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Abstract

Non-interactive batch arguments for NP provide a way to amortize the cost of NP verification across multiple

instances. They enable a prover to convince a verifier of multiple NP statements with communication much smaller

than the total witness length and verification time much smaller than individually checking each instance.

In this work, we give the first construction of a non-interactive batch argument forNP from standard assumptions

on groups with bilinear maps (specifically, from either the subgroup decision assumption in composite-order groups

or from the :-Lin assumption in prime-order groups for any : ≥ 1). Previously, batch arguments for NP were only

known from LWE, or a combination of multiple assumptions, or from non-standard/non-falsifiable assumptions.

Moreover, our work introduces a new direct approach for batch verification and avoids heavy tools like correlation-

intractable hash functions or probabilistically-checkable proofs common to previous approaches.

As corollaries to our main construction, we obtain the first publicly-verifiable non-interactive delegation scheme

for RAM programs (i.e., a succinct non-interactive argument (SNARG) for P) with a CRS of sublinear size (in the

running time of the RAM program), as well as the first aggregate signature scheme (supporting bounded aggregation)

from standard assumptions on bilinear maps.

1 Introduction

Consider the following scenario: a prover has a batch of< NP statements x1, . . . , x< and seeks to convince the verifier
that all of these statements are true (i.e., convince the verifier that x8 ∈ L for all 8 ∈ [<], where L is the associated
NP language). A naïve solution is for the prover to provide the< witnesses w1, . . . ,w< to the verifier and have the
verifier check the NP relation on each pair (x8 ,w8 ). A natural question is whether we could do this more efficiently.
Namely, can the prover convince the verifier that x1, . . . , x< ∈ L with a proof of size > (<)—that is, can the size of the
proof grow sublinearly with the number of instances?

Batch arguments. The focus of this work is on constructing non-interactive batch arguments (BARGs) for NP
languages in the common reference string (CRS) model. In this model, a (trusted) setup algorithm samples a common
reference string crs that is used to construct and verify proofs. The goal of a BARG is to amortize the cost of NP
verification across multiple instances. Specifically, a BARG for NP allows a prover to construct a proof c of< NP

statements x1, . . . , x< ∈ {0, 1}= where the size of the proof c scales sublinearly with<. We focus on the setting where
the proof is non-interactive and publicly verifiable. The soundness requirement is that no computationally-bounded

prover can convince the verifier of a tuple (x1, . . . , x<) that contains a false instance x8 ∉ L; namely, we focus on
batch argument systems.

Constructing non-interactive batch arguments for NP is challenging, and until very recently, constructions have
either relied on idealized models [Mic95, Gro16, BBHR18, COS20, CHM+20, Set20] or on non-standard [KPY19], and
oftentimes, non-falsifiable cryptographic assumptions [Gro10, BCCT12, DFH12, Lip13, PHGR13, GGPR13, BCI+13,
BCPR14, BISW17, BCC+17] (see also Section 1.3 for more detail). This state of affairs changed in two very recent
and exciting works by Choudhuri et al. In the first work [CJJ21a], they show how to construct a BARG assuming
both subexponential hardness of DDH in pairing-free groups and polynomial hardness of QR. Subsequently, they
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construct a BARG from polynomial hardness of LWE [CJJ21b]. Both works leverage correlation-intractable hash
functions [CGH98, CCH+19, PS19, JJ21] to provably instantiate the Fiat-Shamir heuristic [FS86].

In this work, we take a direct approach for constructing BARGs from bilinear maps, and provide a new instantiation
from either polynomial hardness of the :-Lin assumption on prime-order bilinear groups, or from polynomial hardness
of the subgroup decision assumption on composite-order bilinear groups. This is the first BARG forNP under standard
assumptions over bilinear groups. Moreover, our construction is direct and avoids powerful tools like correlation-
intractable hash functions or probabilistically-checkable proofs used in many previous constructions.

Delegation for RAM programs. A closely related problem is delegation for RAM programs (also known as a
succinct non-interactive argument (SNARG) for the class P of polynomial-time deterministic computations). In a
delegation scheme for RAM programs, the prover has a RAM program P, an input G , and output ~, and its goal is to
convince the verifier that ~ = P(G). The efficiency requirement is that the length of the proof and the verification time
should be sublinear (ideally, polylogarithmic) in the running time of the RAM program. There is a close connection
between batch arguments for NP and delegation schemes for RAM programs [BHK17, KPY19, KVZ21, CJJ21b], and
several of these works show how to construct a delegation scheme for RAM programs using a batch argument for NP.
As a corollary to our main construction, we use our BARG to obtain a non-interactive delegation scheme for RAM
programs under the SXDH assumption in asymmetric bilinear groups. The CRS size of our construction is short (i.e.,
sublinear in the running time of the RAM computation).

Previously, Kalai et al. [KPY19] constructed a delegation scheme for RAM programs with a short CRS from a non-
standard, but falsifiable, @-type assumption on bilinear groups, and more recently, González and Zacharakis [GZ21]
showed how to construct a delegation scheme with a long CRS for arithmetic circuits from a bilateral :-Lin assumption
in asymmetric bilinear groups.1 Choudhuri et al. [CJJ21b] showed how to construct a delegation scheme for RAM
programs from LWE, and previously, Jawale et al. [JKKZ21] constructed a delegation scheme for bounded-depth
circuits also from LWE; both of these schemes also have a short CRS. Recently, Hulett et al. [HJKS22] showed how to
construct a SNARG for P from sub-exponential DDH (in pairing-free groups) in conjunction with the QR assumption.
In the designated-verifier model where a secret key is needed to check proofs, Kalai et al. [BHK17] showed how to
construct a delegation scheme from any computational private information retrieval scheme.

1.1 Our Contributions

In this work, we introduce a simpler and more direct approach for constructing BARGs using bilinear maps. Our
main result is a BARG for NP assuming either the polynomial hardness of :-Lin in asymmetric prime-order pairing
groups (for any : ≥ 1)2, or alternatively, the subgroup decision assumption in composite-order pairing groups. We
capture this in the informal theorem statement below:

Theorem 1.1 (Informal). Take any constant Y > 0. Under the :-Lin assumption (for any : ≥ 1) in a prime-order

pairing group (alternatively, the subgroup decision assumption in a composite-order pairing group), there exists a publicly-

verifiable non-interactive BARG for Boolean circuit satisfiability with proof size poly(_, |� |), verification complexity

poly(_,<,=) + poly(_, |� |), and CRS size<Y · poly(_), where _ is a security parameter, � : {0, 1}= × {0, 1}ℎ → {0, 1} is
the Boolean circuit, = is the statement size, and< is the number of instances. The BARG satisfies semi-adaptive soundness

(Definition 2.5).

A new approach for batch verification. In contrast to many recent works (see also Section 1.3) on constructing
succinct arguments that rely on probabilistically-checkable proofs (PCPs) [KRR13, KRR14, BHK17, CJJ21b, KVZ21] or
correlation-intractable hash functions [JKKZ21, CJJ21a, CJJ21b, HJKS22], we take a direct “low-tech” approach in our
construction. Our construction follows a “commit-and-prove” strategy and is reminiscent of the classic pairing-based
non-interactive proof systems by Groth et al. [GOS06] and Groth and Sahai [GS08]. Essentially, the prover starts by
providing a (succinct) commitment to the values associated with each wire in the circuit. The prover commits to<
bits for each wire, one for each instance, and we require that the size of the commitment be sublinear in<. Then, for

1In the bilateral version of the :-Lin assumption, the challenge is encoded in both groups rather than one of the groups.
2Recall that the case : = 1 corresponds to the DDH assumption holding in each base group (i.e., SXDH). The case : = 2 corresponds to the DLIN
assumption [BBS04, HK07, Sha07]
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each gate in the circuit, the prover provides a short proof that the committed wire values are consistent with the gate
operation. The succinct commitment scheme to the wire labels can be viewed as a non-hiding version of the vector
commitment scheme of Catalano and Fiore [CF13]. The key challenge in the construction is proving consistency of
the gate computations given only the succinct commitments to the input and output wires of each gate. We give a
technical overview of our approach in Section 1.2 and the formal description in Sections 3 and 4.

Application to delegating RAM programs. The proof size in Theorem 1.1 is independent of the number of
instances <, but the verification time contains a component poly(_,<,=) that scales with <. For general NP
languages, some type of linear dependence on the number of instances is inherent since the verification algorithm
must at least read the input (of size< · =). However, when the statements have a “succinct description,” (e.g., they
are simply the indices 1, . . . ,<), and it is unnecessary for the verifier to read the full input, we can reduce the the
verification cost down to poly(_, log<, |� |). This setting is useful for applications to delegation [CJJ21b, KVZ21]. Our
main constructions (Theorem 1.1 and Construction 4.5) directly support this setting. Indeed, combining our new
pairing-based BARGs with the compiler from Choudhuri et al. [CJJ21b], we also obtain a delegation scheme for RAM
programs from the SXDH assumption over pairing groups.

We note here that invoking the compiler from [CJJ21a] additionally requires a “somewhere extractable commitment”
scheme (that supports succinct local openings). The pairing-based techniques underlying our BARG construction
naturally give rise to a somewhere extractable commitment (in conjunction with a somewhere extractable hash
function [HW15, OPWW15]). This is the first construction of a somewhere extractable commitment that supports
succinct local openings from standard assumptions over bilinear groups and may be of independent interest. We
describe the construction in Section 6. We summarize our result on delegation in the following informal theorem:

Theorem 1.2 (Informal). Take any constant Y > 0. Under the SXDH assumption in a prime-order pairing group, for

every polynomial ) = ) (_), there exists a publicly-verifiable non-interactive delegation scheme for RAM programs with

proof size poly(_, log) ), verification complexity poly(_, log) ), a verification key of size poly(_, log) ), and a proving
key of size ) Y · poly(_). Here, _ is the security parameter and ) is the running time of the RAM program. The delegation

scheme is adaptively sound.

Theorem 1.2 gives the first RAM delegation scheme from standard assumptions over bilinear maps with a CRS
whose size is sublinear in the running time of the computation. Previously constructions of RAM delegation based on
pairings either relied on non-standard @-type assumptions [KPY19] or a CRS of size super-linear in the running time
of the RAM computation [GZ21].

Application to aggregate signatures. As a final application, we use our BARG forNP to obtain the first aggregate
signature scheme that supports bounded aggregation from standard assumptions over bilinear maps. In an aggregate
signature scheme, there is a public algorithm that takes a collection of message-signature pairs (`1, f1), . . . , (`<, f<)
under (possibly distinct) verification keys vk1, . . . , vk< , respectively, and outputs a new signature fagg on (`1, . . . , `<)
under the joint verification key (vk1, . . . , vk<). The requirement is that the size of fagg scales sublinearly with<.
A BARG for circuit satisfiability directly yields an aggregate signature scheme via the following straightforward
construction. Define the circuit� (vk,<, f) that takes as input the verification key vk, message `, and signature f , and
outputs 1 if f is a valid signature on ` under vk. An aggregate signature on (`1, f1, vk1), . . . , (`<, f<, vk<) is a BARG
proof that � (vk8 , `8 , f8 ) = 1 for all 8 ∈ [<]. Succinctness of the BARG ensures that the size of the aggregate signature
is sublinear in the number of signatures<. Realizing the above blueprint requires that the underlying BARG satisfy a
(weak) form of extractability; the BARGs we construct in this work satisfy this property, and we refer to Section 7 for
the details. We obtain the first aggregate signature scheme supporting (bounded) aggregation from standard pairing
assumptions. We summarize the instantiation here and compare with previous approaches in Section 1.3:

Corollary 1.3 (Informal). Under the :-Lin assumption (for any : ≥ 1) in a prime-order pairing group (alternatively,

the subgroup decision assumption in a composite-order pairing group), there exists an aggregate signature scheme that

supports bounded aggregation. In particular, for any a priori bounded polynomial< =<(_), aggregating up to ) ≤ <
message-signature pairs (`1, f1), . . . , (`) , f) ) under verification keys vk1, . . . , vk) yields an aggregate signature fagg of

size poly(_).
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1.2 Technical Overview

In this work, we focus on constructing BARGs for the language of Boolean circuit satisfiability. Let � : {0, 1}= ×
{0, 1}ℎ → {0, 1} be a Boolean circuit of size B . A tuple (�, x1, . . . , x<) is true if for all 8 ∈ [<], there exists a witness
w8 such that � (x8 ,w8 ) = 1.

General blueprint. Our BARG for circuit satisfiability follows a “commit-and-prove” paradigm. To construct a
proof c of a statement (�, x1, . . . , x<) with associated witnesses (w1, . . . ,w<), the prover proceeds as follows:

• Wire commitments: The prover starts by evaluating � (x8 ,w8 ) for each 8 ∈ [<]. Let C be the number of wires
in circuit � . For each instance 8 ∈ [<] and wire : ∈ [C], we write F8,: ∈ {0, 1} to denote the value of wire
: in instance 8 . Then (F1,: , . . . ,F<,: ) ∈ {0, 1}< is the vector of assignments to wire : across all< instances.
The prover starts by constructing a vector commitment *: to each vector (F1,: , . . . ,F<,: ). Here, we require
the commitment to be succinct: namely, |*: | = poly(_, log<), where _ is a security parameter. The prover
additionally constructs a proof +: that*: is a commitment to a 0/1 vector (i.e.,F8,: ∈ {0, 1} for all 8 ∈ [<]).3
We similarly require that |+: | = poly(_, log<). Both the commitments to the wire assignments*1, . . . ,*: and
the proofs of valid assignment +1, . . . ,+: are included in the BARG proof.

• Gate satisfiability: We consider Boolean circuits with fan-in two. Namely, each gate �ℓ in � can be described
by a tuple of (:1, :2, :3) ∈ [C]3, where :1, :2 are the indices for the input wires and :3 is the index for the
output wire. Since NAND gates are universal, we will assume that all of the gates in � are NAND gates.4

Let B be the number of gates (i.e., the size) of the circuit. For each gate ℓ ∈ [B], the prover constructs a proof
,ℓ that the committed assignments *:3 to the output wire are consistent with the committed assignments
*:1 ,*:2 to the input wires. For example, if �ℓ is a NAND gate, *:1 is a commitment to (F1,:1 , . . . ,F<,:1 ),
*:2 is a commitment to (F1,:2 , . . . ,F<,:2 ), then the prover needs to demonstrate that *:3 is a commitment
to (NAND(F1,:1 ,F1,:2 ), . . . ,NAND(F<,:1 ,F<,:2 )). The size of each proof,ℓ must also be succinct: |,ℓ | =
poly(_, log<). The prover includes a proof of gate satisfiability,ℓ for each gate ℓ ∈ [B].

The overall proof is c =
(
{(*: ,+: )}:∈[C ], {,ℓ }ℓ∈[B ]

)
, and the proof size is |� | · poly(_, log<), which satisfies the

efficiency requirements on the BARG. To verify the proof, the verifier checks the following:

• Input validity: Without loss of generality, we associate wires 1, . . . , = with the bits of the statement. The
verifier checks that *1, . . . ,*= are commitments to the bits of x1, . . . , x< ∈ {0, 1}= . In our construction, each
commitment is a deterministic function of the input vector, so the verifier can compute *1, . . . ,*= directly from
x1, . . . , x< .

• Wire validity: For each : ∈ [C], the verifier checks that*: is a commitment to a 0/1 vector using +: .

• Gate consistency: For each gate �ℓ = (:1, :2, :3), the verifier uses,ℓ to check that *:1 , *:2 , and *:3 are
commitments to a set of valid wire assignments consistent with the gate operation �ℓ .

• Output satisfiability: Let C be the index of the output wire in � . The verifier checks that the commitment to
the output wire*C is a commitment to the all-ones vector (indicating that all< instances accept).

Since the verifier needs to read the statement, the statement validity check runs in time poly(_, =,<). The remaining
checks run in time |� | · poly(_), which yields the desired verification complexity.

1.2.1 Construction from Composite-Order Pairing Groups

To illustrate the main ideas underlying our construction, we first describe it using symmetric composite-order groups
and argue soundness under the subgroup decision assumption [BGN05]. We believe this construction is conceptually
simple and best illustrates the core ideas behind the construction. The approach described here translates to the
setting of asymmetric prime-order pairing groups to yield a construction from the :-Lin assumption.

3Technically, this is only required for the input wires corresponding to the witness.
4Our techniques extend naturally to support binary-valued gates that can compute arbitrary quadratic functions of their inputs; see Remark 4.16.
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Composite-order pairing groups. A symmetric composite-order pairing group consists of two cyclic groups
G and G) of order # = ?@, where ?, @ are prime. Let 6 be a generator of G. By the Chinese Remainder Theorem,
we can write G � G? × G@ , where G? is a subgroup of order ? (generated by 6? = 6@) and G@ is a subgroup of
order @ (generated by 6@ = 6? ). Additionally, there exists an efficiently-computable, non-degenerate bilinear map
4 : G×G→ G) called the “pairing:” namely, for all 0, 1 ∈ Z# , it holds that 4 (60, 61) = 4 (6,6)01 . Finally, the subgroups
G? and G@ are orthogonal: 4 (6? , 6@) = 1, where 1 denotes the identity element in G) . In our construction, the real
scheme operates entirely in the order-? subgroup G? of G; the full group G only plays a role in the soundness analysis.

Vector commitments. The first ingredient we need to implement the above blueprint is a vector commitment
scheme for vectors of dimension< (< being the number of instances). We start by constructing a common reference

string with < group elements (�1, . . . , �<) where each �8 = 6U8? for some U8
r← Z# . A commitment to a vector

(F1,: , . . . ,F<,: ) is a subset product of the associated group elements*: =
∏

8∈[<] �
F8,:

8 = 6
∑

8∈[<] U8F8,:

? ∈ G? . We note
that this is essentially the vector commitment scheme of Catalano and Fiore [CF13] instantiated in G? , but without
randomization (in our setting, we do not require a hiding property on the commitments). With this instantiation, the
commitment to each wire has size poly(_), and is independent of<.

Wire validity checks. The second ingredient we require is a way for the prover to demonstrate that the committed
values satisfy the wire validity and gate consistency relations. We start by describing the wire validity checks. Consider
a vector of candidate wire assignments (F1, . . . ,F<). The prover needs to convince the verifier thatF8 ∈ {0, 1} for all
8 ∈ [<], or equivalently, that F2

8 = F8 . Now, a correctly-generated commitment to (F1, . . . ,F<) is an encoding of∑
8∈[<] U8F8 (in the exponent). We can now write

©­«
∑
8∈[<]

U8
ª®¬
©­«

∑
8∈[<]

U8F8
ª®¬
=

∑
8∈[<]

U2
8F8 +

∑
8≠9

U8U 9F 9

©­«
∑
8∈[<]

U8F8
ª®¬
2

=

∑
8∈[<]

U2
8F

2
8 +

∑
8≠9

U8U 9F8F 9 .

When F2
8 = F8 , the difference between these two expressions is

∑
8≠9 U8U 9 (1 − F8 )F 9 . Notably, this difference is

a linear combination of the products U8U 9 where 8 ≠ 9 ; we refer to these terms as the cross terms. Conversely, if
F2
8 ≠ F8 for some 8 , then the difference between the two relations always depends on the non-cross-term U2

8 . This

suggests the following strategy for proof generation and verification: we publish encodings �8, 9 := 6
U8U 9

? for 8 ≠ 9 in
the CRS to allow the prover to “cancel out” cross terms but not the non-cross terms. We also include an encoding

� :=
∏

8∈[<] �8 = 6
∑

8∈[<] U8
? that will be used for verification. Specifically, we define the CRS to be

crs =
(
{�8 := 6U8? }8∈[<] , � :=

∏
8∈[<]�8 = 6

∑
8∈[<] U8

? , {�8, 9 := 6
U8U 9

? }8≠9
)
. (1.1)

Then, the prover can compute the quantity + =
∏

8≠9 �
(1−F8 )F9

8, 9 = 6
∑

8≠9 U8U 9 (1−F8 )F9

? . By the above relations, we see

that if* = 6
∑

8∈[<] U8F8

? , then
4 (�,* ) = 4 (* ,* )4 (6? ,+ ). (1.2)

The analysis above shows that if* is a valid commitment to a binary vector, then the prover can always compute +
that satisfies the verification relation. When * is not a commitment to a binary vector, we need to argue that the
prover cannot craft a proof + that satisfies Eq. (1.2). The intuition is that there will be “non-cross-terms” that cannot
be cancelled using the components available to the prover. Formalizing this intuition requires some care and we
provide additional details below. We also note here that the size of the CRS (Eq. (1.1)) in our construction scales
quadratically with the number of instances<. In the following, we will describe a bootstrapping technique to reduce
the CRS size to scale with<Y for any constant Y > 0.
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Gate consistency checks. The approach we take for wire validity checks readily extends to enable gate consistency
checks. We describe our approach for verifying a single NAND gate. To simplify the description, suppose *1 and
*2 are vector commitments to the input wires (F1,1, . . . ,F<,1) and (F1,2, . . . ,F<,2), and*3 is a vector commitment
to the output wire (F1,3, . . . ,F<,3). The prover wants to show that F8,3 = NAND(F8,1,F8,2) for all 8 ∈ [<]. This is
equivalent to checking satisfiability of the quadratic relationF8,3 +F8,1F8,2 = 1. In this case, the prover computes the
element, ∈ G? such that

4 (�,*3)4 (*1,*2)
4 (�,�) = 4 (6? ,, ). (1.3)

Suppose*1,*2,*3 are properly-generated commitments. Then, if we consider the exponents for the left-hand side of
the verification relation, we have∑

8∈[<]
U2
8F8,3 +

∑
8≠9

U8U 9F 9,3

︸                            ︷︷                            ︸
4 (�,*3)

+
∑
8∈[<]

U2
8F8,1F8,2 +

∑
8≠9

U8U 9F8,1F 9,2

︸                                      ︷︷                                      ︸
4 (*1,*2)

−
∑
8∈[<]

U2
8 −

∑
8≠9

U8U 9

︸                 ︷︷                 ︸
4 (�,�)

.

IfF8,3 +F8,1F8,2 = 1, then all of the non-cross terms vanish, and we are left with
∑

8≠9 U8U 9 (F 9,3 +F8,1F 9,2 − 1). The
prover can thus set, =

∏
8≠9 �

F9,3+F8,1F9,2−1
8, 9 to satisfy the above verification relation. Similar to the case with wire

consistency checks, we now have to show that if there exists an 8 ∈ [<] whereF8,3 +F8,1F8,2 ≠ 1, then the prover is
unable to compute a, that satisfies Eq. (1.3).

Proving soundness. To argue soundness of our argument system, we take the dual-mode approach from [CJJ21a,
CJJ21b].5 Specifically in this setting, there are two computationally indistinguishable ways to sample the CRS: (1) the
normal mode described above; and (2) a trapdoor mode that takes as input an instance index 8∗ ∈ [<] and outputs
a trapdoor CRS crs∗. The requirement is that in trapdoor mode, the scheme is statistically sound for instance 8∗.
Namely, with overwhelming probability over the choice of crs∗, there does not exist any proof c for (x1, . . . , x<) that
convinces the verifier when x8∗ is false. However, it is still possible that there exists valid proofs of tuples where x8∗ is
true but x8 is false for some 8 ≠ 8∗. By a standard hybrid argument, it is easy to see that a BARG with this dual-mode
“somewhere statistical soundness” property also satisfies non-adaptive soundness (i.e., soundness for statements that
are independent of the CRS).6 Achieving the stronger notion of adaptive soundness where security holds for statements
that depend on the CRS seems challenging and in certain settings, will either require non-black-box techniques or
basing security on non-falsifiable assumptions [GW11, BHK17].

Somewhere statistical soundness. To argue that our construction above satisfies somewhere statistical soundness,
we start by describing the trapdoor CRS. To ensure statistical soundness for index 8∗ ∈ [<], we replace the encoding
�8∗ = 6

U8∗
? associated with instance 8∗ with �8∗ ← 6U8∗ ∈ G. Critically, �8∗ is now in the full group rather than

the order-? subgroup G? . The encodings �8 associated with instances 8 ≠ 8∗ are still sampled from G? . We can
construct the cross terms �8, 9 in a similar manner as before: the components for 8, 9 ≠ 8∗ are unaffected and we set
�8∗, 9 = � 9,8∗ = �

U 9

8∗ ∈ G. The trapdoor CRS is computationally indistinguishable from the normal CRS by the subgroup
decision assumption [BGN05]. Consider the wire consistency checks and gate consistency checks:

• Wire consistency checks. Let * ∈ G be a commitment to a tuple of wire values and + ∈ G be the wire

consistency proof. We can decompose* as* = 6
V?
? 6

V@
@ for some V? ∈ Z? , V@ ∈ Z@ . Moreover, by construction,

the verification component � is defined to be � =
∏

8∈[<] �8 = 6
∑

8∈[<] U8
? 6

U8∗
@ . Consider now the verification

relation from Eq. (1.2). If this relation holds in G) , it must in particular hold in the order-@ subgroup of G) .
The key observation is that projecting the relation into the order-@ subgroup of G) isolates instance 8∗ (since

5This is different from the notion of “dual-mode” proof system often encountered in the setting of non-interactive zero-knowledge (NIZK) [GOS06,
PS19, LPWW20]. There, the CRS can be sampled in two computationally indistinguishable modes: one mode ensures statistical soundness and the
other ensures statistical zero knowledge.

6Our construction satisfies the stronger notion of semi-adaptive somewhere soundness [CJJ21b], where the adversary first commits to an index 8∗,
but is allowed to choose the statements (x1, . . . , x<) after seeing the CRS. The adversary wins if the proof is valid but x8∗ is false. This notion is
needed for the implications to delegation.
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only the encoding �8∗ contains components in the order-@ subgroup). Moreover, the pairing 4 (6? ,+ ) vanishes
in the order-@ subgroup, so the prover has no control over the validity check in the order-@ subgroup. Now, for
Eq. (1.2) to be satisfied, it must be the case that U8∗V@ = V2@ mod @. Thus, either V@ = 0 or V@ = U8∗ and so the

wire checks ensure that*: = 6
V?
? 6

b:U8∗
@ where b: ∈ {0, 1} for all : ∈ [<].

• Gate consistency checks. Now, consider the gate consistency checks. We again consider the projection of
the pairing check into the order-@ subgroup. If we project Eq. (1.3) in the order-@ subgroup and using the above
relations for*: and �, we obtain the relation

b:3U
2
8∗ + b:1b:2U2

8∗ − U2
8∗ = 0 mod @.

If U8∗ ≠ 0 mod @, then b:3 +b:1b:2 −1 = 0 mod @. Since b:1 , b:2 , b:3 ∈ {0, 1}, this means that b:3 = NAND(b:1 , b:2 ).
The above relations show that (b1, . . . , bC ) ∈ {0, 1}C constitutes a valid assignment to the wires of � ((b1, . . . , b=),w∗)
where w∗ = (b=+1, . . . , b=+ℎ). Again considering the verification relations in the order-@ subgroup, the input validity
checks ensure that x8∗ = (b1, . . . , b=) and the output satisfiability check ensures that � (x8∗ ,w∗) = bC = 1. The above
argument shows that if all of the validity checks pass, then we can extract a witness for instance 8∗. Thus, statistical
soundness for instance x8∗ holds. In fact, this extraction procedure can be made efficient given a trapdoor (i.e., the
factorization of # ). We provide the full construction and security analysis in Section 3.

1.2.2 The Prime-Order Instantiation, Bootstrapping, and Applications

The BARG construction from symmetric composite-order groups is conceptually simple to describe and illustrates
the main ideas behind our construction. We now describe several extensions and generalizations of these ideas.

Instantiation from :-Lin. The ideas underlying the composite-order construction (Sections 1.2.1 and 3) naturally
extend to the setting of asymmetric prime-order groups. Recall that an asymmetric prime-order group consists of
two base groups G1 and G2, a target group G) , all of prime order ? , and an efficiently-computable, non-degenerate
pairing 4 : G1 ×G2 → G) . In this setting, we can base security on the standard :-Lin assumption for any : ≥ 1. Recall
that the case : = 1 corresponds to the SXDH assumption (i.e., DDH in G1 and G2) and the case : = 2 corresponds
to the DLIN assumption [BBS04, HK07, Sha07]. The key property we relied on in the soundness analysis of the
composite-order construction is the ability to isolate a single instance by projecting the verification relations into a
suitable subgroup. In the prime-order setting, we can simulate this projection property by considering subspaces of
vector spaces [GS08, Fre10]. We refer to Section 4 for the full description and security analysis.

Bootstrapping to reduce CRS size. The size of the CRS in the above construction scales quadratically with
the number of instances < (due to the cross terms). However, we can adapt the bootstrapping approach from
Kalai et al. [KPY19] reduce the size of the CRS to grow with <Y (for any constant Y > 0). Soundness of the
bootstrapping construction critically relies on the ability to extract the witness for one of the instances in the BARG.

The construction is simple. To verify statements x1, . . . , x< , we consider a two-tiered construction where we
group the statements into</� batches of statements, each containing exactly � statements. We use a BARG (on �

instances) to prove that all of the statements in each batch (x� (8−1)+1, . . . , x8�) are true. Let c8 be the BARG proof
for the 8th batch. The prover then shows that it knows accepting proofs c1, . . . , c</� of each of the</� batches of
statements. Here, it will be critical that the size of the BARG verification circuit for checking c8 be sublinear in the
batch size �. This is not possible in general since the verification circuit has to read the statement which already has
length �. However, when the underlying BARG satisfies a “split verification” property (Definition 2.9), where the
verification algorithm decomposes into (1) a circuit-independent preprocessing step that reads the statement and
outputs a succinct verification key vk; and (2) a fast “online” verification step whose running time is polylogarithmic

in the number of instances, it suffices to use the BARG to only check the online verification step.
Now, if we set � =

√
< in this framework, both the BARG for checking each batch of � statements as well as the

BARG for verifying the</� =
√
< batches are BARGs on

√
< instances. Thus, we can use a BARG on

√
< instances

to construct a BARG on< instances. If we start with a BARG with CRS size<3 , then the two-tiered construction
reduces the CRS size to roughly<3/2. We can apply this approach recursively (with a constant number of iterations)
to reduce the CRS size from poly(_,<) to<Y · poly(_) for any constant Y > 0. We refer to Section 5 for the full details.
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Application to delegation. Choudhuri et al. [CJJ21b] showed how to combine a “BARG for index languages” with
a somewhere extractable commitment scheme to obtain a delegation scheme for RAM programs. In a BARG for
index languages, the statements to the< instances are always fixed to be the binary representation of the integers
1, . . . ,<. In this setting, the prover and the verifier do not need to read the statement anymore, and correspondingly,
the verification algorithm is required to run in time poly(_, log<, |� |) when checking a circuit � .

Our BARG construction extends naturally to this setting. In the construction described in Section 1.2.1 (see also
Section 3), the verifier starts by computing the commitments *1, . . . ,*= to the bits of the statement. This takes time
poly(_, =,<) since the verifier has to minimally read the statement (of length<=). However in the case of an index
BARG, the statements are known in advance, so the encodings*8 can be computed in advance and included as part of
a verification key vk = (*1, . . .*=) that the verifier uses for verification. Given vk, the statement validity checks can
be implemented by simply comparing the precomputed commitments with those provided by the adversary; notably
this check is now independent of the number of instances. Using the precomputed commitments, we can bring the
overall verification cost down to |� | · poly(_, log<), which meets the efficiency requirements for an index BARG.

The second ingredient we require to instantiate the Choudhuri et al. [CJJ21b] compiler is a somewhere extractable
commitment scheme. Our techniques for constructing BARGs can also be used to directly construct a somewhere
extractable commitment scheme (when combined with a somewhere statistically binding hash function [HW15,
OPWW15]). We can thus appeal to the compiler of Choudhuri et al. to obtain a delegation scheme for RAM programs
from the SXDH assumption in bilinear groups.7 Similar to the case with BARGs, we first describe a construction with
a long CRS where the length of the CRS grows quadratically with the length of the committed message (Section 6.2).
We then describe a similar kind of bootstrapping technique to obtain a somewhere extractable commitment scheme
with a CRS of size sublinear in the message size (Section 6.3). We refer to Section 6 for the full details.

Application to aggregate signatures. As described in Section 1.1, our BARG construction directly implies an
aggregate signature scheme supporting bounded aggregation. We describe this construction in Section 7.

Generalized BARGs. As previously noted for the case of BARGs for index languages, when the statements are fixed
in advance, we can precompute commitments to them during setup and include the honestly-generated commitments
to their values as part of a verification key. In this case, the verifier can use the precomputed encodings during
verification and no longer needs to perform the statement validity checks. In Appendix A, we describe a more
generalized view where some of the statement wires are fixed while others can be chosen by the prover. This
generalization captures both the standard setting (where all of the statement wires can be chosen by the prover) and
the BARG for index languages setting (where all of the statement wires are fixed ahead of time) as special cases.

1.3 Related Work

SNARGs. Batch arguments forNP can be constructed from any succinct non-interactive argument (SNARG) forNP.
Existing constructions of SNARGs have either relied on random oracles [Mic95, BBHR18, COS20, CHM+20, Set20], the
generic group model [Gro16], or strong non-falsifiable assumptions [Gro10, BCCT12, DFH12, Lip13, PHGR13, GGPR13,
BCI+13, BCPR14, BISW17, BCC+17]. Indeed, Gentry andWichs [GW11] showed that no construction of an (adaptively-
sound) SNARG for NP can be proven secure via a black-box reduction to a falsifiable assumption [Nao03]. This
separation also extends to adaptively-sound BARGs of knowledge (i.e., “BARKs”) forNP [BHK17]. The only construction
of non-adaptively sound SNARGs from falsifiable assumptions is the construction based on indistinguishability
obfuscation [SW14]. We note that Lipmaa and Pavlyk [LP21] recently proposed a candidate SNARG from a non-
standard, but falsifiable, @-type assumption on bilinear groups. However, we were recently informed [Wic22] that the
proof of security was fundamentally flawed and later confirmed this with the authors of [LP21].

7While our BARG scheme can be based on the :-Lin assumption over bilinear groups for any : ≥ 1, existing constructions of somewhere
statistically binding hash functions [OPWW15] rely on the DDH assumption. As such, our current instantiation is based on SXDH. It seems
plausible that the DDH-based construction of somewhere statistically binding hash functions can be extended to achieve hardness under the
:-Lin assumption, but this is orthogonal to the primary focus of our work.
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Batch arguments for NP. If we focus specifically on constructions of BARGs for NP, Kalai et al. [KPY19] showed
how to construct a BARG for NP from a non-standard, but falsifiable, @-type assumption on bilinear groups. More
recently, Choudhuri et al. gave constructions from subexponentially-hard DDH in pairing-free groups in conjunction
with polynomial hardness of the QR assumption [CJJ21a], as well as from polynomial hardness of the LWE assump-
tion [CJJ21b]. Both of these constructions leverage correlation-intractable hash functions. The size of the proof in the
DDH +QR construction grows with

√
<, where< is the number of instances, while that in the LWE construction

scales polylogarithmically with the number of instances. Our work provides the first BARG for NP from standard
assumptions on bilinear groups (with proof size that is independent of the number of instances).

Interactive schemes. Batch arguments for NP have also been considered in the interactive setting. First, the
classic IP = PSPACE theorem [LFKN90, Sha90] implies a interactive proof for batch NP verification, albeit with an
inefficient prover. For interactive proofs with an efficient prover, batch verification is known for the class UP of NP
languages with unique witnesses [RRR16, RRR18, RR20]. If we relax to interactive arguments, Brakerski et al. [BHK17]
constructed 2-message BARGs for NP from any computational private information retrieval (PIR) scheme.

Delegation schemes. Many works have focused on constructing delegation schemes for deterministic compu-
tations. In the interactive setting, we have succinct proofs for both bounded-depth computations [GKR08] and
bounded-space computations [RRR16]. In the non-interactive setting, Kalai et al. [KPY19] gave the first construction
from a falsifiable (but non-standard) assumption on bilinear groups. Using correlation-intractable hash functions based
on LWE, Jawale et al. [JKKZ21] and Choudhuri et al. [CJJ21b] constructed delegation schemes for bounded-depth
computations and general polynomial-time computations, respectively. Recently, González and Zacharakis [GZ21]
constructed a delegation scheme for arithmetic circuits with a long CRS from a bilateral (or “split”) :-Lin assumption
in asymmetric groups. The size of the CRS in their construction is quadratic in the circuit size. Our scheme is based
on the vanilla SXDH assumption in asymmetric groups and has a CRS whose size is sublinear in the running time of
the RAM computation (specifically, ) Y for any constant Y > 0, where ) is the running time of the RAM computation).

Aggregate signatures. Aggregate signatures were introduced by Boneh et al. [BGLS03] who also gave an efficient
construction using bilinear maps in the random oracle model. In the standard model, constructions of aggregate
signatures have typically considered restricted settings such as sequential aggregation [LMRS04, LOS+06] where
the aggregate signature is constructed by having each signer sequentially “add” its signature to an aggregated
signature, or synchronized aggregation [GR06, AGH10, HW18], which assumes that signers have a synchronized
clock and aggregation is only allowed on signatures from the same time period (with exactly 1 signature from
each signer per time period). Other (standard model) constructions have relied on heavy tools such as multilinear
maps [RS09, FHPS13] or indistinguishability obfuscation [HKW15]. Aggregate signatures can also be constructed
generically from adaptively-sound succinct arguments of knowledge (SNARKs), which are only known from non-
falsifiable assumptions or idealized models. In the case of bounded aggregation (where there is an a priori bound on
the number of signatures that can be aggregated), the somewhere extractable BARG by Choudhuri et al. [CJJ21b]
can be used to obtain a construction from LWE. Our work provides the first instantiation of an aggregate signature
supporting bounded aggregation from standard assumptions over bilinear groups in the plain model.

2 Preliminaries

For a positive integer =, we write [=] to denote the set {1, . . . , =}. For a positive integer ? ∈ N, we write Z? to
denote the ring of integers modulo ? . We use bold-face uppercase letters (e.g., A, B to denote matrices) and bold-face

lowercase letters (e.g., x, w) to denote vectors. For a finite set ( , we write G
r← ( to indicate that G is sampled

uniformly at random from ( . We use non-bold-face letters to denote their components (e.g., x = (G1, . . . , G=)). We
write poly(_) to denote a function that is $ (_2 ) for some 2 ∈ N and negl(_) to denote a function that is > (_−2 ) for all
2 ∈ N. We say an event � occurs with overwhelming probability if its complement occurs with negligible probability.
An algorithm is efficient if it runs in probabilistic polynomial time in its input length. We say that two families of
distributions D1 = {D1,_}_∈N and D2 = {D2,_}_∈N are computationally indistinguishable if no efficient algorithm
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can distinguish them with non-negligible probability. We say they are statistically indistinguishable if the statistical
distance between them is bounded by a negligible function.

2.1 Non-Interactive Batch Arguments for NP

In this work, we consider the NP-complete language of Boolean circuit satisfiability. For ease of exposition, we focus
on Boolean circuits comprised exclusively of NAND gates in our main construction. In Remark 4.16, we describe how
to generalize the construction to support gates that compute arbitrary quadratic relations over their inputs. This
allows us to support both general gates (e.g., AND, OR, XOR) as well as gates with more than two inputs.

For a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} with C wires, we associate wires 1, . . . , = with the bits of the
statement G1, . . . , G= , and wires = + 1, . . . , = +ℎ with the bits of the witnessF1, . . . ,Fℎ , respectively. We associate wire
C with the output wire. We measure the size B of� by the number of NAND gates it has. By construction, C ≤ = +ℎ + B .
We now define the (batch) circuit satisfiability language we consider in this work:

Definition 2.1 (Circuit Satisfiability). We define LCSAT = {(�, x) | ∃w ∈ {0, 1}ℎ : � (x,w) = 1} to be the language of
Boolean circuit satisfiability, where � : {0, 1}= × {0, 1}ℎ → {0, 1} is a Boolean circuit and x ∈ {0, 1}= is a statement.
For a positive integer< ∈ N, we define the batch circuit satisfiability language LBatchCSAT,< as follows:

LBatchCSAT,< = {(�, x1, . . . , x<) | ∀8 ∈ [<] : ∃w8 ∈ {0, 1}ℎ : � (x8 ,w8 ) = 1},

where � : {0, 1}= × {0, 1}ℎ → {0, 1} is a Boolean circuit and x1, . . . , x< ∈ {0, 1}= are the instances.

Definition 2.2 (Batch Argument for Circuit Satisfiability). A non-interactive batch argument (BARG) for circuit
satisfiability is a tuple of three efficient algorithms ΠBARG = (Setup, Prove,Verify) with the following properties:

• Setup(1_, 1<, 1B ) → crs: On input the security parameter _ ∈ N, the number of instances< ∈ N, and a bound
on the circuit size B ∈ N, the setup algorithm outputs a common reference string crs.

• Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)) → c : On input the common reference string crs, a Boolean circuit
� : {0, 1}= × {0, 1}ℎ → {0, 1}, statements x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈ {0, 1}ℎ , the prove
algorithm outputs a proof c .

• Verify(crs,�, (x1, . . . , x<), c) → 1: On input the common reference string crs, the Boolean circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x< ∈ {0, 1}= and a proof c , the verification algorithm outputs a bit1 ∈ {0, 1}.

Definition 2.3 (Completeness). A BARG ΠBARG = (Setup, Prove,Verify) is complete if for all _,<, B ∈ N, all Boolean
circuits� : {0, 1}=×{0, 1}ℎ → {0, 1} of size atmost B , all statements x1, . . . , x< ∈ {0, 1}= , and all witnessesw1, . . . ,w< ∈
{0, 1}ℎ where � (x8 ,w8 ) = 1 for all 8 ∈ [<],

Pr

[
Verify(crs,�, (x1, . . . , x<), c) = 1 :

crs← Setup(1_, 1<, 1B );
c ← Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<))

]
= 1.

Definition 2.4 (Soundness). Let ΠBARG = (Setup, Prove,Verify) be a BARG. We consider two notions of soundness:

• Non-adaptive soundness: We say that ΠBARG satisfies non-adaptive soundness if for all polynomials< =

<(_), B = B (_), and efficient adversary A, there exists a negligible function negl(·) such that for all _ ∈ N, and
every statement (�, x1, . . . , x<) ∉ LBatchCSAT,< , where � : {0, 1}= × {0, 1}ℎ → {0, 1} is a Boolean circuit of size
at most B (_) and x1, . . . , x= ∈ {0, 1}= ,

Pr

[
Verify(crs,�, (x1, . . . , x<), c) = 1 :

crs← Setup(1_, 1<, 1B );
c ← A(1_, crs,�, (x1, . . . , x<))

]
= negl(_).

• Adaptive soundness: We say that ΠBARG is adaptively sound if for every efficient adversary A and every
polynomial< =<(_), B = B (_), there exists a negligible function of negl(·) such that for all _ ∈ N,

Pr


Verify(crs,�, (x1, . . . , x<), c) = 1

and
(�, x1, . . . , x<) ∉ LBatchCSAT,<

:
crs← Setup(1_, 1<, 1B );

(�, x1, . . . , x<, c) ← A(1_, crs)


= negl(_) .
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Definition 2.5 (Semi-Adaptive Somewhere Soundness [CJJ21b]). A BARG ΠBARG = (Setup, Prove,Verify) satisfies
semi-adaptive somewhere soundness if there exists an efficient algorithm TrapSetup with the following properties:

• TrapSetup(1_, 1<, 1B , 8∗) → crs∗: On input the security parameter _ ∈ N, the number of instances< ∈ N, the
size of the circuit B ∈ N, and an index 8∗ ∈ [<], the trapdoor setup algorithm outputs a (trapdoor) common
reference string crs∗.

We require TrapSetup satisfy the following two properties:

• CRS indistinguishability: For integers< ∈ N, B ∈ N, a bit 1 ∈ {0, 1}, and an adversary A, define the CRS
indistinguishability experiment ExptCRSA (_,<, B, 1) as follows:

1. Algorithm A(1_, 1<, 1B ) outputs an index 8∗ ∈ [<].
2. If 1 = 0, the challenger gives crs ← Setup(1_, 1<, 1B ) to A. If 1 = 1, the challenger gives crs∗ ←

TrapSetup(1_, 1<, 1B , 8∗) to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satisfies CRS indistinguishability if for every efficient adversary A, every polynomial< =<(_),
B = B (_), there exists a negligible function negl(·) such that for all _ ∈ N,��Pr[ExptCRSA (_,<, B, 0) = 1] − Pr[ExptCRSA (_,<, B, 1) = 1]

�� = negl(_).

• Somewhere soundness in trapdoor mode: Define the somewhere soundness security game between an
adversary A and a challenger as follows:

– Algorithm A(1_, 1<, 1B ) outputs an index 8∗ ∈ [<].
– The challenger samples crs∗ ← TrapSetup(1_, 1<, 1B , 8∗) and gives crs∗ to A.

– Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , statements
x1, . . . , x< ∈ {0, 1}= , and a proof c . The output of the game is 1 = 1 if Verify(crs∗,�, (x1, . . . , x<), c) = 1
and (�, x8∗ ) ∉ LCSAT. Otherwise, the output is 1 = 0.

Then, ΠBARG satisfies somewhere soundness in trapdoor mode if for every adversary A, and every polynomial
< =<(_), B = B (_), there exists a negligible function negl(·) such that for all _ ∈ N, Pr[1 = 1] = negl(_) in the
somewhere soundness security game.

Definition 2.6 (Somewhere Argument of Knowledge [CJJ21b]). A BARG ΠBARG = (Setup, Prove,Verify) is a some-
where argument of knowledge if there exists a pair of efficient algorithms (TrapSetup, Extract) with the following
properties:

• TrapSetup(1_, 1<, 1B , 8∗) → (crs∗, td): On input the security parameter _ ∈ N, the number of instances< ∈ N,
the size of the circuit B ∈ N, and an index 8∗ ∈ [<], the trapdoor setup algorithm outputs a common reference
string crs∗ and an extraction trapdoor td.

• Extract(td,�, (x1, . . . , x<), c) → w
∗ On input the trapdoor td, statements x1, . . . , x< , and a proof c , the

extraction algorithm outputs a witness w∗ ∈ {0, 1}ℎ . The extraction algorithm is deterministic.

We require (TrapSetup, Extract) to satisfy the following two properties:

• CRS indistinguishability: Same as in Definition 2.5.

• Somewhere extractable in trapdoor mode: Define the somewhere extractable security game between an
adversary A and a challenger as follows:

– Algorithm A(1_, 1<, 1B ) outputs an index 8∗ ∈ [<].
– The challenger samples (crs∗, td) ← TrapSetup(1_, 1<, 1B , 8∗) and gives crs∗ to A.

11



– Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , statements
x1, . . . , x< ∈ {0, 1}= , and a proof c . Let w∗ ← Extract(td,�, (x1, . . . ,w<), c).

– The output of the game is 1 = 1 if Verify(crs∗,�, (x1, . . . , x<), c) = 1 and � (x8∗ ,w∗) ≠ 1. Otherwise, the
output is 1 = 0.

Then ΠBARG is somewhere extractable in trapdoor mode if for every adversary A and every polynomial
< =<(_), B = B (_), there exists a negligible function negl(·) such that Pr[1 = 1] = negl(_) in the somewhere
extractable game.

Remark 2.7 (Soundness Notions). The notion of semi-adaptive somewhere soundness from Definition 2.5 is stronger
than and implies non-adaptive soundness. Somewhere extractability (Definition 2.6) is a further strengthening of
semi-adaptive somewhere soundness.

Definition 2.8 (Succinctness). A BARG ΠBARG = (Setup, Prove,Verify) is succinct if there exists a fixed polynomial
poly(·, ·, ·) such that for all _,<, B ∈ N, all crs in the support of Setup(1_, 1<, 1B ), and all Boolean circuits � : {0, 1}= ×
{0, 1}ℎ → {0, 1} of size at most B , the following properties hold:

• Succinct proofs: The proof c output by Prove(crs,�, ·, ·) satisfies |c | ≤ poly(_, log<, B).

• Succinct CRS: |crs| ≤ poly(_,<,=) + poly(_, log<, B).

• Succinct verification: The verification algorithm runs in time poly(_,<,=) + poly(_, log<, B).

BARGs with split verification. Our bootstrapping construction in Section 5 (for reducing the size of the CRS)
will rely on a BARG with a split verification property where the verification algorithm can be decomposed into a
input-dependent algorithm that pre-processes the statements into a short verification key together with a fast online
verification algorithm that takes the precomputed verification key and checks the proof. A similar property was also
considered by Choudhuri et al. [CJJ21b] to realize their RAM delegation construction.

Definition 2.9 (BARG with Split Verification). A BARG ΠBARG = (Setup, Prove,Verify) supports split verification if
there exists a pair of efficient and deterministic algorithms (GenVK,OnlineVerify) with the following properties:

• GenVK(crs, (x1, . . . , x<)) → vk: On input the common reference string crs and statements x1, . . . , x< ∈ {0, 1}= ,
the verification key generation algorithm outputs a verification key vk.

• OnlineVerify(vk,�, c) → 1: On input a verification key vk, a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} and
a proof c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

Then, we say ΠBARG supports split verification if Verify(crs,�, (x1, . . . , x<), c) outputs

OnlineVerify(GenVK(crs, (x1, . . . , x<)),�, c).

We additionally require that there exists a fixed polynomial poly(·, ·, ·) such that for all _,<, B ∈ N, all crs in the
support of Setup(1_, 1<, 1B ), and all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , the following
efficiency properties hold (in addition to the properties in Definition 2.8):

• Succinct verification key: The verification key generation algorithm GenVK runs in time poly(_,<,=), and
the size of the vk output by GenVK satisfies |vk| ≤ poly(_, log<,=).

• Succinct online verification: The algorithm OnlineVerify(vk,�, c) runs in time poly(_, log<, B).

Remark 2.10 (BARGs for Index Languages [CJJ21b]). BARGs for index languages [CJJ21b] (“index BARGs”) are a
useful building block for constructing delegation schemes for RAM programs. In an index BARG with< instances,
the statement to the 8th instance is the binary representation of the index 8 . Since the statements are fixed in an
index BARG, they are not included in the input to the Prove and Verify algorithms. Moreover, the running time
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of the verification algorithm Verify on input a verification key vk,8 a circuit � , and a proof c is required to be
poly(_, log<, |� |). It is easy to see that any BARG with a split verification procedure can also be used to build an
index BARG. Specifically, after the Setup algorithm samples the common reference string crs, it precomputes the
(short) verification key vk ← GenVK(crs, (1, 2, . . . ,<)). The verification algorithm Verify then takes as input the
precomputed verification key vk, the circuit � , and the proof c , and outputs OnlineVerify(vk,�, c). The succinctness
requirements on the split verification procedure implies the succinctness requirement on the index BARG.

3 BARG for NP from Subgroup Decision in Bilinear Groups

In this section, we show how to construct a BARGs from the subgroup decision assumption over symmetric composite-
order groups. We refer to Section 1.2.1 for a general overview of this construction. We start by recalling the definition
of a composite-order pairing group [BGN05] and the subgroup decision assumption.

Definition 3.1 (Composite-Order Bilinear Groups [BGN05]). A (symmetric) composite-order bilinear group generator
is an efficient algorithm CompGroupGen that takes as input the security parameter _ and outputs a description
G = (G,G) , ?, @, 6, 4) of a bilinear group where ?, @ are distinct primes, G and G) are cyclic groups of order # = ?@,
and 4 : G ×G→ G) is a non-degenerate bilinear map (called the “pairing”). We require that the group operation in G
and G) as well as the pairing operation to be efficiently computable.

Definition 3.2 (Subgroup Decision [BGN05]). The subgroup decision assumption holds with respect to a composite-
order bilinear group generator CompGroupGen if for every efficient adversary A, there exists a negligible function
negl(·) such that for every _ ∈ N,�� Pr[A((G,G) , # , 6? , 4), 6A ) = 1] − Pr[A((G,G) , # , 6? , 4), 6A? ) = 1]

�� = negl(_),

where (G,G) , ?, @, 6, 4) ← CompGroupGen(1_), # ← ?@, 6? ← 6@ , and A
r← Z# .

Construction 3.3 (BARG for NP from Subgroup Decision). Take any integer< ∈ N. We construct a BARG with
split verification for the language of circuit satisfiability as follows:

• Setup(1_, 1<, 1B ): On input the security parameter _, the number of instances<, and the bound on the circuit
size B , the setup algorithm does the following:

– Run (G,G) , ?, @, 6, 4) ← GroupGen(1_) and let # = ?@, 6? ← 6@ . In particular, 6? generates a subgroup
of order ? in G. Let G = (G,G) , # , 6? , 4).

– For each 8 ∈ [<], sample U8
r← Z# . For each 8 ∈ [<], let �8 ← 6U8? . Let �←∏

8∈[<] �8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , compute �8, 9 ← 6
U8U 9

? .

– Output the common reference string crs =
(
G, �, {�8 }8∈[<], {�8, 9 }8≠9

)
.

• Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)): On input the common reference string crs = (G, �, {�8 }8∈[<], {�8, 9 }8≠9 ),
the circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, instances x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈ {0, 1}ℎ ,
define C to be the number of wires in � and B to be the number of gates in � . Then, for 8 ∈ [<] and 9 ∈ [C], let
F8, 9 ∈ {0, 1} be the value of wire 9 in � (x8 ,w8 ). The prover proceeds as follows:

– Encoding wire values: For each : ∈ [C], let*: =
∏

8∈[<] �
F8,:

8 .

– Validity of wire assignments: For each : ∈ [C], let +: =
∏

8≠9 �
(1−F8,: )F9,:

8, 9 .

– Validity of gate computation: For each NAND gate �ℓ = (:1, :2, :3) ∈ [C]3 (where ℓ ∈ [B]), compute

,ℓ =
∏

8≠9 �
1−F8,:1F9,:2−F9,:3

8, 9

8Here, we allow the verification algorithm to take in a separate verification key vk, which may be shorter than the full common reference string crs.
Note that the vk is assumed to be public (i.e., the CRS contains vk and possibly additional components used to construct proofs).
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Finally, output the proof c =
(
{*: ,+: }:∈[C ], {,ℓ }ℓ∈[B ]

)
.

• Verify(crs,�, (x1, . . . , x<), c): We decompose the verification algorithm into (GenVK,OnlineVerify):

– GenVK(crs, (x1, . . . , x<)): On input the common reference string crs = (G, �, {�8 }8∈[<], {�8, 9 }8≠9 ), in-
stances x1, . . . , x< ∈ {0, 1}= , the verification key generation algorithm computes * ∗

:
=

∏
8∈[<] �

G8,:
8 for

each : ∈ [=], and outputs the verification key vk = (* ∗1 , . . . ,* ∗= ).
– OnlineVerify(vk,�, c): On input the verification key vk = (* ∗1 , . . . ,* ∗= ), a circuit � : {0, 1}= × {0, 1}ℎ →
{0, 1} and the proof c = ({*: ,+: }:∈[C ], {,ℓ }ℓ∈[B ]), the verification algorithm checks the following:

∗ Validity of statement: For each input wire : ∈ [=],*: = * ∗
:
.

∗ Validity of wire assignments: For each : ∈ [C],

4 (�,*: ) = 4 (6? ,+: )4 (*: ,*: ). (3.1)

∗ Validity of gate computation: For each gate �ℓ = (:1, :2, :3) ∈ [C]3,

4 (�,�) = 4 (*:1 ,*:2 )4 (�,*:3 )4 (6? ,,ℓ ). (3.2)

∗ Output satisfiability: The output encoding*C satisfies*C = �.

The algorithm outputs 1 if all checks pass, and outputs 0 otherwise.

The verification algorithm outputs OnlineVerify(GenVK(crs, (x1, . . . , x<)),�, c).

Theorem 3.4 (Completeness). Construction 3.3 is complete.

Proof. Take any circuit� : {0, 1}=×{0, 1}ℎ → {0, 1}, instances x1, . . . , x< ∈ {0, 1}= and witnessesw1, . . . ,w< ∈ {0, 1}ℎ
such that � (x8 ,w8 ) = 1 for all 8 ∈ [<]. Let crs← Setup(1_, 1<, 1B ) and c ← Prove(crs, (x1, . . . , x<), (w1, . . . ,w<)).
We show that Verify(crs,�, (x1, . . . , x<), c) outputs 1. Consider each of the verification relations:

• Validity of statement: By construction of GenVK, * ∗
:
=

∏
8∈[<] �

G8,:
8 for each : ∈ [=]. By construction of

Prove, *: =
∏

8∈[<] �
F8,:

8 . By definition, the first = wires in � coincide with the wires to the statement, so
F8,: = G8,: for : ∈ [=], and*: = * ∗

:
for all : ∈ [=].

• Validity of wire assignments: Take any : ∈ [C]. Then*: =
∏

8∈[<] �
F8,:

8 = 6
∑

8∈[<] U8F8,:

? . Now,

©­«
∑
8∈[<]

U8
ª®¬
©­«

∑
9 ∈[<]

U 9F 9,:
ª®¬
=

∑
8∈[<]

U2
8F8,: +

∑
8≠9

U8U 9F 9,: ,

and

©­«
∑
8∈[<]

U8F8,:
ª®¬
©­«

∑
9 ∈[<]

U 9F 9,:
ª®¬
=

∑
8∈[<]

U2
8F8,: +

∑
8≠9

U8U 9F8,:F 9,: ,

using the fact that F8,: ∈ {0, 1} so F2
8,:

= F8,: . Finally +: =
∏

8≠9 �
(1−F8,: )F9,:

8, 9 = 6
∑

8≠9 U8U 9 (1−F8,: )F9,:

? . Thus, we
can write

4 (6? ,+: )4 (*: ,*: ) = 4 (6? , 6? )
∑

8≠9 U8U 9 (1−F8,: )F9,:+
∑

8∈[<] U
2
8 F8,:+

∑
8≠9 U8U 9F8,:F9,:

= 4 (6? , 6? )
∑

8∈[<] U
2
8 F8,:+

∑
8≠9 U8U 9F9,:

= 4 (�,*: ).
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• Validity of gate computation: Take any gate �ℓ = (:1, :2, :3) ∈ [C]3. Consider first the exponents for the
terms 4 (*:1 ,*:2 ), 4 (�,*:3 ), and 4 (�,�):

©­«
∑
8∈[<]

U8F8,:1
ª®¬
©­«

∑
9 ∈[<]

U 9F 9,:2
ª®¬
=

∑
8∈[<]

U2
8F8,:1F8,:2 +

∑
8≠9

U8U 9F8,:1F 9,:2

©­«
∑
8∈[<]

U8
ª®¬
©­«

∑
9 ∈[<]

U 9F 9,:3
ª®¬
=

∑
8∈[<]

U2
8F8,:3 +

∑
8≠9

U8U 9F 9,:3

©­«
∑
8∈[<]

U8
ª®¬
©­«

∑
9 ∈[<]

U 9
ª®¬
=

∑
8∈[<]

U2
8 +

∑
8≠9

U8U 9 .

By definitionF8,:3 = NAND(F8,:1 ,F8,:2 ). This means that for each 8 ∈ [<], either (F8,:1F8,:2 = 1 andF8,:3 = 0)
or (F8,:1F8,:2 = 0 andF8,:3 = 1). This means that∑

8∈[<]
U2
8 (F8,:1F8,:2 +F8,:3 ) =

∑
8∈[<]

U2
8 .

Combining the above relations in the exponent, we have that

4 (�,�)
4 (*:1 ,*:2 )4 (�,*:3 )

=
4 (6? , 6? )

∑
8∈[<] U

2
8 +

∑
8≠9 U8U 9

4 (6? , 6? )
∑

8∈[<] U
2
8 +

∑
8≠9 U8U 9 (F8,:1

F9,:2
+F9,:3

)

=

∏
8≠9

4 (6? , �8, 9 )1−F8,:1
F9,:2

−F9,:3

= 4 (6? ,,ℓ ).

• Output satisfiability: Since � (x8 ,w8 ) = 1, it follows that F8,C = 1 for all 8 ∈ [<]. By definition, *C =∏
8∈[<] �

F8,C

8 =
∏

8∈[<] �8 = �. �

Theorem 3.5 (Somewhere Argument of Knowledge). Suppose the subgroup decision assumption holds with respect to

CompGroupGen. Then, Construction 3.3 is a somewhere argument of knowledge.

Proof. We start by defining the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1<, 1B , 8∗) : The trapdoor algorithm uses the following procedure (we highlight in green the
differences in the common reference string components between TrapSetup and Setup):

1. Run (G,G) , ?, @, 6, 4) ← GroupGen(1_) and let # = ?@, 6? ← 6@ . Let G = (G,G) , # , 6? , 4).

2. For each 8 ∈ [<], sample U8
r← Z# . For each 8 ≠ 8∗, let �8 ← 6U8? . Let �8∗ ← 6U8∗ . Let �← �8∗

∏
8≠8∗ �8 .

3. For each 8, 9 ∈ [<] where 8 ≠ 9 and 8, 9 ≠ 8∗, compute �8, 9 ← 6
U8U 9

? . Compute �8∗, 9 ← �
U 9

8∗ and �8,8∗ ← �U8
8∗

for all 8, 9 ≠ 8∗.

4. Output the common reference string crs∗ =
(
G, �, {�8 }8∈[<], {�8, 9 }8≠9

)
and the trapdoor td = 6@ ← 6? .

• Extract(td,�, (x1, . . . , x<), c): On input the trapdoor td = 6@ , the Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1},
statements x1, . . . , x< ∈ {0, 1}= , and the proof c =

(
{*: ,+: }:∈[C ], {,ℓ }ℓ∈[B ]

)
, the extraction algorithm sets

F∗
:
= 0 if 4 (6@,*: ) = 1 andF∗

:
= 1 otherwise for each : = = + 1, . . . , = + ℎ. It outputs w∗ = (F∗=+1, . . . ,F∗=+ℎ).

We now show the CRS indistinguishability and somewhere extractable in trapdoor mode properties.

Lemma 3.6 (CRS Indistinguishability). If the subgroup decision assumption holds with respect to CompGroupGen,

then Construction 3.3 satisfies CRS indistinguishability.
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Proof. Take any polynomial< =<(_), B = B (_). We proceed via a hybrid argument:

• Hyb0: This is the real distribution. At the beginning of the security game, the adversary chooses an index
8∗ ∈ [<]. The challenger then constructs the common reference string by running Setup(1_, 1<, 1B ):

– Run (G,G) , ?, @, 6, 4) ← GroupGen(1_) and let # = ?@, 6? ← 6@ . Let G = (G,G) , # , 6? , 4).

– For each 8 ∈ [<], sample U8
r← Z# . For each 8 ∈ [<], let �8 ← 6U8? . Let �←∏

8∈[<] �8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , compute �8, 9 ← 6
U8U 9

? .

– Output the common reference string crs =
(
G, �, {�8 }8∈[<], {�8, 9 }8≠9

)
.

The challenger gives crs to A and A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

• Hyb1: Same as Hyb0 except the challenger constructs � and �8, 9 using the procedure from TrapSetup:

– For each 8 ∈ [<], sample U8
r← Z# . For each 8 ∈ [<], let �8 ← 6U8? . Let �← �8∗

∏
8≠8∗ �8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 and 8, 9 ≠ 8∗, compute �8, 9 ← 6
U8U 9

? . Compute �8∗, 9 ← �
U 9

8∗ and �8,8∗ ← �U8
8∗

for all 8, 9 ≠ 8∗.

• Hyb2: Same as Hyb1 except the challenger samples �8∗ ← 6U8∗ :

– For each 8 ∈ [<], sample U8
r← Z# . For each 8 ≠ 8∗, let �8 ← 6U8? . Let �8∗ ← 6U8∗ . Let �← �8∗

∏
8≠8∗ �8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 and 8, 9 ≠ 8∗, compute �8, 9 ← 6
U8U 9

? . Compute �8∗, 9 ← �
U 9

8∗ and �8,8∗ ← �U8
8∗

for all 8, 9 ≠ 8∗.

In this experiment, crs is distributed according to TrapSetup(1_, 1<, 1B , 8∗).

For an index 8 , we write Hyb8 (A) to denote the output of experiment Hyb8 with algorithm A. We show that the
output distributions each adjacent pair of experiments are computationally indistinguishable (or identical).

Claim 3.7. For all adversaries A, Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1].

Proof. The difference between Hyb0 and Hyb1 is purely syntactic. In Hyb1, �8 = �8∗
∏

8≠8 �8 =
∏

8∈[<] �8 , which
matches the distribution in Hyb0. Similarly, in Hyb1,

�8∗, 9 = �
U 9

8∗ = 6U8∗U 9 and �8,8∗ = �U8
8∗ = 6U8∗U8 ,

which is precisely the distribution of �8∗, 9 and �8,8∗ in Hyb0 for all 8, 9 ≠ 8∗. Finally �8, 9 for 8 ≠ 9 and 8, 9 ≠ 8∗ are
identically distributed in the two experiments. �

Claim 3.8. Suppose the subgroup decision assumption holds with respect to GroupGen. Then, for all efficient adversaries

A, there exists a negligible function negl(·) such that for all _ ∈ N,
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� = negl(_).

Proof. Suppose there exists an efficient adversary A such that
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� = Y for some
non-negligible Y. We use A to construct an adversary B for the subgroup decision problem:

1. At the beginning of the game, algorithmB receives the group descriptionG = (G,G) , # , 6? , 4) and the challenge
/ ∈ G from the subgroup decision challenger.

2. For 8 ≠ 8∗, algorithm B samples U8
r← Z# and sets �8 ← 6U8? . It sets �8∗ ← / to be the challenge value. Next, it

computes �← /
∏

8≠8∗ �8 . For 8 ≠ 9 and 8, 9 ≠ 8∗, algorithm B computes �8, 9 ← 6
U8U 9

? . For 8, 9 ≠ 8∗, it computes
�8∗, 9 ← /U 9 and �8,8∗ ← /U8 .

3. Algorithm B gives crs =
(
G, �, {�8 }8∈[<], {�8, 9 }8≠9

)
to A and outputs whatever A outputs.

Consider now the two possibilities:
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• Suppose / = 6A? in the subgroup decision game. Then, �8∗ = 6A? and algorithm B perfectly simulates the
distribution in Hyb1. In this case, algorithm B outputs 1 with probability Pr[Hyb1 (A) = 1].

• Suppose / = 6A in the subgroup decision game. Then, �8∗ = 6A and algorithm B perfectly simulates the
distribution in Hyb2. In this case, algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

The advantage of B in the subgroup decision game is thus
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� = Y. �

Combining Claims 3.7 and 3.8, CRS indistinguishability holds. �

Lemma 3.9 (Somewhere Extractable in Trapdoor Mode). Construction 3.3 is somewhere extractable in trapdoor mode.

Proof. Fix polynomials< =<(_) and B = B (_). Let 8∗ ← A(1_, 1<, 1B ) and (crs∗, td) ← TrapSetup(1_, 1<, 1B , 8∗). By
construction,

crs∗ = (G, �, {�8 }8∈[<], {�8, 9 }8≠9 ) and td = 6@,

where G = (G,G) , # , 6? , 4). Let # = ?@ and 6 be the generator of G (i.e., 6? := 6@ and 6@ := 6? ). Let G? = 〈6?〉 be the
order-? subgroup of G generated by 6? . Correspondingly, let G@ = 〈6@〉 be the order-@ subgroup of G generated by
6@ . By the Chinese Remainder Theorem, G � G? × G@ .

Let � : {0, 1}= × {0, 1}ℎ → {0, 1} be the Boolean circuit, x1, . . . , x< ∈ {0, 1}= be the statements, and c =(
{*: ,+: }:∈[C ], {,ℓ }ℓ∈[B ]

)
be the proof the adversary outputs. Suppose Verify(crs∗, (x1, . . . , x<), c) = 1. By con-

struction of TrapSetup, we can write �8∗ = 6U8∗ = 6
U8∗,?
? 6

U8∗,@
@ for some U8∗,? ∈ Z? and U8∗,@ ∈ Z@ . Suppose that U8∗,@ ≠ 0.

This holds with overwhelming probability since U8∗
r← Z# . Now the following properties hold:

• For all : ∈ [C], either *: ∈ G? or *:/6
U8∗,@
@ ∈ G? . This follows from the wire validity checks. Specifically,

suppose*: = 6
V?
? 6

V@
@ . We can also write � = 6

∑
8∈[<] U8

? 6
U8∗,@
@ . Since verification succeeds, it must be the case that

4 (�,*: ) = 4 (6? ,+: )4 (*: ,*: ).

Consider the projection in the order-@ subgroup of G) . This relation requires that U8∗,@ · V@ = V2@ . This means

that either V@ = 0 (in which case*: ∈ G? ) or V@ = U8∗,@ (in which case*:/6
U8∗,@
@ ∈ G? ).

• For each : ∈ [C], if *: ∈ G? , then set b: = 0. If *:/6
U8∗,@
@ ∈ G? , then set b: = 1. Then, for all gates

�ℓ = (:1, :2, :3) ∈ [C]3 in the circuit, b:3 = NAND(b:1 , b:2 ). This follows from the gate validity checks. In

particular, if verification succeeds, then Eq. (3.2) holds. From the above analysis, we can write *: = 6
V:,?
? 6

b:U8∗,@
@

for all : ∈ [C] and some V:,? ∈ Z? . Consider the projection of Eq. (3.2) into the order-@ subgroup of G) . This
yields the relation

U2
8∗,@ = (b:1U8∗,@) (b:2U8∗,@) + U8∗,@ (b:3U8∗,@) = U2

8∗,@ (b:1b:2 + b:3 ).
Since U8∗,@ ≠ 0, this means that 1 = b:1b:2 + b:3 , or equivalently, b:3 = 1 − b:1b:2 = NAND(b:1 , b:2 ).

• Let x8∗ = (G8∗,1, . . . , G8∗,=). For : ∈ [=], b: = G8∗,: .

This follows from the statement validity check. Namely, for: ∈ [=], the verifier checks that*: = �
G8∗,:
8∗

∏
8≠8∗ �

G8,:
8 .

Since �8 ∈ G? for 8 ≠ 8∗, it follows that if G8∗,: = 0, then *: ∈ G? (and b: = 0 = G8∗,: ). Otherwise, if G8∗,: = 1,

then the component of*: in G@ is exactly 6
U8∗,@
@ , in which case b: = 1 = G8∗,: .

• Finally bC = 1. This follows from the output satisfiability check. Namely, the verifier checks that *C = � =

6
∑

8∈[<] U8
? 6

U8∗,@
@ . If the verifier accepts, then this relation holds and bC = 1.

The above properties show that b1, . . . , bC is a valid assignment to the wires of � on input x8∗ and witness / =

(b=+1, . . . , b=+ℎ). Moreover, � (x8∗ , / ) = bC = 1.
To complete the proof, letw∗ ← Extract(td,�, (x1, . . . , x<), c). We claim thatw∗ = / . In particular, for : ∈ [ℎ], if

*=+: ∈ G? , then 4 (6@,*: ) = 1 andF∗
:
= 0 = b=+: . Alternatively, if*=+:/6

U8∗,@
? ∈ G? , then 4 (6@,*: ) = 4 (6@, 6@)U8∗,@ ≠ 1,

soF∗
:
= 1 = b=+: . Thus, with probability 1 − negl(_), either Verify(crs∗,�, (x1, . . . , x<), c) = 0 or � (x,w∗) = 1. �
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By Lemmas 3.6 and 3.9, Construction 3.3 is a somewhere argument of knowledge. �

Theorem 3.10 (Succinctness). Construction 3.3 is succinct and satisfies split verification (Definition 2.9).

Proof. Take any _,<, B ∈ N and consider a Boolean circuit� : {0, 1}=×{0, 1}ℎ → {0, 1} of size at most B . Let C = poly(B)
be the number of wires in � . We check each property:

• Proof size: A proof c consists of 2C + B elements in G, each of which can be represented in poly(_) bits. Thus,
the proof size satisfies |c | = (2C + B) · poly(_) = poly(_, B)

• CRS size: The common reference string crs consists of the group description G, and < + 1 +<(< − 1)/2
elements in G. Thus, |crs| =<2 · poly(_).

• Verification key size: The size of the verification key vk output by GenVK consists of = group elements. Thus,
|vk| = = · poly(_).

• Verification key generation time: The algorithm GenVK performs =< group operations. This takes time
poly(_,<,=).

• Online verification time: The running time of the online verification algorithm OnlineVerify is

= · poly(_)︸       ︷︷       ︸
statement validity

+ C · poly(_)︸      ︷︷      ︸
wire validity

+ B · poly(_)︸      ︷︷      ︸
gate validity

+ poly(_)︸  ︷︷  ︸
output validity

= poly(_, B),

since =, C = poly(B). �

Remark 3.11 (Variable Number of Instances). As currently described, the prover and verifier algorithms in Con-
struction 3.3 takes exactly< instances as input. However, the same scheme can also be used to prove any ) ≤ <

instances (by ignoring components in the CRS). In this case, the proof size is unchanged, and the verification running
time (assuming random read access to the CRS) is poly(_, =,) ) + poly(_, B).

4 BARG for NP from :-Lin in Bilinear Groups

In this section, we show how to translate the ideas underlying Construction 3.3 to work with asymmetric prime-order
groups under the :-Lin assumption. We start by recalling the definition of a prime-order pairing group and the matrix
Diffie-Hellman (MDDH) assumption [EHK+13].

Definition 4.1 (Prime-Order Bilinear Group). A prime-order asymmetric group generator GroupGen is an efficient
algorithm that takes as input the security parameter 1_ and outputs a description G = (G1,G2,G) , ?, 61, 62, 4) of two
base groups G1 and G2 with generators 61, 62, respectively, a target group G) , all of prime order ? = 2Θ(_) , and a
non-degenerate bilinear map 4 : G1 × G2 → G) . We require that the group operation in G1,G2,G) and the pairing
operations to be efficiently computable.

Notation. When working with an asymmetric prime-order pairing group G = (G1,G2,G) , ?, 61, 62, 4), we use the
implicit representation of group elements [EHK+13]. Specifically, for a matrix M over Z? , we write [M]1 := 6M1 ,
[M]2 := 6M2 , and [M]) := 6M

)
, where exponentiation is defined component-wise and 6) = 4 (61, 62). Given matrices A

and B over Z? , we define the pairing operation 4 ( [A]1, [B]2) := [AB]) . We also denote this by writing [A]1 · [B]2 :=
4 ( [A]1, [B]2). For matrices A,B,C,D over Z? , we write A[B]1 + [C]1D := [AB + CD]1 to represent linear operations
within G1 (and analogously in G2 and G) ). We now recall the :-Lin and matrix Diffie-Hellman assumptions. In the
case of :-Lin, recall that the case of : = 1 corresponds to the decisional Diffie-Hellman (DDH) assumption and the
case : = 2 corresponds to the decisional linear (DLIN) assumption [BBS04, HK07, Sha07]. Finally, the symmetric
external Diffie-Hellman (SXDH) assumption corresponds to DDH (i.e., 1-Lin) holding in both G1 and G2.
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Definition 4.2 (:-Lin Assumption [BBS04, HK07, Sha07]). Let : ∈ N. The :-Lin assumption holds in G1 with respect
to GroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N:

|Pr[A(G, [M]1, [Mv]1) = 1] − Pr[A(G, [M]1, [u]1) = 1] | = negl(_),

where G ← GroupGen(1_),

M =

[
diag(s)

1
T

]
∈ Z(:+1)×:? ,

s = (B1, . . . , B: )
r← Z:? , diag(s) ∈ Z:×:? is the diagonal matrix whose entries are B1, . . . , B: , v

r← Z:? , and u
r← Z:+1? . We

define the :-Lin assumption in G2 with respect to GroupGen in an analogous manner.

Definition 4.3 (Matrix Diffie-Hellman Assumption [EHK+13]). Let : ∈ N. The MDDH: assumption holds in G1

with respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that for all
_ ∈ N:

|Pr[A(G, [M]1, [Mv]1) = 1] − Pr[A(G, [M]1, [u]1) = 1] | = negl(_),

where G ← GroupGen(1_), M r← Z(:+1)×:? , v
r← Z:? and u

r← Z:+1? . We define the MDDH: assumption in G2 with
respect to GroupGen in an analogous manner.

Theorem 4.4 (Matrix Diffie-Hellman [EHK+13]). Let : ∈ N. Suppose the :-Lin assumption holds in G1 (resp., G2) with

respect to GroupGen. ThenMDDH: holds in G1 (resp., G2) with respect to GroupGen.

Construction overview. Our BARG from asymmetric prime-order groups relies on a similar underlying principle as
the construction from symmetric composite-order groups (Construction 3.3). Here, we summarize the key differences:

• Randomizing cross-terms in the CRS. In the symmetric setting, we associated a single encoding �8 with
each instance. In the asymmetric setting, we need to encode the instance in bothG1 andG2 in order to apply the
pairing consistency checks. Thus, the prover now generates two commitments to the wire labels for each wire,
one in G1 and the other in G2. This introduces a new challenge when it comes to constructing the cross-terms

�8, 9 , as it depends on the exponents associated with the encodings in both G1 and G2. Proving security would
seemingly need to rely on a “bilateral” assumption over pairing groups where the assumption gives out elements
with correlated exponents in both G1 and G2. To avoid this and base security on the vanilla :-Lin assumption,
we split the cross-terms into two shares, with one share in G1 and the other in G2. The extra randomness in
the cross terms allows for a simple simulation strategy in the security analysis (see Lemma 4.8).

• Simulating projective pairing using outer products. The key property we relied on in the soundness
analysis of the composite-order construction is that the pairing is projecting. Namely, there exists a projection
map on G and G) that map into the subgroup of order-@ in each respective group; moreover, this projection
map commutes with the pairing. Then, if a relation like Eq. (3.1) or Eq. (3.2) holds in the target group, the
projected relation formed by projecting the left-hand and right-hand sides into the order-@ subgroup also holds.
As argued in Lemma 3.9, projecting into the order-@ subgroup allows us to isolate a single instance 8∗, in which
case the verification checks ensure statistically soundness for instance 8∗. To obtain an analog of projective
pairings in the prime order setting, we can replace the subgroups with subspaces of a vector space and define
the pairing operation to be an outer (tensor) product of vectors [GS08, Fre10]. As we show in Lemma 4.12, this
enables a similar strategy to prove soundness.

Construction 4.5 (BARG for NP from :-Lin). Let : ∈ N be an integer. We construct a BARG with split verification
for the language of circuit satisfiability as follows:

• Setup(1_, 1<, 1B ): On input the security parameter _, the number of instances<, and the bound on the circuit
size B , the setup algorithm does the following:

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matricesM, M̂
r← Z(:+1)×:? .
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– For each 8 ∈ [<], sample " 8 , "̂ 8
r← Z:? and compute a8 ← M" 8 , â8 ← M̂"̂ 8 . Let a ←

∑
8∈[<] a8 and

â← ∑
8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and let B8, 9 ← M(" 8 "̂

T
9 + R8, 9 ) ∈ Z

(:+1)×:
? and

B̂8, 9 ← −M̂R
T
8, 9 ∈ Z

(:+1)×:
? .

– Output the common reference string crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
.

• Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)): On input the common reference string

crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
,

the circuit � : {0, 1}= → {0, 1}ℎ → {0, 1}, instances x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈ {0, 1}ℎ ,
define C to be the number of wires in � and B to be the number of gates in � . Then, for 8 ∈ [<] and 9 ∈ [C], let
F8, 9 ∈ {0, 1} be the value of wire 9 in � (x8 ,w8 ). The prover then proceeds as follows:

– Encoding the wire values: For each wire 3 ∈ [C], let

[u3 ]1 ←
∑
8∈[<]

F8,3 [a8 ]1 and [û3 ]2 ←
∑
8∈[<]

F8,3 [â8 ]2.

– Validity of witness wires: For each 3 ∈ {= + 1, . . . , = + ℎ}, compute

[V3,1]1 =
∑
8≠9

(1 −F8,3 )F 9,3 [B8, 9 ]1 and [V̂3,1]2 =
∑
8≠9

(1 −F8,3 )F 9,3 [B̂8, 9 ]2,

as well as
[V3,2]1 =

∑
8≠9

(1 −F 9,3 )F8,3 [B8, 9 ]1 and [V̂3,2]2 =
∑
8≠9

(1 −F 9,3 )F8,3 [B̂8, 9 ]2,

– Validity of gate computation: For each NAND gate �ℓ = (31, 32, 33) ∈ [C]3 (where ℓ ∈ [B]), compute

[Wℓ,1]1 =
∑
8≠9

(1 −F8,31F 9,32 −F 9,33 ) [B8, 9 ]1 and [Ŵℓ,1]2 =
∑
8≠9

(1 −F8,31F 9,32 −F 9,33 ) [B̂8, 9 ]2

as well as

[Wℓ,2]1 =
∑
8≠9

(1 −F8,31F 9,32 −F8,33 ) [B8, 9 ]1 and [Ŵℓ,2]2 =
∑
8≠9

(1 −F8,31F 9,32 −F8,33 ) [B̂8, 9 ]2

Finally, output the proof

c =
(
{[u3 ]1, [û3 ]2}3∈[C ], {[V=+3,8 ]1, [V̂=+3,8 ]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8 ]1, [Ŵℓ,8 ]2}ℓ∈[B ],8∈{1,2}

)
.

• Verify(crs,�, (x1, . . . , x<), c): We decompose the verification algorithm into (GenVK,OnlineVerify):

– GenVK(crs, (x1, . . . , x<)): On input the common reference string

crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
and instances x1, . . . , x< ∈ {0, 1}= , the verification key generation algorithm computes

[u∗3 ]1 =
∑
8∈[<]

G8,3 [a8 ]1 and [û∗3 ]2 =
∑
8∈[<]

G8,3 [â8 ]2 .

for each 3 ∈ [=] and outputs the verification key vk =
{
[u∗

3
]1, [û∗3 ]2

}
3∈[=] .
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– OnlineVerify(vk,�, c): On input the verification key vk =
{
[u∗

3
]1, [û∗3 ]2

}
3∈[=] , the circuit � : {0, 1}= ×

{0, 1}ℎ → {0, 1}, and the proof

c =
(
{[u3 ]1, [û3 ]2}3∈[C ], {[V=+3,8 ]1, [V̂=+3,8 ]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8 ]1, [Ŵℓ,8 ]2}ℓ∈[B ],8∈{1,2}

)
,

the verification algorithm checks the following:

∗ Validity of statement: For each statement wire 3 ∈ [=], check that [u3 ]1 = [u∗3 ]1 and [û3 ]2 = [û
∗
3
]2.

∗ Validity of witness wires: For each witness wire 3 ∈ {= + 1, . . . , = + ℎ}, check that

[a]1 · [ûT3 ]2 =
(
[u3 ]1 · [ûT3 ]2

)
+

(
[M]1 · [V̂T

3,1]2
)
+

(
[V3,1]1 · [M̂T]2

)
and that

[u3 ]1 · [âT]2 =
(
[u3 ]1 · [ûT3 ]2

)
+

(
[M]1 · [V̂T

3,2]2
)
+

(
[V3,2]1 · [M̂T]2.

)
∗ Validity of gate computation: For each gate �ℓ = (31, 32, 33) ∈ [C]3, check that

[a]1 · [âT]2 =
(
[u31 ]1 · [ûT32 ]2

)
+

(
[a]1 · [ûT33 ]2

)
+

(
[M]1 · [ŴT

ℓ,1]2
)
+

(
[Wℓ,1]1 · [M̂T]2

)
,

and that

[a]1 · [âT]2 =
(
[u31 ]1 · [ûT32 ]2

)
+

(
[u33 ]1 · [âT]2

)
+

(
[M]1 · [ŴT

ℓ,2]2
)
+

(
[Wℓ,2]1 · [M̂T]2

)
.

∗ Output satisfiability: Finally, the verifier checks that [uC ]1 = [a]1 and [ûC ]2 = [â]2.

Theorem 4.6 (Completeness). Construction 4.5 is complete.

Proof. Take any _,<, B ∈ N, and let � : {0, 1}= × {0, 1}ℎ → {0, 1} be a Boolean circuit of size at most B . Take
statements x1, . . . , x< ∈ {0, 1}= and witnesses w1, . . . ,w< ∈ {0, 1}ℎ where � (x8 ,w8 ) = 1 for all 8 ∈ [<]. Let
crs← Setup(1_, 1<, 1B ) and c ← Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)), where

crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
c =

(
{[u3 ]1, [û3 ]2}3∈[C ], {[V=+3,8 ]1, [V̂=+3,8 ]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8 ]1, [Ŵℓ,8 ]2}ℓ∈[B ],8∈{1,2}

)
For 8 ∈ [<] and 9 ∈ [C], letF8, 9 ∈ {0, 1} denote the value of wire 9 in � (x8 ,w8 ). First, observe that for all 8 ≠ 9 ,

MB̂
T
8, 9 + B8, 9M̂

T
= −MR8, 9M̂

T +M(" 8 "̂
T
9 + R8, 9 )M̂T

= M" 8 "̂
T
9 M̂

T
= a8 â

T
9 . (4.1)

We show that each of the verification checks pass:

• Validity of statement: The honest prover computes u3 =
∑

8∈[<] F8,3a8 for all 3 ∈ [C]. Since the first = wires
of the circuit corresponds to the statement, we haveF8,3 = G8,3 for all 3 ∈ [=] and the check passes. Similarly,
û3 =

∑
8∈[<] F8,3 â8 =

∑
8∈[<] G8,3 â8 .

• Validity of witness wires: By construction of V3,1, V̂3,1 and appealing to Eq. (4.1),

MV̂
T
3,1 + V3,1M̂

T
=

∑
8≠9

(1 −F8,3 )F 9,3 (MB̂
T
8, 9 + B8, 9M̂

T) =
∑
8≠9

(F 9,3 −F8,3F 9,3 )a8 âT9 .

Similarly, by construction of u3 , û3 , and a, we can write

u3 û
T
3 =

∑
8, 9 ∈[<]

F8,3F 9,3a8 â
T
9 =

∑
8∈[<]

F2
8,3a8 â

T
8 +

∑
8≠9

F8,3F 9,3a8 â
T
9

aû
T
3 =

∑
8, 9 ∈[<]

F 9,3a8 â
T
9 =

∑
8∈[<]

F8,3a8 â
T
8 +

∑
8≠9

F 9,3a8 â
T
9
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SinceF8,3 ∈ {0, 1}, we have thatF2
8,3

= F8,3 . Combining the above relations,

u3 û
T
3 +MV̂

T
3,1 + V3,1M̂

T
=

∑
8∈[<]

F8,3a8 â
T
8 +

∑
8≠9

F 9,3a8 â
T
9 = aû

T
3 ,

and the first verification check passes. Validity of the second verification check follows by an analogous
calculation. Namely,

MV̂
T
3,2 + V3,2M̂

T
=

∑
8≠9

(1 −F 9,3 )F8,3 (MB̂
T
8, 9 + B8, 9M̂

T) =
∑
8≠9

(F8,3 −F8,3F 9,3 )a8 âT9

u3 â
T
=

∑
8, 9 ∈[<]

F8,3a8 â
T
9 =

∑
8∈[<]

F8,3a8 â
T
8 +

∑
8≠9

F8,3a8 â
T
9 ,

from which we can conclude that

u3 û
T
3 +MV̂

T
3,2 + V3,2M̂

T
=

∑
8∈[<]

F8,3a8 â
T
8 +

∑
8≠9

F8,3a8 â
T
9 = u3 â

T .

• Validity of gate computation: Similar to the previous case, we expand each term in the verification relation
and apply Eq. (4.1) to obtain

MŴ
T
ℓ,1 +Wℓ,1M̂

T
=

∑
8≠9

(1 −F8,31F 9,32 −F 9,33 ) (MB̂
T
8, 9 + B8, 9M̂

T) =
∑
8≠9

(1 −F8,31F 9,32 −F 9,33 )a8 âT9

u31 û
T
32

=

∑
8, 9 ∈[<]

F8,31F 9,32a8 â
T
9 =

∑
8∈[<]

F8,31F8,32a8 â
T
8 +

∑
8≠9

F8,31F 9,32a8 â
T
9

aû
T
33

=

∑
8, 9 ∈[<]

F 9,33a8 â
T
9 =

∑
8∈[<]

F8,33a8 â
T
8 +

∑
8≠9

F 9,33a8 â
T
9

aâ
T
=

∑
8, 9 ∈[<]

a8 â
T
9 =

∑
8∈[<]

a8 â
T
8 +

∑
8≠9

a8 â
T
9 .

By definition,F8,33 = NAND(F8,31 ,F8,32 ) for all 8 ∈ [<]. In particular, this means thatF8,33 = 1 −F8,31F8,32 , or
equivalently,F8,31F8,32 +F8,33 = 1. Substituting into the above relations,

u31 û
T
32
+ aûT33 +MŴ

T
ℓ,1 +Wℓ,1M̂

T
=

∑
8∈[<]

a8 â
T
8 +

∑
8≠9

a8 â
T
9 = aâ

T .

For the second validation check, we expand as above to obtain

MŴ
T
ℓ,2 +Wℓ,2M̂

T
=

∑
8≠9

(1 −F8,31F 9,32 −F8,33 ) (MB̂
T
8, 9 + B8, 9M̂

T) =
∑
8≠9

(1 −F8,31F 9,32 −F8,33 )a8 âT9

u33 â
T
=

∑
8, 9 ∈[<]

F8,33a8 â
T
9 =

∑
8∈[<]

F8,33a8 â
T
8 +

∑
8≠9

F8,33a8 â
T
9 .

Combining the relations, we see that

u31 û
T
32
+ u33 âT +MŴ

T
ℓ,2 +Wℓ,2M̂

T
=

∑
8∈[<]

a8 â
T
8 +

∑
8≠9

a8 â
T
9 = aâ

T.

• Validity of output: Since � (x8 ,w8 ) = 1, it follows that F8,C = 1 for all 8 ∈ [<]. This means that uC =∑
8∈[<] a8 = a and ûC =

∑
8∈[<] â8 = â. �

Theorem 4.7 (Somewhere Argument of Knowledge). Take any positive integer : ∈ N. If the :-Lin assumption holds

in G1 and G2 with respect to GroupGen, then Construction 4.5 is a somewhere argument of knowledge.
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Proof. We start by defining the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1<, 1B , 8∗) : The trapdoor algorithm uses the following procedure (we highlight in green the
differences in the common reference string between TrapSetup and Setup):

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matricesM, M̂
r← Z(:+1)×:? .

– For 8 ≠ 8∗, sample " 8 , "̂ 8
r← Z:? and let a8 ← M" 8 , â8

r← M̂"̂ 8 . Let 0 ≠ 3 ∈ Z:+1? be any non-zero vector

such that 3TM = 0. SinceM has rank at most : , such a 3 always exists and can be efficiently computed.

– Sample a8∗ , â8∗
r← Z:+1? . Let a← ∑

8∈[<] a8 and â← ∑
8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? . Construct B8, 9 and B̂8, 9 for 8 ≠ 9 as follows:

B8, 9 =

{
a8 "̂

T
9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂R

T
8, 9 9 ≠ 8∗

−M̂R
T
8, 9 + â9" T

8 9 = 8∗.

– Output the common reference string crs∗ =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
and the trapdoor td = 3 ∈ Z:+1? .

• Extract(td,�, (x1, . . . , x<), c): On input the trapdoor td = 3 ∈ Z:+1? , the Boolean circuit � : {0, 1}= × {0, 1}ℎ →
{0, 1}, statements x1, . . . , x< ∈ {0, 1}= , and the proof

c =
(
{[u3 ]1, [û3 ]2}3∈[C ], {[V=+3,8 ]1, [V̂=+3,8 ]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8 ]1, [Ŵℓ,8 ]2}ℓ∈[B ],8∈{1,2}

)
,

the extraction algorithm computes 3T [u3 ]1. It sets F∗3 = 0 if 3T [u]1 = [0]1, and F∗
3
= 1 otherwise for each

3 = = + 1, . . . , = + ℎ. It outputs w∗ = (F∗=+1, . . . ,F∗=+ℎ).

We now show the CRS indistinguishability and somewhere extractable in trapdoor mode properties.

Lemma 4.8 (CRS Indistinguishability). If the :-Lin assumption holds in G1 and G2 with respect to GroupGen, then

Construction 4.5 satisfies CRS indistinguishability.

Proof. Take any polynomial< =<(_), B = B (_). We now proceed via a simple hybrid argument:

• Hyb0: This is the real distribution. At the beginning of the security game, the adversary chooses an index
8∗ ∈ [<]. The challenger then constructs the common reference string by running Setup(1_, 1<, 1B ):

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matricesM, M̂
r← Z(:+1)×:? .

– For each 8 ∈ [<], sample " 8 , "̂ 8
r← Z:? and compute a8 ← M" 8 , â8 ← M̂"̂ 8 . Let a ←

∑
8∈[<] a8 and

â← ∑
8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and let B8, 9 ← M(" 8 "̂

T
9 + R8, 9 ) ∈ Z

(:+1)×:
? and

B̂8, 9 ← −M̂R
T
8, 9 ∈ Z

(:+1)×:
? .

– Set crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
.

The challenger gives crs to A and A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

• Hyb1: Same as Hyb0 except the challenger constructs B8, 9 and B̂8, 9 as in TrapSetup:

– For each 8 ∈ [<], sample " 8 , "̂ 8
r← Z:? and compute a8 ← M" 8 , â8 ← M̂"̂ 8 . Let a ←

∑
8∈[<] a8 and

â← ∑
8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and compute

B8, 9 =

{
a8 "̂

T
9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂R

T
8, 9 9 ≠ 8∗

−M̂R
T
8, 9 + â9" T

8 9 = 8∗ .
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• Hyb2: Same as Hyb1 except the challenger samples a8∗
r← Z:+1? :

– For each 8 ∈ [<], sample " 8 , "̂ 8
r← Z:? . For 8 ≠ 8∗, let a8 ← M" 8 and sample a8∗

r← Z:+1? . For all 8 ∈ [<],
let â8 ← M̂"̂ 8 . Let a←

∑
8∈[<] a8 and â← ∑

8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and compute

B8, 9 =

{
a8 "̂

T
9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂R

T
8, 9 9 ≠ 8∗

−M̂R
T
8, 9 + â9" T

8 9 = 8∗ .

• Hyb3: Same as Hyb2 except the challenger sample â8∗
r← Z:+1? :

– For 8 ≠ 8∗, sample " 8 , "̂ 8
r← Z:? and let a8 ← M" 8 , â8

r← M̂"̂ 8 . Sample a8∗ , â8∗
r← Z:+1? . Let a← ∑

8∈[<] a8
and â← ∑

8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and compute

B8, 9 =

{
a8 "̂

T
9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂R

T
8, 9 9 ≠ 8∗

−M̂R
T
8, 9 + â9" T

8 9 = 8∗ .

In this experiment, crs is distributed according to TrapSetup(1_, 1<, 1B , 8∗).

For an adversary A, we write Hyb8 (A) to denote the output of experiment Hyb8 with algorithm A. We now show
that each adjacent pair of hybrid experiments are computationally indistinguishable (or identical). In the following
analysis, we use the fact that the :-Lin assumption implies the MDDH: assumption (see Theorem 4.4). We will use
theMDDH: assumption in our analysis below.

Claim 4.9. For all adversaries A, Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1].

Proof. This is just a syntactic relabeling. We consider the two cases 9 = 8∗ and 9 ≠ 8∗ separately:

• Suppose 9 ≠ 8∗. In Hyb0,

B8, 9 = M(" 8 "̂
T
9 + R8, 9 ) = (M" 8 )"̂ T

9 +MR8, 9 = a8 "̂
T
9 +MR8, 9 .

Thus B8, 9 is identically distributed in Hyb0 and Hyb1. In both experiments, B̂8, 9 = −M̂R
T
8, 9 .

• Suppose 9 = 8∗. Consider the distribution of B8,8∗ and B̂8,8∗ in Hyb0 and Hyb1 for 8 ≠ 8∗. In Hyb0,

B8,8∗ = M(" 8 "̂
T
8∗ + R8,8∗ ) and B̂8,8∗ = −M̂R

T
8,8∗ ,

where R8,8∗
r← Z:×:? . Suppose we instead sampled R8,8∗ as R

∗
8,8∗ − " 8 "̂

T
8∗ where R

∗
8,8∗

r← Z:×:? . Certainly, R8,8∗ is

still uniform over Z:×:? . Substituting into the above expressions, we have

B8,8∗ = M(" 8 "̂
T
8∗ + R8,8∗ ) = MR

∗
8,8∗

B̂8,8∗ = −M̂R
T
8,8∗ = −M̂(R∗8,8∗ )T + M̂"̂ 8∗"

T
8 = −M̂(R∗8,8∗ )T + â8∗" T

8 ,

which is precisely the distribution of B8,8∗ and B̂8,8∗ in Hyb1. Thus, the adversary’s view in Hyb0 and Hyb1 is
identically distributed and the claim follows. �

Claim 4.10. Suppose the MDDH: assumption holds in the group G1. Then, for all efficient adversaries A, there exists a

negligible function negl(·) such that for all _ ∈ N,
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� = negl(_).
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Proof. Suppose there exists an efficient adversary A such that
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� = Y for some
non-negligible Y. We use A to construct an algorithm B for the MDDH: assumption in G1:

1. Algorithm B receives the group description G, the matrix [M]1 ∈ G(:+1)×:1 and a challenge [z]1 ∈ G:+11 from
theMDDH: challenger.

2. Algorithm B starts running A to obtain the challenge index 8∗ ∈ [<].

3. For all 8 ∈ [<], algorithm B samples " 8
r← Z:? . For 8 ≠ 8∗, it sets [a8 ]1 ← [M]1" 8 and it sets [a8∗ ]1 ← [z]1.

Next, it samples M̂
r← Z(:+1)×:? , "̂ 8

r← Z:? and â8 ← M̂"̂ 8 for all 8 ∈ [<].

4. Algorithm B sets [a]1 ←
∑

8∈[<] [a8 ]1 and â←
∑

8∈[<] â8 . Then, for 8 ≠ 9 , it samples R8, 9
r← Z:×:? and computes

[B8, 9 ]1 =
{
[a8 ]1"̂ T

9 + [M]1R8, 9 9 ≠ 8∗

[M]1R8, 9 9 = 8∗
B̂8, 9 =

{
−M̂R

T
8, 9 9 ≠ 8∗

−M̂R
T
8, 9 + â9" T

8 9 = 8∗.

Importantly, algorithm B only computes [B8, 9 ]1 and B̂8, 9 where 8 ≠ 9 . It does not need to compute B̂8∗,8∗ which
would depend on the (non-existent) value " 8∗ .

5. It sets crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
and gives crs to A. Finally, it

outputs whatever A outputs.

Using the above procedure, algorithm B is able to construct all of the components of crs from the encodings [M]1
and [z]1. If z = Mv for some v

r← Z:? , then crs is distributed as in Hyb1. Conversely, if z
r← Z:? , then crs is distributed

as in Hyb2. Hence, B breaksMDDH: with the same advantage Y. �

Claim 4.11. Suppose the MDDH: assumption holds in group G2. Then, for all efficient adversaries A, there exists a

negligible function negl(·) such that for all _ ∈ N,
��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as in the proof of Claim 4.10. Suppose there exists an efficient adversaryA
where

��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]
�� = Y for some non-negligible Y. We use A to construct an adversary B

for theMDDH: assumption in G2:

1. Algorithm B receives the group description G, the matrix [M̂]2 ∈ G(:+1)×:2 and a challenge [ẑ]2 ∈ G:+12 from
theMDDH: challenger.

2. Algorithm B starts running A to obtain the challenge index 8∗ ∈ [<].

3. It samplesM
r← Z(:+1)×:? . For 8 ≠ 8∗, it samples " 8

r← Z:? and sets a8 ← M" 8 . It samples a8∗
r← Z:? .

4. For 8 ≠ 8∗, it samples "̂ 8
r← Z:? and sets [â8 ]2 ← [M̂]2"̂ 8 . It sets [â8∗ ]2 ← [ẑ]2.

5. Algorithm B sets a← ∑
8∈[<] a8 and [â]2 ←

∑
8∈[<] [â8 ]2.

6. For 8 ≠ 9 , it samples R8, 9
r← Z:×:? and computes

B8, 9 =

{
a8 "̂

T
9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
[B̂8, 9 ]2 =

{
−[M̂]2RT

8, 9 9 ≠ 8∗

−[M̂]2RT
8, 9 + [â9 ]2" T

8 9 = 8∗ .

Importantly, algorithm B only needs to computes [B̂8, 9 ]2 where 8 ≠ 9 . It does not need to compute [B̂8∗,8∗ ]2
which would depend on the (non-existent) value " 8∗ .

7. It sets crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
and gives crs to A. Finally, B

outputs whatever A outputs.
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Using the above procedure, algorithm B is able to construct all of the components of crs from the encodings [M]2
and [z]2. If z = Mv for some v

r← Z:? , then crs is distributed as in Hyb2. Conversely, if z
r← Z:? , then crs is distributed

as in Hyb3. Hence, B breaksMDDH: with the same advantage Y. �

Combining Claims 4.9 to 4.11, we conclude that under the MDDH: assumption, CRS indistinguishability holds. Since
:-Lin implies MDDH: (Theorem 4.4), the same result holds under :-Lin. �

Lemma 4.12 (Somewhere Extractable in Trapdoor Mode). For all constants : ∈ N, Construction 4.5 is somewhere

sound in trapdoor mode.

Proof. Take any polynomial< =<(_) and B = B (_). Let 8∗ ← A(1_, 1<, 1B ) and (crs∗, td) ← TrapSetup(1_, 1<, 1B , 8∗).
By construction,

crs∗ =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
and td = 3 ,

whereM, M̂
r← Z(:+1)×:? , a8∗ , â8∗

r← Z:+1? , and for 8 ≠ 8∗, a8 = M" 8 , â8 = M̂"̂ 8 where " 8 , "̂ 8
r← Z:? . We start by proving

the following claim that will be useful in our analysis:

Claim 4.13. With probability 1 − negl(_), the following properties hold:

(i) For every vector v ∈ Z:+1? , there exists B, B̂ ∈ Z? and t, t̂ ∈ Z:? such that v = Ba8∗ + Mt and v = B̂â8∗ + M̂t̂. In

particular, a8∗ â
T
8∗ ≠ 0.

(ii) Every matrix A ∈ Z(:+1)×(:+1)? can be uniquely written as

A = Ba8∗ â8∗ +
∑
8∈[: ]

C8a8∗m̂
T
8 +

∑
8∈[: ]

D8m8 â
T
8∗ +

∑
8, 9 ∈[: ]

E8, 9m8m̂
T
9 .

where B, C8 , D8 , E8, 9 ∈ Z? , m1, . . . ,m: are the columns of M, and m̂1, . . . , m̂: are the columns of M̂. Moreover, we

define the projection operator proj(A) ↦→ Ba8∗a
T
8∗ .

(iii) Let A ∈ Z(:+1)×(:+1)? and suppose that there exists B ∈ Z? and t1, t2, z1, z2 ∈ Z:? such that

A = Ba8∗ â
T
8∗ + a8∗ tT1M̂T +Mt2â

T
8∗ +Mz1z

T
2M̂

T .

Then, proj(A) = Ba8∗ â
T
8∗ .

(iv) For all V ∈ Z(:+1)×:? , proj(MV
T) = 0 = proj(VM̂T).

Proof. We show each statement separately:

(i) This statement is equivalent to saying that the matricesM′ = [a8∗ | M] and M̂
′
= [â8∗ | M̂] ∈ Z(:+1)×(:+1)? are

full rank. By construction, the distribution of M′ and M̂
′ is uniform over Z

(:+1)×(:+1)
? . By the Schwartz-Zippel

lemma, the determinant ofM′ and M̂
′ is non-zero with probability at least 1 − (: + 1)/? = negl(_).

(ii) DefineM′ = [a8∗ | M] and M̂′ = [â8∗ | M̂] as before, and considerM′ ⊗ M̂′ ∈ Z(:+1)
2×(:+1)2

? . SinceM′ and M̂′ are

invertible with overwhelming probability, the matrixM′ ⊗ M̂′ is also invertible (with inverse (M′)−1 ⊗ (M̂′)−1).
Thus, the columns ofM′ ⊗ M̂

′ form a basis for Z
(:+1)2
? . Suppose we rearrange each column ofM′ ⊗ M̂

′ into a
(: + 1)-by-(: + 1) matrix in row-major order. This yields the following collection of matrices:

a8∗ â
T
8∗ , {a8∗m̂T

8 }8∈[: ], {m8 â
T
8∗ }8∈[: ] {m8m̂

T
9 }8, 9 ∈[: ] . (4.2)

Since the columns of M′ ⊗ M̂
′ form a basis for Z

(:+1)2
? , the matrices in Eq. (4.2) form a basis for Z

(:+1)×(:+1)
? ,

and the claim follows.
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(iii) We express A as a linear combination of the basis vectors in Eq. (4.2):

A = Ba8∗ â
T
8∗ + a8∗

∑
8∈[: ]

C1,8m̂
T
8 +

∑
8∈[: ]

C2,8m8 â
T
8∗ +

©­«
∑
8∈[: ]

I1,8m8
ª®¬
©­«
∑
9 ∈[: ]

I2, 9 m̂
T
9
ª®¬

= Ba8∗ â
T
8∗ +

∑
8∈[: ]

C1,8a8∗m̂
T
8 +

∑
8∈[: ]

C2,8m8 â
T
8∗ +

∑
8, 9 ∈[: ]

I1,8I2, 9m8m̂
T
9 ,

By definition, proj(A) = Ba8∗ â8∗ .

(iv) By Property (i), we can write V = â8∗ ŝ
T + M̂T̂ where ŝ ∈ Z:? and T̂ ∈ Z:×:? . We can further decompose

T̂ =
∑

8, 9 ∈[: ] Ĉ8, 9e8e
T
9 where Ĉ8, 9 is the (8, 9)th component of T̂ and e8 ∈ Z:? denotes the 8th canonical basis vector.

Then,
MV

T
= Mŝâ

T
8∗ +MT̂

T
M̂

T
= Mŝâ

T
8∗ +

∑
8, 9 ∈[: ]

Ĉ8, 9Me9e
T
8 M̂

T.

By Property (iii), proj(MV
T) = 0. For proj(VM̂T), we again appeal to Property (i) and write V = a8∗s

T +MT for
some s ∈ Z:? and T ∈ Z:×:? . By an analogous computation, we have

VM̂
T
= a8∗s

T
M̂

T +
∑

8, 9 ∈[: ]
C8, 9Me8e

T
9 M̂

T .

Again by Property (iii), proj(VM̂T) = 0. �

Returning to the proof of Lemma 4.12, let � : {0, 1}= × {0, 1}ℎ → {0, 1} be the Boolean circuit, x1, . . . , x< ∈ {0, 1}= be
the set of statements, and

c =
(
{[u3 ]1, [û3 ]2}3∈[C ], {[V=+3,8 ]1, [V̂=+3,8 ]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8 ]1, [Ŵℓ,8 ]2}ℓ∈[B ],8∈{1,2}

)
be the proof the adversary outputs. Suppose Verify(crs∗, (x1, . . . , x<), c) = 1. We now show the following claim:

Claim 4.14. Suppose Verify(crs∗, (x1, . . . , x<), c) = 1. Then, for all 3 ∈ [C], there exists t3 , t̂3 ∈ Z:? and b3 ∈ {0, 1} such
that u3 = b3a8∗ +Mt3 and û3 = b3 â8∗ +M̂t̂3 . Moreover, x8∗ = (b1, . . . , b=), bC = 1, and for each gate�ℓ = (31, 32, 33) ∈ [C]3,
b3 = NAND(b31 , b32 ).

Proof. Let # =
∑

8≠8∗ " 8 and #̂ =
∑

8≠8∗ "̂ 8 . By construction, a =
∑

8∈[<] a8 = a8∗ +
∑

8≠8∗ M" 8 = a8∗ +M# . Similarly,

â =
∑

8∈[<] â8 = â8∗ + M̂#̂ . We now show the claim for each wire 3 ∈ [C]:

• The claim holds for all statement wires 3 ∈ [=]. Since Verify outputs 1,

u3 =

∑
8∈[<]

G8,3a8 = G8∗,3a8∗ +
∑
8≠8∗

G8,3M" 8 = G8∗,3a8∗ +M
(∑
8≠8∗

G8,3" 8

)
.

Thus u3 has the desired form. Correspondingly, we can write û3 = G8∗,3 â8∗ + M̂
∑

8≠8∗ G8,3 "̂ 8 .

• Consider a witness wire 3 ∈ {= + 1, . . . , = + ℎ}. By Claim 4.13 (i), we can write u3 = b3a8∗ + Mt3 , and
û3 = b̂3 â8∗ + M̂t̂3 , for some b3 , b̂3 ∈ Z? and t3 , t̂3 ∈ Z:? . Our goal is to show b3 = b̂3 ∈ {0, 1}. Consider the
following terms from the verification relations:

aû
T
3 = (a8∗ +M#) (b̂3 â8∗ + M̂t̂3 )T

u3 â
T
= (b3a8∗ +Mt3 ) (â8∗ + M̂#̂)T

u3 û
T
3 = (b3a8∗ +Mt3 ) (b̂3 â8∗ + M̂t̂3 )T
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Since Verify outputs 1, both verification relations are satisfied. The same must hold for their projections. By
Claim 4.13 (iii), (iv), the following relations must hold:

proj(aûT3 )︸     ︷︷     ︸
b̂3 ·a8∗ âT8∗

= proj(u3 ûT3 )︸       ︷︷       ︸
b3 b̂3 ·a8∗ âT8∗

+ proj(MV̂
T
3,1)︸         ︷︷         ︸

0

+ proj(V3,1M̂
T)︸          ︷︷          ︸

0

proj(u3 âT)︸       ︷︷       ︸
b3 ·a8∗ âT8∗

= proj(u3 ûT3 )︸       ︷︷       ︸
b3 b̂3 ·a8∗ âT8∗

+ proj(MV̂
T
3,2)︸         ︷︷         ︸

0

+ proj(V3,2M̂
T),︸           ︷︷           ︸

0

.

By Claim 4.13 (i), a8∗ â
T
8∗ ≠ 0, and we conclude that b̂3 = b3 b̂3 = b3 . This implies b̂3 = b3 = b2

3
, and so

b3 = b̂3 ∈ {0, 1}.

• Consider a wire that is the output of some gate �ℓ = (31, 32, 33) ∈ [C]3, and suppose moreover that the claim
holds for 31, 32: namely, u31 = b31a8∗ +Mt31 , û31 = b31 â8∗ + M̂t̂31 , u32 = b32a8∗ +Mt32 , and û32 = b32 â8∗ + M̂t̂32 ,
for b31 , b32 ∈ {0, 1} and t31 , t32 , t̂31 , t̂32 ∈ Z:? . By Claim 4.13 (iii), (iv), we can write u33 = b33a8∗ + Mt33 and

û33 = b̂33 â8∗ + M̂t̂33 for some b33 , b̂33 ∈ Z? and t33 , t̂33 ∈ Z:? . Our goal is to show that b33 = b̂33 ∈ {0, 1} and
moreover, b33 = NAND(b31 , b32 ). Similar to the previous case, we consider the terms in the two verification
relations:

aâ
T
= (a8∗ +M#) (â8∗ + M̂#̂)T

u31 û
T
32

= (b31a8∗ +Mt31 ) (b32 â8∗ + M̂t̂32 )T

aû
T
33

= (a8∗ +M#) (b̂33 â8∗ + M̂t̂33 )T

u33 â
T
= (b33a8∗ +Mt33 ) (â8∗ + M̂#̂)T .

We apply the projection operator to the two verification relations and by Claim 4.13 (iii), (iv),

proj(aâT)︸     ︷︷     ︸
a8∗ â

T
8∗

= proj(u31 ûT32 )︸         ︷︷         ︸
b31b32a8∗ â

T
8∗

+ proj(aûT33 )︸      ︷︷      ︸
b̂33a8∗ â

T
8∗

+ proj(MŴ
T
ℓ,1)︸          ︷︷          ︸

0

+ proj(Wℓ,1M̂
T)︸           ︷︷           ︸

0

proj(aâT)︸     ︷︷     ︸
a8∗ â

T
8∗

= proj(u31 ûT32 )︸         ︷︷         ︸
b31b32a8∗ â

T
8∗

+ proj(u33 âT)︸        ︷︷        ︸
b33a8∗ â

T
8∗

+ proj(MŴ
T
ℓ,2)︸          ︷︷          ︸

0

+ proj(Wℓ,2M̂
T)︸           ︷︷           ︸

0

.

If both relations hold, we conclude
1 = b31b32 + b̂33 = b31b32 + b33 .

This means b33 = b̂33 = 1 − b31b32 = NAND(b31 , b32 ).

• For the output wire, the output satisfiability check requires that uC = a = a8∗ +M# and ûC = â = â8∗ + M̂#̂ . This
means that bC = b̂C = 1.

The first two cases show that the claim holds for all input wires 3 ∈ [= + ℎ]. The final case shows that if the claim
holds for the input wires to a gate, then it holds for the output wire. Inductively applying the argument to the gates
of the circuit in topological order, we conclude that the claim holds for all 3 ∈ [C]. �

Let b1, . . . , bC ∈ {0, 1} be the bits from Claim 4.14. By Claim 4.14, x8∗ = (b1, . . . , b=), and for all gates � = (31, 32, 33) ∈
[C]3, b33 = NAND(b31 , b32 ). Thus, b1, . . . , bC is a set of valid wire assignments for the computation � (x8∗ , / ) where
/ = (b=+1, . . . , b=+ℎ). Since the output wire bC = 1, this means that � (x8∗ , / ) = 1.

To complete the proof, let w∗ ← Extract(td,�, (x1, . . . , x<), c). We claim that w∗ = / . By Claim 4.14, u3 =

b3a8∗ +Mt3 . Then, 3
T
u3 = b33

T
a8∗ + 3TMt3 = b33

T
a8∗ since 3

T
M = 0. Moreover, since a8∗ is uniform over Z:+1? and

independent of 3 , it follows that 3Ta8∗ ≠ 0 with probability 1−1/? = 1−negl(_). Thus, if b=+3 = 0, thenF∗
3
= 0 = b=+3 ,

and if b=+3 = 1, then F∗
3
= 1 = b=+3 . Thus, w

∗
= (b=+1, . . . , b=+ℎ) = / . Thus, with probability 1 − negl(_), either

Verify(crs∗,�, (x1, . . . , x<), c) = 0 or � (x,w∗) = 1. The claim follows. �
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By Lemmas 4.8 and 4.12, Construction 4.5 is a somewhere argument of knowledge. �

Theorem 4.15 (Succinctness). For all constants : ∈ N, Construction 4.5 is succinct and satisfies split verification

(Definition 2.9).

Proof. Take any _,<, B ∈ N and consider a Boolean circuit� : {0, 1}=×{0, 1}ℎ → {0, 1} of size at most B . Let C = poly(B)
be the number of wires in � . We check each property:

• Proof size: A proof c consists of C (: + 1) + 2ℎ: (: + 1) + 2B: (: + 1) elements in each of G1 and G2. Each group
element can be represented in poly(_) bits. Since : is constant and ℎ ≤ C = poly(B), the overall proof size is
|c | = poly(_, B).

• CRS size: The common reference string crs consists of the group description G and $ (:2<2) elements in each
of G1 and G2. When : ∈ N is a constant, the size of the verification key is |vk| =<2 · poly(_).

• Verification key size: The size of the verification key vk outputs by GenVK consists of =(: + 1) elements in
each of G1 and G2. For constant : , |vk| = = · poly(_).

• Verification key generation time: The algorithm GenVK performs 2<=(: + 1) group operations, which
requires time poly(_,<,=).

• Online verification time: The running time of the online verification algorithm OnlineVerify is bounded by

=: · poly(_)︸        ︷︷        ︸
statement validity

+ℎ:3 · poly(_)︸          ︷︷          ︸
wire validity

+ B:3 · poly(_)︸         ︷︷         ︸
gate validity

+ : · poly(_)︸       ︷︷       ︸
output validity

= poly(_, B),

since = ≤ B , ℎ ≤ C = poly(B), and : ∈ N is a constant. �

Remark 4.16 (Verifying General Quadratic Relations). The technique underlying the wire validity and gate consis-
tency checks in Construction 4.5 readily extends to gates that compute arbitrary quadratic predicates on their inputs.
For instance, this includes standard Boolean gates such as AND, OR, and XOR gates as well as gates with more than
two input wires. Consider a binary-valued gate predicate of the form

Fℓ = W +
∑

d∈[)1 ]
XdF8d +

∑
d∈[)2 ]

X̂dF 9d,1F 9d,2 ∈ {0, 1}, (4.3)

where ℓ ∈ [C] is the index of the output wire, 8d , 9d,1, 9d,2 ∈ [C] are indices of the input wires, and W, Xd , X̂d ∈ Z are
fixed coefficients associated with the gate. To support gates of this type, we adapt Construction 4.5 as follows. As
in Construction 4.5, let [u3 ]1, [û3 ]2 be vector commitments to the values (F1,3 , . . . ,F<,3 ) of wire 3 across the <
instances. To check the above relation is satisfied, the prover computes

Z8, 9 = W + XdF8,8d + X̂dF8, 9d,1F 9, 9d,2 −F8,ℓ and [W1]1 =
∑
8≠9

Z8, 9 [B8, 9 ]1 and [Ŵ1]2 =
∑
8≠9

Z8, 9 [B̂8, 9 ]2,

and

Z ′8, 9 = W + XdF8,8d + X̂dF8, 9d,1F 9, 9d,2 −F 9,ℓ and [W2]1 =
∑
8≠9

Z ′8, 9 [B8, 9 ]1 and [Ŵ2]2 =
∑
8≠9

Z ′8, 9 [B̂8, 9 ]2.

To check that the gate is satisfied, the verifier checks

W [a]1 · [âT]2 +
∑

d∈[)1 ]
Xd [u8d ]1 · [âT]2 +

∑
d∈[)2 ]

X̂d [u9d,1 ]1 · [ûT9d,2 ] − [uℓ ]1 · [â
T]2 = [M]1 · [ŴT

1 ]2 + [W1]1 · [M̂T]2,

and

W [a]1 · [âT]2 +
∑

d∈[)1 ]
Xd [u8d ]1 · [âT]2 +

∑
d∈[)2 ]

X̂d [u9d,1 ]1 · [ûT9d,2 ] − [a]1 · [û
T
ℓ ]2 = [M]1 · [ŴT

2 ]2 + [W2]1 · [M̂T]2 .

29



Completeness. To argue completeness, consider each term in the first verification relation:

aâ
T
=

∑
8, 9 ∈[<]

a8 â
T
9 =

∑
8∈[<]

a8 â
T
8 +

∑
8≠9

a8 â
T
9

u8d â
T
=

∑
8, 9 ∈[<]

F8,8d a8 â
T
9 =

∑
8∈[<]

F8,8d a8 â
T
8 +

∑
8≠9

F8,8d a8 â
T
9

u9d,1 û
T
9d,2

=

∑
8, 9 ∈[<]

F8, 9d,1F 9, 9d,2a8 â
T
9 =

∑
8∈[<]

F8, 9d,1F8, 9d,2a8 â
T
8 +

∑
8≠9

F8, 9d,1F 9, 9d,2a8 â
T
9

uℓ â
T
=

∑
8, 9 ∈[<]

F8,ℓa8 â
T
9 =

∑
8∈[<]

F8,ℓa8 â
T
8 +

∑
8≠9

F8,ℓa8 â
T
9

Then, the first verification relation becomes

WaâT +
∑

d∈[)1 ]
Xdu8d â

T +
∑

d∈[)2 ]
X̂du9d,1 û9d,2 − uℓ âT =

∑
8∈[<]

/8a8a
T
8 +

∑
8≠9

/8, 9a8 â
T
9 ,

where

/8 = W +
∑

d∈[)1 ]
XdF8,8d +

∑
d∈[)2 ]

X̂dF8, 9d,1F8, 9d,2 −F8,ℓ

/8, 9 = W +
∑

d∈[)1 ]
XdF8,8d +

∑
d∈[)2 ]

X̂dF8, 9d,1F 9, 9d,2 −F8,ℓ = Z8, 9 .

If Eq. (4.3) holds for all< instances, then /8 = 0 for all 8 ∈ [ℓ] and we are only left with
∑

8≠9 /8, 9a8 â
T
9 . By construction,

the right-hand side of the first verification relation is

MŴ
T
1 +W1M̂

T
=

∑
8≠9

Z8, 9 (MB̂
T
8, 9 + B8, 9M̂

T) =
∑
8≠9

Z8, 9a8 â
T
9 =

∑
8≠9

/8, 9a8 â9 ,

using the relation from Eq. (4.1). Thus, the first verification relation holds. A similar calculation applies to the second
verification relation and completeness follows.

Somewhere argument of knowledge. The somewhere argument of knowledge property follows analogously as
the proof of Theorem 4.7. Since we did not need to modify the CRS to support general gates, CRS indistinguishability
holds. It suffices to show that the scheme is somewhere extractable in trapdoor mode. The proof of Lemma 4.12 uses
an inductive strategy where we show that as long as the commitments to the input wires of a gate is well-formed,
then the commitment to the output wire respects the gate constraint. Specifically, for each input wire 3 to the gate,
suppose that u3 = b3a8∗ +Mt3 and û3 = b3 â8∗ + M̂t̂3 for some b3 ∈ {0, 1} and t3 , t̂3 ∈ Z:? . By Claim 4.13 (iii), (iv), the

commitments uℓ and ûℓ to the output wires can be written as uℓ = bℓa8∗ +Mtℓ and ûℓ = b̂ℓ â8∗ + M̂t̂ℓ for some bℓ , b̂ℓ ∈ Z?
and tℓ , t̂ℓ ∈ Z:? . Our goal is to show that bℓ = b̂ℓ and moreover, bℓ = W + ∑

d∈[)1 ] Xdb8d +
∑

d∈[)2 ] X̂db 9d,1b 9d,2 ∈ {0, 1}.
Following the identical strategy as in the proof of Lemma 4.12, we consider the terms in the verification relations:

aâ
T
= (a8∗ +M#) (â8∗ + M̂#̂)T

u8d â
T
= (b8d a8∗ +Mt8d ) (â8∗ + M̂#̂)T

u9d,1 û
T
9d,2

= (b 9d,1a8∗ +Mt9d,1 ) (b 9d,2 â8∗ + M̂t̂9d,2 )T

uℓ â
T
= (bℓa8∗ +Mtℓ ) (â8∗ + M̂#̂)T

aû
T
ℓ = (a8∗ +M#) (b̂ℓ â8∗ + M̂t̂ℓ )T .
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We apply the projection operator to the two verification relations and by Claim 4.13 (iii), (iv),

proj(WaâT)

︸       ︷︷       ︸
Wa8∗ â

T
8∗

+
∑

d∈[)1 ]
proj(Xdu8d âT)

︸                   ︷︷                   ︸∑
d∈[)1 ] Xdb8d a8∗ â

T
8∗

+
∑

d∈[)2 ]
proj(X̂du9d,1 û

T
9d,2
)

︸                       ︷︷                       ︸∑
d∈[)2 ] X̂db 9d,1b 9d,2a8∗ â

T
8∗

− proj(uℓ âT)

︸       ︷︷       ︸
bℓ a8∗ â

T
8∗

= proj(MŴ
T
1 )

︸         ︷︷         ︸
0

+ proj(W1M̂
T)

︸          ︷︷          ︸
0

proj(WaâT)

︸       ︷︷       ︸
Wa8∗ â

T
8∗

+
∑

d∈[)1 ]
proj(Xdu8d âT)

︸                   ︷︷                   ︸∑
d∈[)1 ] Xdb8d a8∗ â

T
8∗

+
∑

d∈[)2 ]
proj(X̂du9d,1 û

T
9d,2
)

︸                       ︷︷                       ︸∑
d∈[)2 ] X̂db 9d,1b 9d,2a8∗ â

T
8∗

− proj(aûTℓ )

︸      ︷︷      ︸
b̂ℓ a8∗ â

T
8∗

= proj(MŴ
T
2 )

︸         ︷︷         ︸
0

+ proj(W2M̂
T)

︸          ︷︷          ︸
0

.

In combination, this means that

bℓ = W +
∑

d∈[)1 ]
Xdb8d +

∑
d∈[)2 ]

X̂db 9d,1b 9d,2 = b̂ℓ .

Since Eq. (4.3) is a binary-valued predicate and the input assignments b8d , b 9d,1 , b 9d,2 ∈ {0, 1} by the inductive hypothesis,
this means that bℓ ∈ {0, 1}. By the same argument as in the proof of Lemma 4.12, we conclude that the extracted wire
assignment (b1, . . . , bC ) satisfies the gate constraint Eq. (4.3).

5 BARG Bootstrapping to Reduce CRS Size

In this section, we describe how to recursively compose succinct batch arguments for NP with a long CRS to obtain a
BARG with a short CRS (i.e., with size that is sublinear in the number of instances). The bootstrapping construction
applies to any BARG with a split verification procedure (Definition 2.9). We refer to Section 1.2.2 for an overview of
the construction.

Construction 5.1 (BARG Bootstrapping). Let � ∈ N be a batch size parameter. Let Π
(0)
BARG

= (BARG0 .Setup,

BARG0 .Prove,BARG0.GenVK,BARG0 .OnlineVerify) be a batch argument with split verification. We construct a new
BARG with split verification as follows:

• Setup(1_, 1<, 1B ): On input the security parameter _, the number of instances<, and a bound on the circuit
size B , the setup algorithm proceeds as follows:

– Sample crsbase ← BARG0 .Setup(1_, 1�, 1B ).
– Let ℓc = ℓc (_, �, B) and ℓvk = ℓvk (_, �, B) be the length of the proofs c and verification keys vk output by

BARG0.Prove(crsbase, ·, ·, ·) and BARG0.GenVK(crsbase, ·), respectively.
– Define the Boolean circuit�top : {0, 1}ℓvk×{0, 1}ℓc → {0, 1} as�top (vk, c) := BARG0.OnlineVerify(vk,�, c).

Let Btop be a bound on the size of the circuit �top.

– Sample crstop ← BARG0.Setup(1_, 1</�, 1Btop ) and output crs = (crsbase, crstop).

We will require that � ≤ <.

• Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)): On input crs = (crsbase, crstop), the Boolean circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈ {0, 1}ℎ , the prove algorithm
proceeds as follows:

– For each 8 ∈ [</�], compute c8 ← BARG0.Prove(crsbase,�, (x(8−1)�+1, . . . , G8�), (w(8−1)�+1, . . . ,w8�)).
– Output the proof c ← BARG0.Prove

(
crstop,�top, (vk1, . . . , vk</�), (c1, . . . , c</�)

)
.

• GenVK(crs, (x1, . . . , x<)): On input the common reference string crs = (crsbase, crstop) and statements x1, . . . , x< ∈
{0, 1}= , the verification key generation algorithm proceeds as follows:

– For each 8 ∈ [</�], compute vk8 ← BARG0.GenVK(crsbase, (x(8−1)�+1, . . . , x8�)).
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– Compute and output vk← BARG0.GenVK(crstop, (vk1, . . . , vk</�)).

• OnlineVerify(vk,�, c): On input a verification key vk and a proof c , output BARG0.OnlineVerify(vk,�top, c).

Theorem 5.2 (Completeness). If Π
(0)
BARG

is complete, then Construction 5.1 is also complete.

Proof. Follows by construction. �

Theorem 5.3 (Somewhere Argument of Knowledge). If Π
(0)
BARG

is a somewhere argument of knowledge, then Construc-

tion 5.1 is also a somewhere argument of knowledge.

Proof. We start by defining the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1<, 1B , 8∗): Write 8∗ = (8∗top − 1)� + 8∗base where 8
∗
top ∈ [</�] and 8∗base ∈ [�]. The trapdoor setup

algorithm samples the CRS components using the corresponding trapdoor setup algorithms:

– Sample (crs∗
base

, tdbase) ← BARG0.TrapSetup(1_, 1�, 1B , 8∗base).
– Sample (crs∗top, tdtop) ← BARG0.TrapSetup(1_, 1</�, 1Btop , 8∗top).
– Output crs∗ = (crs∗

base
, crs∗top) and the trapdoor td = (crstop, 8∗top, tdbase, tdtop).

• Extract(td,�, (x1, . . . , x<), c): On input the trapdoor td = (crstop, 8∗top, tdbase, tdtop), the circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x< ∈ {0, 1}= and a proof c , proceed as follows:

– For each 8 ∈ [</�], compute vk∗8 ← BARG0.GenVK(crs∗top, (x(8−1)�+1, . . . , x8�)).
– Compute cbase ← BARG0 .Extract(tdtop,�top, (vk∗1, . . . , vk∗</�), c),

– Output BARG0 .Extract
(
tdbase,�, (x(8∗top−1)�+1, . . . , x8∗top�), cbase

)
.

We now show the CRS indistinguishability and somewhere extractable in trapdoor mode properties.

Lemma 5.4 (CRS Indistinguishability). If Π
(0)
BARG

is a somewhere argument of knowledge (specifically, it satisfies CRS

indistinguishability), then Construction 5.1 satisfies CRS indistinguishability.

Proof. This is immediate by a standard hybrid argument. Namely, the CRS in Construction 5.1 consists of two

independent common reference strings for Π
(0)
BARG

. �

Lemma 5.5 (Somewhere Extractable in Trapdoor Mode). If Π
(0)
BARG

is a somewhere argument of knowledge (specifically,

if it is somewhere extractable in trapdoor mode), then Construction 5.1 is somewhere extractable in trapdoor mode.

Proof. Take any polynomial < = <(_) and B = B (_). Let 8∗ ← A(1_, 1<, 1B ) and write 8∗ = (8∗top − 1)� + 8∗
base

where 8∗top ∈ [</�] and 8∗
base
∈ [�]. Let � : {0, 1}= × {0, 1}ℎ → {0, 1} be the Boolean circuit, x1, . . . , x< ∈ {0, 1}=

be the set of statements, and c be the proof output by the adversary. Let (crs∗, td) ← TrapSetup(1_, 1<, 1B , 8∗) and
vk∗ ← GenVK(crs∗, (x1, . . . , x<)). Then crs∗ = (crs∗

base
, crs∗top) and td = (tdbase, tdtop) where

• (crs∗
base

, tdbase) ← BARG0.TrapSetup(1_, 1�, 1B , 8∗base);
• (crs∗top, tdtop) ← BARG0 .TrapSetup(1_, 1</�, 1Btop , 8∗top);
• vk∗8 ← BARG0.GenVK

(
crs∗

base
, (x(8−1)�+1, . . . , x8�)

)
for each 8 ∈ [</�]; and

• vk∗ ← BARG0.GenVK
(
crs∗top, (vk∗1, . . . , vk∗</�)

)
.

Suppose OnlineVerify(vk∗,�, c) = 1. Let cbase ← BARG0 .Extract(tdtop,�top, (vk∗1, . . . , vk∗</�), c) be the extracted

proof and let w∗ ← BARG0.Extract
(
tdbase,�, (x(8∗top−1)�+1, . . . , x8∗top�), cbase

)
be the extracted witness. We proceed via

a sequence of claims:
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Claim 5.6. If Π
(0)
BARG

is a somewhere extractable argument of knowledge, then there exists a negligible function negl(·)
such that for all _ ∈ N,

Pr
[
BARG0.OnlineVerify

(
vk∗8∗top

,�, cbase

)
= 1

]
= 1 − negl(_).

Proof. First (crs∗top, tdtop) is sampled using BARG0.TrapSetup with index 8∗top. If BARG0 .OnlineVerify(vk∗,�top, c) =
1 with vk∗ ← BARG0.GenVK(crs∗top, (vk∗1, . . . , vk∗</�)), then �top

(
vk∗8∗top

, cbase
)
= 1 with probability 1 − negl(_).

Otherwise, we have an adversary that breaks somewhere extractability of Π
(0)
BARG

. By definition of �top, this means
BARG0 .OnlineVerify

(
vk∗8∗top

,�, cbase
)
= 1. �

Claim 5.7. If Π
(0)
BARG

is a somewhere extractable argument of knowledge, then there exists a negligible function negl(·)
such that for all _ ∈ N, Pr[� (x8∗ ,w∗) = 1] = 1 − negl(_).

Proof. This follows from the fact that (crsbase, tdbase) is sampled usingBARG0 .TrapSetupwith index 8
∗
base

. By Claim 5.6,
with probability 1 − negl(_), BARG0 .OnlineVerify

(
vk∗8∗top

,�, cbase
)
= 1, where

vk∗8∗top
← BARG0.GenVK(crs∗base, (x(8∗top−1)�+1, . . . , x8∗top�)).

Somewhere extractability of Π
(0)
BARG

then implies that with probability 1 − negl(_),

� (x(8∗top−1)�+8∗base ,w
∗) = � (x8∗ ,w∗) = 1. �

Combining Claims 5.6 and 5.7, we conclude that with probability 1 − negl(_), the extracted witness w∗ satisfies
� (x8∗ ,w∗) = 1 and the claim follows. �

The somewhere argument of knowledge property now follows from Lemmas 5.4 and 5.5. �

Theorem 5.8 (Succinctness). Suppose Π
(0)
BARG

is a succinct BARG with split verification and CRS size ℓ0 (_,<, B) =
<3 · poly(_, B), for some constant 3 ∈ N. Then Construction 5.1 is a succinct BARG with split verification and CRS size

ℓ (_,<, B, �) = �3 · poly(_, B) + (</�)3 · poly(_, log<, B).

Moreover, if ℓ0 (_,<, B) =<3 · poly(_), then ℓ (_,<, B, �) = (�3 + (</�)3 ) · poly(_).

Proof. We verify each of the required properties:

• CRS size: The CRS in Construction 5.1 consists of two common reference strings (crsbase, crstop) for Π (0)BARG
.

The size of crsbase is ℓ0 (_, �, B) and the size of crstop is ℓ0 (_,</�, B ′) where B ′ is a bound on the size of the circuit

�top computing BARG0.OnlineVerify(vk, ·) where vk← BARG0 .GenVK(crsbase, ·). By succinctness of Π
(0)
BARG

,
the size Btop of �top is bounded by some polynomial poly(_, log<, B). Thus,

ℓ (_,<, B, �) = �3 · poly(_, B) + (</�)3 · poly(_, log<, B),

as required. When ℓ0 is independent of B , the same is true for ℓ .

• Proof size: The proof c in Construction 5.1 consists of a proof for Π
(0)
BARG

instantiated with</� instances and
circuits of size at most Btop = poly(_, log<, B). Thus, |c | ≤ poly(_, log(</�), Btop) = poly(_, log<, B).

• Verification key generation time: The verification key generation algorithm GenVK consists of two main
components:

– First, it runs</� copies of BARG0 .GenVK with � instances (of length =) and circuits of size at most B . By

succinctness of Π
(0)
BARG

, each copy runs in time poly(_, �, =), so generating vk1, . . . , vk</� requires time
</� · poly(_, �, =) = poly(_,<,=).

33



– Next, it runs BARG0 .GenVKwith</� instances (of length ℓvk where ℓvk is a bound on the length of the ver-

ification keys vk8 ) and circuits of size at most Btop. Again by succinctness of Π
(0)
BARG

, ℓvk ≤ poly(_, log<,=).
Thus, this step requires time poly(_,</�, ℓvk) = poly(_,<,=).

Since both steps complete in time poly(_,<,=), the claim holds.

• Verification key size: The verification key vk in Construction 5.1 consists of a single verification key forΠ
(0)
BARG

with</� instances and circuits of size at most Btop. By succinctness of Π
(0)
BARG

, |vk| ≤ poly(_, log(</�), Btop) =
poly(_, log<, B).

• Online verification time: The verification algorithm in Construction 5.1 simply runs BARG0.OnlineVerify

with</� instances and a circuit of size Btop. By succinctness of Π
(0)
BARG

, the running time is at most

poly(_, log(</�), Btop) = poly(_, log<, B) . �

Corollary 5.9 (BARG for NP with Short CRS). Suppose there exists a batch argument for NP with split verification and

a CRS of size poly(_,<, B), where< is the number of instances and B is the circuit size. Then, for every constant Y > 0,

there exists a batch argument for NP with split verification and a CRS of size<Y · poly(_, B).

Proof. Let Π
(0)
BARG

be the BARG with CRS size at most<3 ·poly(_, B) for some constant 3 ∈ N. Let : = ⌈log(23/Y)⌉ ∈ N.
For 8 ∈ [:], let Π (8)

BARG
be the BARG formed by applying Construction 5.1 to Π

(8−1)
BARG

with � =
√
<. Let ℓ8 denote the

length of the CRS in Π
(8)
BARG

. Since ℓ0 (_,<, B) =<3 · poly(_, B), we can inductively apply Theorem 5.8 to show that

ℓ8 (_,<, B) =<3/28 · poly(_, log<, B).

Substituting : = ⌈log(23/Y)⌉ into the above, we have that

ℓ: (_,<, B) ≤ <Y/2 · poly(_, log<, B) < <Y · poly(_, B),

since 23/Y is a constant. The other succinctness requirements are preserved since we compose a constant number of
times. �

Corollary 5.10 (BARG for NP with Short CRS from Pairings). For any constant : ≥ 1, if the :-Lin assumption holds in

G1 andG2 with respect to a prime-order group generatorGroupGen (or, alternatively, if the subgroup decision assumption

holds with respect to a composite-order group generator CompGroupGen), then for every constant Y > 0, there exists a

BARG for NP with split verification and a CRS of size<Y · poly(_).

Proof. Follows by combining Construction 4.5 (alternatively, Construction 3.3) with Corollary 5.9. Note that the CRS
in Construction 4.5 (alternatively, Construction 3.3) is independent of the circuit size B (Theorems 3.10 and 4.15). �

Remark 5.11 (Bootstrapping Tradeoffs). The bootstrapping construction from Construction 5.1 and Corollary 5.10
is best viewed as a way to reduce the CRS size dependence on the number of instances< (e.g., from<2 to<Y ) in
exchange for a higher dependence on the security parameter _. In general, the dependence on the security parameter
scales exponentially with the depth of the composition. This is also the reason we are limited to constant-depth
composition. Recursive composition yields a similar blowup (with respect to _) in the proof size, verification key size,
and verification time.

6 Delegation for RAM Programs

In this section, we show how our techniques for constructing BARGs for NP can be leveraged to obtain delega-
tion schemes for RAM programs. We obtain the delegation scheme by invoking the generic compiler by Choud-
huri et al. [CJJ21b] which combines a BARG for index languages with a somewhere extractable commitment scheme.
Choudhuri et al. showed that the Hubácek-Wichs somewhere statistically binding (SSB) hash function [HW15] is
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already a somewhere extractable commitment, thus obtaining an instantiation from LWE. However, the SSB hash
function from DDH [OPWW15] does not satisfy the stronger extractability requirement. In this section (Section 6.2),
we show that our techniques for constructing BARGs can be combined with any SSB hash function to obtain a
somewhere extractable commitment with a long CRS. We then describe an analogous bootstrapping procedure to
reduce the CRS size (Section 6.3). Finally, we combine our somewhere extractable commitment with the BARG for
index languages (Corollary 5.10 and Remark 2.10) to obtain a RAM delegation scheme (Corollaries 6.28 and 6.30).

6.1 Somewhere Extractable Commitments

We begin by recalling the concept of a somewhere statistically binding (SSB) hash function [HW15] and the closely-
related notion of a somewhere extractable commitments from Choudhuri et al. [CJJ21b].

Definition 6.1 (Somewhere Statistically Binding Hash Function [HW15, OPWW15]). A somewhere statistically
binding (SSB) hash function with block length ℓblk, output length ℓhash, and opening length ℓopen is a tuple of efficient
algorithms ΠSSB = (Setup,Hash,Open,Verify) with the following properties:

• Setup(1_, 1ℓblk , # , 8∗) → hk: On input the security parameter _, the block size ℓblk, the message length # ≤ 2_ ,
and an index 8∗ ∈ [# ], the setup algorithm outputs a hashing key hk. Both # and 8∗ are encoded in binary; in
particular, this means that |hk| = poly(_, ℓblk, log# ). We let Σ = {0, 1}ℓblk denote the block alphabet.

• Hash(hk, x) → ℎ: On input the hash key hk and a message x ∈ Σ# , the hash algorithm deterministically outputs
a hash ℎ ∈ {0, 1}ℓhash .

• Open(hk, x, 8) → c8 : On input the hash key hk, an input x ∈ Σ
# and an index 8 ∈ [!], the open algorithm

outputs an opening c8 ∈ {0, 1}ℓopen .

• Verify(hk, ℎ, 8, G8 , c8 ) → 1: On input the hash key hk, a hash value ℎ ∈ {0, 1}ℓhash , an index 8 ∈ [# ], a value
G8 ∈ Σ, and an opening c8 ∈ {0, 1}ℓopen , the verification algorithm outputs a bit 1 ∈ {0, 1} indicating whether it
accepts or rejects.

We require the following properties:

• Correctness: For all security parameters _ ∈ N, all block sizes ℓblk = ℓblk (_), all integers # ≤ 2_ , all indices
8, 8∗ ∈ [# ], and any x ∈ Σ# ,

Pr

[
Verify(hk, ℎ, 8, G8 , c8 ) = 1 :

hk← Setup(1_, 1ℓblk , # , 8∗);
ℎ ← Hash(hk, x);c8 ← Open(hk, x, 8)

]
= 1.

• Index hiding: For a bit 1 ∈ {0, 1} and an adversaryA, define the index hiding game ExptIHA (_,1) as follows:

1. Algorithm A(1_) chooses an integer # and two indices 80, 81 ∈ [# ].
2. The challenger sets hk← Setup(1_, 1ℓblk , # , 81), and gives hk to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is also the output of the experiment.

We require that for all polynomials ℓblk = ℓblk (_) and all efficient adversariesA, there exists a negligible function
negl(·) such that for all _ ∈ N,��Pr[ExptIHA (_, 0) = 1] − Pr[ExptIHA (_, 1) = 1]

�� = negl(_).

• Somewhere statistically binding: We say that a hash key hk is statistically binding for an index 8∗ ∈ [# ] if
there does not exist ℎ ∈ {0, 1}ℓhash , G ≠ G ′ ∈ Σ, and c, c ′ where Verify(hk, ℎ, 8∗, G, c) = 1 = Verify(hk, ℎ, 8∗, G ′, c ′).
We require that for all polynomials ℓblk = ℓblk (_) and all # ≤ 2_ , there exists a negligible function negl(·) such
that for all _ ∈ N and all 8 ∈ [# ],

Pr[hk is statistically binding for index 8 : hk← Setup(1_, 1ℓblk , # , 8)] = 1 − negl(_).
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• Succinctness: The hash length ℓhash, and opening length ℓopen are all fixed polynomials in the security parameter
_ and the block size ℓblk (and independent of # ).

Definition 6.2 (Somewhere Extractable Commitment [CJJ21b, adapted]). A somewhere extractable commitment
scheme with block size ℓblk and locality ! is a tuple of efficient algorithms ΠSECom = (Setup,Commit,Open,Verify)
with the following properties:

• Setup(1_, 1ℓblk , 1# , 1!) → (crs, vk): On input the security parameter _ ∈ N, the block size ℓblk, the number
of blocks # , and the locality parameter !, the setup algorithm outputs a common reference string crs and a
verification key vk.

• Commit(crs, v) → (2, g): On input the common reference string crs, and a vector v ∈ ({0, 1}ℓblk )# , the commit
algorithm outputs a commitment 2 and a state g .

• Open(crs, g, 8) → c8 : On input the common reference string crs, the commitment state g , and an index 8 , the
open algorithm outputs a local opening c8 .

• Verify(vk, 2, 8, E, c) → 1: On input the verification key vk, the commitment 2 , an index 8 ∈ [# ], a block
E ∈ {0, 1}ℓblk , and a proof c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, ΠSECom should satisfy the following properties:

• Correctness: For all security parameters _, block sizes ℓblk, message lengths # , locality parameters !, messages
v = (E1, . . . , E# ) ∈ ({0, 1}ℓblk )# , and indices 8 ∈ [# ],

Pr

[
Verify(vk, 2, 8, E8 , c8 ) = 1 :

(crs, vk) ← Setup(1_, 1ℓblk , 1# , 1!);
(2, g) ← Commit(crs, v);c8 ← Open(crs, g, 8)

]
= 1.

• Somewhere extractable: There exists a pair of efficient algorithms (TrapSetup, Extract) with the following
properties:

– TrapSetup(1_, 1ℓblk , 1# , 1!, () → (crs∗, vk∗, td): On input the security parameter _, the block size ℓblk, the
number of blocks # , the locality parameter !, and a set ( ⊆ [# ], the trapdoor setup algorithm outputs a
common reference string crs∗, verification key vk∗, and an extraction trapdoor td.

– Extract(td, 2, 8) → v: On input the extraction trapdoor td, a commitment 2 , and an index 8 ∈ [# ], the
extraction algorithm either outputs a block v ∈ {0, 1}ℓblk or a special symbol v = ⊥. The extraction
algorithm is deterministic.

We moreover require the following two properties:

– CRS indistinguishability: For integers ℓblk, # , ! ∈ N, a bit 1 ∈ {0, 1}, and an adversary A, define the
CRS indistinguishability experiment ExptCRSA (_, ℓblk, # , !, 1) as follows:
1. Algorithm A(1_, 1ℓblk , 1# , 1!) chooses a set ( ⊆ [# ] of size at most !.

2. If 1 = 0, the challenger samples (crs, vk) ← Setup(1_, 1ℓblk , 1# , 1!). If 1 = 1, it samples (crs, vk, td) ←
TrapSetup(1_, 1ℓblk , 1# , 1!, (). It gives (crs, vk) to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is also the output of the experiment.

We require that for all efficient adversaries A, all polynomials ℓblk = ℓblk (_), # = # (_), and ! = !(_),
there exists a negligible function negl(·) such that for all _ ∈ N,��Pr[ExptCRSA (_, ℓblk, # , !, 0) = 1] − Pr[ExptCRSA (_, ℓblk, # , !, 1) = 1]

�� = negl(_).

– Somewhere extractable in trapdoor mode: For integers ℓblk, # , ! ∈ N and an adversary A, define the
somewhere extractability game as follows:

1. Algorithm A(1_, 1ℓblk , 1# , 1!) chooses a set ( ⊆ [# ] of size at most !.
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2. The challenger samples (crs∗, vk∗, td) ← TrapSetup(1_, 1ℓblk , 1# , 1!, () and gives (crs∗, vk∗) to A.

3. Algorithm A outputs a commitment 2 , a set of blocks {E8 }8∈( , and a set of openings {c8 }8∈( .
4. The output of the experiment is 1 = 1 if there exists 8 ∈ ( such that Verify(vk∗, 2, 8, E8 , c8 ) = 1 and

Extract(td, 2, 8) ≠ E8 . Otherwise, the output is 1 = 0.

We require that for all adversaries A, all polynomials ℓblk = ℓblk (_), # = # (_), and ! = !(_), there exists
a negligible function negl(·) such that for all _ ∈ N, Pr[1 = 1] = negl(_) in the above experiment.

• Succinctness: There exists a universal polynomial poly(·, ·, ·, ·) such that for all _ ∈ N, ℓblk = ℓblk (_), # = # (_),
! = !(_), vectors v = (E1, . . . , E# ) ∈ ({0, 1}ℓblk )# , indices 8 ∈ [# ], all pairs (crs, vk) in the support of
Setup(1_, 1ℓblk , 1# , 1!), all pairs (2, g) in the support Commit(crs, v), and all openings c8 in the support of
Open(crs, g, 8), the following properties hold:

– Succinct verification key: |vk| = poly(_, ℓblk, !, log# ).
– Succinct commitment: |2 | = poly(_, ℓblk, !, log# ).
– Succinct local opening: |c8 | = poly(_, ℓblk, !, log# ).
– Succinct verification: The running time of Verify(vk, 2, 8, E8 , c8 ) is poly(_, ℓblk, !, log# ). This is implied

by the previous properties. Namely, the length of the input to Verify is poly(_, ℓblk, !, log# ), succinct
verification holds as long as the running time of Verify is polynomial in its input length (i.e., it is an
efficient algorithm).

Remark 6.3 (Fixed Parameter Variants [OPWW15]). Definition 6.1 allows for a flexible input length # and block size
ℓblk, and these parameters are provided as input to the Setup algorithm. As described in Okamoto et al. [OPWW15, §2],
we can also consider variants of Definition 6.1 with a fixed input length # and/or a fixed block size ℓblk. Analogously,
we can consider variants of Definition 6.2 with a fixed locality parameter ! and/or a fixed block size ℓblk.

Remark 6.4 (Separating the Verification Key from CRS). In the definition of somewhere extractable commitments of
Choudhuri et al. [CJJ21b], Setup is required to output a single succinct CRS that is used by the Commit, Open, and
Verify algorithms. In this work, we consider a relaxed notion where Setup outputs a common reference string crs

for generating and opening commitments and a separate (but still public) verification key is used to check openings.
Importantly, for the primary application to delegation for RAM programs [CJJ21b], it is necessary that the size of the
verification key and the running time of the verification algorithm be succinct. Less critical is the size of the CRS:
namely, if we combine a somewhere extractable commitment scheme with a long CRS (e.g., |crs| = poly(_, ℓblk, !, # ))
with a BARG for index languages, then we obtain a delegation scheme for RAM programs where the CRS size is long
(scales polynomially with the running time of the RAM program). However, both the proof size and the verification
cost still scale polylogarithmically with the running time of the RAM program. This is conceptually similar to the
notion of a preprocessing succinct argument for NP [Gro10, Lip13, BCCT13, GGPR13, BCI+13], where the CRS is
long, but the online verification costs (as measured in the proof size and the verification complexity) is succinct.

Remark 6.5 (Extending the Block Size and Locality). Let Π
(0)
SECom

be a somewhere extractable commitment scheme
with block size 1. We can extend this to obtain a somewhere extractable commitment scheme ΠSECom with arbitrary

(polynomial) block size ℓblk by concatenating ℓblk copies of the base scheme Π
(0)
SECom

. Specifically, a commitment 2 to a

vector v ∈ ({0, 1}ℓblk )# consists of ℓblk commitments (21, . . . , 2ℓblk ) under the base scheme, where the 9 th commitment
2 9 is a commitment to the 9 th bit of each block (E1, 9 , . . . , E#,9 ). An opening to block 8 ∈ [# ] consists of openings
(c1, . . . , cℓblk ) where c 9 is an opening of 2 9 to bit E8, 9 . The size of the verification key, commitment, and opening
increase by a factor of ℓblk over that of the base scheme, which satisfies the required succinctness requirements.

A similar approach suffices for extending a somewhere extractable commitment scheme with locality param-
eter 1 (and arbitrary block size) to one with arbitrary (polynomial) locality parameter !. Very briefly, the some-
where extractable commitment with locality parameter ! consists of ! independent copies of the base scheme. Let
(crs1, vk1), . . . , (crs!, vk!) denote the common reference strings and verification keys associated with the ! indepen-
dent copies of the base scheme. A commitment to a vector v ∈ ({0, 1}ℓblk )= consists of ! commitments 21, . . . , 2! where
28 is a commitment to v with respect to (crs8 , vk8 ). To open the commitment (21, . . . , 2!), the committer provides
! openings c1, . . . , c! , and the verifier accepts only if all of the ! copies accept. To sample a trapdoor CRS for
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indices 91, . . . , 9! ∈ [# ], we sample (crs∗8 , vk∗8 , td8 ) ← TrapSetup(1_, 1ℓblk , 1# , 1!, { 98 }) for each 8 ∈ [!]. Namely, the
8th commitment enables extraction of block 98 of the message. CRS indistinguishability and somewhere extractability
follow by a standard hybrid argument. Extending from 1-locality to !-locality increases the length of the verification
key, commitment, and local opening by a factor of !.

6.2 Somewhere Extractable Commitments from Pairings

We show how to construct a somewhere extractable commitment scheme with block size ℓblk = 1 and locality
parameter ! = 1 by adapting the techniques we used to construct a BARG (see Construction 4.5). We can extend to
larger block sizes and locality parameters by concatenation (see Remark 6.5). In particular, the commitment scheme
the prover uses to commit to the wire values naturally supports succinct local openings. Somewhere extractability in
turn follows from a similar proof strategy as the proof of Theorem 4.7. We can view our construction as a non-hiding
version of the Catalano-Fiore vector commitment scheme [CF13] (which also publishes cross-terms in the CRS to
support succinct local openings) that satisfies a somewhere extractable property. The original Catalano-Fiore scheme
does not support extraction on any index.

The one remaining issue is that the resulting verification key scales linearly with the length of the vector. However,
we observe that verifying an opening to an index 8∗ ∈ [# ] only requires knowledge of a constant number of group
elements from the verification key. We can then use the optimization suggested by Catalano and Fiore of moving
the verification key into the proving key, and having the prover provide the verification component as part of the
commitment opening. Of course, we now need to ensure robustness against a dishonest prover. The approach in
Catalano and Fiore is to include signatures to authenticate the verification components, and the verifier would first
check the signature before validating the commitment opening. In our setting, we require that the commitment be
statistically binding (indeed, extractable) at a particular index; to realize this, we replace the signature with an SSB
hash over the verification components. By sampling the SSB hash key to bind at index 8∗, the prover is forced to
provide the correct verification component for index 8∗. We give the full construction and analysis below.

Construction 6.6 (Somewhere Extractable Commitment from Pairings). Let : ∈ N and let ΠSSB = (SSB.Setup,
SSB.Hash, SSB.Open, SSB.Verify) be a somewhere statistically binding hash function. We construct a somewhere
extractable commitment with a fixed block size ℓblk = 1 and a fixed locality parameter ! = 1 (see Remark 6.3).

• Setup(1_, 1# ): On input the security parameter _ and the message length # , the setup algorithm does the
following:

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matricesM, M̂
r← Z(:+1)×:? .

– For each 8 ∈ [# ], sample " 8 , "̂ 8
r← Z:? and compute a8 ← M" 8 , â8 ← M̂"̂ 8 . Let a←

∑
8∈[# ] a8 .

– For each 8, 9 ∈ [# ] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and let B8, 9 ← M(" 8 "̂

T
9 + R8, 9 ) ∈ Z

(:+1)×:
? and

B̂8, 9 ← −M̂R
T
8, 9 ∈ Z

(:+1)×:
? .

– Let ℓblk (_) be a bound on the number of bits needed to represent an element of G:+12 . Sample a hash key
hk← SSB.Setup(1_, 1ℓblk , # , 1) and compute ℎ ← SSB.Hash(hk, ( [â1]2, . . . , [â# ]2)).

– Output the verification key vk =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1) and the common reference string crs =(

vk, {[a8 ]1, [â8 ]2}8∈[# ], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9
)
.

• Commit(crs, v): On input crs =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1, {[a8 ]1, [â8 ]2}8∈[# ], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
and a vector

v = (E1, . . . , E# ) ∈ {0, 1}# , the commit algorithm computes [u]1 ←
∑

8∈[# ] E8 [a8 ]1. It outputs the commitment
2 = [u]1 and the state g = v).

• Open(crs, g, 8): On input crs =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1, {[a8 ]1, [â8 ]2}8∈[# ], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
, the state g =

v ∈ {0, 1}# , and the index 8 ∈ [# ], the open algorithm first computes cSSB ← Open(hk, ( [â1]2, . . . , [â# ]2), 8).
Next, it computes

[W]1 =
∑
9≠8

(E 9 − E8 ) [B9,8 ]1 and [Ŵ]2 =
∑
9≠8

(E 9 − E8 ) [B̂9,8 ]2.
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It outputs the opening c = ( [â8 ]2, cSSB, [W]1, [Ŵ]2).

• Verify(vk, 2, 8, E, c): On input the verification key vk = (G, hk, ℎ, [M]1, [M̂]2, [a]1), commitment 2 = [u]1, index
8 ∈ [# ], bit E ∈ {0, 1}, and an opening c = ( [ã]2, cSSB, [W]1, [Ŵ]2), the verification algorithm accepts if the
following two properties hold:

– SSB.Verify(hk, ℎ, 8, [ã]2, cSSB) = 1.

– [u]1 · [ãT]2 =
(
E [a]1 · [ãT]2) +

(
[M]1 · [ŴT]2

)
+

(
[W]1 · [M̂T]2

)
.

Theorem 6.7 (Correctness). If ΠSSB is correct, then Construction 6.6 is correct.

Proof. Fix a security parameter _ and message length # . Take any vector v = (E1, . . . , E# ) ∈ {0, 1}# and index
8∗ ∈ [# ]. Let (crs, vk) ← Setup(1_, 1# ), (2, g) ← Commit(crs, v) and c8∗ ← Open(crs, g, 8∗). By construction, we
can write

vk =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1) and crs =

(
vk, {[a8 ]1, [â8 ]2}8∈[# ], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
,

2 = [u]1 and c8∗ = ( [â8 ]2, cSSB, [W]1, [Ŵ]2). Consider each of the verification relations in Verify(vk, 2, 8∗, E8∗ , c8∗ ):

• By construction, the hash key hk is generated using SSB.Setup, ℎ is a hash of ( [â1]2, . . . , [â# ]2), and cSSB is an
opening of ℎ to [â8∗ ]2 at index 8∗. Correctness of ΠSSB implies that SSB.Verify(hk, ℎ, 8∗, [â8∗ ]2, cSSB) = 1.

• By construction, u =
∑

8∈[# ] E8 [a8 ]1. Thus, we can write

uâ
T
8∗ =

∑
8∈[# ]

E8a8 â
T
8∗ = E8∗a8∗ â

T
8∗ +

∑
8≠8∗

E8a8 â
T
8∗

E8∗aâ
T
8∗ =

∑
8∈[# ]

E8∗a8 â
T
8∗ = E8∗a8∗ â

T
8∗ +

∑
8≠8∗

E8∗a8 â
T
8∗

Next, by the same calculation as Eq. (4.1) from the proof of Theorem 4.6, for all 8 ≠ 9 ,

MB̂
T
8, 9 + B8, 9M̂

T
= −MR8, 9M̂

T +M(" 8 "̂
T
9 + R8, 9 )M̂T

= M" 8 "̂
T
9 M̂

T
= a8 â

T
9 .

In particular, this means that

MŴ
T +WM̂

T
=

∑
8≠8∗
(E8 − E8∗ ) (MB̂

T
8,8∗ + B8,8∗M̂

T) =
∑
8≠8∗
(E8 − E8∗ )a8 âT8∗ .

Combining the above relations, we have

E8∗aâ
T
8∗ +MŴ

T + ŴM̂
T
= E8∗a8∗ â

T
8∗ +

∑
8≠8∗
(E8∗ + E8 − E8∗ )a8 âT8∗ = E8∗a8∗ â

T
8∗ +

∑
8≠8∗

E8a8 â
T
8∗ = uâ

T
8∗ .

Thus, the verifier accepts. �

Theorem 6.8 (Somewhere Extractable). If the :-Lin assumption holds in G1 and G2 with respect to GroupGen and

ΠSSB is a somewhere statistically binding hash function, then Construction 6.6 is somewhere extractable.

Proof. We start by defining the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1# , 8∗): On input the security parameter _, message length # , and index 8∗ ∈ [# ] (recall that
we are considering the special case of locality ! = 1 so the set ( contains just a single index 8∗), the trapdoor
setup algorithm samples the common reference string and verification key using the following procedure (we
highlight the differences from Setup in green):

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matricesM, M̂
r← Z(:+1)×:? .
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– For 8 ≠ 8∗, sample " 8 , "̂ 8
r← Z:? and let a8 ← M" 8 , â8 ← M̂"̂ 8 . Let 0 ≠ z ∈ Z:+1? be any non-zero vector

such that zTM = 0. SinceM has rank at most : , such a z always exists and can be efficiently computed.

– Sample a8∗ , â8∗
r← Z:+1? . Let a← ∑

8∈[# ] a8 .

– For each 8, 9 ∈ [# ] where 8 ≠ 9 , sample R8, 9
r← Z:×:? . Construct B8, 9 and B̂8, 9 for 8 ≠ 9 as follows:

B8, 9 =

{
a8 "̂

T
9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂R

T
8, 9 9 ≠ 8∗

−M̂R
T
8, 9 + â9" T

8 9 = 8∗.

– Let ℓblk (_) be a bound on the number of bits needed to represent an element of G:+12 . Sample a hash key
hk← SSB.Setup(1_, 1ℓblk , # , 8∗) and compute ℎ ← SSB.Hash(hk, ( [â1]2, . . . , [â# ]2)).

– Output the verification key vk∗ =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1), the common reference string crs∗ =(

vk∗, {[a8 ]1, [â8 ]2}8∈[# ], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9
)
, and the trapdoor td = (8∗, z).

• Extract(td, 2, 8) → E : On input the extraction trapdoor td = (8∗, z), a commitment 2 = [u]1, and an index 8 ,
the extraction algorithm outputs ⊥ if 8 ≠ 8∗. If 8 = 8∗, then extraction algorithm outputs 0 if zT [u]1 = 0 and 1

otherwise.

We now show the CRS indistinguishability and somewhere extractability properties.

Lemma 6.9 (CRS Indistinguishability). If the :-Lin assumption holds in G1 and G2 with respect to GroupGen and

ΠSSB satisfies index hiding, then Construction 4.5 satisfies CRS indistinguishability.

Proof. Take any message length # = # (_). We proceed via a hybrid argument:

• Hyb0: This is the real distribution ExptCRSA (_, # , 0). Specifically, at the beginning of the security game, the
adversary A chooses an index 8∗ ∈ [# ]. The challenger then samples (crs, vk) ← Setup(1_, 1# ) and gives
(crs, vk) to A. Algorithm A then outputs a bit 1 ′ ∈ {0, 1} which is the output of the experiment.

• Hyb1: Same as Hyb0 except the challenger samples the hash key hk using the procedure in TrapSetup: hk←
SSB.Setup(1_, 1ℓblk , # , 8∗). All of the other components of crs and vk are sampled as in Hyb0.

• Hyb2: This is the trapdoor distribution ExptCRSA (_, # , 1). Namely, the challenger samples a8∗ , â8∗
r← Z:+1? and

defines matrices B8, 9 , B̂8, 9 according to the specification of TrapSetup.

For an adversary A, we write Hyb8 (A) to denote the output of experiment Hyb8 (A) with algorithm A. We now
show that each adjacent pair of hybrid experiments are computationally indistinguishable.

Claim 6.10. If ΠSSB satisfies index hiding, then for all efficient adversaries A, there exists a negligible function negl(·)
such that for all _ ∈ N,

��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(_).

Proof. This is immediate by index hiding since the only difference between Hyb0 and Hyb1 is that hk binds to
index 0 in Hyb0 and to index 8∗ in Hyb1. More formally, suppose there exists an efficient algorithm A such that��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]

�� = Y for some non-negligible Y. We use A to construct an algorithm B that
breaks index hiding of ΠSSB (for block size ℓblk):

1. Algorithm B starts running A to obtain an index 8∗ ∈ [# ]. It sends indices 0 and 8∗ as its challenge pair to the
index hiding challenger.

2. The index hiding challenger replies to B with a hash key hk. Algorithm B samples the other components of
crs and vk exactly as described in Hyb0 and Hyb1. It gives crs and vk to A and outputs whatever A outputs.

By construction, if hk binds to index 0, then B perfectly simulates Hyb0, and if hk binds to index 8∗, then B perfectly
simulates Hyb1. Thus, algorithm B breaks index hiding with the same advantage Y. �
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Claim 6.11. If the :-Lin assumption holds in G1 and G2 with respect to GroupGen, then for all efficient adversaries A,

there exists a negligible function negl(·) such that for all _ ∈ N,
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� = negl(_).

Proof. First, the hash key hk is identically distributed in the two experiments and independent of the group elements
in the CRS and verification key. The hash value ℎ is a deterministic function of hk and the group elements appearing
in the CRS. Thus, it suffices to argue that the distribution of group elements in the CRS and verification key is
computationally indistinguishable between Hyb1 and Hyb2. This now follows by the same argument as the proof of
Lemma 4.8. In particular, the group elements in the CRS and verification key of Construction 6.6 are exactly the same
as those in Construction 4.5; this is also true for the distribution of the trapdoor CRS and verification key of the two
schemes. �

CRS indistinguishability now follows by a standard hybrid argument. �

Lemma 6.12 (Somewhere Extractable in Trapdoor Mode). If ΠSSB is correct and somewhere statistically binding, then

Construction 6.6 satisfies extraction correctness.

Proof. Take any polynomial # = # (_). Take any adversaryA for the somewhere extractability game and let 8∗ ∈ [# ]
be the index chosen by A. Let (crs∗, vk∗, td) ← TrapSetup(1_, 1# , 8∗). We write

vk∗ =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1) and crs∗ =

(
vk∗, {[a8 ]1, [â8 ]2}8∈[# ], {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
.

Let 2 = [u]1, E ∈ {0, 1}, and c = ( [ã]2, cSSB, [W]1, [Ŵ]2) be the commitment, value, and opening, respectively, chosen
by A. Suppose Verify(vk∗, 2, 8∗, E, c) = 1. Let E ′ ← Extract(td, 2, 8∗). We claim that E = E ′. We first show that under
the somewhere statistically binding property of ΠSSB, ã = â8∗ with overwhelming property.

Claim 6.13. Suppose ΠSSB is correct and somewhere statistically binding. Then, there exists a negligible function negl(_)
such that for all _ ∈ N, Pr[ã ≠ â8∗ ] = negl(_), where the probability is taken over the random coins of TrapSetup.

Proof. Since Verify(vk∗, 2, 8∗, E, c) = 1, this means that SSB.Verify(hk, ℎ, 8∗, [ã]2, cSSB) = 1. By construction of
TrapSetup, hk is generated using SSB.Setup and moreover, ℎ is the hash of ( [â1]2, . . . , [â# ]2) under hk. Let c8∗ ←
SSB.Open(hk, ( [â1]2, . . . , [â# ]2), 8∗). Since ΠSSB is correct, this means that SSB.Verify(hk, ℎ, 8∗, [â8∗ ]2, c8∗ ) = 1. Then,
if ã ≠ â8∗ , we conclude that hk is not statistically binding at index 8∗. Since ΠSSB is somewhere statistically binding,
this event can only happen with negligible probability. �

The rest of the proof now follows a similar structure as the proof of Lemma 4.12. In particular, the group elements in
crs∗ and vk∗ are distributed exactly as in the trapdoor setup algorithm from the proof of Theorem 4.7. As demonstrated
in Claim 6.13, ã = â8∗ with overwhelming probability. Moreover, by Claim 4.13 (i), we can write u = ba8∗ +Mt for some
b ∈ Z? and t ∈ Z:? . In addition, let # =

∑
8≠8∗ " 8 . Then a =

∑
8∈[<] a8 = a8∗ +

∑
8≠8∗ M" 8 = a8∗ +M# . Now, we write

uã
T
= uâ

T
8∗ = ba8∗ â

T
8∗ +Mtâ

T
8∗

aã
T
= aâ

T
8 = (a8∗ +M#)âT8∗ = a8∗ â

T
8∗ +M# âT8∗ .

We now consider the verification relations under the projection operator from Claim 4.13 (ii). By Claim 4.13 (iii), (iv),
we can write

proj(uãT)︸     ︷︷     ︸
ba8∗ â8∗

= proj(EaãT)︸       ︷︷       ︸
Ea8∗ â8∗

+ proj(MŴ
T)︸        ︷︷        ︸

0

+ proj(WM̂
T)︸        ︷︷        ︸

0

.

By Claim 4.13 (i), a8∗ â
T
8∗ ≠ 0 with overwhelming probability, so we conclude that b = E . This means that u = Ea8∗ +Mt.

Consider now the value of E ′ output by Extract(td, [u]1, 8∗) where td = (8∗, z). By construction, z ≠ 0 and z
T
M = 0.

Next, a8∗ is uniform over Z:+1? and independent of z, so with overwhelming probability, zTa8∗ ≠ 0. This means that

z
T
u = EzTa8∗ + zTMt = EzTa8∗ .

Thus, zTu is zero if and only if E = 0. By definition of Extract, E ′ = E , as required. �
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Somewhere extractability now follows from Lemmas 6.9 and 6.12. �

Theorem 6.14 (Succinctness). Let : ∈ N be a constant. If ΠSSB is succinct, then Construction 6.6 is succinct.

Proof. Take any security parameter _, message length # , vector v ∈ {0, 1}# , and index 8 ∈ [# ]. Suppose we
sample (crs, vk) ← Setup(1_, 1# ), (2, g) ← Commit(crs, v) and c8 ← Open(crs, g, 8). By construction, we can write
vk = (G, hk, ℎ, [M]1, [M̂]2, [a]1), 2 = [u]1 and c8 = ( [â8 ]2, cSSB, [W]1, [Ŵ]2). We consider each of the requirements:

• Succinct verification key: The description G output by GroupGen(1_) has length poly(_). Moreover, the
number of bits needed to encode elements of G1,G2 are also poly(_). For constant : , the encodings [M]1 and
[M̂]2 and [a]1 each contain of a constant number of group elements, and can be represented using poly(_) bits.

Next, the hash key hk output by SSB.Hash has size |hk| = poly(_, ℓblk, log# ). As noted above, ℓblk = poly(_)
so |hk| = poly(_, log# ). By succinctness of ΠSSB, |ℎ | = poly(_, ℓblk) = poly(_). Putting everything together,
|vk| = poly(_, log# ), as required.

• Succinct commitment: The commitment 2 = [u]1 ∈ G:+11 consists of : + 1 group elements. For constant : ,
this means |2 | = poly(_).

• Succinct opening: For constant : , the components [â8 ]2, [W]1, and [Ŵ]2 in c8 contain a constant number
of group elements: : (: + 1) elements in G1 and (: + 1)2 elements in G2. By succinctness of ΠSSB, |cSSB | =
poly(_, ℓblk) = poly(_). Thus, |c8 | = poly(_).

• Succinct verification: Verify is an efficient algorithm (i.e., its running time is polynomial in its input length),
so succinct verification follows by the previous properties. �

Combining Theorems 6.7, 6.8 and 6.14, we obtain the following corollary:

Corollary 6.15 (Somewhere Extractable Commitment). If the :-Lin assumption holds in G1 and G2 with respect to

GroupGen (for any constant : ≥ 1), and ΠSSB is a somewhere statistically binding hash function, then Construction 6.6

is a somewhere extractable commitment scheme with block size 1, locality 1, and CRS size # 2 · poly(_, log# ), where #
is the message length.

6.3 Somewhere Extractable Commitments with a Short CRS

The size of the CRS in Construction 6.6 has size # 2 · poly(_, log# ), where # is the bit-length of the input. In
this section, we show that a similar type of bootstrapping procedure as that described in Section 5 for the case of
BARGs can be used to obtain a somewhere extractable commitment scheme with a CRS whose size is sublinear in # .
Specifically, for any constant Y > 0, we construct a somewhere extractable commitment with CRS size # Y · poly(_).

Similar to the bootstrapping procedure from Section 5, we start by describing a two-tiered construction. For a
batch size �, we break the input vector v ∈ {0, 1}# into # /� blocks v1, . . . , v# /� ∈ {0, 1}� , each of length �. Let
28 be a commitment to the 8th block v8 . Next, we construct a commitment to the vector (21, . . . , 2# /�) to obtain a
commitment 2top. To open a commitment at a particular index 8 ∈ [# ], we first write 8 = �(8top − 1) + 8base where
8top ∈ [# /�] and 8base ∈ [�]. Then, we open 2top to 28top (at index 8top) and open 28top at index 8base. It is not difficult to
see that if the base commitment scheme satisfies succinctness, then the two-tiered scheme is also succinct. Moreover,
since the commitments in the base scheme are succinct (|28 | = poly(_, log�)), the two-tiered scheme only needs to
commit to vectors of length � and # /� · poly(_, log�). By setting the batch size to � =

√
# , we effectively reduce

the size of the CRS from # 2 · poly(_, log# ) to # · poly(_, log# ). By recursively composing (a constant number of
times), we obtain a somewhere extractable commitment with CRS size # Y for any constant Y > 0. We give the full
construction below:

Construction 6.16 (Somewhere Extractable Commitment Bootstrapping). Let � ∈ N be a batch size parameter. Let

Π
(0)
SECom

= (SECom0.Setup, SECom0.Commit, SECom0 .Open, SECom0.Verify) be a somewhere extractable commit-
ment scheme with locality ! = 1. We construct a new somewhere extractable commitment scheme with locality ! = 1

as follows:
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• Setup(1_, 1ℓblk , 1# ): On input the security parameter _, the block size ℓblk, and the number of blocks # , the
setup algorithm does the following:

– Sample (crsbase, vkbase) ← SECom0.Setup(1_, 1ℓblk , 1�).
– Let ℓ2 = ℓ2 (_, ℓblk, �) be the length of the commitments output by SECom0.Commit(crsbase, ·).
– Sample (crstop, vktop) ← SECom0.Setup(1_, 1ℓ2 , 1# /�).
– Output crs = (crsbase, crstop) and vk = (vkbase, vktop).

We will require that � ≤ # .

• Commit(crs, v): On input crs = (crsbase, crstop) and a vector v = (E1, . . . , E# ), the commit algorithm proceeds
as follows:

– For each 8 ∈ [# /�], compute a commitment (28 , g8 ) ← SECom0.Commit(crsbase, (E (8−1)�+1, . . . , E8�)).
– Compute (2top, gtop) ← SECom0 .Commit(crstop, (21, . . . , 2# /�)).
– Output the commitment 2 = 2top and the state g = (21, . . . , 2# /�, g1, . . . , g# /�, gtop).

• Open(crs, g, 8): On input crs = (crsbase, crstop), a state g = (21, . . . , 2# /�, g1, . . . , g# /�, gtop), and an index
8 = �(8top − 1) + 8base where 8top ∈ [# /�] and 8base ∈ [�], the open algorithm computes openings ctop ←
SECom0 .Open(crstop, gtop, 8top) and cbase ← SECom0.Open(crsbase, g8top , 8base) and outputs c = (28top , ctop, cbase).

• Verify(vk, 2, 8, E, c): On input the verification key vk = (vkbase, vktop), a commitment 2 = 2top, an index 8 ∈ [# ],
a value E ∈ {0, 1}ℓblk , and a proof c = (2 ′, ctop, cbase), the verification algorithm writes 8 = �(8top − 1) + 8base
where 8top ∈ [# /�] and 8base ∈ [�]. The algorithm accepts (with output 1) if all of the following properties
hold:

– SECom0 .Verify(vktop, 2top, 8top, 2 ′, ctop) = 1; and

– SECom0 .Verify(vkbase, 2 ′, 8base, E, cbase) = 1.

Otherwise, the verification algorithm outputs 0.

Theorem 6.17 (Correctness). If Π
(0)
SECom

is correct, then Construction 6.6 is correct.

Proof. Correctness follows by construction. Concretely, take any security parameter _ ∈ N and polynomials ℓblk =
ℓblk (_), # = # (_). Take any vector v = (E1, . . . , E# ) ∈ ({0, 1}ℓblk )# and index 8 ∈ [# ]. Write 8 = �(8top − 1) + 8base
where 8top ∈ [# /�] and 8base ∈ [�]. Let (crs, vk) ← Setup(1_, 1ℓblk , 1# ), (2, g) ← Commit(crs, v), c ← Open(crs, g, 8).
We can write crs = (crsbase, crstop), vk = (vkbase, vktop), g = (21, . . . , 2# /�, g1, . . . , g# /�, gtop), and c = (28top , ctop, cbase).
We show that both verification relations in Verify(vk, 2, 8, E8 , c) hold:

• First, 2top is a commitment to (21, . . . , 2# /�) with respect to (crstop, vktop) and ctop is an opening of 2top to index

8top. By correctness of Π
(0)
SECom

, SECom0.Verify(vktop, 2top, 8top, 28top , ctop) = 1.

• Next, 28top is a commitment to (E (8top−1)�+1, . . . , E8top�) with respect to (crsbase, vkbase) and cbase is an opening of
28top to index 8base. By definition, E (8top−1)�+8base = E8 , so SECom0.Verify(vkbase, 2base, 8base, E8 , cbase) = 1. �

Theorem 6.18 (Somewhere Extractable). If Π
(0)
SECom

is somewhere extractable, then Construction 6.16 is somewhere

extractable.

Proof. We start by defining the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1ℓblk , 1# , 8∗): On input the security parameter _, block length ℓblk, the number of blocks # , and
an index 8∗ ∈ [# ], the trapdoor setup algorithm writes 8∗ = �(8∗top − 1) + 8∗base and then samples the following:

– (crs∗
base

, vk∗base, tdbase) ← SECom0.TrapSetup(1_, 1ℓblk , 1�, 8∗base); and
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– (crs∗top, vk∗top, tdtop) ← SECom0.TrapSetup(1_, 1ℓ2 , 1# /�, 8∗top).

It outputs crs∗ = (crs∗
base

, crs∗top), vk∗ = (vk∗base, vk
∗
top), and td = (8∗, tdbase, tdtop).

• Extract(td, 2, 8): On input the trapdoor td = (8∗, tdbase, tdtop), a commitment 2 and an index 8 ∈ [# ], if 8 ≠ 8∗,
the extraction algorithm outputs ⊥. Otherwise, it computes 2base ← SECom0.Extract(tdtop, 2, 8∗top) and outputs
E ← SECom0.Extract(tdbase, 2base, 8∗base) where 8

∗
= �(8∗top − 1) + 8∗base.

We now show that the CRS indistinguishability and somewhere extractability properties hold:

Lemma 6.19 (CRS Indistinguishability). If Π
(0)
SECom

satisfies CRS indistinguishability, then Construction 6.16 also satisfies

CRS indistinguishability.

Proof. This follows by a standard hybrid argument. First, (crsbase, vkbase) and (crstop, vktop) are sampled indepen-
dently in Construction 6.16, as is the case in the trapdoor setup algorithm. In the real setup, (crsbase, vkbase) is
sampled by computing SECom0.Setup(1_, 1ℓblk , 1�) and in the trapdoor setup algorithm, they are sampled by com-
puting SECom0.TrapSetup(1_, 1ℓblk , 1�, 8∗base). These two distributions are computationally indistinguishable by CRS

indistinguishability of Π
(0)
SECom

. A similar argument applies to the distribution of (crstop, vktop). �

Lemma 6.20 (Somewhere Extractable in Trapdoor Mode). If Π
(0)
SECom

is somewhere extractable in trapdoor mode, then

Construction 6.16 is somewhere extractable in trapdoor mode.

Proof. Fix polynomials ℓblk = ℓblk (_) and # = # (_). Let 8∗ ∈ [# ] be the index chosen by the adversary. Let
(crs∗, vk∗, td) ← TrapSetup(1_, 1ℓblk , 1# , 8∗). We write vk∗ = (vk∗base, vk

∗
top) and 8∗ = �(8∗top − 1) + 8∗

base
. Take any

commitment 2 , string E ∈ {0, 1}ℓblk , and proof c = (2 ′, ctop, cbase). Suppose that Verify(vk∗, 2, 8∗, E, c) = 1. Let 2base ←
SECom0.Extract(tdtop, 2, 8∗top) and E ′← SECom0.Extract(tdbase, 2base, 8∗base). It suffices to show that with overwhelm-
ing probability, E = E ′. Since Verify(vk∗, 2, 8∗, E, c) outputs 1, we have that SECom0.Verify(vk∗top, 2, 8∗top, 2 ′, ctop) = 1
and SECom0 .Verify(vk∗base, 2 ′, 8∗base, E, cbase) = 1.

Claim 6.21. If Π
(0)
SECom

is somewhere extractable in trapdoor mode, then there exists a negligible function negl(·) such
that for all _ ∈ N, Pr[2 ′ = 2base] = 1 − negl(_).

Proof. Suppose there is an adversaryA that outputs 2, E, c = (2 ′, ctop, cbase)where 2 ′ ≠ 2base andVerify(vk∗, 2, 8∗, E, c) =
1. By construction of Verify, this means that SECom0.Verify(vk∗top, 2, 8∗top, 2 ′, ctop) = 1. We use A to construct an

algorithm B that breaks the somewhere extractability property of Π
(0)
SECom

with the same advantage:

1. Algorithm B runs A to obtain an index 8∗ ∈ [# ]. It writes 8∗ = �(8∗top − 1) + 8∗base, gives 8
∗
top to its challenger,

and receives (crs∗top, vk∗top) from its challenger.

2. Algorithm B samples (crs∗
base

, vk∗base, tdbase) ← SECom0 .TrapSetup(1_, 1ℓblk , 1�, 8∗base). It constructs and gives
crs∗ = (crs∗

base
, crs∗top) and vk∗ = (vk∗base, vk

∗
top) to A.

3. Algorithm A outputs a commitment 2 , a string E ∈ {0, 1}ℓblk and a proof c = (2 ′, ctop, cbase). Algorithm B
outputs 2 , 2 ′, and ctop.

By construction, algorithm B perfectly simulates the view of A in the somewhere extractability game. Thus, if A
succeeds with advantage Y, then with the same probability Y, Verify(vk∗top, 2, 8∗top, 2 ′, ctop) = 1 and 2 ′ ≠ 2base where

2base ← SECom0.Extract(tdtop, 2, 8∗top). Thus, B breaks somewhere extractability of Π
(0)
SECom

with advantage Y. �

Claim 6.22. If Π
(0)
SECom

is somewhere extractable in trapdoor mode, then there exists a negligible function negl(·) such
that for all _ ∈ N, Pr[E = E ′] = 1 − negl(_).

Proof. By assumption, SECom0 .Verify(vk∗base, 2 ′, 8∗base, E, cbase) = 1 and E ′ ← SECom0 .Extract(tdbase, 2base, 8∗base). By
Claim 6.21, 2 ′ = 2base with overwhelming probability. Since (crs∗

base
, vk∗basetdbase) is sampled using SECom0.TrapSetup

with index 8∗
base

, we can appeal to a similar argument as used in the proof of Claim 6.21 to conclude that E = E ′ with
probability 1 − negl(_). �
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Combining Claims 6.21 and 6.22, we have that the extracted block E ′ ∈ {0, 1}ℓblk matches the claimed block E ∈ {0, 1}ℓblk
with overwhelming probability and the claim follows. �

The claim now follows by combining Lemmas 6.19 and 6.20. �

Theorem 6.23 (Succinctness). Suppose Π
(0)
SECom

is a succinct somewhere extractable commitment with CRS size

ℓ0 (_, ℓblk, # ) = #3 · poly(_, ℓblk) for some constant 3 ∈ N. Then Construction 6.16 is a succinct somewhere extractable

commitment with CRS size

ℓ (_, ℓblk, # , �) = �3 · poly(_, ℓblk) + (# /�)3 · poly(_, ℓblk, log# ).
Proof. We show that each of the properties are satisfied:

• CRS size: The CRS in Construction 6.16 consists of two common reference strings (crsbase, crstop) for Π (0)SECom
.

The size of crsbase is ℓ0 (_, ℓblk, �) and the size of crstop is ℓ0 (_, ℓ2 , # /�). By succinctness of Π
(0)
SECom

, we have that
ℓ2 (_, ℓblk, �) = poly(_, ℓblk, log�). Thus,

ℓ (_, ℓblk, # , �) = �3 · poly(_, ℓblk) + (# /�)3 · poly(_, ℓblk, log# ). �

• Succinct verification key: The verification key vk in Construction 6.16 consists of two verification keys

(vkbase, vktop) for Π (0)SECom
. By succinctness of Π

(0)
SECom

, we have that |vkbase | = poly(_, ℓblk, log�) and
��vktop�� =

poly(_, ℓ2 , log# /�) = poly(_, ℓblk, log# ). Thus, |vk| = poly(_, ℓblk, log# ).

• Succinct commitment: The commitment consists of a single commitment under crstop, which has size
poly(_, ℓ2 , log# /�) = poly(_, ℓblk, log# ).

• Succinct opening: An opening (2base, ctop, cbase) consists of a commitment 2 under crsbase and two openings

ctop andcbase under crstop and crsbase, respectively. By succinctness ofΠ
(0)
SECom

, |2base | , |cbase | = poly(_, ℓblk, log�)
and

��ctop�� = poly(_, ℓ2 , log(# /�)) = poly(_, ℓblk, log# ). The overall opening size is then poly(_, ℓblk, log# ).

• Succinct verification: The verification algorithm reduces to two invocations of the verification algorithm

for Π
(0)
SECom

which run in time poly(_, ℓblk, log�) and poly(_, ℓ2 , log(# /�)). The total running time is thus
poly(_, ℓblk, log# ).

Corollary 6.24 (Somewhere Extractable Commitment with Short CRS). Suppose there exists a somewhere extractable

commitment with locality 1 and commitment size poly(_, ℓblk, # ), where ℓblk is the block size and # is the number of

blocks. Then, for every constant Y > 0, there exists a somewhere extractable commitment with locality 1 and a CRS of size

# Y · poly(_, ℓblk).
Proof. Let Π

(0)
SECom

be a somewhere extractable commitment scheme with locality 1 and a CRS of size bounded by

#3 · poly(_, ℓblk) for some constant 3 ∈ N. Let : = ⌈log(23/Y)⌉ ∈ N. For 8 ∈ [:], let Π (8)
SECom

be the somewhere

extractable commitment with locality 1 formed by applying Construction 6.16 to Π
(8−1)
SECom

with � =
√
# . Let ℓ8 denote

the length of the CRS in Π
(8)
SECom

. Since ℓ0 (_, ℓblk, # ) = #3 · poly(_, ℓblk), we can inductively apply Theorem 6.23 to
write

ℓ8 (_, ℓblk, # ) = #3/28 · poly(_, ℓblk, log# ).
Substituting : = ⌈log(23/Y)⌉ into the above, we have that

ℓ: (_, ℓblk, # ) = # Y/2 · poly(_, ℓblk, log# ) < # Y · poly(_, ℓblk),
since 23/Y is a constant. The other succinctness requirements are preserved since we compose a constant number of
times. �

Corollary 6.25 (Somewhere Extractable Commitment with Short CRS). If the :-Lin assumption holds in G1 and G2

with respect to GroupGen (for any constant : ≥ 1), and if there exists a somewhere statistically binding hash function,

then for every constant Y > 0, there exists a somewhere extractable commitment scheme with locality 1 and CRS size

# Y · poly(_, ℓblk) where ℓblk is the block size and # is the number of blocks in the input.

Proof. Follows by instantiating Corollary 6.24 with Corollary 6.15 (along with Remark 6.5). �
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6.4 Delegation for RAM Programs

In this section, we recall the definition of delegation for RAM machines from the works of [KPY19, CJJ21b]. We refer
to Kalai et al. [KPY19, Remark 3.6] for comparisons with earlier definitions of RAM delegation [KP16, BHK17]. Our
description here is adapted from that in [KPY19]. A RAM machine R with word size ℓ is modeled as a deterministic
machine with random access to a memory of size 2ℓ bits and a local state of size $ (ℓ). On each step of the RAM
computation, the machine either reads or writes to a single word in memory and then updates its local state. We
refer to the combination of the machine’s local state and the memory as its configuration cf. For ease of exposition,
we assume that the machine has no input or output other than its initial memory and local state configuration, and
moreover, we set the word size ℓ = _ to the security parameter. For a RAM machine R, we define the language LR as

LR := {(ℓ, cf, cf ′,) ) | R with word size ℓ transitions from cf to cf ′ in ) steps}.

Definition 6.26 (Delegation for RAM Programs [KPY19, CJJ21b, adapted]). A publicly-verifiable non-interactive
delegation scheme for a RAM program R with setup time )( = )( (_,) ) and proof length ℓc = ℓc (_,) ) is a tuple of
efficient algorithms ΠRAM = (Setup,Digest, Prove,Verify) with the following properties:

• Setup(1_, 1) ) → (pk, vk, dk): On input the security parameter _, a time bound ) , the setup algorithm outputs
a prover key pk, a verification key vk, and a digest key dk.

• Digest(dk, cf) → h: On input the digest key dk and a configuration cf, the digest algorithm outputs a hash h.
This algorithm is deterministic.

• Prove(pk, cf, cf ′) → c : On input the prover key pk, an initial configuration cf and a final configuration cf ′, the
prove algorithm outputs a proof c . This algorithm is deterministic.

• Verify(vk, h, h′, c) → 1: On input the verification key vk, a pair of digests h, h′, and a proof c , the verification
algorithm outputs a bit 1 ∈ {0, 1}. This algorithm is deterministic.

We require that ΠRAM satisfy the following properties:

• Completeness: For every _,) ∈ N where ) ≤ 2_ and cf, cf ′ ∈ {0, 1}∗ where (_, cf, cf ′,) ) ∈ LR ,

Pr[Verify(vk, h, h′, c) = 1] = 1,

where (pk, vk, dk) ← Setup(1_, 1) ), h← Digest(dk, cf), h′← Digest(dk, cf ′), and c ← Prove(pk, cf, cf ′).

• Efficiency: In the completeness experiment above, we require the following hold:

– The setup algorithm runs in time )( (_,) ).
– The digest algorithm on configuration cf runs in time |cf | · poly(_) and outputs a digest of size _.

– The prover runs in time poly(_,) , |cf |) and outputs a proof of length ℓc (_,) ).
– The verifier runs in time $ (ℓc ) + poly(_).

• Collision Resistance: For every efficient adversaryA and every polynomial) = ) (_), there exists a negligible
function negl(·) such that for all _ ∈ N,

Pr

[
cf ≠ cf ′ ∧ Digest(dk, cf) = Digest(dk, cf ′) : (pk, vk, dk) ← Setup(1_, 1) );

(cf, cf ′) ← A(pk, vk, dk).

]
= negl(_).

• Soundness: For every efficient adversary A and every polynomial ) = ) (_), there exists a negligible function
negl(·) such that for all _ ∈ N,

Pr



Verify(vk, h, h′, c) = 1 ∧
(_, cf, cf ′,) ) ∈ LR ∧
h = Digest(dk, cf) ∧
h′ ≠ Digest(dk, cf ′)

:
(pk, vk, dk) ← Setup(1_, 1) );
(cf, cf ′, h, h′, c) ← A(pk, vk, dk)


= negl(_) .
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Construction and instantiation. Choudhuri et al. [CJJ21b] showed how to construct a delegation scheme for
RAM programs from a variant of a somewhere extractable commitment scheme that supports “no-signaling” ex-
traction [GZ21] together with a non-interactive batch argument for an index language (Remark 2.10). As shown
by González and Zacharakis (see also [CJJ21b, Theorem 13]), a no-signaling somewhere extractable commitment
scheme with locality ! can be constructed using ! copies of a vanilla somewhat extractable commitment scheme with
locality 1 (e.g., from Corollary 6.25). We summarize this instantiation in the following theorem:

Theorem 6.27 (Delegation for RAM Programs [CJJ21b]). Suppose there exists a somewhere extractable commitment

scheme with block size ℓblk = 1, locality ! = 1, and a batch non-interactive argument for index languages. Then, there

exists a delegation scheme for RAM programs with setup time )( = poly(_,) ) and proof length ℓc = poly(_, log) ).9
Moreover, the size of the digest key is poly(_) and the size of the proving key is ( |crsindexBARG | + |crsSECom |) · poly(_),
where crsindexBARG denotes the length of the CRS for the index BARG (with< = poly() ) instances and B = poly(_)-size
circuits) and crsSECom denotes the lengths of the CRS for the somewhere extractable commitment scheme (with message

length # = poly(_,) )).

We can instantiate Theorem 6.27 with our batch non-interactive argument for index languages (Corollary 5.10
and Remark 2.10) together with our somewhere extractable commitment scheme (Corollary 6.25). This yields a
delegation scheme for RAM programs from the :-Lin assumption over asymmetric prime-order groups in conjunction
with an SSB hash function. We can moreover instantiate the SSB hash function using the DDH-based construction
of Okamoto et al. [OPWW15], which yields a delegation scheme for RAM programs from the 1-Lin (i.e., SXDH)
assumption on prime-order pairing groups. We state these corollaries formally below:

Corollary 6.28 (Delegation for RAM Programs). If the :-Lin assumption holds in G1 and G2 with respect to GroupGen

(for any constant : ≥ 1), and there exists a somewhere statistically binding hash function, then for every constant Y > 0,

there exists a delegation scheme for RAM programs with setup time )( = poly(_,) ), proof length ℓc = poly(_, log) ),
digest key size poly(_), and proving key size ) Y · poly(_).

Theorem 6.29 (SSB Hash Functions from DDH [OPWW15]). Suppose the DDH assumption holds with respect to a

group generator GroupGen. Then, there exists a SSB hash function for any polynomial block length ℓblk = ℓblk (_).

Corollary 6.30 (Delegation for RAM Programs from SXDH). If the SXDH assumption holds with respect to GroupGen,

then for every constant Y > 0, there exists a delegation scheme for RAM programs with setup time )( = poly(_,) ), proof
length ℓc = poly(_, log) ), digest key size poly(_), and proving key size ) Y · poly(_).

7 Aggregate Signatures from BARGs

In this section, we describe the straightforward approach of constructing aggregate signatures from BARGs for NP,
and show that we can argue security so long as the BARG is a somewhere argument of knowledge. Importantly,
security does not require that the BARG be fully extractable. We start by recalling the definition of a standard digital
signature scheme and an aggregate signature scheme:

Definition 7.1 (Digital Signature). A digital signature scheme with message spaceM is a tuple of efficient algorithms
ΠSig = (KeyGen, Sign,Verify) with the following properties:

• KeyGen(1_) → (sk, vk): On input the security parameter _, the key-generation algorithm outputs a signing
key sk and a verification key vk.

• Sign(sk, `) → f : On input the signing key sk and a message ` ∈ M, the signing algorithm outputs a signature
f .

• Verify(vk, `, f) → 1: On input the verification key vk, a message ` ∈ M, and a signature f , the verification
algorithm outputs a bit 1 ∈ {0, 1}.

9Technically, the construction also requires a collision-resistant hash function, but this is implied by a somewhere extractable commitment.
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Moreover, the above algorithms should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N and messages ` ∈ M,

Pr[Verify(vk, `, f) = 1 : (sk, vk) ← KeyGen(1_);f ← Sign(sk, `)] = 1.

• Unforgeability: Define the signature unforgeability game between an adversaryA and a challenger as follows:

– The challenger samples (sk, vk) ← KeyGen(1_) and gives vk to A.

– The adversary can now make signing queries on messages ` ∈ M of its choosing. On each query `, the
challenger replies with Sign(sk, `).

– At the end of the game, the adversary outputs a message-signature pair (`∗, f∗). The output of the game
is 1 if Verify(vk, `∗, f∗) = 1 and the adversary did not make a signing query on `∗. Otherwise, the output
is 0.

We say ΠSig is unforgeable if for all efficient adversaries, there exists a negligible function negl(·) such that for
all _ ∈ N, Pr[1 = 1] = negl(_) in the above unforgeability game.

Definition 7.2 (Aggregate Signature [BGLS03, adapted]). A bounded aggregate signature scheme with message space
M is a tuple of efficient algorithms ΠAggSig = (Setup,KeyGen, Sign,Verify,Aggregate,AggVerify) with the following
properties:

• Setup(1_, 1<) → pp: On input the security parameter _ and an aggregation bound<, the setup algorithm
outputs the public parameters pp.

• KeyGen(pp) → (sk, vk): On input the public parameters pp, the key-generation algorithm outputs a signing
key sk and a verification key vk.

• Sign(pp, sk, `) → f : On input the public parameters pp, the signing key sk, and a message ` ∈ M, the signing
algorithm outputs a signature f .

• Verify(pp, vk, `, f) → 1: On input the public parameters pp, the verification key vk, a message ` ∈ M, and a
signature f , the verification algorithm outputs a bit 1 ∈ {0, 1}.

• Aggregate(pp, {(vk8 , `8 , f8 )}8∈[) ]) → fagg: On input the public parameters pp, and a collection of up to ) ≤ <
verification keys vk8 , messages `8 , and signatures f8 , the aggregation algorithm outputs an aggregate signature
fagg.

• AggVerify(pp, (vk1, . . . , vk) ), (`1, . . . , `) ), fagg) → 1: On input the public parameters pp, a collection of ) ≤ <

verification keys vk8 and messages `8 , and an aggregate signature fagg, the aggregate verification algorithm
outputs a bit 1 ∈ {0, 1}.

Moreover, the above algorithms should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all values< ∈ N, all messages ` ∈ M,

Pr

[
Verify(pp, vk, `, f) = 1 :

pp← Setup(1_, 1<);
(sk, vk) ← KeyGen(pp);f ← Sign(pp, sk, `)

]
= 1.

In addition, for all public parameters pp in the support of Setup(1_, 1<) and all collections {(vk8 , `8 , f8 )}8∈[) ]
where ) ≤ < and Verify(pp, vk8 , `8 , f8 ) = 1 for all 8 ∈ [) ],

Pr
[
AggVerify(pp, (vk1, . . . , vk) ), (`1, . . . , `) ), fagg) = 1 : fagg ← Aggregate(pp, {(vk8 , `8 , f8 )}8∈[) ])

]
= 1.

• Efficiency: There exists a fixed polynomial poly(·, ·) such that in the completeness experiment above, the size
of the aggregate signature fagg satisfies

��fagg�� = poly(_, log) ).
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• Unforgeability: Define the signature unforgeability game between an adversaryA and a challenger as follows:

– The challenger samples pp← A(1_, 1<) and (vk∗, sk∗) ← KeyGen(pp) and gives pp and vk∗ to A.

– The adversary can now make signing queries on messages ` ∈ M of its choosing. On each query `, the
challenger replies with Sign(pp, sk∗, `).

– At the end of the game the adversary outputs a tuple of verification keys (vk1, . . . , vk) ), a tuple of messages
(`1, . . . , `) ) with ) ≤ <, and a signature f∗.

– The output of the game is 1 if there exists an index 8∗ ∈ [) ] where vk8∗ = vk∗, algorithm A did not make
a signing query on `8∗ , and AggVerify(pp, (vk1, . . . , vk) ), (`1, . . . , `) ), f∗) = 1. Otherwise, the output is 0.

Then, ΠAggSig is unforgeable if for all efficient adversaries A and all polynomials< = <(_), there exists a
negligible function negl(·) such that for all _ ∈ N, Pr[1 = 1] = negl(_) in the above unforgeability game.

Construction 7.3 (Aggregate Signature from BARGs for NP). Let ΠSig = (Sig.KeyGen, Sig.Sign, Sig.Verify) be a
digital signature scheme, and let ΠBARG = (BARG.Setup,BARG.Prove,BARG.Verify) be a BARG for NP. We require
that ΠBARG supports proving and verifying a variable number ) of instances provided that ) ≤ < where< is the
bound on the total number of instances (see Remark 3.11). We construct a bounded aggregate signature scheme as
follows:

• Setup(1_, 1<): On input the security parameter _ and the aggregation bound<, let B = B (_) be the size of the
circuit that computes Sig.Verify. Sample crsBARG ← BARG.Setup(1_, 1<, 1B ) and output pp = (1_, crsBARG).

• KeyGen(pp): On input the public parameters pp = (1_, crsBARG), output (sk, vk) ← Sig.KeyGen(1_).

• Sign(pp, sk, `): On input the public parameters pp = (1_, crsBARG), the signing key sk, and the message ` ∈ M,
output f ← Sig.Sign(sk, `).

• Verify(pp, vk, `, f): On input the public parameters pp = (1_, crsBARG), the verification key vk, the message
` ∈ M, and the signature f , output Sig.Verify(vk, `, f).

• Aggregate(pp, {(vk8 , `8 , f8 )}8∈[) ]): On input the public parameters pp = (1_, crsBARG) and a collection of tuples
{(vk8 , `8 , f8 )}8∈[) ] , the aggregation algorithm computes

c ← BARG.Prove(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `) )), (f1, . . . , f) )),

where�Ver is the Boolean circuit that computes�Ver ((vk, `), f) := Sig.Verify(vk, `, f). The aggregated signature
is the proof fagg = c .

• AggVerify(pp, (vk1, . . . , vk) ), (`1, . . . , `) ), fagg): On input the public parameters pp = (1_, crsBARG), verification
keys vk1, . . . , vk) , messages `1, . . . , `) ∈ M, and a signature fagg, output

BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `) )), fagg).

Theorem 7.4 (Completeness). If ΠSig is correct and ΠBARG is complete, then Construction 7.3 is correct.

Proof. Follows by construction. �

Theorem 7.5 (Efficiency). If ΠBARG is succinct, then Construction 7.3 is efficient.

Proof. The aggregate signature in Construction 7.3 is a BARG proof. Succinctness of the BARG ensures that
��fagg�� ≤

poly(_, log<, B) = poly(_, log<), since B = B (_) is the size of the verification circuit �Ver. �

Theorem 7.6 (Unforgeability). If ΠBARG is a somewhere argument of knowledge and ΠSig is unforgeable, then Con-

struction 7.3 is unforgeable.

Proof. We proceed using a hybrid argument:
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• Hyb0: This is the real signature unforgeability game:

– At the beginning of the game, the challenger samples crsBARG ← BARG.Setup(1_, 1<, 1B ) and sets
pp = (1_, crsBARG). It also samples (vk, sk) ← Sig.KeyGen(1_), and gives pp, vk to the adversary A.

– Algorithm A can then make signing queries on messages ` ∈ M and the challenger replies with
f ← Sig.Sign(sk, `).

– At the end of the game the adversary outputs a tuple of verification keys (vk1, . . . , vk) ), a tuple of messages
(`1, . . . , `) ) with ) ≤ <, and a signature f∗.

– The output of the experiment is 1 if there exists an index 8∗ ∈ [) ] where vk8∗ = vk∗, algorithm A did not
make a signing query on `8∗ , and BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `) )), f∗) = 1. Otherwise,
the output is 0.

• Hyb1: In this experiment, the challenger starts by guessing an index 9∗
r← [<]. The rest of the experiment

then proceeds as in Hyb0. After the adversary outputs (vk1, . . . , vk) ), (`1, . . . , `) ) and f∗, the output of the
experiment is 1 if vk9∗ = vk∗, algorithm A did not make a signing query on ` 9∗ , and

BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `) )), f∗) = 1.

Otherwise, the output is 0.

• Hyb2: Same as Hyb1, except the challenger uses the BARG trapdoor sampling algorithm to sample crsBARG. In

particular, after sampling 9∗
r← [<], the challenger samples (crsBARG, tdBARG) ← BARG.TrapSetup(1_, 1<, 1B , 9∗).

Everything else is the same as in Hyb1.

• Hyb3: Same as Hyb2 except at the end of the experiment, the challenger additionally computes

f̂ ← BARG.Extract(tdBARG,�Ver, ((vk1, `1), . . . , (vk) , `) )), f∗).

If �Ver(vk9∗ , ` 9∗ , f̂) ≠ 1, then the output of the game is 0. Otherwise, the output is the same as in Hyb2.

For an adversary A, we write Hyb8 (A) to denote the output of an execution of experiment Hyb8 with adversary A.
Our goal is to show that for all efficient adversaries A, Pr[Hyb0 (A) = 1] = negl(_).

Lemma 7.7. For all adversaries A, we have that Pr[Hyb1 (A) = 1] ≥ 1
<
Pr[Hyb0 (A) = 1].

Proof. By construction, the views of the adversary in Hyb0 and Hyb1 are identical. The only difference is in how
the output of the experiment is computed. Suppose Pr[Hyb0 (A) = 1] = Y. Then, with probability Y, algorithm A
outputs (vk1, . . . , vk) ), (`1, . . . , `) ) and f∗ where there exists an index 8∗ ∈ [) ] satisfying the listed properties with
probability at least Y. This is also the case in Hyb1. Here, if 9

∗
= 8∗, then the output in Hyb1 (A) is also 1. Since 9∗ is

uniform, this happens with probability at least Y/< and the lemma holds. �

Lemma 7.8. If ΠBARG is a somewhere argument of knowledge (specifically, the CRS indistinguishability property holds),

then for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(_).

Proof. This is immediate by CRS indistinguishability. Namely, the only difference between Hyb1 and Hyb2 is that the
challenger samples crsBARG using BARG.Setup(1_, 1<, 1B ) in Hyb1 and BARG.TrapSetup(1_, 1<, 1B , 9∗) in Hyb2. By
CRS indistinguishability, these two distributions are computationally indistinguishable. Moreover, the output bit in
Hyb1 and Hyb2 can be efficiently computed from crsBARG and the adversary’s output. �

Lemma 7.9. If ΠBARG is a somewhere argument of knowledge (specifically, the extractability in trapdoor mode property

holds), then for all adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(_).
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Proof. The only difference between Hyb2 and Hyb3 is the extra check the challenger performs in Hyb3. Namely, in
order for Hyb2 to output 1, but Hyb3 to output 0, it must be the case that

• BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `) )), f∗) = 1; and

• �Ver (vk9∗ , ` 9∗ , f̂) ≠ 1 where f̂ ← BARG.Extract(tdBARG,�Ver, ((vk1, `1), . . . , (vk) , `) )), f∗).

In Hyb2 and Hyb3, crsBARG is sampled using BARG.TrapSetup(1_, 1<, 1B , 9∗), so any adversary A that produces an
output that successfully triggers both of the above conditions with advantage Y also breaks somewhere extractability
in trapdoor mode property with identical advantage. �

Lemma 7.10. If ΠSig is unforgeable, then for all efficient adversaries A, there exists a negligible function negl(·) such
that for all _ ∈ N, Pr[Hyb3 (A) = 1] = negl(_).

Proof. Suppose there exists an efficient algorithm A where Pr[Hyb3 (A) = 1] = Y for some non-negligible Y. We use
A to build an algorithm B that breaks unforgeability of ΠSig:

1. Algorithm B receives the verification key vk∗ from its challenger.

2. Algorithm B starts by sampling 9∗
r← [<] and (crsBARG, tdBARG) ← BARG.TrapSetup(1_, 1<, 1B , 9∗). It sets

pp← (1_, crsBARG) and gives pp to A.

3. Whenever algorithm A makes a signing query on a message ` ∈ M, algorithm B makes a signing query on `

and obtains a signature f . It replies to A with the signature f .

4. At the end of the game, algorithm A outputs (vk1, . . . , vk) ), (`1, . . . , `) ) and f∗. Algorithm B checks that
vk9∗ = vk∗, algorithm A did not issue a signing query on ` 9∗ , and that

BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `) )), f∗) = 1.

If any checks do not pass, algorithm B aborts with output ⊥. Otherwise, it computes

f̂ ← BARG.Extract(tdBARG,�Ver, ((vk1, `1), . . . , (vk) , `) )), f∗)

and outputs ` 9∗ , f̂ as its forgery.

By construction, algorithm B perfectly simulates an execution of Hyb3 for A. Thus, with probability at least Y,
algorithm A outputs (vk1, . . . , vk) ), (`1, . . . , `) ) and f∗ where vk9∗ = vk∗, the adversary never queried the signing
oracle on ` 9∗ , and �Ver(vk9∗ , ` 9∗ , f̂) = 1. Since �Ver is the verification circuit, this means that f̂ is a valid signature on
` 9∗ , and so algorithm B succeeds with the same advantage Y. �

By Lemmas 7.8 to 7.10, we have that for all efficient adversaries A, Pr[Hyb1 (A) = 1] = negl(_). By Lemma 7.7, this
means that Pr[Hyb0 (A) = 1] ≤ < · Pr[Hyb1 (A) = 1] = negl(_) since< = poly(_). �

Corollary 7.11 (Bounded Aggregate Signature from Pairings). For any constant : ≥ 1, if the :-Lin assumption holds in

G1 and G2 with respect to a prime-order group generator GroupGen (or alternatively, if the subgroup decision assumption

holds with respect to a composite-order group generator CompGroupGen), then for all constants Y > 0, there exists an
bounded aggregate signature scheme with public parameter size<Y · poly(_), where< is the aggregation bound.

Acknowledgments

B. Waters is supported by NSF CNS-1908611, a Simons Investigator award, and the Packard Foundation Fellowship.
D. J. Wu is supported by NSF CNS-1917414, CNS-2045180, a Microsoft Research Faculty Fellowship, and a Google
Research Scholar award.

51



References

[AGH10] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized aggregate signatures: new
definitions, constructions and applications. In ACM CCS, 2010.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, YinonHoresh, andMichael Riabzev. Scalable, transparent, and post-quantum
secure computational integrity. IACR Cryptol. ePrint Arch., 2018, 2018.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, 2004.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran
Tromer. The hunting of the SNARK. J. Cryptol., 30(4), 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In ITCS, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping
for SNARKS and proof-carrying data. In STOC, 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-
interactive arguments via linear interactive proofs. In TCC, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way
functions. In STOC, 2014.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In EUROCRYPT, 2003.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In TCC, 2005.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and batch NP
verification from standard computational assumptions. In STOC, 2017.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their application to
more efficient obfuscation. In EUROCRYPT, 2017.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and
Daniel Wichs. Fiat-Shamir: from practice to theory. In STOC, 2019.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC, 2013.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (preliminary
version). In STOC, 1998.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In EUROCRYPT, 2020.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from
standard assumptions. In CRYPTO, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, 2021.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive
proofs from holography. In EUROCRYPT, 2020.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low communica-
tion. In TCC, 2012.

52



[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge L. Villar. An algebraic framework for
Diffie-Hellman assumptions. In CRYPTO, 2013.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Programmable
hash functions in the multilinear setting. In CRYPTO, 2013.

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups to
prime-order groups. In EUROCRYPT, 2010.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, 1986.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In EUROCRYPT, 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interactive proofs
for muggles. In STOC, 2008.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In
EUROCRYPT, 2006.

[GR06] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In PKC, 2006.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, 2016.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT,
2008.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In STOC, 2011.

[GZ21] Alonso González and Alexandros Zacharakis. Succinct publicly verifiable computation. In TCC, 2021.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. Snargs for P from sub-
exponential DDH and QR. In EUROCRYPT, 2022.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation. In
CRYPTO, 2007.

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature aggregators. In EURO-

CRYPT, 2015.

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure function evaluation with
long output. In ITCS, 2015.

[HW18] Susan Hohenberger and Brent Waters. Synchronized aggregate signatures from the RSA assumption. In
EUROCRYPT, 2018.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-exponential DDH. In
EUROCRYPT, 2021.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs for bounded depth
computations and PPAD hardness from sub-exponential LWE. In STOC, 2021.

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In TCC, 2016.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In STOC, 2019.

53



[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space. In STOC, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the power of
no-signaling proofs. In STOC, 2014.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical soundness,
post-quantum security, and SNARGs. In TCC, 2021.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive
proof systems. In FOCS, 1990.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear
error-correcting codes. In ASIACRYPT, 2013.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate signatures
from trapdoor permutations. In EUROCRYPT, 2004.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles. In EUROCRYPT, 2006.

[LP21] Helger Lipmaa and Kateryna Pavlyk. Gentry-Wichs is tight: a falsifiable non-adaptively sound SNARG.
In ASIACRYPT, 2021.

[LPWW20] Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions of statistical NIZKs:
Dual-mode DV-NIZKs and more. In EUROCRYPT, 2020.

[Mic95] Silvio Micali. Computationally-sound proofs. In Proceedings of the Annual European Summer Meeting of

the Association of Symbolic Logic, 1995.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, 2003.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations of somewhere
statistically binding hashing and positional accumulators. In ASIACRYPT, 2015.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifiable
computation. In IEEE Symposium on Security and Privacy, 2013.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors.
In CRYPTO, 2019.

[RR20] Guy N. Rothblum and Ron D. Rothblum. Batch verification and proofs of proximity with polylog
overhead. In TCC, 2020.

[RRR16] Omer Reingold, GuyN. Rothblum, and RonD. Rothblum. Constant-round interactive proofs for delegating
computation. In STOC, 2016.

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch verification for UP. In CCC,
2018.

[RS09] Markus Rückert andDominique Schröder. Aggregate and verifiably encrypted signatures frommultilinear
maps without random oracles. In ISA, 2009.

[Set20] Srinath T. V. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In CRYPTO,
2020.

[Sha90] Adi Shamir. IP=PSPACE. In FOCS, 1990.

[Sha07] Hovav Shacham. A Cramer-Shoup encryption scheme from the linear assumption and from progressively
weaker linear variants. IACR Cryptol. ePrint Arch., 2007.

54



[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In STOC, 2014.

[Wic22] Daniel Wichs, 2022. Personal communication.

A A More General View: BARGs with Fixed Wires

As discussed in Section 1.2.2, it is straightforward to generalize our BARG constructions (Constructions 3.3 and 4.5)
to achieve better efficiency when the statements (x1, . . . , x<) admit a more compact representation. For instance,
when using BARGs to construct delegation schemes [CJJ21b, KVZ21], the underlying statements indeed have a
succinct description. In our setting, we show how to achieve better efficiency when some of the bits of the statements
x1, . . . , x< are a priori fixed.

Notation. For a bit string x ∈ {0, 1}= and a set ( ⊆ [=], we write x|( ∈ {0, 1} |( | to denote the subset of bits indexed
by ( : x|( := (G8 | 8 ∈ () ∈ {0, 1} |( |

Definition A.1 (Batch Circuit Satisfiability with Constraints). Let � : {0, 1}= × {0, 1}ℎ → {0, 1} be a Boolean circuit
and< ∈ N be the number of instances. A fixed-wire constraint i for � is a pair ( 9,2) where 9 ∈ [=] is an index and
2 = (f1, . . . , f<) ∈ {0, 1}< is an assignment. We say that a tuple of statements (x1, . . . , x<) satisfies i if x8, 9 = f8 for
all 8 ∈ [<]; we denote this by writing i (x1, . . . , x<) = 1. We will say that a set of constraints Φ is admissible if it
contains at most one constraint for each index 9 . Unless otherwise noted, we will only consider admissible sets of
constraints. For an admissible set of constraints Φ, we define

LBatchCSAT,<,Φ = {(�, x1, . . . , x<) | (�, x1, . . . , x<) ∈ LBatchCSAT,< and ∀i ∈ Φ : i (x1, . . . , x<) = 1}

to be the batch circuit satisfiability language with fixed-wire constraints. For a collection of fixed-wire constraints
Φ = {( 9,2) | 9 ∈ [=],2 ∈ {0, 1}<}, we define �Φ := {2 ∈ {0, 1}< | ∃ 9 : ( 9,2) ∈ Φ} to be the set of assignments
associated with Φ and we define (Φ := { 9 ∈ [=] | ∃2 : ( 9,2) ∈ Φ} to be the set of indices fixed by Φ.

Definition A.2 (Batch Argument with Fixed Wires). A non-interactive batch argument for circuit satisfiability
with fixed-wire constraints is a tuple of three efficient algorithms ΠBARG = (Setup, Prove,Verify) with the following
properties:

• Setup(1_, 1<, 1B , �) → (crs, vk,D): On input the security parameter _ ∈ N, the number of instances< ∈ N, a
bound on the circuit size B ∈ N, and a collection of fixed-wire assignments � ⊆ {0, 1}< , the setup algorithm
outputs a common reference string crs, a verification key vk, and a dictionary D : �→ E that associates each
2 ∈ � with an encoding from some set E of encodings.

• Prove(crs,D,�,Φ, (x1, . . . , x<), (w1, . . . ,w<)) → c : On input the common reference string crs, a dictionary D,
a Boolean circuit� : {0, 1}= × {0, 1}ℎ → {0, 1}, a set of fixed-wire constraints Φ, statements x1, . . . , x< ∈ {0, 1}= ,
and witnesses w1, . . . ,w< ∈ {0, 1}ℎ , the prove algorithm outputs a proof c .

• Verify(vk,�, ( x1 |( , . . . , x< |( ), {(8, enc8 )}8∈[=]\( , c) → 1: On input the verification key vk, a Boolean circuit
� : {0, 1}= × {0, 1}ℎ → {0, 1}, a collection of statements x1 |( , . . . , x< |( ∈ {0, 1} |( | restricted to some set ( ⊆ [=],
and a collection of encodings (8, enc8 )10 for the indices [=] \ ( , and a proof c , the verification algorithm outputs
a bit 1 ∈ {0, 1}.

We say ΠBARG is a non-interactive batch argument with fully fixed wires if Verify only takes vk, � , {(8, enc8 )}8∈[=] ,
and c as input (i.e., the set ( of non-fixed wires is ( = ∅).

Definition A.3 (Completeness). A BARG with fixed-wire constraints ΠBARG = (Setup, Prove,Verify) is complete
if for all _,<, B ∈ N, all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , all sets of fixed-wire
assignments � ⊆ {0, 1}< , all admissible sets of fixed-wire constraints Φ whose assignments �Φ ⊆ � are contained

10Note that we allow the same encoding to be used across multiple indices. For instance, it may be the case that enc8 = enc9 with 8 ≠ 9 .
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in �, all statements x1, . . . , x< ∈ {0, 1}= , all witnesses w1, . . . ,w< ∈ {0, 1}ℎ where � (x8 ,w8 ) = 1 for all 8 ∈ [<] and
i (x1, . . . , x<) = 1 for all i ∈ Φ,

Pr[Verify(vk,�, ( x1 |(̄Φ , . . . , x< |(̄Φ ), {( 9,D[2 9 ])}( 9,2 9 ) ∈Φ, c) = 1,

where (Φ ⊆ [=] is the set of indices fixed by Φ, (̄Φ = [=] \(Φ is the set of unfixed indices, and we sample (crs, vk,D) ←
Setup(1_, 1<, 1B , �), and c ← Prove(crs,D,�, (x1, . . . , x<), (w1, . . . ,w<)).

Definition A.4 (Somewhere Argument of Knowledge). A BARG with fixed-wire constraints ΠBARG = (Setup, Prove,
Verify) is a somewhere argument of knowledge if there exists a pair of efficient algorithms (TrapSetup, Extract) with
the following properties:

• TrapSetup(1_, 1<, 1B , 8∗, �) → (crs∗, vk∗,D∗, td): On input the security parameter _ ∈ N, the number of
instances< ∈ N, the size of the circuit B ∈ N, an index 8∗ ∈ [<], and a collection of fixed-wire assignments
� ⊆ {0, 1}< , the trapdoor setup algorithm outputs a common reference string crs∗, a verification key vk∗, a
dictionary D∗, and an extraction trapdoor td.

• Extract(td,�, ( x1 |( , . . . , x< |( ), {(8, enc∗8 )}8∈[=]\( , c) → w
∗: On input the trapdoor td, a collection of statements

x1 |( , . . . , x< |( ∈ {0, 1} |( | restricted to some set ( ⊆ [=], a collection of encodings (8, enc∗8 ) for the indices
[=] \ ( , and a proof c , the extraction algorithm outputs a witness w∗ ∈ {0, 1}ℎ . The extraction algorithm is
deterministic.

We require (TrapSetup, Extract) to satisfy the following two properties:

• CRS indistinguishability: For integers< ∈ N, B ∈ N, a bit 1 ∈ {0, 1}, and an adversary A, define the CRS
indistinguishability experiment ExptCRSA (_,<, B, 1) as follows:

1. AlgorithmA(1_, 1<, 1B ) outputs a collection of fixed-wire assignments� ⊆ {0, 1}< and an index 8∗ ∈ [<].
2. If1 = 0, the challenger computes and gives (crs, vk,D) ← Setup(1_, 1<, 1B , �) toA. If1 = 1, the challenger

computes (crs∗, vk∗,D∗, td) ← TrapSetup(1_, 1<, 1B , 8∗, �) and gives (crs∗, vk∗,D∗) to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satisfies CRS indistinguishability if for every efficient adversaryA and every polynomial< =<(_),
B = B (_), there exists a negligible function negl(·) such that for all _ ∈ N,��Pr[ExptCRSA (_,<, B, 0) = 1] − Pr[ExptCRSA (_,<, B, 1) = 1]

�� = negl(_).

• Somewhere extractable in trapdoor mode: Define the somewhere extractable security game between an
adversary A and a challenger as follows:

– Algorithm A(1_, 1<, 1B ) outputs an index 8∗ ∈ [<] and a set of fixed-wire assignments � ⊆ {0, 1}< .
– The challenger samples (crs∗, vk∗,D∗, td) ← TrapSetup(1_, 1<, 1B , 8∗, �) and gives crs∗, vk∗,D∗ to A.

– Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , an admissible
set of fixed-wire constraints Φ whose assignments �Φ ⊆ � are contained in �, a set of statements
x̂1 |(̄Φ , . . . , x̂< |(̄Φ ∈ {0, 1} |(̄Φ | restricted to the set of indices (̄Φ = [=] \ (Φ not fixed by Φ, and a proof c .

– The challenger computes w∗ ← Extract(td,�,D∗, {( 9,D∗ [2 9 ])}( 9,2 9 ) ∈Φ, c)
– For 8 ∈ [<], define x8 |(̄Φ = x̂8 |(̄Φ . For indices 9 ∈ (Φ fixed by Φ, let G8, 9 = 0 9,8 where ( 9, (0 9,1, . . . , 0 9,<)) ∈ Φ.

The output of the game is 1 = 1 if the following conditions hold:

∗ Verify(vk∗,�, ( x̂1 |(̄Φ , . . . , x̂< |(̄Φ ), {( 9,D∗ [2 9 ])}( 9,2 9 ) ∈Φ, c) = 1

∗ � (x8∗ ,w∗) ≠ 1.
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We say ΠBARG is somewhere extractable in trapdoor mode if for all efficient adversaries A, there exists a
negligible function negl(·) such that Pr[1 = 1] = negl(_) in the somewhere extractable game.

In the case of a BARG with fully fixed wires, we additionally restrict the adversary A to choosing admissible
sets of fixed-wire constraint Φ where (Φ = [=] (i.e., Φ fixes all input wires to �).

Definition A.5 (Succinctness). A BARG with fixed-wire constraints ΠBARG = (Setup, Prove,Verify) is succinct if
there exists a fixed polynomial poly(·, ·, ·) such that for all _,<, B ∈ N, all sets of fixed-wire assignments � ⊆ {0, 1}< ,
all (crs, vk,D) in the support of Setup(1_, 1<, 1B , �), all Boolean circuits� : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B ,
and all sets of fixed-wire constraints Φ, the following properties hold:

• Succinct proofs: The proof c output by Prove(crs,D,�, ·, ·, ·) satisfies |c | ≤ poly(_, log<, B).

• Succinct verification key: We require

|vk| + |{D[2]}2 ∈� | ≤ poly(_,<,=) + poly(_, log<, B) + poly(_, log<, |�|).

In the setting of fully fixed wires, we require

|vk| + |{D[2]}2 ∈� | ≤ poly(_, log<, B) + poly(_, log<, |�|).

• Succinct verification: The running time of Verify(vk,�, ( x1 |( , . . . , x< |( ), {(8, enc8 )}8∈[=]\( ) is bounded by
poly(_,<, |( |) + poly(_, log<, B). In the setting of fully fixed wires, ( = ∅ and this requirement collapses to
Verify needing to run in time poly(_, log<, B).

Remark A.6 (Special Cases of BARGs with Fixed-Wire Constraints). We describe two important special cases of
BARGs with fixed-wire constraints:

• BARG for NP: When there are no fixed-wire assignments � = ∅ or constraints Φ = ∅, Definition A.2 is
equivalent to a standard BARG for NP (Definition 2.2).

• BARG for index languages: The special case of an index BARG (Remark 2.10) on< instances corresponds to a
BARGwith fully fixedwireswhere the set of fixed-wire assignments� input to Setup has size |�| = = = $ (log<).
The verification key vkindexBARG for the index BARG would be the verification key for the BARG with fixed
wires together with the encodings of the assignments in �. In this case, succinctness (Definition A.5) requires
that |vkindexBARG | = poly(_, log<, B) and similarly, that the verification time is poly(_, log<, B). This matches
the succinctness requirement for index BARGs.

Construction A.7 (BARG for NP with Fixed Wires from :-Lin). Let : ∈ N be an integer. We show how to adapt
Construction 4.5 to construct a BARG for the language of circuit satisfiability that supports fixed wires as follows. For
ease of exposition, we do not describe Verify with split verification (Definition 2.9), but it is straightforward to modify
the scheme to support it.

• Setup(1_, 1<, 1B , �): On input the security parameter _, the number of instances<, the bound on the circuit size
B , and the set of fixed-wire assignments � ⊆ {0, 1}< , the setup algorithm constructs the verification key vk =(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<]

)
and the common reference string crs =

(
vk, {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
exactly as in Construction 4.5. Then, for each 2 = (f1, . . . , f<) ∈ �, compute encodings

[u2 ]1 ←
∑
8∈[<]

f8 [a8 ]1 and [û2 ]2 ←
∑
8∈[<]

f8 [â8 ]2.

The setup algorithm outputs crs, vk, and the dictionary D where D[2] ↦→ ([u2 ]1, [û2 ]2)

To obtain a BARG with fully fixed wires, Setup removes the encodings of [a8 ]1 and [â8 ]2 from the verification
key. Namely, it sets

vk′ =
(
G, [M]1, [M̂]2, [a]1, [â]2

)
.

It outputs crs, vk′, and D. Note that Setup outputs the same crs as Construction 4.5.
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• Prove(crs,D,�, (x1, . . . , x<), (w1, . . . ,w<)): On input the common reference string crs, a dictionary D of en-
codings, the circuit � : {0, 1}= → {0, 1}ℎ → {0, 1}, instances x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈
{0, 1}ℎ , the prover proceeds constructs c using the same procedure as in Construction 4.5.

• Verify(vk,�, ( x1 |( , . . . , x< |( ), {(8, enc8 )}8∈[=]\( , c) → 1: On input the verification key

vk =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<]

)
,

the circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a set of instances ( x1 |( , . . . , x< |( ) ∈ {0, 1} |( | restricted to the set ( , a
collection of encodings {(8, enc8 )}8∈[=]\( , and the proof

c =
(
{[u3 ]1, [û3 ]2}3∈[C ], {[V=+3,8 ]1, [V̂=+3,8 ]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8 ]1, [Ŵℓ,8 ]2}ℓ∈[B ],8∈{1,2}

)
.

the verification algorithm starts by checking the following:

– Validity of statement: For each statement wire 3 ∈ [=], if 3 ∈ ( , then the verifier checks that

[u3 ]1 =
∑
8∈[<]

G8,3 [a8 ]1 and [û3 ]2 =
∑
8∈[<]

G8,3 [â8 ]2,

exactly as in Construction 4.5. For statement wires 3 ∈ [=] \ ( , the verifier looks up the encoding (8, enc8 )
and checks that ( [u3 ]1, [û3 ]2) = enc3 .

The verifier performs the remaining checks exactly as described in the OnlineVerify algorithm of Construc-
tion 4.5.

Theorem A.8 (Completeness). Construction A.7 is complete.

Proof (Sketch). The difference between Construction 4.5 and Construction A.7 is that instead of having the prover
and verifier compute encodings of the fixed wires, those encodings are precomputed and provided as input to Prove

and Verify. Completeness follows by an analogous argument as in the proof of Theorem 4.6. �

Theorem A.9 (Somewhere Argument of Knowledge). Take any positive integer : ∈ N. If the :-Lin assumption holds

in G1 and G2 with respect to GroupGen, then Construction A.7 is a somewhere argument of knowledge

Proof (Sketch). The argument follows by a similar argument as in the proof of Theorem 4.7. For completeness, we
describe the TrapSetup and Extract algorithms:

• TrapSetup(1_, 1<, 1B , 8∗): The TrapSetup algorithm samples vk∗ =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8 ]1, [â8 ]2}8∈[<]

)
,

crs∗ =
(
vk∗, {[B8, 9 ]1, [B̂8, 9 ]2}8≠9

)
, and td = 3 ∈ Z:+1? using exactly the same procedure as TrapSetup in the proof

of Theorem 4.7. Then, for each 2 = (f1, . . . , f<) ∈ �, it computes encodings

[u2 ]1 ←
∑
8∈[<]

f8 [a8 ]1 and [û2 ]2 ←
∑
8∈[<]

f8 [â8 ]2.

Let D∗ be the dictionary that maps D∗ [2] ↦→ ([u2 ]1, [û2 ]2) for all 2 ∈ �. The trapdoor setup algorithm outputs
crs∗, vk∗, D∗, and td.

In the case of a BARG with fully fixed wires, TrapSetup removes the encodings of [a8 ]1 and [â8 ]2 from vk∗.
Namely, it now sets vk∗ =

(
G, [M]1, [M̂]2, [a]1, [â]2

)
. The other components crs∗, D∗, td are unchanged.

• Extract(td,�, ( x1 |( , . . . , x< |( ), {(8, enc∗8 )}8∈[=]\( , c): The extraction algorithm is the same as Extract in the
proof of Theorem 4.7 (which only depends on td and c ).

We now sketch the arguments for the CRS indistinguishability and somewhere extractability in trapdoor mode
properties. Both follow by the corresponding argument from the proof of Theorem 4.7.
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• CRS indistinguishability: This follows by the same argument as in the proof of Lemma 4.8. Namely,
Lemma 4.8 shows that crs∗ output by TrapSetup is computationally indistinguishable from crs output by Setup

in Construction 4.5. These are the exact same components in the common reference string and verification key
in Construction A.7. Next, the encodings in the dictionary D∗ and D are public (and efficiently-computable)
functions of the elements in crs∗ and crs, respectively. Thus, the tuple (crs∗, vk∗,D∗) output by TrapSetup (for
any index 8∗ ∈ [<]) and (crs, vk,D) output by Setup in Construction A.7 are computationally indistinguishable.

• Somewhere extractable in trapdoormode: Since the structure of c in Construction A.7 and Construction 4.5
is identical, this property follows by the same argument as in the proof of Lemma 4.12. More precisely, we
can show that an adversary that breaks the somewhere extractability property for Construction A.7 implies a
corresponding adversary that breaks the same property for Construction 4.5. We provide a brief sketch here:

Suppose there exists an adversaryA that wins the somewhere extractable game with non-negligible probability
Y. We use A to construct an adversary B that wins the somewhere extractable game for Construction 4.5 with
the same probability:

– Algorithm B runs A to obtain an index 8∗ ∈ [<] and a set of fixed-wire assignments � ⊆ {0, 1}< .
– Algorithm B submits 8∗ to its challenger and receives crs∗ from the challenger. It forms vk∗ from crs∗

(which consists of a subset of the components of crs∗). AlgorithmB computesD∗ as described in TrapSetup
(which only depends on components in crs∗). Algorithm B gives crs∗, vk∗,D∗ to A.

– Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a set of fixed-wire constraints Φ, a
set of statements x̂1 |(̄Φ , . . . , x̂< |(̄Φ ∈ {0, 1}(̄Φ restricted to the set (̄Φ = [=] \ (Φ, and a proof c .

– For 8 ∈ [<], define x8 |(̄Φ = x̂8 |(̄Φ . For indices 9 ∈ (Φ fixed by Φ, let G8, 9 = 0 9,8 where ( 9, (0 9,1, . . . , 0 9,<)) ∈ Φ.
– Algorithm B outputs the circuit � , statements (x1, . . . , x<) and the proof c .

By construction, if Verify(vk∗,�, ( x̂1 |(̄Φ , . . . , x̂< |(̄Φ ), {( 9,D∗ [2 9 ])}( 9,2 9 ) ∈Φ, c) = 1, then
(
�, (x1, . . . , x<), c

)
ver-

ifies under the same procedure in Construction 4.5. Moreover, the extraction algorithm Extract is identical to
the corresponding algorithm in the proof of Lemma 4.12. Thus, algorithm B succeeds with the same advantage
as A and the claim holds. �

Theorem A.10 (Succinctness). For all constants : ∈ N, Construction A.7 is succinct.

Proof. Take any _,<, B ∈ N and any set of fixed-wire assignments � ⊆ {0, 1}< . Take any Boolean circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1} of size at most B and any set of fixed-wire constraints. We check each property individually:

• Proof size: By construction, the size of the proof is the same as in Construction 4.5. By Theorem 4.15,
|c | = poly(_, B).

• Verification key size: We can appeal to the analysis in Theorem 3.10 to show that |crs| , |vk| = poly(_,<).
Next, for each 2 ∈ �, the encodingD[2] consists of :+1 elements in each ofG1 andG2. Thus, |D[2] | = poly(_).
Thus,

|vk| + |{D[2]}2 ∈� | = poly(_,<) + poly(_, |�|).
In the fully fixed wire setting, the verification key consists of the group description G along with (: + 1)2
elements in each of G1 and G2. In this case, |vk| = poly(_), and so

|vk| + |{D[2]}2 ∈� | = poly(_, |�|).

• Verification time: The verification procedure in Construction A.7 is a slimmed-down version of the procedure
from Construction 4.5 where some of the statement validity checks are replaced with direct equality checks
against the provided encodings. The claim follows by a similar analysis. In particular, in the fully-fixed setting,
the verifier does not need to perform any statement-validity check, which yields an overall verification time of
poly(_, B) in this setting. �
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