secondary master. If a worker crashes, the master simply

reassigns the lost columns to other workers, revokes those

tasks tx that are being processed by the failed worker, and puts

tx back to Bplan for reassignment (recall Bplan from Fig. 5).

Details on fault tolerance can be found in Appendix E [6].

V. ROW MAINTENANCE WITHOUT MASTER RELAYING

So far, we have been assuming that each task (or task-plan)

object tx keeps the rows IDs of Dx, i.e., Ix. As Fig. 8(a)

illustrates, this applies to task-plans in Bplan and task objects

in Ttask in the master, as well as the assigned task-plans

sent by the master to workers. However, Ix can be large for

task-plans, leading to outbound communication bottleneck at

the master. This section will present our technique to avoid

letting any task (or task-plan) object tx keep Ix, so that the

communication bottleneck is eliminated. In the sequel, we first

define some worker types related to our technique, and then

present the motivation and details of our technique.

Worker Types. Consider Fig. 1 again, where node x3 is split

into nodes x6 and x7 using split-condition ‘A3 ∈ {Yes}’.
Fig. 8 shows this process, where we assume that the column-

task t3 (i.e., tx3
but we abuse the notation for simplicity)

generated two plans that were assigned to workers w1 and w2,

respectively. Also assume that the best split-condition from w1

as selected from its loaded columns A1 (red) and A2 (yellow)

has been sent back to the master, as well as the best split-

condition from w2 computed from its columns A3 (green) and

A4 (purple). As a result, θrecv computes the overall best split-

condition ‘A3 ∈ {Yes}’ which gives the lowest impurity, and

creates child tasks t6 and t7.

One problem remains here: even though task object t3 ∈
Ttask maintains I3, the master still does not have access to

the attribute values of A3 to decide which new child node

a row in Dx should go to. As a result, another round of

communication would be necessary to send the computed

split-condition ‘A3 ∈ {Yes}’ to w2, which splits I3 into I6
and I7 to be sent back to the master for adding to new child

task-plans t6 and t7 to be added into Bplan.

In general, when a column-task tx needs to generate child

tasks txℓ
and txr

using the best split-condition obtained,

assume that the best split-condition is with attribute Ai sent

from Worker j, then in order to split Ix into Ixℓ
and Ixr

, we



have to let Worker j do the splitting since it has the attribute

values of Ai to compare with the split-condition. Here, we call

Worker j as the delegate worker of task tx. For example, in

Fig. 8, w2 that holds A3 is the delegate worker of task t3.

Since the delegate worker splits Ix into Ixℓ
and Ixr

, ideally,

we would like those workers that process txℓ
(resp. txr

) to

obtain Ixℓ
(resp. Ixr

) directly from Worker j, rather than ask

the master to relay Ixℓ
(resp. Ixr

) in its task-plan message that

creates repeated communication and outbound communication

bottleneck. For example, in Fig. 8, when a task-plan for child

task t7 is assigned to a worker, say w4, we would like w4 to

directly ask t3’s delegate worker w2 for I7, so that the master

does not need to send I7 along with plan t7 (see Fig. 8(a)).

Here, we delegate the maintenance of Ix for a task tx
directly to its delegate worker, and task (or task-plan) objects

tx in Bplan and Ttask also do not keep Ix. After all, in a

constructed tree for prediction, each node x only needs to

keep the split-condition rather than Ix, so the master does not

have to track Ix. Since different tasks have different delegate

workers, communication bottleneck at any machine is avoided.

Let us denote pa(x) as the parent node of x, and denote

sib(x) as the sibling node of x. For example, in Fig. 8,

pa(x7) = x3 and sib(x7) = x6. Then, the worker that handles

the requests for Ix is the delegate worker of the “parent”

task tpa(x), which has the best split-attribute and thus can

split Ipa(x) into Ix and Isib(x) using the best split-condition

confirmed by master, and which serves both child tasks tx
and tsib(x). We call the delegate worker of parent task tpa(x)
simply as the parent worker of task tx.

MASTER

(a) Subtree-Building Task (b) Column-Task

Data Table

1. subtree plan t
x

PARENT WORKER

KEY WORKER
WORKERS

2
. 

re
q

u
e

st
 f

o
r 
I x

Ix

2. column data requests

3. requests for Ix

Ix

4. column data for Dx

5. subtree ∆x

pa

x sib

Ipa

Ix Isib

MASTER

1. colum-task plans for tx

PARENT WORKER

WORKERS

2. requests for Ix

Ix

3. best split-conditions

4. task object deletion

Fig. 9. Task Workflow with Delegate Worker

Technique Overview. Fig. 9

shows the task workflows with

our proposed technique, where

the name ‘parent worker’ defined

above is adopted. The delegate

worker of a column-task tx now

cannot delete tx’s task object

from task table Ttask immedi-

ately after the overall best split-

condition is notified back by the

master. This is because tx’s task

object holds Ix and hence Ixℓ
and Ixr

(after splitting Ix), both

of which will be requested by tx’s child tasks later. After all

the workers that process tx’s child tasks have requested Ixℓ

and Ixr
, tx’s task object should then be deleted from Ttask.

Also, since Ix is now tracked by tx’s delegate worker rather

than the master, we require a worker that sends back the

best split-condition of a column Ai to also send two counters

recording |Ixℓ
| and |Ixr

|, so that they can be compared with τD
to decide the type of child tasks (i.e., subtree-tasks or column-

tasks) and whether to insert them into the head or tail of Bplan.

Workflow of a Subtree-Task (Fig. 9(a)). For a subtree-task

tx, the master assigns it to a worker for collecting Dx to build

the subtree, and we call that worker as the key worker of

tx. The plan of a subtree-task indicates that for each attribute

Ai ∈ C, which machine should the key worker ask for attribute

values. The key-worker assignment and attribute-to-machine

mapping (used by the key worker) are computed by the master.

As Fig. 9(a) shows, the master first sends a subtree plan tx
to its assigned key worker (see the arrow marked with “1”),

which creates a task object for tx and puts it in task table

Ttask to collect Dx. The key worker then (1) requests other

workers for attribute values of columns C for rows of Dx,

(2) sends a request to the parent worker to fetch Ix so that

the key worker can obtain Y -values for those rows. These

2 kinds of requests are illustrated in Fig. 9(a) by the two

arrows marked with “2” (where a thick arrow means multiple

messages). When a worker receives the request for attribute

values of column-subset C′ ⊆ C (the request also contains the

tracking information of tpa(x) in the parent worker), it then

creates a task object of tx in task table Ttask and requests

Ix from the parent worker (see the arrow marked with “3”).

When the worker receives Ix, it then obtains C′ from tx’s task

object (the object is then deleted from Ttask), fetches these

rows’ attribute values in columns C′ and sends the data back

to the key worker (see the arrow marked with “4”). Finally,

after the key worker collects the entire Dx, it builds subtree ∆x

and sends it back to master (see the arrow marked with “5”).

Workflow of a Column-Task (Fig. 9(b)). The master first

sends the column-task plans of tx to the assigned workers,

each of which creates a task object of tx (attached with the

assigned column IDs C′ to find the best split-condition) and

puts it in the task table Ttask to wait for Ix, and then requests

the parent worker for Ix. When Ix is received, the worker

checks these rows for all columns in C′ to find the best split-

condition, which is then sent back to the master; by

this time, the worker should not delete tx’s task object yet.

When the master has received all the responses of tx and

determines that Worker j has the best overall split-condition,

it notifies all the other workers to delete their task objects

for tx. The task object of Worker j will be deleted by θrecv
right after the last request from tx’s child tasks is served, the

progress of which is tracked by the task object and updated

after each request for Ixℓ
or Ixr

(obtained by splitting Ix
using the best split-condition) from a child task.

Assume that tx is handled by k workers, then only tx’s

delegate worker needs to hold Ix for use by child tasks, while

the other (k − 1) workers can delete their task object tx
immediately after node x is processed, leading to an additional

1/k memory cost lingering till all child tasks have requested



Ixℓ
or Ixr

. Since tx is timely deleted by its delegate worker

after being used, the additional memory cost is reasonable.

For readability, we omitted minor implementation details,

such as skipping communication when the requested data is

local, and the task workflow when the key worker of subtree-

task tx finds that Dx should be a leaf (e.g., when all Y -labels

are the same so data request to collect Dx is not necessary).

VI. WORKER ASSIGNMENT FOR TASKS
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Fig. 10. Load Matrix Mwork

Since only the master han-

dles task assignment, it has the

big picture of plan-to-worker

assignment and can keep track

of the current worker workload

distribution to assign each new

plan to those workers that keep

the workloads balanced.

Fig. 10 illustrates the matrix

Mwork that the master uses to track workers’ workloads,

where each row corresponds to a worker and tracks its

estimated current computation, sending and receiving work-

loads. For example, Row 1 indicates that Worker 1 needs to

run 100 units of instructions for task computation, to send 70

units of messages to other machines, and to receive 60 units of

messages, where the unit does not matter as long as they are

the same for all workers, and the goal is to assign new plans to

workers so that the values in every column ofMwork become

as even (i.e., not drastically different) as possible.

Since (1) there are combinatorially many ways to assign task

workloads of a new plan to workers (e.g., key worker and its

data-serving workers), and (2) the workload dynamics of tasks

that are currently being computed by workers (e.g., different

steps in Fig. 9) are difficult to track including the delayed task

object release at the delegate workers, it is impractical for the

master to make decisions based on the accurate current worker

workloads and consider all worker combinations.

To make plan assignment tractable and efficient, we adopt a

greedy strategy that (1) treats all workloads of assigned tasks

as pending even though they are partially processed, and that

(2) makes decisions on each step based only on the dominant

cost (i.e., computation or communication). When θmain of

the master assigns the workloads of a task-plan tx to workers,

it updates Mwork by properly adding workloads; and when

θrecv of the master receives the computation result for tx, it

deducts the added workloads (obtained from tx’s task object

in task table Ttask which memorizes the added workloads)

fromMwork to reflect the completion of tx. A mutex protects

Mwork so that only one thread (θmain or θrecv) updates it at a

time. We next describe our greedy plan-to-worker assignment.

Assignment of a Subtree-Task. Given a newly-created

subtree-task plan tx, we greedily assign the key worker as the

worker with the minimum current computation workload in

Mwork (since tx is CPU-bound), and add its workload value

by (|Ix| · |C| · log |Ix|). Here, we assume that all attributes in

C are amenable to one-pass algorithm to find the best split-

condition so that the incremental cost of attribute checking for

each row is O(|C|) (as there are |C| attribute values). Since

the nodes of each level of ∆x partitions the rows of Dx, the

overall checking cost for a level is |Ix| · |C|; we also estimate

the height of ∆x as log |Ix| (assuming balanced ∆x).

We next assign each column Ai ∈ C to a worker so

that the key worker of tx will request it for Ai. We update

Mwork after each Ai is assigned to a worker, so that the

next column can be assigned by taking previous column

assignments into consideration. Let us assume that the key

worker is Worker ikey and the parent worker is Worker ipa.

If we assign column Ai to Worker j, then Worker j needs

to (1) receive Ix from Worker ipa, and to (2) send the |Ix|
attribute values fetched from column Ai to Worker ikey . The

two transmissions translate into the following 4 updates:

1) Mwork[j][Recv]←Mwork[j][Recv] + |Ix|
2) Mwork[ipa][Send]←Mwork[ipa][Send] + |Ix|
3) Mwork[j][Send]←Mwork[j][Send] + |Ix|
4) Mwork[ikey][Recv]←Mwork[ikey][Recv] + |Ix|

Among them, (3) and (4) are always needed; but to avoid

double-counting, (1) and (2) are only needed if Ai ∈ C is the

first column assigned to Worker j. This is because Worker j
will request Worker ipa for Ix only once, for all columns C′

assigned to Worker j (including Ai). To balance the network

overheads among workers, Worker j is selected to minimize

the maximum of the above 4 updated workload values.

Assignment of a Column-Task. Given a newly-created

column-task plan tx, we determine those workers that examine

the columns C to find the best split-condition. Note that each

worker needs to request the parent worker for Ix, and then

to examine the attribute values of its assigned columns C′

for these rows. Therefore, if we assign any column Ai to

a worker j, we perform updates (1) and (2) exactly like

before, and we also add Mwork[j][Comp] with the cost of

examining Ai (e.g., the cost is |Ix| if a one-pass algorithm

is used). Since the column assignment incurs network over-

heads as a major cost, Worker j is selected to minimize

max{Mwork[j][Recv],Mwork[ipa][Send]} (after their values

are updated) to balance communication.

TreeServer also properly skips adding communication work-

loads in special cases whenever the requested data are local.

VII. A CASE STUDY WITH DEEP FOREST

Deep forest [37] is proposed as an alternative to deep neural

networks, and it has reported an even higher accuracy. The

model consists of many levels of forests each with hundreds

of trees, making its training challenging for big data. This

section explains how TreeServer can train a deep forest.

Deep Forest Architecture. Fig. 11 shows the structure of a

deep forest, consisting of 2 phases: multi-grained scanning

(MGS) and cascade forest (CF). MGS uses sliding windows

of different sizes (W1, W2, W3) to scan raw features, and

the extracted window-sized vectors are used to train forests

which are then used to re-represent raw features (f1, f2, f3).

Fig. 12 illustrates the MGS process with a 10×10 window,

where the window slides on a raw image data with stride 1.
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Fig. 11. Overall Procedure of Deep Forest

The extracted feature vectors have dimension 10 ×
10 = 100, and such vectors from all images are

used to train 2 forests. In deep forest, a forest for

k-class classification returns a k-dimensional vector

computed as the average of the class PMF vectors

returned by all its trees. For each image, MGS con-

catenates the k-D vectors (outputted by both forests)

for all window-sized vectors of the image as the

inputs, and thus the re-representation can easily have

thousands of dimensions.

As Fig. 11 shows, CF Layer 0 takes the re-

represented data features from the smallest window

as input, and trains forests which are then used to re-represent

the data as the concatenation of k-D vectors outputted by the

trained forests. In each later level, features outputted from

the previous level are concatenated with the re-represented

features from a window of particular size during MGS, to train

forests to output the next-level re-representations. Prediction at

each layer is obtained by averaging the k-D vectors outputted

by the last-layer forests, then finding the mostly likely class.

Implementation in TreeServer. Since each CF layer trains

multiple forests (each with many trees), it can be formulated as

a TreeServer job. Similarly, training forests from window-sized

features in MGS can be formulated as a TreeServer job. We

also program 2 parallel operations to work with TreesServer

jobs in an entire deep forest construction workflow:

• The first job is to perform window-sliding feature extrac-

tion over different images concurrently. For this purpose,

image data are partitioned among the threads of all ma-

chines for concurrent window-sliding feature extraction.

• Once the forests of a layer have been constructed by

TreeServer, they are saved to Hadoop Distributed File

System (HDFS). Then, the image data needs to go

through these forests again (i.e., the prediction phase) to

generate output features (aka. re-representations), which

is the task of our second job. Here, we let every machine

load all the forests from HDFS, and then conduct tree

traversal for its assigned portion of images. Our second

job allows different images to be concurrently processed

by different threads of different machines.

These two operations partitions input data by rows, while

TreeServer model training partitions input data by columns.

Their integration calls for a novel data organization on HDFS

to be described soon that is friendly to both partition schemes.

Besides random forests, deep forest also supports “com-

pletely random decision trees” (aka. extra-trees) as the other

forest type. See Appendix F [6] for the details.

Fig. 12. Image Feature Re-representation

Data Organization on HDFS. To support TreeServer’s col-

umn partitioning scheme, we require users to use our dedicated

“put” program (instead of HDFS’s) to upload data (e.g., a local

CSV file) to HDFS, so that each data column is saved as a file

on HDFS that can be loaded by workers in its entirety. Our

“put” program is memory-efficient: it uses m HDFS output file

streams (one for each column) to append the corresponding

attribute values in each data row, as it streams data rows.

A normal tabular data has at most tens to several hundreds of

columns, but as we have explained, MGS can easily generate

data representations of thousands of dimensions or even more.

The many column files would be inefficient for workers to load

since HDFS connection time (rather than actual data reads)

dominates in our test. Our solution is to group columns to

reduce the number of files, as illustrated in Fig. 13 where

the input data is organized into 4 column-files each with

50 attributes. Now the column-groups (rather than individual

columns) are assigned as the basic unit to the workers in a

balanced manner to serve data requests by tasks.

Another necessary change is due to our two additional

parallel programs described earlier that partitions data by rows.

To support both row- and column-partitioning efficiently, our

final data organization adopted is as illustrated in Fig. 13,

where each column-group is further partitioned into row-

groups, and one file is saved for each row-group. In Fig. 13,

now a TreeServer job may load a column-group by reading 4

files in the same column, while our two new parallel programs

may load its partition of rows by reading 4 files in the same

row. Here, the number of files to read is kept small, and each

file contains sufficient data to amortize HDFS connection cost.

VIII. EXPERIMENTS

This section evaluates the efficiency of TreeServer, and

compares it with the tree models in Spark MLlib [27] and

XGBoost [18], the state-of-the-art machine libraries for tree

columns
rows

A1 – A50 A51 – A100
A101 – A150

A151 – A200

1 – 250

251 – 500

501 – 750

751 – 1000

Fig. 13. Data Organization on HDFS



TABLE I
DATASETS

Dataset #{rows} #{numerical} #{categorical} Problem

Allstate 13,184,290 13 14 regression

Higgs_boson 11,000,000 28 0

classification

MS_LTRC 723,412 136 1

c14B 473,134 700 0

Covtype 581,012 54 0

Poker 1,025,010 0 11

KDD99 4,898,431 38 3

SUSY 5,000,000 18 0

loan_m1 6,372,703

14 13loan_y1 29,581,722

loan_y2 54,468,375

models that support distributed training. Our code is released

on GitHub at: https://github.com/yanlab19870714/TreeServer.

All our experiments were conducted on a cluster of 15

machines each with 12 threads (2.67 GHz) and 24 GB RAM.

Each experiment was repeated 3 times, with the average

results reported. Unless otherwise stated, we run with all 15

machines each with 10 compers, and we set the maximum tree

depth dmax = 10, τleaf = 1, classification (resp. regression)

impurity as Gini index (resp. variance), and |C| = |A| for

decision trees and |C| =
√

|A| for a tree in random forests.

Datasets. Table I shows the large real datasets we used, each

of which either has many rows or many attributes. For all

the datasets, we have removed attributes that are not related

to prediction, such as ID, date and time, etc. Allstate [1],

Higgs boson [3], MS LTRC [5], c14B [15], Covtype [2],

Poker [7], KDD99 [4] and SUSY [9] are directly usable, among

which only Allstate is a regression problem and has missing

values. TreeServer and XGBoost handle missing values and

can directly take Allstate as input; while Spark MLlib does not

support missing values and so we had to fill missing values

with the mean attribute value first. The other dataset loan [8]

requires preprocessing (see Appendix G [6] for details), and

we took the loan data from the latest month, the latest year,

and the latest 2 years to obtain 3 datasets of different sizes.

Comparison with MLlib. Spark MLlib uses an argument

“maxBins” to indicate the binning size of its attribute value

histogram used for finding approximate split-conditions, and

we use the default maxBins = 32. Table II(a) (resp. Ta-

ble II(b)) shows the training time of both TreeServer and

MLlib on our datasets for training a decision tree using all

columns (resp. training a random forest with 20 trees using
√

|A| columns). We can see that TreeServer is consistently

many times faster than MLlib (e.g., almost 10× on MS LTRC).

Moreover, TreeServer computes the exact split-conditions

while MLlib computes split-conditions approximately with

attribute binning, and as shown in Tables II(a) & (b), the test

accuracy of models trained with TreeServer is slightly higher

than that of models from MLlib in the majority of the cases.

Table II(c) compares TreeServer with XGBoost both with

100 trees. Note that TreeServer uses bagging (i.e., random for-

est) while XGBoost uses boosting. We can see from Table II(c)

that XGBoost achieves a higher accuracy on 6 out of the

11 datasets, thanks to its advanced gradient boosting method

that considers second-order approximation of the learning

TABLE II
SYSTEM COMPARISON (ACCURACY = RMSE FOR ALLSTATE)

Dataset
TreeServer MLlib (Parallel) MLlib (Single Thread)

Time (sec) Accuracy Time (sec) Accuracy Time (sec) Accuracy

Allstate 56.06 41.46 194.26 41.26 886.98 41.26

Higgs_boson 103.53 70.52% 137.36 69.16% 467.38 69.16%

MS_LTRC 12.21 55.30% 103.45 55.38% 14.60 55.38%

c14B 37.81 67.00% 119.49 49.04% 252.61 49.04%

Covtype 10.00 95.31% 58.39 95.29% 67.14 95.29%

Poker 10.08 53.52% 86.55 53.52% 85.45 53.52%

KDD99 58.58 79.98% 83.90 79.97% 243.00 79.97%

SUSY 38.68 79.13% 90.76 79.10% 156.35 79.10%

loan_m1 52.49 99.63% 322.47 99.50% 524.17 99.50%

loan_y1 284.75 99.64% 551.64 99.64% 1,188.26 99.64%

loan_y2 520.68 99.64% 808.09 99.64% 1,972.12 99.64%

(a) TreeServer v.s. MLlib One Decision Tree 

Dataset
TreeServer MLlib (Parallel) MLlib (Single Thread)

Time (sec) Accuracy Time (sec) Accuracy Time (sec) Accuracy

Allstate 113.31 41.46 305.86 41.39 1,635.70 41.39

Higgs_boson 135.53 69.89% 259.75 69.69% 978.69 69.69%

MS_LTRC 14.43 55.23% 122.47 55.59% 14.67 55.59%

c14B 29.86 62.00% 125.01 49.59% 277.67 49.59%

Covtype 10.82 91.53% 82.38 91.52% 79.42 91.52%

Poker 10.06 53.71% 174.15 53.95% 175.81 53.95%

KDD99 46.59 80.15% 234.67 80.15% 414.85 80.15%

SUSY 51.81 79.49% 127.59 79.37% 287.29 79.37%

loan_m1 42.44 99.64% 373.25 99.50% 560.28 99.50%

loan_y1 192.73 99.64% 786.94 99.64% 2,856.16 99.64%

loan_y2 367.84 99.64% 1422.20 99.64% 5,008.66 99.64%

(b) TreeServer v.s. MLlib Random Forest (20 Trees) 

Dataset
TreeServer XGBoost

Time (sec) Accuracy Time (sec) Accuracy

Allstate 381.94 41.46 757.77 38.81

Higgs_boson 429.82 69.85% 2,364.87 70.12%

MS_LTRC 45.38 55.22% 1,585.10 58.83%

c14B 62.33 61.00% 3,492.70 55.85%

Covtype 47.66 92.33% 767.78 93.67%

Poker 23.06 55.95% 1,338.56 56.87%

KDD99 186.03 99.91% 3,892.76 99.93%

SUSY 141.92 79.88% 1,650.33 79.54%

loan_m1 98.52 99.64% 1405.08 99.47%

loan_y1 540.88 99.64% 7,411.35 99.47%

loan_y2 788.66 99.64% 13,390.34 99.47%

(c) TreeServer v.s. XGBoost (100 Trees) 

objective, but not higher on the other datasets. In contrast, it

is much slower than TreeServer. For example, on C14B (resp.

Poker), XGBoost is 56× (resp. 58×) slower than TreeServer.

This is because trees in XGBoost have dependencies and have

to be trained one after another due to boosting, while trees in

TreeServer can be trained together without any dependency.

Effect of npool. Recall that to control memory usage, we only

allow npool trees to be built at any time, whose value is 200 by

default. To explore the relationship between npool and a job’s

TABLE III
EFFECT OF npool , τdfs AND τD (TIME UNIT: SECOND; MEM UNIT: GB)

Allstate
Higgs_

boson
KDD99

20,000 121.63 152.19 52.79

50,000 113.85 149.31 50.18

80,000 108.13* 134.10* 46.59*

100,000 112.74 140.63 49.51

150,000 125.58 160.94 53.27

Allstate
Higgs_

boson
KDD99

2,000 121.72 148.78 50.42

5,000 117.16 148.52 51.91

8,000 116.81 142.52 48.42

10,000 108.13* 134.10* 46.59*

15,000 123.97 148.91 47.96

20,000 125.91 149.05 49.09

(d) Effect of System Parameter τdfs (e) Effect of System Parameter τD

Time Memory

1 793.64 5.06

5 216.95 5.20

10 149.98 5.62

20 125.06 5.54

(a) npoolon Allstate (b) npoolon Higgs_boson

Time Memory

1 656.71 3.00

5 220.33 3.41

10 163.13 4.21

20 140.47 4.76

npoolnpool

τ
D

(c) npoolon KDD99

Time Memory

1 277.05 1.78

5 76.99 1.97

10 58.07 2.05

20 49.46 2.52

npool

τ
dfs



TABLE IV
RUNNING TIME V.S. NUMBER OF TREES

#{trees}
TreeServer Spark MLlib

Time (sec) Accuracy Time (sec) Accuracy

500 179.65 55.27% 1,619.50 55.80%

1,000 342.34 55.28% 3,690.09 55.75%

1,500 507.45 55.27% 5,222.25 55.75%

2,000 664.25 55.27% 8,683.49 55.75%

#{trees}
TreeServer Spark MLlib

Time (sec) Accuracy Time (sec) Accuracy

500 214.88 63.00% 981.01 49.83%

1,000 392.17 63.00% 1,914.00 49.82%

1,500 573.35 64.00% 2,849.23 49.83%

2,000 744.86 63.00% 4,126.12 49.81%

(a) MS_LTRC (b) c14B (c) XGBoost

#{trees}
MS_LTRC c14B

Time (sec) Accuracy Time (sec) Accuracy

10 220.91 57.28% 465.06 52.10%

20 413.62 57.46% 838.86 52.79%

40 738.99 57.99% 1,600.49 54.05%

80 1,330.58 58.42% 2,827.39 55.11%

100 1,585.10 58.83% 3,492.70 55.85%

TABLE V
VERTICAL SCALABILITY

#{threads} Allstate Higgs_boson

1 381.22 s 314.28 s

2 212.29 s 193.10 s

4 131.92 s 146.13 s

8 115.86 s 145.73 s

10 114.22 s 132.12 s

#{threads} Higgs_boson MS_LTRC

1 2,510.49 s 271.10 s

2 1,340.00 s 141.50 s

4 777.62 s 80.02 s

8 738.16 s 73.27 s

10 755.73 s 74.51 s

(a) TreeServer (20 Trees)

(c) TreeServer (200 Trees)

#{threads} Allstate Higgs_boson

1 1,635.96 s 985.92 s

2 945.45 s 565.90 s

4 558.73 s 350.39 s

8 401.73 s 266.17 s

10 305.86 s 259.75 s

#{threads} Higgs_boson MS_LTRC

1 11,096.97 s 1,027.33 s

2 5,977.08 s 575.48 s

4 3,515.03 s 572.77 s

8 2,120.65 s 571.77 s

10 1,978.36 s 556.71 s

(b) Spark MLlib (20 Trees)

(d) Spark MLlib (200 Trees)

peak memory usage (at a machine, averaged over all machines)

and running time, we trained a random forest with 20 trees on

the various datasets with npool = 1, 5, 10 and 20, respectively.

Tables III(a)–(c) show our results on Allstate, Higgs boson,

and KDD99 (results on other datasets are similar). We can see

that the job running time decreases a lot as npool increases,

though the improvement is less significant as npool gets larger

(e.g., 6× on Allstate when npool = 20). This is because our

machine is equipped with a Xeon X5650 CPU (6 cores, 12

threads) which is already near saturation given the tasks of

20 trees, so our default setting npool = 200 is more than

enough to fully utilize CPU resources. Also, Tables III(a)–(c)

show that increasing npool only slightly increases the memory

usage. This is because most memory is used to hold data

columns, and memory used by tasks of each additional active

tree allowed is small.

Effect of τdfs and τD. Recall that TreeServer has two

parameters τdfs (resp. τD) to control the granularity for depth-

first node-task scheduling (resp. granularity of subtree-tasks).

If τdfs is too small (resp. large), there are not enough tasks for

parallel execution initially (resp. compute-intensive subtree-

tasks are not timely scheduled). Also, if τD is too small (resp.

large), the subtree-tasks are too small to saturate the CPU cores

(resp. too few to enable load balancing). We have tuned them

and found the default setting (τD = 10, 000, τdfs = 80, 000)

to work well on all our datasets. To illustrate, Tables III(d)–(e)

show the performance on Allstate, Higgs boson and KDD99

where we fix one parameter as default and tune the other one.

Scalability to the Number of Trees. We now explore how

the running time of a TreeServer job and that of an MLlib

job change with the number of trees to train. For this purpose,

we trained a random forest with 500, 1,000, 1,500 and 2,000

trees, respectively. We find that MLlib is too time-consuming

to train on moderate-sized datasets such as Allstate where

7,778.74 seconds are spent to train just a 500-tree forest,

TABLE VI
HORIZONTAL SCALABILITY (TIME UNIT: SECOND; NET UNIT: MBPS)

#{macs}
Allstate Higgs_boson

Time CPU Send Time CPU Send

4 123.76 837% 605.61 174.64 860% 940.40

8 76.72 760% 916.41 107.16 881% 942.32

12 65.74 699% 941.26 103.48 800% 942.52

15 61.93 694% 941.34 120.91 817% 942.32

(a) TreeServer (1 Tree) (b) Spark MLlib (1 Tree)

Allstate
Higgs_

boson

241.77 167.99

244.13 180.93

195.78 134.45

195.99 139.52

#{macs}
Allstate Higgs_boson

Time CPU Send Time CPU Send

4 236.79 726% 893.49 314.28 885% 941.33

8 146.26 710% 935.45 193.10 840% 941.48

12 142.78 716% 941.48 146.13 810% 941.28

15 118.18 663% 941.28 145.73 815% 942.25

(c) TreeServer (20 Tree) (d) Spark MLlib (20 Tree)

Allstate
Higgs_

boson

366.51 355.69

388.22 340.00

304.52 263.09

308.25 259.75

for which TreeServer takes only 1736.78 seconds. To keep

MLlib’s time tractable for experiments, we focus on smaller

datasets MS LTRC and c14B, and the results are reported

in Tables IV(a) and (b). As expected, the running time is

proportional to the number of trees in both systems, since the

large number of trees saturated the CPU core utilization; also,

TreeServer is much faster than MLlib in all the experiments.

Note that using many trees does not impact a lot the accu-

racy in Tables IV(a) and (b). In contrast, boosting has more

potential to improve the accuracy with more trees, as shown in

Table IV(c) where XGBoost is trained with different number

of trees, and the test accuracy keeps improving. However, since

XGBoost is very expensive when the tree number gets large,

we cannot test too many trees as in Tables IV(a) and (b).

Vertical Scalability. Recall that we run 10 compers on each

machine by default. An interesting question to ask is whether

10 cores are fully utilized, and our finding is that the effi-

ciency of TreeServer improves well as the number of compers

increases, thanks to the subtree-tasks that are compute-heavy.

Tables V(a)–(d) shows the vertical scalability of TreeServer

and MLlib when training a random forest with 20 and 200

trees. We illustrate using the first two datasets Allstate and

Higgs boson, but in the 200-tree scenario, running MLlib on

Allstate is too time-consuming (3,102 seconds even with 10

threads) so we replace it with the third dataset MS LTRC

instead. We can see that the running time clearly reduces as

we use more threads in both systems, but MLlib takes a few

times more time than TreeServer in all cases.

Horizontal Scalability. Now that we know that each machine

can scale with compers/threads, the next question to ask is how

TreeServer scales out. This is an important question since if

each machine is able to utilize all CPU cores well, then more

computing power can be achieved by using more machines.

Table VI repeats our experiments in Tables II(a)–(d) but

with different number of machines. we can see that a job of



TABLE VII
DEEP FOREST EXPERIMENTAL RESULTS

Step
Training

Time

Test

Time

slide 163.58 s 34.95 s

win3train 716.57 s –

win5train 971.93 s –

win7train 1251.33 s –

win3extract 105.00 s 38.69 s

win5extract 127.72 s 45.06 s

win7extract 117.85 s 42.57 s

Step
Training

Time

Test

Time

Test

Accuracy

CF0train 94.88 s – –

CF0extract 41.04 s 27.07 s 96.87%

CF1train 99.31 s – –

CF1extract 41.95 s 28.08 s 96.82%

CF2train 93.55 s – –

CF2extract 39.63 s 27.44 s 97.68%

CF3train 94.73 s – –

CF3extract 37.68 s 26.84 s 98.10%

CF4train 91.61 s – –

CF4extract 41.99 s 27.93 s 97.02%

CF5train 92.46 s – –

CF5extract 40.07 s 27.63 s 97.71%

Multi-Grained

Scanning

Cascade Forest

TreeServer is really compute-intensive and can keep multiple

machines busy on task computation as we increase machine

number from 4 to 12, and clear improvements can be observed

even from 12 to 15 machines. For example, as Table II(a)

shows, when building 1 tree on Allstate using TreeServer

running 10 compers, we can achieve 837% average CPU

rate (meaning that 8 cores are fully utilized). As we increase

machine number to 15, CPU rate is still 694% but since more

data transmission is required, average sending throughput

saturates at 941.34 Mbps (we use 1 GigE) so performance

improvement flattens. We expect the performance to improve

further with more machines if 10 GigE is available. As

Tables II(a) and (c) illustrates, we are able to consistently keep

> 6 (oftentimes > 8) CPU cores busy while fully utilizing

the available network bandwidth. In contrast, MLlib sees less

significant improvement and is more expensive in all cases.

Experiments on Deep Forests. We run our deep forest

pipeline built with TreeServer on the MNIST dataset which

consists of 28 × 28 gray images, 60,000 (resp. 10,000) of

them are for training (resp. testing). All images are for digits

0–9, ten classes in total. We used MGS window size 3 × 3,

5 × 5 and 7 × 7, and we followed Table 1 of [37] to set the

hyperparameters but make the following changes to improve

accuracy: (1) extra trees reduce the test accuracy when used

in CF so we only use random forests for CF, (2) setting

dmax = 100 in MGS drops the test accuracy so we use 10,

(3) to reach good accuracy, each step only needs 2 forests

each with 20 trees (rather than 500 trees), and only 10% of

the training and test images are needed and thus used.

Table VII reports the running time of each step as illustrated

in Fig. 11, as well as their corresponding test accuracy.

Specifically, “slide” corresponds to the step that slides each

image to generate inputs to MGS. In MGS, “win3train”,

for example, corresponds to the step that trains the forests

over vectors extracted by 3 × 3 windows, and “win3extract”

corresponds to the step that used the trained forests to represent

each input image. In the CF stage, “CF0train”, for example,

corresponds to the time to train the forests of CF0 while

“CF0extract” corresponds to the time to use the trained forest

in CF0 to represent the input images. Note that after each

CF step, we report our test accuracy which are all very high

and improves all the way up to CF3. We observe that training

accuracy is always 100% because the maximum tree depth in

TABLE VIII
IMPACT OF MODEL PARAMETERS

|C|/|A| Time RMSE

20% 121.79 s 41.460

40% 145.71 s 41.469

60% 220.35 s 41.462

80% 241.02 s 41.463

100% 255.14 s 41.464

(c) Effect of |C|/|A| on Allstate

|C|/|A| Time Accuracy

20% 158.66 s 63.893%

40% 266.23 s 70.355%

60% 416.07 s 71.038%

80% 423.70 s 71.506%

100% 622.49 s 70.515%

(d) Effect of |C|/|A| on Higgs_boson

(a) Effect of dmax on Higgs_boson (1 tree)

dmax Time Accuracy

2 69.47 s 63.117%

4 93.37 s 65.635%

6 118.62 s 67.946%

8 112.96 s 69.456%

10 115.86 s 70.515%

12 113.04 s 71.313%

dmax Time Accuracy

2 84.65 s 62.372%

4 115.99 s 61.571%

6 124.21 s 62.655%

8 128.73 s 63.546%

10 155.68 s 63.893%

12 170.11 s 64.153%

(b) Effect of dmax on Higgs_boson (20 trees)

the CF stage is dmax =∞, so we omit them in Table VII. We

can see that training is very efficient despite the many trees.

Fairness of Implementation. Since MLlib runs on JVM,

while our TreeServer program runs as a native C++ program,

it is worth exploring whether our improvement comes from

the language rather than the system design. For this pur-

pose, we run single-threaded single-tree construction for both

TreeServer and MLlib and find that TreeServer is comparable

to MLlib. For example, TreeServer takes 705.94 seconds while

MLlib takes 750.58 seconds on Higgs boson, and TreeServer

takes 191.86 seconds while MLlib takes 157.34 seconds on

MS LTRC. Our single-tree implementation is not faster since

in order to allow flexible user data input like in pandas, we

conduct runtime (rather than compile-time) type conversion

based on the data type of each column being processed.

Accuracy w.r.t. Model Parameters. Since TreeServer imple-

ments the exact node splitting algorithms, we obtain exact

models as in a conventional serial algorithm but runs much

faster. Table VIII(a) (resp. (b)) shows the time and test

accuracy of training a tree (resp. forest with 20 trees) on

Higgs boson with increasing dmax and we can see that the

accuracy keeps improving (i.e., models are not overfitting).

Tables VIII(c)–(d) show the performance of training a 20-tree

forest with different |C| sampled for each tree on Allstate and

Higgs boson, where the test accuracy does not change a lot

meaning that 20% columns per tree are already sufficient.

IX. CONCLUSION

We presented a distributed system called TreeServer for

training tree models, which addresses the problems of IO

bottleneck in existing solutions such as MLlib. The system

adopts novel designs including column-based data partitioning

and node-centric task-based workload partitioning, and is

consistently many times faster than MLlib, hence a good

alternative especially for training big models like a deep forest.
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APPENDIX

A. List of Notations

The paper used the following notations, which are summa-

rized for quick reference as needed:

• D: the input data table;

• n: number of rows in the data table;

• m: number of attributes (i.e., columns) in the data table;

• Ai: the i-th attribute in the data table;

• A: the set of all attributes A1, A2, . . . , Am;

• Y : the target attribute to predict;

• x: a node in a decision tree;

• ∆x: the subtree rooted at node x;

• Dx: those rows of the training data that reach node x
following the decision path from the root node;

• |Dx|: the number of rows in Dx;

• Ix: the row-IDs of those rows in Dx;

• v: the split-value of a numerical attribute Ai, used in

split-condition “Ai ≤ v”;

• Si: the set of all possible values of a categorical attribute

Ai;

• Sℓ: a subset of attribute values in Si which lead a data

to go to the left child node of x, used in split-condition

“Ai ∈ Sℓ”;

• C: a subset of A, which restricts the split-condition of

node x to be chosen only from an attribute in C;

• |C|: a number of columns in C;

• tx: the task that processes node x to construct its subtree;

• xℓ: the left child node of node x;

• xr: the right child node of node x;

• τD: a system threshold such that if |Dx| ≤ τD, the entire

subtree ∆x is built by a subtree-task tx;

• τdfs: a system threshold such that if |Dx| ≤ τdfs, nodes in

the subtree ∆x are processed in depth-first order (breadth-

first order otherwise), and usually τdfs > τD (see Fig. 4);

• npool: the maximum number of trees allowed to be under

construction at any time;

• Bplan: a buffer (deque) in the master to hold tasks (aka.

plans) newly created but not assigned worker workloads

yet;

• dmax: the maximum allowed tree depth, which is a model

hyperparameter;

• τleaf : a model hyperparameter such that a node x stops

its splitting to avoid overfitting when |Dx| ≤ τleaf ;

• Qplan: a plan queue in the master to buffer task-plans that

have been assigned worker workloads, and these plans

will be sent to the destination workers in batches;

• Ttask: a task table to keep tasks that are being processed

but are waiting for dependent data;

• θmain: the main thread in a machine;

• θrecv: a communication thread that receives responses

from other machines;

• comper: a computing thread in a worker machine;

• Btask: a task buffer of a worker machine from which

compers take tasks for computation;

• Mwork: a workload matrix that the master uses to track

worker workloads, where each row i is for a worker, and

Mwork[i][Comp],Mwork[i][Send] andMwork[i][Recv]
tracks Worker i’s computation, sending and receiving

workloads, respectively.

B. Selecting Best Split-Condition for a Table Column

In decision tree training, at each tree node x, we select the

best split-condition for each individual attribute (column) Ai

independently. Depending on the type of Ai and Y , there are

three cases:

• Case 1: Ai is an ordinal attribute. To find the best

value v for the split-condition “Ai ≤ v”, only the values

of Ai that appear in Dx are considered. It is well known

that by sorting rows of Dx by Ai-values and checking

each value v to split the rows into left and right child

nodes, we can get the impurity value for each v in O(1)
incremental cost and thus we can find the best v in one

pass over the sorted Dx.

• Case 2: Ai is categorical, and Y is numerical. This

case is for regression, and Breiman et al. [17] present

an algorithm for finding the best split predicate without

evaluating all possible subsets of Si for Sℓ. After group-

ing rows of Dx by Ai-values and sorting the groups by

the average Y -value, the optimal split predicate cuts the

sorted group list in the middle, so the algorithm only

needs one pass over the groups.

• Case 3: both Ai and Y are categorical. This case is

for classification, and we have to enumerate and check

all possible subsets of Si for Sℓ to split rows in Dx. To

limit the checking cost when |Si| is big, it is common

to restrict |Sℓ| = 1 so that only O(|Si|) split-conditions

need to be checked.

C. Tree Construction Progress Tracking

The master uses a progress table Tprog to track the number

of pending tasks for each active tree under construction, so

that once it receives the results from the tree’s last task and

completes the tree construction, it can reduce the count of

active trees so that new trees can be admitted for processing

(recall that TreeServer executes a budget of at most npool

active trees at any moment).

In our implementation, each task keeps its tree ID tid. Here,

a tree “root” task is created by setting its tid properly when the

tree is admitted for processing, while each descendent node-

centric task tx inherits its tree ID tid from its parent task

tpa(x), where pa(x) is the parent node of node x.

Each task sends its tree ID back to the master along with

the task result, to update the progress counter Tprog[tid]: incre-

mented if the task is split into two child tasks, and decremented

otherwise. This is because a column-task is consumed by the

master which creates two new child tasks, leading to a net

increment of 1; while a subtree-task is consumed without

creating new tasks, leading to a net increment of -1.

As soon as the master finds that Tprog[tid] is decremented to

0 after processing the result of a task from Tree tid, it knows
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that the last task of Tree tid is completed so it can output the

tree and update the bookkeeping information accordingly to

reflect the completion of constructing Tree tid.

D. Other TreeServer Features

TreeServer automatically infers the most appropriate algo-

rithm (run by a column-task) to find the best split-condition

of each attribute Ai based on its data type, so the input data is

totally flexible. Also, while a decision tree usually maintains

the predicted labels or PMF vectors only at leaf nodes, we

also let internal nodes maintain them. Note that the predicted

labels or PMF vectors can be easily computed as a byproduct

since each node x has access to Dx during training.

When predicting the label of a new entity, this design

allows the search to stop at any depth to output the predicted

label at the current node. Therefore, if we train a tree with

maximum depth dmax, we can use it for prediction as a tree

with maximum depth anywhere from 1 to dmax without the

need to train those trees.

This design also handles new attribute values unseen during

training. Specifically, for a test entity, when we visit a node x
whose split-condition involves attribute Ai, and find that the

entity’s Ai-value is never unseen in Dx during training, we

then treat node x as a leaf directly to report its predicted label

or PMF vector for the current entity. This is because it is

unreasonable for the entity to go to either child of x.

The same applies when we encounter a missing value for

attribute Ai when we visit a node x for a test entity, in which

case we directly report x’s predicted label or PMF vector for

the current entity.

E. T-thinker Components & Thread Workflow

Hereafter, we call a task tx not yet sent to workers for

processing as a plan. In master, all newly created plans that

have not been assigned for processing are kept in the plan

buffer Bplan (see Fig. 14(a)) implemented as a deque, while

after the workers that will process a plan tx are determined,

tx is placed into a plan queue Qplan (see Fig. 14(a)) to be

sent to workers for processing. Note that a new plan in Bplan

may generate multiple column-task plans in Qplan directed to

different workers that collectively hold columns Ai ∈ C.

Fig. 14 shows the components for task processing in the

master (left) and worker machines (right). Besides deque

Bplan protected with mutex, a task table Ttask is implemented

as a concurrent hash table so that the insertion and fetching of

different tasks may proceed concurrently as long as they are

not in the same bucket, while Qplan, Btask and all message

queues are implemented as concurrent queues [28] that support

simultaneous enqueue and dequeue operations.

We next explain the thread workflows in the master and

workers, respectively.

Thread Workflows in Master. Master has two key threads:

(1) main thread θmain and (2) receiving thread θrecv .

Thread θmain loops the following operations. It fetches a

plan from Bplan to compute its worker assignment, i.e., oper-

ation 1© in Fig. 14(a). Meanwhile, if the tasks in Bplan belong

to less than npool trees, θmain replenishes the next unprocessed

“root”-node task into to Bplan to start its processing.

If θmain obtains a plan tx from Bplan, it computes the

worker assignment using the algorithm described in Sec-

tion VI, and then appends the resulting plan(s) to a plan

queue Qplan (see Fig. 14(a)) that sends plans to workers in

batches. While a plan tx is being processed by workers, the

task information of tx is also inserted into the master’s task

table Ttask waiting for the computation results to be sent back.

These correspond to operation 2© in Fig. 14(a).

If θmain cannot find a plan in Bplan, it sleeps for 100 µs
to avoid busy waiting before probing Bplan again. The loop

terminates when all trees have been processed and Bplan is

empty, after which θmain flags all other threads at the master

side to terminate their queue probing loop; it also inserts

special messages in Qplan to notify workers to terminate.

The other key thread θrecv processes each received message

that contains the computed result of a task tx, and uses it to

update the table entry of tx in Ttask; if tx is determined to

be finished, θrecv further updates the tree under construction

using the task result, removes tx from Ttask and deletes the

task object tx (see operations 3© and 5© in Fig. 14(a)).

A completed column-task tx will generate two child task-

plans txℓ
and txr

(unless x is a leaf), and they are added to the

plan buffer Bplan to be scheduled for processing. This process



is illustrated by operations 4© in Fig. 14(a). To prevent pre-

mature exit of θmain, we require θrecv to always add plans txℓ

and txr
into Bplan before decrement the tree-counter of tx to

indicate the completion of tx, so that Bplan is never empty

before tx’s tree is fully constructed.

Thread Workflows in a Worker. As Fig. 14(b) shows, a

worker runs a main thread θmain to receive task-plans from

the master, a receiving thread θrecv that prepares data for tasks,

and a pool of computing threads (compers) to compute tasks.

A task-plan is processed in 5 steps. 1 : θmain keeps

receiving plan-messages from the master, until a termination

notification is received to terminate the worker program.

For each plan-message, θmain parses it to decide if it is a

subtree-task or a column-task. A subtree-task tx still needs

to obtain its data Dx from other workers, so θmain poses

those data requests to a request queue for sending, as shown

by operation 2 in Fig. 14(b); θmain also puts tx in the task

table Ttask waiting for the data responses. 3 : when θrecv
receives the data requested by tx, it attaches the data to tx’s

entry in Ttask; if all necessary data are now with tx, θrecv will

further move tx from Ttask to Btask to be fetched by a comper

for processing. This process is illustrated by operation 4 in

Fig. 14(b). 5 : compers concurrently fetch tasks from Btask

for computation; each comper keeps fetching and computing

tasks until θmain flags termination, and if there is no task in

Btask, the comper will sleep for 100 µs to avoid busy waiting.

6 : the computed results are appended by the compers to a

sending queue which delivers them to the master in batches.

Fault Tolerance. Since a TreeServer program is master-driven,

the master is the only single point of failure which can be

strengthened by enabling a secondary master. Specifically,

a worker can act as a secondary master that periodically

communicates with the master to check if it is reachable.

If not, the secondary master will send a special message

to the other workers notifying them that it is now the new

master so that they will direct task-channel messages to the

secondary master. When the secondary master is enabled, the

master needs to periodically synchronize the job metadata and

tree construction progress to the secondary master. New tasks

assigned since the last synchronization will be reassigned by

the secondary master, which accepts but ignores old responses.

If a worker crashes, the master simply reassigns its lost

columns to other machines by copying from the column repli-

cas, and for each task in task table Ttask whose computation

involves the crashed worker, the master notifies workers to

revoke these tasks and to delete their task objects; we also

move these tasks in the master from Ttask back to the head

of Bplan so that their new workers can be reassigned ASAP.

F. Extra-Tree Support in TreeServer Deep Forests

Besides random forests, deep forest also uses “completely

random decision trees” (aka. extra-trees) as the other forest

type: such a tree resamples a column Ai from all attributes

after each node splitting, and randomly samples a splitting

value v from [min,max] where min and max are the smallest

and largest Ai-values in Dx, respectively. TreeServer also

supports extra-trees, where the only difference from building

random forests is that a subtree-task needs to get data from

all columns (of rows Ix) for subsequent column-sampling

after each node-splitting when building the subtree, rather than

simply obtain those columns of C as in a random forest.

G. The Loan Dataset

The dataset loan [8] has two tables: “Origination Data” de-

scribing information of each loan, and “Monthly Performance

Data” describing the monthly loan payment information. The

two tables were joined on the attribute “LOAN SEQUENCE

NUMBER” to obtain the final data table D. Since D has a

lot of missing data, we removed every column with more than

75% missing values, and cleansed the rest by filling missing

values with the mean attribute value. We also took the loan

data from the latest month, the latest year, and the latest 2 years

to obtain 3 datasets of different sizes as shown in Table I.
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