
Measuring the Relative Similarity and Difficulty Between AI Benchmark Problems

Christopher Pereyda, Lawrence Holder
School of Electrical Engineering and Computer Science

Washington State Universeity
Pullman, WA

{christopher.pereyda, holder}@wsu.edu

Abstract

There has been an explosion of challenge problems, algo-
rithmic tests and datasets for evaluating AI systems. Yet no
methodology exists to objectively measure either the collec-
tive difficulty of these problems or their similarity. This is
an obstacle to creating more general AI systems. We pro-
pose a theory for measuring the similarity between pair-wise
problems. We evaluate this theory by utilizing a methodol-
ogy based on a deep neural network to objectively measure
these properties between test problems using foundational
datasets. An implementation of these methods is then used to
measure the similarity between well known datasets. Results
show that the proposed measure successfully identifies the
difficulty and similarity among problems. This can be used to
ensure diversity in test suites used to evaluate AI systems.

Introduction
With the rise of fundamental datasets, AI competitions, and
big data, we are faced with ever more diverse and challeng-
ing problems. Many of these tasks can be solved through the
use of an AI system. These systems can achieve high per-
formance with little fine-tuning or domain expertise. Yet the
best solutions are most often highly specialized for the spe-
cific problem. These specialized solutions to the numerous
problems present two significant challenges for the AI com-
munity to address.

First, there is no measure of distinctiveness. With all
of these varying challenges, little thought is given to the
distinctiveness of each. Are image classifications problem
all effectively the same? Are reinforcement learning prob-
lems significantly different from theorem proving? Some AI
competitions are being developed with the goal of creating
more general AI systems to solve them (Perez-Liebana et al.
2016). Yet even these competitions are generally bound to a
niche area and topic. As the number of AI challenge prob-
lems increases, we need a measure of their distinctiveness
in order to better assess the generality of the AI systems ap-
plied to these problems.

Second, there is the lack of generality among AI systems.
This lack of generality exists both on the system side and

Copyright c� 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the test side (Langley 2006). Many currently offered tests
do not aim to combine different and varying aspects of in-
telligence, but simply challenge one particular aspect. This
limits the types of AI systems that can be effectively evalu-
ated and studied and encourages the exact opposite of gen-
eralized systems.

One proposed method for measuring the generality of AI
systems is the AIQ test (Pereyda and Holder 2018). The Ar-
tificial Intelligence Quotient (AIQ) test utilized a small set of
active environments to measure the intelligence of a given
AI system. While the preliminary results were promising,
more work was left to be done. One key idea that was not
expanded upon was the notion of similarity. The theory the
authors drew from, created by Legg and Hutter (Legg and
Hutter 2007), utilized a method of sampling from the set of
all possible tests. Sampling in this way is not feasible for a
practical intelligence measure. If similarity can be well de-
fined, we can utilize the theory while maintaining feasibility.

With these challenges in mind, we hope to push towards
more generalized AI systems and encourage more develop-
ment and research into this developing field. We begin by
examining related work that provides concepts of similarity
measurement. We then propose a theoretical basis for cre-
ating a similarity measure. We show the results of several
experiments evaluating the theory and exploring the param-
eters of the various problems. We conclude with a final sim-
ilarity metric and utilize this measure on several well known
problems.

Related Work
The developing field of general AI testing has shown in-
terest in achieving more rigorous metrics and applicability
(Hernández-Orallo 2017). Much work has been done to con-
struct better theories (Hernández-Orallo 2010) and to im-
plement these ideas (Insa-Cabrera, Dowe, and Hernández-
Orallo 2011). One method to avoid the limitation of utiliz-
ing a similarity metric was constructed by (Legg and Veness
2013). Instead of examining pair-wise similarity, they exam-
ine an even distribution of test problems drawn from the set
of all possible tests. The difficulty can then be measured as a
function of their AI system’s score, and from this difficulty
they can measure the distinctiveness of their sample of tests

from the whole. These test problems were generated by cre-
ating random programs and converting these to reinforce-
ment learning problems. This is infeasible for practically
measuring AI systems for two reasons. First, the method
involves creating a set of tests with hundreds of thousands
of random samples. Training and testing state of the art AI
systems on this many tests requires too much time to be
practical. Second, the tests themselves generally do not have
any practical value. These tests are generated at random, so
the tests have little relation to the real-world. This is signifi-
cant because most AI systems are targeted toward real-world
problems.

These two weaknesses can be avoided with the use of a
similarity measure. The test sets can be generated from the
set of currently available AI challenge problems. If we can
measure the similarity between the tests, we can effectively
weight each test according to how different it is from the
rest. This weight was constant in Legg and Veness’s (2013)
work due to the random nature by which tests were selected.
Utilizing real world tests will introduce meaning into the set,
which will give an effective measurement for practical AI
systems.

The AIQ framework (Pereyda and Holder 2018) relies on
the theory of Universal Intelligence created by Hernández-
Orallo and Dowe (Hernández-Orallo and Dowe 2010). In
the AIQ framework the similarity of tests were measured by
training an AI system on one test and then evaluating how
well it performs on another test. While simplistic, this offers
another method to measure the difference between two tests.
This method utilizes the idea that similar tests both have sim-
ilar input-output schemes and have similar concepts that an
AI system can extract. For example, an AI system trained to
play a certain genre of video game should do better on video
games from that genre than AI systems that were trained on
different genres. However, when test problems are diverse
(e.g., cart-pole reinforcement learner attempting image clas-
sification), the AI system can have significantly poor per-
formance, which can result in unreliable measurements of
problem similarity. In this work, we improve the reliability
of measuring test similarity in such contexts.

Some related work has been done in terms of measur-
ing similarity between tests in the area of transfer learning
(Gorski and Laird 2006). The ideas utilized in transfer learn-
ing are very similar to what we propose as a similarity mea-
sure. They aim to take an AI system trained on a test and
apply it to a similar test such that information gained from
its initial training transfers to the subsequent test. This is
another possible similarity metric between tests. Some tests
have been created to measure this similarity (Cook, Holder,
and Youngblood 2007). Instead of examining the tests one
after the other, the approach proposed here will allow us to
examine a mixture of the tests.

Theoretical Framework for Test Similarity
As part of the AIQ framework in (Pereyda and Holder 2018)
the IQ of an AI system was defined in terms of its per-
formance on a set of tests. However, the IQ score was not
weighted based on the diversity of the set of tests, where

diversity can be measured as the average pair-wise dissim-
ilarity between tests in the set. An AI system designed for
image classification will do well on a set of image classifi-
cation tests, but this set is not as diverse as, say, a set of tests
consisting of image classification and reinforcement learn-
ing problems. Therefore, we seek a measure of similarity
(or dissimilarity) between tests that can inform a diversity
measure of a set of tests.

In this section we derive a measure of similarity between
two tests. Suppose we have two tests, A and B. Let us as-
sume that test A is easier than test B. That is:

V ⇡
A > V ⇡

B (1)
where V ⇡

t is the expected performance from a baseline agent
⇡ on test t. Based on this scenario a simplistic measure of
the dissimilarity is the difference between the two values
|V ⇡

A � V ⇡
B |. As mentioned earlier, this simplistic difference

may suffer when the tests are too hard or too easy, in which
case the difference is near zero, even for tests taken from
very diverse domains. For a better measure, we make the
assumption that ⇡ is sufficient to perform A and B indepen-
dently. We discuss a sufficient agent in a later section, but es-
sentially it means that the agent’s performance on a merger
of tests A and B is in between the agent’s performance on A
and B individually (i.e., V ⇡

A � V ⇡
AB � V ⇡

B). Two tests can
be merged in many different ways, and we discuss proper
techniques for merging two tests in a later section.

Given Equation 1 and our sufficiency assumption on agent
⇡, in the worst case ⇡ perform at the level of the harder test
B. If we have a merged test consisting of only the harder
test B, then ⇡ will learn B achieving performance V ⇡

B . If the
merged test contains some problems from the easier test A,
then ⇡ will achieve a level of performance that lies between
V ⇡
B and V ⇡

A . So ⇡ will never perform worse that it did on test
B given any split of data.

If A and B have some degree of similarity, then we can
plot the performance achieved on the merged test AB, as a
function of the proportions of A to B used to generate AB.
We can plot the horizontal line V ⇡

A to represent the maximal
performance and plot the horizontal line V ⇡

B to show mini-
mal performance (see Figure 3). We can then define similar-
ity S(A,B, p,⇡) between two tests A and B as a function of
the distance between the performance achieved by baseline
agent ⇡ at a certain proportion p of problems from A and B
in the merged test AB.

S(A,B, p,⇡) = |V ⇡
A � V ⇡

AB(p)|� |V ⇡
B � V ⇡

AB(p)| (2)

Figure 3 shows an example of these components of the
similarity between two tests. In our experiments we chose
an equal proportion of problems from the two tests being
compared (i.e., p = 0.5). Trying other values for p, or opti-
mizing p to maximize or minimize similarity, is a direction
for further research.

Equation 2 does not take into consideration the relative
scale of the performance. It would disproportionately weight
larger absolute gaps between the performance results rather
than examining the relative performance. So we normalize
Equation 2 to arrive at our final definition of similarity:

S(A,B, p,⇡) =
|V ⇡

A � V ⇡
AB(p)|� |V ⇡

B � V ⇡
AB(p)|

|V ⇡
A � V ⇡

B | (3)

Merging Tests
The sufficiency of an agent, and thus the overall similar-
ity measure in Equation 3, are dependent on the method
m(A,B) for merging the two tests A and B being compared.
We consider two different methods for merging tests: stitch-
ing and sampling (refer to Figure 1). First, we can merge
the tests element-wise, by creating larger elements from el-
ements in A and B. We call this the “stitched” or “stitching”
merge method. For example, merging elements from two
tests, where each element is a 100x100 image, would yield
stitched elements of 100x200 images (see Figure 1). The in-
puts to the agent are increased to accommodate the larger
problem, and the outputs would also increase to include out-
puts for both problems (e.g., two different classifications of
the two different images). Second, we can combine the tests
set-wise, by taking a sample of elements from A and B. We
call this the “sampled” or “sampling” merge method. For
example, merging elements from the two image-based tests
yields a set of images consisting of samples from each of
the two tests (see Figure 1). In this case, the inputs to the
agent increase to the larger of the two individual problem’s
inputs and unused inputs are padded with zeros in the test
data, similary for outputs.

As can be seen in Figure 2, the choice of how to merge
the two tests has an impact on the sufficiency of the baseline
agent. In the figure we see that the sampling method (A,B)
leads to a sufficient agent, while the stitching AB method
does not. There are other methods for merging two tests in
terms of how the inputs and outputs are represented, espe-
cially for tests requiring more than a single class or action
response (e.g., blocks-world planning). But note that our
goal here is a sufficient agent to support a consistent, relative
measure of test similarity, not the best possible performance
on any one test.

Experiments
We conduct three experiments to validate the proposed sim-
ilarity measure. First, we compare different image classifi-
cation problems that are targeted toward deep neural net-
work learning systems. Second, we compare several dif-
ferent problems from the OpenAI Gym (Brockman et al.
2016) that are targeted toward reinforcement learning sys-
tems. And third, we mix problems from the first two sets to
create a more diverse test suite. For each set of tests, we de-
termine a viable method for merging problems, construct a
sufficient learner, and evaluate the similarity and difficult of
the tests.

Image Classification Tests
For this experiment we utilize four well known datasets:
MNIST (LeCun et al. 1998), FashionMNIST (Xiao, Rasul,
and Vollgraf 2017), CIFAR10, and CIFAR100 (Krizhevsky
2012). These tests were chosen due to their widespread use

Figure 1: Example images from the four datasets used in the
experiments. The right side shows two methods for merging
the individual tests into a combined test.

Table 1: Validation accuracy of deep neural network on im-
age classification tests.

Test Description Accuracy

MNIST Handwritten Numbers 0.9932
Fashion-MNIST Clothing 0.9251
CIFAR10 Real Images 0.8099
CIFAR100 Extended CIFAR 0.4892

in the AI community and because they have similar proper-
ties. Examples of the datasets can be seen in Figure 1.

We chose a deep neural network as the baseline agent ⇡
for these tests. The reason was two-fold: we expect the neu-
ral network to be the most generalizable of agents, and we
also expect the neural network to have the ability to extract
key concepts from the tests and thus better handle a com-
bined test.

We implemented the deep neural network using Keras
(Chollet and others 2015). This network utilized several
repeating layers of increasing CNNs into a final flattened
layer of fully connected nodes for the output. This model
was largely influenced by Machine Learning In Action (Ku-
mar 2018). The full model can be seen in Figure ??. The
model was trained over 15 epochs for each problem. We
used Adam optimization and categorical cross entropy as
the loss function. The results of training the neural network
on the standard datasets can be seen in Table 1. The results
show that the network performs well on the MNIST and
Fashion MNIST datasets, but worse on CIFAR10 and CI-
FAR100. We could improve these results by further optimiz-
ing the network or specializing it to each test, but our goal is
to provide a sufficient system, not necessarily the best.

Merging Methods Here we discuss the details for merg-
ing two image classification tests. Supposing test A has ele-
ments of size 32x32, and test B has elements of size 32x32,
the “stitched” test AB will have elements of size 64x32. If
the elements in the datasets vary in size from each other,
we evenly pad the smaller elements with 0 values to reach
the size of the larger elements. To detect a possible bias
in this approach we also create combined tests by stitching
each individual test to itself: tests AA and BB. These tests
are MNIST data stitched to itself (AA) and CIFAR10 data
stitched to itself (BB). Comparing the test AB to AA and

to BB instead of the simple A and B tests will help iden-
tify additional components of complexity introduced by the
merging process that could bias the results. For example, the
modified input and output spaces may affect the results. Or
changes in the image representations could also affect the re-
sults. This could be due to MNIST data consisting of mainly
a black background and CIFAR10 data consisting of a noisy
background.

The second method of merging tests is the “sampling”
method. For example, if test A has 50,000 elements and
test B has 50,000 elements, then test (A,B) will have 50,000
(25,000 from A and 25,000 from B). In the case where the
sizes of the datasets do not match, we reduce the size of the
larger dataset to match the size of the smaller dataset. This
was done to decrease any class imbalance that might influ-
ence the final results. In this method we employ the use of
the proportion variable p, which represents the proportion of
samples drawn from A to samples drawn from B. We will ex-
amine how different values of p affect the results of the sam-
pling method. In the case of combining the output classes,
we set the extra outputs to zero. That is, the system must be
able to individually classify elements from both tests used to
make up (A,B). That is, if test A has 10 classes and test B
has 100 classes, then test (A,B) will have 110 classes.

Baseline Agent Validation First, we seek to validate the
baseline neural network agent and evaluate the approaches
to merging two tests. We want to verify that the neural net-
work is sufficient for our datasets. If the neural network is ei-
ther too good or too poor at these classification problems, we
would have to adjust the neural network until it performed
adequately. Second, we want to examine how the two meth-
ods of test merging perform. Since sufficiency depends on
the performance on the merged tests, we want a merging
method that does not significantly modify the inherent dif-
ficulty of the individual tests. Lastly, we want to see how
varying the complexity of the neural network affects the ex-
pected performance. From this data we can conclude how
the complexity of the baseline agent will affect the final sim-
ilarity metric.

We begin by training the network on MNIST (test A) and
CIFAR10 (test B), while varying the total number of pa-
rameters in the network (trainable and un-trainable). This
is done by reducing the depth of the filter in each convolu-
tion layer by half. We begin with 32x32 dual convolution
layers into a maxpool. We repeat this for three times, then
feed the results into a dense layer with ReLU activation. The
network architecture remains the same throughout the pro-
cess. The results of this experiment can be seen in Figure
2. From these results we can see that the neural network is
sufficient to learn MNIST and CIFAR10. That is, the neural
network does not learn both tests A and B with 100% ac-
curacy and does not fail to learn either. We can see that for
the value p = 0.0, the performance on (A,B) drops slightly
below the lowest performance B. This is largely due to the
volatility of the network. The results also show that utilizing
the stitching method (AA, BB, AB) violates the sufficiency
constraint that the merged test should lie between the sub-
tests use to make it. So the stitching method is not adequate

Figure 2: Validation accuracy vs. the complexity of the neu-
ral network. We varied the number of parameters in the net-
work by halving the depth of the filters in each convolution
layer. Test A is the MNIST dataset. Test B is the CIFAR10
dataset. Test AA, BB, and AB were created by stitching to-
gether the sub-tests A and B element-wise. Test (A,B) was
created by sampling from both test A and test B.

for measuring the similarity between these problems. How-
ever, the sampling merge method does satisfy the sufficiency
constraint, and so it can be used in this case.

The experimental results also show that the complexity of
the baseline agent is a factor in determining the similarity,
but it does not largely affect the results so long as the perfor-
mance (validation accuracy in this experiment) decreases or
increases at the same rate as a function of the complexity of
the baseline agent.

Next we examine how the proportionality affects the sim-
ilarity measure. We start with MNIST and CIFAR10 as test
A and B respectively. We vary the proportionality of A and
B used to make up the combined test (A,B). At p = 0.0
we have entirely test B used to construct the combined test
(A,B). At p = 1.0 we have only test A in (A,B). At p = 0.5
there is an even split of A and B in (A,B). The total number
of training samples was kept constant at 50,000. Similarly,
the number of test samples was 10,000. The results of this
experiment can be seen in Figure 3.

Similarity Measurements Finally, we evaluate our
methodology for measuring the relative similarity between
the four datasets. This is done by training the sufficient neu-
ral network on the four individual tests, the four tests rep-
resenting a test merged with itself, and the six pair-wise
merged tests. The resulting validation accuracy for each test
after training is input to Equation 3 to give a final similarity
measure shown in Table 2. We can see that for these tests the
similarity metric performs as expected when tests are com-
pared to themselves. CIFAR100 and CIFAR10 are the next
most similar pair. This is expected due to their image types
being relatively similar.

A dissimilarity graph can be seen in Figure 4. The data
shown is the dissimilarity metric (1 � S), the further the
points are away from each other, the more dissimilar they
are. We then attempted to create the graph utilizing to-scale

Figure 3: Validation Accuracy vs. Percent split. We vary the
proportion of the sub-tests used to generate the merged test.
MNIST is test A and CIFAR10 is test B. The merged test
is generated by the sampling merge method. Vmax is the
performance achieved by the neural network on test A. Vmin
is the performance achieved by the neural network on test B.

Figure 4: A graphical representation of the dissimilarity be-
tween the four tests.

line segments. While not entirely to scale, this graph still
shows dissimilarity using relative distances. The grey trian-
gles show the distance from any of the tests to the center test
(CIFAR10). These line segments are drawn to scale and the
other lines were drawn to fit these points.

From this graph we can conclude a few different aspects
of the tests. First, the similarity between the tests follows
our intuition. That is, CIFAR100 would be the most simi-
lar to CIFAR10 and would be dissimilar to the others. Our
intuition that MNIST would be most similar to Fashion-
MNIST was incorrect, in that, MNIST is most similar to CI-
FAR10, but relatively dissimilar to all the other tests. This
may be due to Fashion-MNIST and CIFAR10 containing
more complicated information. It could also be that the data
in Fashion-MNIST emulates more real-world images which
is a key component of CIFAR10.

OpenAI Gym Tests
The tests utilized in this experiment were gathered from
the OpenAIGym Framework (Brockman et al. 2016). The

Table 2: Similarity measurements between the four tests.
MNIST F-MNIST C10 C100

MNIST 1.0 0.216 0.290 0.171
F-MNIST 0.216 1.0 0.557 0.221
C10 0.290 0.557 1.0 0.651
C100 0.171 0.221 0.651 1.0

tests include the classic control problems (CartPole-v0,
CartPole-v1, MountainCar, Acrobot) and toy text prob-
lems(FrozenLake, FrozenLake8x8, Roulette, NChain, Taxi,
Cliffwalking). The classic control problems are environ-
ments setup in a simplified physics engine. These require
the agent to be able to learn how to interact with the speci-
fied object within this real-world scenario. For example, in
the MountainCar environment the agent must learn to push
and pull the car over the mountain. The toy text problems
are simple text-based games. The agent is given text obser-
vations that correspond to the simulated grid world.

Merging Tests The merged tests were created by drawing
an evenly-distributed sample of problems from the two base
tests. When the test input and output spaces were not equiv-
alent, the smaller spaces would be padded with zeros so they
were the same size. When too many outputs were given as
actions to test environment, the extra spots would be trun-
cated. So a minor additional challenge to the combined test
is that the neural network has to figure out which outputs
matter for which test.

Baseline Agent The neural network baseline agent uti-
lized for this experiment is different from that used for image
classification. The input to the network is fed into a 16 node
dense layer, then three layers of convolutions with 64 fil-
ters with a decreasing number of kernels (8,4,2) with ReLU
activation. The network finished with a 64 dense layer into
the desired output size. The only differences the architecture
had between tests was the number of connections from the
input and output layers, due to input and output sizes vary-
ing. The network was trained for 10,000 steps. Each test in-
stance has between 10 and 500 steps. Training examples for
the network consist of a sequence of steps (actions taken)
and the resulting reward (as determined by the test environ-
ment). When the merged test is given to the neural network,
random samples from both base tests are drawn evenly. The
sample environment is given as a singular instance to the
network to train over. The network does this until 10,000
steps have been reached.

Similarity Measurements A heatmap of the similarity
between the OpenAI Gym tests is shown in Figure 5. The
values show how similar each test is compared to every other
test. Ideally, tests would be perfectly similar to each other
along the diagonal. This is true for only half of the tests.
We believe this is due to some of the environments being
too complex for our baseline agent to handle. We did not
develop the baseline agent necessarily perform well over all
the chosen tests. Instead this agent was chosen due to its sim-
plicity and ability to handle most of the simpler tests. If the

Figure 5: Heatmap showing similarity between OpenAI
Gym tests. Lower triangle left empty.

environment is too hard then the similarity metric will have
too much error within it. We can see that similar tests do
score a high similarity, CartPole-v0 compared to CartPole-
v1 and FrozenLake compared to FrozenLake8x8. We can
also see that toy text environments are more similar as a
group compared to the classic control environments. This
might be due to the agent having to learn one specific aspect
of the physics engine and not being able to adapt that well
to the other environments.

Mixture of Tests
In this experiment we measure the similarity between tests
drawn from active and passive environments. We want to
compare a set of relatively similar environments to a very
dissimilar environment. To accomplish this, we measured
the similarity between a set of passive environments (image
classification tests) to an active environment (CartPole test).

First, we converted the CartPole test into a passive envi-
ronment. This was done by training an agent on CartPole un-
til the maximal score was reached. The agent was then used
to classify the ideal action for a set of images of the CartPole
environment. The training process is the same now as previ-
ously, with the addition of the new classification problem of
CartPole.

The evaluation is slightly different now due to the vary-
ing rewards between the CartPole and the other classifica-
tions tests. First, CartPole is scaled in the same manner for
the evalution process. The CartPole images are scaled from
400x600 to 32x32, to match the size used by the image clas-
sification tests. Second, the agent is tested on a random sam-
ple of problems from the first image classification test and
then given an instance of the CartPole test. The performance
is determined based on the image classification accuracy
plus the normalized length of time the agent is able to keep
the pole balanced. The final performance (sum of accuracy
and balance length) is also normalized between 0 and 1.

Table 3: Similarity measurements between the four image
tests and CartPole (CP).

MNIST FMNIST C10 C100 CP
MNIST 1.0 0.216 0.290 0.171 0.083
FMNIST 0.216 1.0 0.557 0.221 0.080
C10 0.290 0.557 1.0 0.651 0.079
C100 0.171 0.221 0.651 1.0 0.652
CP 0.083 0.080 0.079 0.652 1.0

The results of this experiment can be seen in Table 3,
which is the same as Table 2, but an extra row and col-
umn for the CartPole similarity measurements. The baseline
agent was able to learn CartPole with an effective accuracy
of 0.10. This means on average the cart was up for 20 steps.
This baseline agent performed better than a random agent,
which achieves a score of around 0.063, but the baseline
agent was not able to achieve high performance (optimal be-
ing 1.0). From the additional test of CartPole, we can see
it is very dissimilar to the majority of the tests. However,
CartPole is surprising similar to the CIFAR100 test. This is
most likely due to the complexity of both CIFAR100 and
CartPole. A more capable baseline agent would likely rec-
tify this inconsistency. While the image tests are not tightly
grouped by similarity, they are closer to each other than to
the CartPole test. This meets are intuition of different types
of problems being dissimilar.

Conclusion
In this work we have put forward a framework for measur-
ing similarity between different tests. We conducted sev-
eral experiments to determine what factors may influence
the theory in practical ways. We discuss the results of these
factors and how they could potentially affect the final sim-
ilarity metric. We finally construct a practical and effective
methodology for measuring the similarity between different
tests. We perform this methodology on several well known
datasets and the results follow intuition.

One problem with this metric is that it only exists on a rel-
ative scale. We still do not have an absolute similarity mea-
surement, even with our methods. One possible solution to
this problem is to take many similarity measurements over
a maximally diverse set of tests. A way to achieve a maxi-
mally diverse set of tests is to create a large, but finite, repre-
sentation of the set of all possible tests. This has been effec-
tively done by Legg and Veness (2013). They demonstrated
a method for generating a set of random tests drawn from
the set of all possible tests and then applied an AI system
to attempt to solve the test. Utilizing a similar method we
could extend this relative similarity measure to be an abso-
lute similarity measure.

We believe that this framework provides a preliminary
step in the direction for measuring similarity between AI
benchmark problems. This similarity can provide the ba-
sis on which to evaluate the diversity of a set of tests and
the general intelligence of AI systems based on their perfor-
mance on these tests.

References
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym.
Chollet, F., et al. 2015. Keras. https://keras.io.
Cook, D. J.; Holder, L. B.; and Youngblood, G. M. 2007.
Graph-based analysis of human transfer learning using a
game testbed. IEEE Transactions on Knowledge and Data
Engineering 19(11):1465–1478.
Gorski, N., and Laird, J. 2006. Experiments in transfer
across multiple learning mechanisms. In Proceedings of the
ICML Workshop on Structural Knowledge Transfer for Ma-
chine Learning.
Hernández-Orallo, J., and Dowe, D. L. 2010. Measuring
universal intelligence: Towards an anytime intelligence test.
Artificial Intelligence 174(18):1508–1539.
Hernández-Orallo, J. 2010. A (hopefully) unbiased univer-
sal environment class for measuring intelligence of biologi-
cal and artificial systems. In Third Conference on Artificial
General Intelligence (AGI). Atlantis Press.
Hernández-Orallo, J. 2017. Evaluation in artificial intelli-
gence: from task-oriented to ability-oriented measurement.
Artificial Intelligence Review 48(3):397–447.
Insa-Cabrera, J.; Dowe, D. L.; and Hernández-Orallo, J.
2011. Evaluating a reinforcement learning algorithm with
a general intelligence test. In Conference of the Spanish As-
sociation for Artificial Intelligence, 1–11. Springer.
Krizhevsky, A. 2012. Learning multiple layers of features
from tiny images. University of Toronto.
Kumar, A. 2018. Machine learning in action. https:
//github.com/abhijeet3922/Object-recognition-CIFAR-10.
Accessed: 2019-04-30.
Langley, P. 2006. Cognitive architectures and general intel-
ligent systems. AI magazine 27(2):33–33.
LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.; et al. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Legg, S., and Hutter, M. 2007. Universal intelligence: A
definition of machine intelligence. Minds and machines
17(4):391–444.
Legg, S., and Veness, J. 2013. An approximation of the
universal intelligence measure. In Algorithmic Probability
and Friends. Bayesian Prediction and Artificial Intelligence.
Springer. 236–249.
Pereyda, C., and Holder, L. 2018. Toward a general-purpose
artificial intelligence test by combining diverse tests. In Pro-
ceedings on the International Conference on Artificial Intel-
ligence (ICAI), 237–243.
Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Lucas, S.;
and Schaul, T. 2016. General video game AI: Competition,
challenges and opportunities. In Thirtieth AAAI Conference
on Artificial Intelligence.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.

