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Abstract

Federated learning systems that jointly preserve Byzantine robustness and pri-
vacy have remained an open problem. Robust aggregation, the standard defense
for Byzantine attacks, generally requires server access to individual updates or
nonlinear computation — thus is incompatible with privacy-preserving methods
such as secure aggregation via multiparty computation. To this end, we propose
SHARE (Secure Hierarchical Robust Aggregation), a distributed learning frame-
work designed to cryptographically preserve client update privacy and robustness
to Byzantine adversaries simultaneously. The key idea is to incorporate secure
averaging among randomly clustered clients before filtering malicious updates
through robust aggregation. Experiments show that SHARE has similar robustness
guarantees as existing techniques while enhancing privacy.

1 Introduction

An increasing amount of data is being collected in a decentralized manner on devices across
institutions[9]. Traditionally, machine learning with such devices require centralized data col-
lection, which increases communication costs while posing a threat to privacy, especially when these
devices gather personal user data. Distributed learning frameworks like federated learning attempt to
address these issues by sharing model updates from client devices, rather than data, to a centralized
server [11,9, 7, 14].

Among the most popular implementations of federated learning is Federated Averaging [15]. While
the central coordinating server follows a designated aggregation protocol, the required communication
can pose a privacy threat when the system is compromised by a malicious external agent leaking
individual model updates. To this end, Bonawitz et al. [3] proposed a secure averaging oracle that
masks individual client updates such that the server learns their average alone. Nevertheless, since
the collaboratively learned model update includes the contribution of all participating clients, benign
averaging might fall prey to incorrect device updates either due to arbitrary failures or maliciously
crafted updates preventing the devices from learning a good model.

In recent years, federated learning robustness to Byzantine failures (i.e., worst-case adversarial coor-
dinated training-time attacks) has gained attention. However, existing robust aggregation techniques
require sophisticated nonlinear operations [21, 24, 2], sometimes with server access to individual
model updates in the clear — thus leading to privacy loss. These nonlinear operations adversely
affect privacy since privacy-preserving methods such as secure Multi-Party Computation (MPC) are
inefficient for nonlinear operations [3]. This observation highlights a fundamental tension between

existing solutions to the two critical problems of privacy and robustness.
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To the best of our knowledge, ours is the first approach that scalably combines Byzantine-robustness
with privacy using the common single-server architecture. We prose a novel hierarchical framework
that decouples MPC-based privacy and Byzantine robustness protection mechanisms in this work.
The basic idea is to implement a secure averaging oracle among randomly clustered clients, then
filtering these updates using robust aggregation. This approach reveals only the cluster averaged
update to the server, thus can help preserve privacy. Simultaneously, the second level of robust
aggregation helps to maintain Byzantine robustness.

Taken together, this manuscript proposes a federated learning architecture that preserves security
and privacy jointly, thus addressing this gap in the literature. Due to the hierarchical approach,
existing robust distributed learning frameworks [21, 24, 2] and non-robust secure distributed learning
frameworks like [3, 4] can be considered special cases of our proposed approach. Summary
of contributions: We propose SHARE; a robust distributed learning framework which flexibly
incorporates any Byzantine-robust defenses while enhancing privacy in a single server systems
setting. We extend existing theoretical guarantees of robust aggregation oracles to the SHARE
framework. Further, we present empirical evaluation of SHARE on benchmark datasets.
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Figure 1: This figure illustrates our proposed framework SHARE. Each global round consists of
multiple reclustering rounds, updates from which are averaged to obtain the final model update. In
each reclustering round (shown by dotted rectangle), updates from clients (numbered squares) are
clustered randomly (M, Ma, M3), then averaged followed by robust aggregation.

2 Related Work

Byzantine robustness and secure aggregation in distributed learning both have a large existing
literature — though often from different (somewhat disconnected) communities.

Robust Aggregation.Robustness to Byzantine adversaries is a well-studied problem in distributed
and federated learning [13]. Broadly, existing defenses can be categorized into distance-based robust
aggregation or validation data-based aggregation. The general idea behind distance-based metrics
is to find an update closer to the benign mean in /o norm distance. Xie et al. [21] suggest utilizing
coordinate-wise trimmed mean. Blanchard et al. [2] choose a model update closest to most other
updates.Ghosh et al. [6] suggest optimal statistical rates utilizing median and trimmed mean. All
these distance-based defenses require a majority of the clients participating in the protocol to be
benign. On the other hand, validation data-based aggregation defenses such as Zeno [22, 24] perform
suspicion-based aggregation based on a score evaluated on validation data held at the server. These
methods can tolerate arbitrary Byzantine poisoning. All the above techniques require the server to
see the local model updates in the clear, posing a privacy threat.

Privacy via Secure Aggregation.In many distributed learning settings, the secure computation boils
down to computing a secure average. Bonawitz et al. [3] utilizes a pairwise secret share to achieve
the same. Aono et al. [1] follow a slightly different approach and utilize additively homomorphic
encryption for secure update computation. While these methods work well with linear aggregation
methods, extending secure multiparty computation to non-linear robust aggregation schemes intro-
duces additional computational and communication overhead, quickly becoming impractical for real
computational loads.



He et al. [8], Pillutla et al. [16], Wang et al. [20] are the closest to our work in the sense that they are
proposed to address the problem of robustness and privacy in distributed learning jointly. Compared
to He et al. [8], which requires two non-colluding servers, we achieve this with a single server, which
may be a more realistic architecture for practical use cases. Further, He et al. [8] tailor their approach
to distance-based robust aggregation. In contrast, our proposed approach is easily combined with
most existing Byzantine-robust aggregation schemes, including filtering-based defenses such as
Zeno++ [24]. On the other hand, Pillutla et al. [16] reduce the filtering computation of the median
into a sequence of linear computations. Unfortunately, this approach requires that the Byzantine
device follows the computational protocol over multiple rounds, which is a strong assumption in
practice. Thus, while inspired by Byzantine tolerance, Pillutla et al. [16] do not claim Byzantine
robustness. After completing this work, we were made aware of a related approach [20] using a
hierarchical architecture with a robust mean aggregator. Compared to Wang et al. [20], our approach
is a wrapper method that can be combined with any robust aggregator, with analysis and performance
depending on the choice of aggregator (e.g., we analyze and compare trimmed mean, krum, Zeno++).
Further, we address the problem of signal loss due to clustering via a novel reclustering step.

3 Problem Formulation

We consider the optimization problem min,cgas F'(2) where, F(z) = %Zie[n] E.,~p, fi(z; z;),
hence the goal is to learn a model & which performs well on average using z; sampled from local data
distribution D;, Vi € [n]. The notations used in this paper are summarized in Table 1 (Appendix A).

This problem is solved in a distributed and iterative manner. In each global iteration (t < 1)),
sampled clients compute a private model update (AzX) by running multiple steps (K-steps) of
Stochastic Gradient Descent (SGD) on the local data available (z; ~ D;). Then server can computes
a global model update. For instance, when using simple averaging, the server update is ! =
2t 4 p Zie[n] Azk, where 7 is global learning rate. We consider the following privacy and
security threats:

* Privacy threat model: We consider an honest but curious server. This specification allows
the server to interpret the device data from the updates, hence breaching privacy. The
assumption of honest server implies that the server still follows the underlying protocol.

* Robustness threat model: We consider a fixed (unknown) subset (¢) of machines that can
co-ordinate and send arbitrary updates to the server hence deviating from the intended
distributed learning protocol.

4 Methodology

We propose two-step hierarchical aggregation SHARE (Secure Hierarchical Robust Aggregation) as a
defense against the specified robustness and privacy threat models. In particular, our approach allows
a decoupling of the security and robustness into two steps (as illustrated in Figure 1). First, in every
global epoch, all participating clients are clustered randomly into groups. Clients within each group
share pairwise secret keys and utilize them to mask their individual updates such that the server only
learns the average within the cluster. This ensures client update privacy. These client cluster updates
are then filtered using Byzantine-robust aggregation techniques. Further, we can repeat this process
multiple times in a global epoch to aid in reducing variance. The detailed algorithm is outlined in
Algorithm 1. Without loss of generality, we assume clusters of uniform size.

4.1 System Components

Secure Aggregation: This is the first step in hierarchical aggregation. We follow an approach similar
to [3], using pairwise keys between clients in a cluster. The server in this setup learns just the mean
and hence the privacy of individual client updates are protected (Detailed discussion in Appendix C).

Robust Aggregation: This is the second step in every reclustering round. In this step, the secure
cluster averages are filtered through robust aggregation. The goal ideally is to eliminate clusters with
malicious client updates. Any existing robustness techniques like trimmed mean[21], median[16]
or Zeno[24] can be utilized at this stage. We show theoretical guarantees and experiments based on
existing methods in the following sections.

Random Reclustering: As specified in Algorithm 1, we repeat the secure aggregation followed by
robust aggregation multiple times randomizing client clusters in each global epoch. Note that across



Algorithm 1 SHARE (Secure Hierarchical Robust Aggregation)

0: Server:

1: fort=0, ... ,T—1do

2: forr=1,... Rdo

3: Assign clients to clusters S = M; U ... M; ... UM, with |[M;| = |M;|Vi,j € ]
4 Compute secure average g; < SecureAggr({A;}icm;) = ZieMj u;, Vi €[]
5: g~ RobustAggr({g;}je[C])

6: end for

7. if stopping criteria met then

8: break

9: endif
10 Pusha'’ =z~ 4+ L 3 g" to the clients
11: end for

Client:

12: for each client 7 € S (if honest) in parallel do
13: zt,+ ot

14: fork=0,... ,K—1do

15: Compute an unbiased estimate g; , of V f;(x} ;)
16: } 41 < ClientOptimize(x} ., gy ., m, k)
17:  end for

18: Ay = (2} o —at)

19:  Push A; to the assigned clusters using secure aggregation
20: end for

21: return z7

these reclustering rounds, the same local model update is paired with different clients each time.
In addition to malicious updates, benign updates paired with malicious clients might be filtered in
the proposed approach. Reclustering helps mitigate this loss of signal and hence reduces variance.
In particular, as number of reclustering rounds (R) increase, the probability of this loss in signal
decreases (Detailed discussion in Appendix E).

Remark. Although reclustering increases communication cost, we note that in addition to helping
decrease the variance, reducing secure aggregation to within clusters, decreases communication cost
as pairwise key exchange is now limited to within the cluster. Hence overall, communication cost for
each client changes from O(n) to O(£2). In experiments, we often find that even a single clustering
round gives good results (Section 6).

S Theory

5.1 Exactness

Algorithm 1 can be implemented using any aggregation technique. However, due to clustering, the
result is resilient to fewer malicious clients — as (in the worst case) malicious clients are assumed to
completely corrupt their assigned cluster. We formalize these ideas next, with proofs in Appendix B.

Lemma 1. If robust aggregation is replaced by averaging, the output of Algorithm 1 is identical to
Federated Averaging[15].

Lemma 2. In presence of robust aggregation, Algorithm 1 is robust to ¢ = 4 adversaries, where qq
is the tolerance limit of the robust aggregation oracle followed and m is the cluster size.

5.2 Convergence Analysis

To highlight the flexibility of the proposed algorithm, we analyze convergence when using both using
a distance based robust aggregation strategy or a validation data based aggregation strategy, such as
Zeno++. We first define the few terms used to develop convergence analysis.

Definition 5.1 ((G,B)-Bounded Gradient Dissimilarity). There exists constants G > 0, B > 1 such
that ; 377 [V fi(2)[|* < G + B*|VF (2)|?

Definition 5.2 (Bounded client updates variance). We define benign mean model update across
clients to be 11 = Y, AK, hence the variance across client updates as E[[| AKX — 1]|?] < o2 for all i
across all rounds of training



Definition 5.3 (Bounded variance). For an unbiased stochastic gradient estimator with g;(z) =
V fi(x, z;) we define bounded variance as E ., [||g;(z) — V fi(x)||] < o2 for any i,z

The difference between Definition 5.2 and 5.3 is that the former bounds the variance between model
updates across clients while the latter bounds the variance across gradient estimates within the same
client.

5.2.1 Convergence Rates

We now prove that Algorithm 1 converges for various robust aggregation oracles. Firstly, we state a
few general assumptions required to prove convergence guarantees standard in papers.

Assumption 5.1. There exists at least one global minima «* such that F'(z*) < F(z),Va

Assumption 5.2. We assume that F'(z) is L-smooth and has u-lower bounded Taylor approximation
(p weak convexity)

(VE(),y — )+ blly = 2l < Fly) - F(2) < (VF@),y — ) + 5y — o

Note that this Assumption 5.2 covers the case of non-convexity by taking ;1 < 0. We note that each
distance based robust aggregation metric have different bounds from benign mean update. Since
the focus of this work is to propose an algorithm that unifies robustness with privacy, we do not
concentrate on those bounds and absorb such intricacies into an order constant. Formally,

Assumption 5.3. For any distance based robust aggregation algorithm, when fraction of faulty inputs
is below threshold, the output of robust aggregation is bounded from benign mean. That is, we
assume there exists a V5 such that for any set of vectors {v; : i € C}, replaced by faulty vectors
Vi ¢ C¢ C C, |[RobustAggr({vi}icc) — ﬁ > ice, Vill £ O(Va).

We note that Assumptions 5.1,5.2 are standard among existing Federated Learning literature [10,
22, 24]. Additionally Assumption 5.3 is a direct consequence of existing distance based robust
aggregation oracles [21, 16, 2]. Finally, for Algorithm 1 with such oracles, we have the following
theorem

Theorem 3. Consider a function F(x) satisfying Assumptions 5.1,5.2 assume a robust aggregation
scheme that picks up b updates and satisfies Assumption 5.3, further, assume (G,B)-Bounded gradient
dissimilarity, 03 variance in client updates and o? variance in gradient estimation, there exists 1,1,

such that output of Algorithm 1 after T rounds, x", satisfies,

LMVF  FY3LG?)'3  B2LF o5 ((n—q—bm
V2] < 2 s
E[|VF( )||]_O<¢m+ GESEC Y +2LVQ+bm(R<nq>1)

where M? := (1 + [5) and F' := F(z°) — F(z*)

Now we consider Zeno++[24], a defense utilizing server data. Although score based Zeno++ was
originally introduced for asynchronous SGD, we generalize it to federated learning setting hence
allowing for multiple local epochs. We illustrate this modified algorithm in Appendix B. As in Xie
et al. [24], we consider an additional standard assumption

Assumption 5.4. The validation set considered for Zeno++ is close to training set, implying a
bounded variance given by E[||V fs(z) — VF(z)|*] < V4,Vz

Theorem 4. Consider L-smooth and potentially non-convex functions F(z) and f(z), satisfying
Assumption 5.4. Assume || fs(x)||* < V3,Va. Further assuming G-bounded gradient dissimilarity,
variance between client updates be 0’3 and variance in gradient estimation at each client be o,

with global and local learning rates of n < ﬁ and p > % + n, after T global updates, let
1

D := F(2°) — F(a*), Algorithm 1 with Zeno++ as robust aggregation converges at a critical point:

E VF(zi_1)|]? 2 —q—
D ieir IVF (2 1)H]< E[D] +\/77@<09 (W>+G2+02+V1+Vf3+6>

T T aynT o« m \R(n—q)—1

Remark. It can be seen from both Theorem 3,4 that the additional terms, other than standard ones
appearing in the convergence rate for federated learning [10], depend on the error caused by the robust
aggregation scheme utilized and variance reduction from reclustering. Further, higher number of
reclustering rounds R decreases the effect of additional variance. Finally when R =1,m = 1,9 =0,
these recover existing results for federated learning with robust aggregation.



5.3 Privacy

Curious server:Since each client masks updates with random vectors as illustrated in Section 4, we
note that if we execute the mentioned secure averaging oracle with threshold ¢ > 7, the protocol
can deal with [ 3] — 1 drop outs while learning nothing more than average. Reclustering introduces
additional vulnerability as server can see multiple averages. In particular, the probability that server

\R
can decode a model update is O(1 — (%) ). Hence as R increases this gets closer to 1 as

expected. Further, when all clients are in a single cluster (m = n, hence c=1), this is 0 as would
be the case with secure averaging without robustness. Further discussion, including comments on
privacy in presence of colluding curious clients can be found in Appendix C.

6 Experiments

In this section we evaluate the proposed algorithm SHARE with various defenses and corruption
models. We conduct experiments on CIFAR-10 [12] (Image classification dataset) and Shakespear
(a language modeling dataset from LEAF [5]). We note that we do not propose a new robustness
technique but rather we propose a modified federated learning architecture to incorporate any ro-
bustness protocol in a privacy preserving manner. Hence we focus our experiments on capturing the
effects of cluster sizes and reclustering rounds, hyperparameters introduced by our approach. We
defer descriptions of detailed training architecture to Appendix D

6.1 CIFAR-10

We train a CNN with two 5 x 5 convolutional layers followed by 2 fully connected layers[15] on
CIFAR-10 and report top-1 accuracy. We test SHARE incorporating various robust aggregation
protocols such as Trimmed mean [21], Krum [2], Zeno++ [24]. For all experiments in this section,
trimmed mean removes 2/3 of the updates before computing the mean. Additionally, we consider two
baselines, SHARE with no robust aggregation and SHARE with no attack. We consider homogeneous
distribution of data across clients for experiments in this section. Experiments on heterogeneous data
distributions can be found in Appendix D.

6.1.1 Impact of cluster size

We first test Byzantine-tolerance for various cluster sizes to mild attacks such as label-flip. In
particular, malicious clients train on wrong labels (images whose labels are flipped, i.e., any label
€ {0,...,9} is changed to 9-label). We consider 60 total clients of which ¢ = 12 being malicious.
The result is shown in Figure 2 for various cluster sizes and robust aggregation protocols. It is seen
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Figure 2: Results of SHARE with various defenses on CIFAR-10, utilizing varying cluster sizes
under label flip attack. For Trimmed mean we remove 2/3 of input updates.

that having no defense diverges even with mild attacks as expected. Further Figure (2a) shows that
SHARE with a strong defense like Zeno++ converges to benign (no-attack) accuracy for any of the
considered cluster sizes. SHARE with trimmed mean and Krum both converge with cluster size 3 but
as cluster size increases, accuracy decreases and SHARE begins to diverge. This can be seen directly
from Lemma 2, since we set trimmed mean to filter go = (2/3) * 60 = 40 of updates, a cluster size of
3 implies the algorithm is robust against ¢ = 40/3 > 12 clients being malicious, hence the algorithm
converges to benign accuracy, increasing the cluster size decreases this tolerance threshold and hence
as shown in Figure (2c) may fail to converge. Further experiments on scaled sign-flip attacks, are
included in Appendix D due to space constraints.



6.1.2 Impact of reclustering

Intuitively, increasing the number of reclustering rounds increases the expected number of clusters
without a Byzantine client. This hence increases the robustness of SHARE to higher fraction of
Byzantine clients with defenses like Zeno++ which can tolerate arbitrary levels of poisoning. We test
this hypothesis with several attack and clustering scenarios using sign-flipping attacks. In (a), we
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Figure 3: Results of SHARE with Zeno++and different reclustering rounds R, Byzantine clients g,
cluster sizes m on CIFAR-10 with varying attack strengths (Any benign model update A is scaled to
either —10A or —100A). In (a),(b) we use n = 60 and for (¢) we use n. = 100.

use a relatively small cluster size and a low fraction of Byzantine clients, so 1 round is sufficient. In
(b), the fraction of Byzantine clients is high and in (c) the cluster size is large, which increases the
probability of a cluster containing a Byzantine client, so R > 1 helps converge to higher accuracies.

6.2 Shakespeare

We consider the first 60 speaking roles in the train set as our 60 clients. We train an RNN with 2
LSTM layers followed by 1 fully connected layer[17] and report top-1 accuracy on the testing set.

6.2.1 Empirical Evaluation

In Figure 4 we evaluate Byzantine tolerance of SHARE with Zeno++ under sign-flip attack (malicious
clients send an update negative to the benign one —A) and scaled sign-flip attack (malicious clients
scale the update in addition to flipping the sign and hence send —10A). A stronger attack like scaled
sign-flip breaks benign averaging and Zeno++ works well with any of the chosen cluster sizes.
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Figure 4: SHARE with Zeno++ defense and sign-flipping attack on Shakespeare.

7 Discussion and Conclusion

We have proposed SHARE, a framework for implementing Byzantine-robustness and privacy. The
key idea is hierarchical clustering. Cluster size is an important parameter that controls the trade-off
between privacy and robustness. Further, reclustering is an important step and can help decrease
variance and increase tolerance to the fraction of malicious clients when the defense can support
arbitrary failures like Zeno++. In future, we would like to explore other variations in client clustering,
especially in heterogeneous data settings. Further, we plan to work on stronger security guarantees
even with multiple reclustering rounds.
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Appendix
A Notations

Notation | Description Notation | Description

n Total number of clients c Number of clusters

q Number of faulty clients S set of all clients

K Number of local SGD epochs [m] The set of integers {1, ..., m}

T Number of global epochs {M;}jere| Setof client clusters

R Number of resampling epochs n; Number of samples on worker %

b Trim parameter for defense m Number of clients in each cluster
N, N Local and global learning rates -1l All norms in this paper are l3-norms

Table 1: Notations utilized in this paper

B Proofs

In this section, we elaborate on theoretical guarantees of SHARE. We define the following quantity
to aid the proofs that follow

Definition B.1 (Clustered Client Update). We define clustered client update as average model updates
from all the clients assigned to a particular cluster. Mathematically, the clustered client update in a
reclustering round r < R is given by g; = Zj My, A where A; denotes the model update from
client j belonging to cluster M, after K steps of SGD.

Lemma 5. If robust aggregation is replaced by averaging, output of Algorithm 1 is identical to
Federated Averaging[15].

Proof. In each re-clustering round, the update with benign averaging becomes ¢g" =
Dicle] 2ujeMs Af{ = 2 len) A[* where n is the total number of clients and ¢ = 2 is the to-
tal number of clusters, as this update is independent of the random cluster division, the global update
at round ¢ becomes ! = 2!~ 4+ > en] AlK which is identical to federated averaging. O

Lemma 6. In presence of robust aggregation, Algorithm 1 is robust to ¢ = 42 where qq is the
tolerance limit of the robust aggregation oracle followed and m is the cluster size.

Proof. We consider the worst case scenario of each malicious client being in different clusters, hence
spreading the attack to the maximum possible number of clients. Although randomization beats this
and might offer better clusters in multiple random rounds, there might still exist such attack favorable
rounds. Allowing for this worst case sets the threshold to ¢ = 22 if the original robustness oracle has
a threshold of q. L]

B.1 Distance based robust aggregation

Theorem 7. Consider a function F(x) satisfying Assumptions 5.1,5.2 assume a robust aggregation
scheme that picks up b updates and satisfies Assumption 5.3, further, assume (G,B)-Bounded gradient
dissimilarity, 03 variance in client updates and o? variance in gradient estimation, there exists 1,1,

such that output of Algorithm 1 after T rounds, x*, satisfies,

\/TKn+ (T +1)%/3 T bm \R(n—q)—1

where M? := o02(1 + yz) and F = F(2%) — F(z%)

2/3 211/3 2 2 g —
E[|VF@T)|?] <O <LM\/F FLLG) 7 BLE | opey, %o ( n g bm ))

Proof. Firstly, we bound the distance between global model update from Algorithm 1 and
expected benign mean model update in each global iteration. In particular, let the ex-
pected benign mean model update be denoted by p; and global model update in each
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iteration is given by + > RobustAggr({gl}ic(q). We determine an upper bound on
[E[+£ >, RobustAggr({g! }ic(q)] — || This is illustrated below

1 1
Il > Robustaggr({g] }ici)] — mel® < ||E[§(Z RobustAggr ({9} Yicm)) — Y, 9i)]

ri€eB
1 T
_HE[E Z 9] _/ltH2

ri€B
1 :
< OW) +2IEl% 3 ot - wll?
r,i€B

< O(Va) + 2E|Resample({A] bicc) — pul|?

o2 R(bm) —1
< I (1-—
*O(VQ)—’_Rbm( R(n—q)—l)

2

oy, n—q—bm
< _g(- 4
<O(V2) + bm(R(n — = 7)

Where B denotes indices of benign clusters (clusters with uncorrupted device updates. Mathemati-
cally, let C; denote set of benign clients among all n clients. {B : ¢ € [c] such that Vk € [m], Ay, €
M;, A € C}), r < R as mentioned in the text denote reclustering rounds. The second inequality
follows from Assumption 5.3. Since each reclustering round randomly groups clients together, the
set {Ay : Ag € M;,i € B} is a random resample of bm benign client updates from the available
n — q, where b is the number of updates available after filteration through robust aggregation. With
R resampling rounds, this is equivalent to resampling Rbm updates from R(n — ¢) benign updates.
Following Rice [18](Chapter 7, Theorem B), we obtain the scaled down variance bound.

Using L-smoothness of F'(x),
E[|VF(z")|’] < 2E[|[VF(2") = VF () 1] + 2E[|| F (1) 1]

2

o —q—>b
<2L2O0(V3) + L (5L

- W)) + 2E[|| F (1) [1?]

The rest follows a similar approach as Karimireddy et al. [10] hence we get

LMVF  F2B3(LG5HY3  B2LF o —q—b
vF L&) | +or?Vy 4 L (1
VTKn (T +1)%/ T bm \R(n—q) —1

where M? := 0*(1 + ) and F := F(2°) — F(a*). O

EMvmeﬂ<0(

B.2 Zeno++ as robust aggregation

We first illustrate a modified Zeno++ algorithm and adapt it to Federated Learning setting from its
original asynchronous SGD paradigm. Firstly, we define a score that helps filter out updates if they
fall below a threshold. Intuitively, the score denotes trustworthiness of a clustered update.

Definition B.2 (Approximated model update score). Denote fs(z) = = .1 f(x; 2;), where zjs
are drawn independent and identically from D, # D;, Vi € [n] and n, is the batch size of f(-), for a

clustered client update g, model parameter x, global learning rate 1 and constant weight p > 0, we
define model update score as
SCO’I‘@UW ~ —77<st($)’ g> - p||g||2
where z is the current model available on the server.
Using this approximated model update score, we set hard thresholding parameterized by ¢ to filter

client cluster updates. Algorithm 2 illustrates SHARE framework with Zeno++ as robust aggregation.
We analyze the convergence of Algorithm 2 in the following theorem.

Theorem 8. Consider L-smooth and potentially non-convex functions F'(x) and fs(x), Assume vali-
dation set is close to training set, implying a bounded variance given by E|[||V fs(z) — VF(x)|?] <
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Algorithm 2 SHARE (Secure Hierarchical Robust Aggregation) with Zeno++ defense

0: Server:

1: fort=0, ... ,T—1do

2: forr=1,... Rdo

3: Assign clients to clusters S = M; U ... M; ... UM, with |[M;| = |M;|Vi,j € ]
4 Compute secure average g; < SecureAggr({A;}icm;) = ZieMj u;, Vi €[]
5: Randomly sample z; ~ S, Vj € [ng] to compute f

6: fori=1, ... ,cdo

7 if score(g!, =1 > —ne) then

8: 9" g " +g,

9: end if
10: end for
11:  end for
12:  if stopping criteria met then
13: break

14:  end if

15:  Pusha® = a'~! + 5% > g" to the clients

16: end for

Client:

17: for each client 7 € S (if honest) in parallel do
18:  zl,+ at

19: fork=0, ... ,K—1do

20: Compute an unbiased estimate g; , of V f;(xf ;)
21: } 4q + ClientOptimize(x ., i, M, k)
22:  end for

23 A= %t —at)

n 2y
24:  Push A; to the assigned clusters using secure aggregation
25: end for

26: return xT

Vi, Va, Assume || fs(z)||? < V3, Va. Further assuming bounded gradient dissimilarity as stated in
5.1,variance between client updates of O'g and variance in gradient estimation at each client be o,

with global and local learning rates of n < ﬁ and p > % + n, after T global updates, let
1

F = F(2°) — F(a*), Algorithm 2 with Zeno++ as robust aggregation converges at a critical point:

E VF(xi_1)|? E[F 2 -
2uren [VE@-DIT []Jr‘/ﬁ@(%(n : m>+G2+02+Vl+Vs+e>

T “anT o« m \R(n—q)—1

Proof. Since for any cluster update g that passes the test of Zeno++, it follows that

—(Vfs(xi),ng) — pllgll*> = —ne.
Thus, we have

(VE(zi-1),mE[g"])

< (VF(21-1) = Vs(w0),mElg"]) = pE[lg" 2] + e

< JIVF (1) = V(eI + IElg"]I1? = pEllg"|*] + ne

< JIVE (1) = V(eI + (G = )Ellg" | + e

< LIV (@e1) = VE(@e) + VE(w) = V()| + (3 = p)E[lg" 2] + e

< [VF(2i-1) = V()| + | VF () = Volae) 2+ (3 = pEllg" 7] + e
< VE (i) = VE@)|? + Vi + (5 — p)Ellg"]I*) + e

< n*LE[lg"|P] + nVa + (5 — p)Ellg"II%) + e

2
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Where ¢" is the model update in reclustering round » < R. From L smoothness, we have
IVF(x1-1) = VF(2,)[|* < L?[lz—1 — x]|* < L*n°E[llg"[1?]

. . . . . 1
Using smoothness again, considering a global step size as nI, < Swe get

E[F(z¢)] (D
L 2
< Flwim1) + (VF (o), 7Elg")) + Z-Elllg"]1?) @
Ln? :
< Flaia) + (" L7 + 5 — p+ = Ellg 2] + Vi + e 3)
< F(zi-1) + (0 = p)E[llg"[[*] + nVi + e @)

Now we will bound the term E[[|g"||?]. Further, E[lg"[|?] < 2(%2 + ne) + E||g"||> where
[V fs(x)||? < V3 and §" is benign average obtained through sampling of benign clients

o2 n—q-—m

B3I < Bllef 2o + 02 (e o) 5)
Where xX corresponds to model parameters after K rounds of SGD on ith device, 03 corresponds
to variance between device updates. Since sampling successive g;s can be seen as sampling with
replacement, and at least one cluster is selected each time, this has a maximum variance of single
cluster selection case. (m is the cluster size, n is the total number of devices). The mean is equal to
client drift, which can be bounded as shown below (for notational brevity, present global model z;_;
is denoted as ). Let us assume gradients at each data point gi(:cffl) =V (xffl) -+ error, where
error has mean O and ¢ standard deviation as stated in Assumption 5.3. For £ < K steps of local
SGD, we get

Elaf —|® = Ella}™" — 2 — mgi(«; )|
< Ellz; ™ — 2 = mV fi(e] I + nfo®

1 _ _
<@+ ﬁ)Efo bl + KnP |V fi(2 D)+ njo®

1 _ _
< (14 Bl — a4 2K [V iah ™) = VA@)P + 2K |V fi(a) |2 + o

1
<1+ 1 T2 PLE[2 ! — a|)? + 2K 07 |V fi(2) | + nfo?
Where the first inequality uses mean and variance in gradient estimation, the second one follows from
relaxed triangle inequality as stated in Karimireddy et al. [10](Lemma 3). Taking appropriate local
step size n? < m and telescoping the sum, we get

2 T
Bl — af® < Z2Km||wl (@) + no®) (1 + =)

2

< @K |V fi@) +1#0%) 3 (1 + )"

< K|V fi(2)|)? + njo?)3K

The last inequality follows from the fact that 7 < K and (1 + z/n)" < exp(z). Substituting this
back into (5) and averaging over all 7’s (client devices), we get

n—qg—m
R(n—gq)—1
2

o n—q—m
< 6K’n;G? + 6K’ B?||[VF(z)|* + 3Knjo® + L (5 ————=) + V3 +2
< GKFG + 6K B VF @) + 3Knfo® + (o= smg) + Vo + 26

2
. g
Ellg"| < L 0K*? Z IV fi(@)[I* + 3Knta® + 2 ( )+ Va + 2
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Where + 3, [V fi(z)||> < G* + B?||VF(x)]|* follows from bounded gradient assumption. Com-
bining this with (4), we get

E[F(24)] < F(2¢-1)
n—q—m

m)) + T]Vl + ‘/3 + 37]6

2
ag
+ (0= p) (6K G + 6K*ni B* | VF (2)||* + 3Knfo” + —2(
Taking p > % + 7, we have
L

IV E(z-1)]? < E(F(S”‘;i/ﬁ Fla)) go (‘7’5 <W> FGP o2+ Vi Vst e)

Telescoping and using expectation after 1" global epochs, we get

E VF(z,—1)|? 2 g
e IVF@e-)IP] _ E[F] +¢ﬁ0<%(n q m>+G2+02+V1+V3+6>

T “aynT o« m \R(n—q)—1
O

C Security

To summarize, the security protocol operates in multiple rounds as is the case with any secure
aggregation oracle in distributed learning. Firstly, keys are shared among every pair of clients in a
cluster, this is followed by collection of masked inputs among each cluster by the server, which are
then averaged within the cluster after a consistency check to make sure enough participants have
participated in the round. Since model parameters are 32-bit floating points we convert them to
integers and perform the masking modulo 232,

In particular, each client masks its private update with random vectors such that the server, even if
curious, does not learn anything more than the sum of updates from a client cluster. For a given
cluster My, k € [c] assume that A;, >, (. A; € Zp, for some P. Consider an order on all the
clients within a cluster and each pair of users ¢, j(i < j) agree on a random vector r; ;. If 7 adds
this to its updates (A;) and j subtracts it from its update (A ), adding them would cancel and server
would learn just the average but not individual updates. Hence, each client ¢ € M}, would compute
Ui = Di + My Ti — 2jemy.is; Tij (mod P). If no clients drop in the computation round,
it can be seen that Zie M, Wi = Zie M, A; (mod P). Further, this can be made communication
efficient by coordinating a common agreement on seeds for pseudorandom generator.

C.1 Communication efficiency

Notice that sharing a whole mask has a communication cost that increases linearly with the model
size and hence prevents dealing with large models. This can be circumvented by clients agreeing
on common seeds for a pseudorandom generator (PRG). PRG takes in a random seed as input
and generates uniformly random numbers in [0, P)? where d is the model dimension. Engaging
in a key agreement after broadcasting Diffie-Hellman public keys, as stated in [3] is a way to
compute these shared seeds. Hence, each client belonging to a cluster ¢ € M}, would compute
U = Di+ 3 ey i<j PRG(S1) = 22 e, is PRG(84,5)i,5 (mod P), where s; ; is the shared seed
between clients 7, j.

C.2 Handling dropped users

Since masks are shared between clients in a cluster, dropping of a client in a round causes incorrect
computation of average as the masks do not exactly cancel each other. This problem is resolved by
utilizing Samir’s t out of n Secret Sharing [19] to share each clients’ Diffie—Hellman secret with
others and hence server can retrieve masks for the dropped client. Optionally, double masking as
noted in Bonawitz et al. [3] can be used to enhance security.

C.3 Privacy at Server

As noted in Section 5, server learns nothing more than the average of the clustered client updates.
However, multiple reclustering rounds poses an additional privacy threat since multiple averages
among same clients appear in clear to the server. We note that the server requires at least R >  to
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identify all the updates, this can be used to tune R, c. Further, R > % does not guarantee that server
learns all updates since clusterings can overlap resulting in linearly dependent equations with infinite
solutions.

C.4 Privacy from curious clients

As mentioned in Section 5, at least m — 1 malicious clients are required in a cluster to infer the update
of the remaining client. In each reclustering round this probability is upper bounded by (’)(%)
and hence the rest being constant, as cluster size increases, it gets harder to break a client’s privacy.
Further, we note that just as n — 1 colluding curious clients can break privacy in traditional Federated

Learning, m — 1 colluding curious clients can in our approach.
C.5 Communication costs

Server:The server communication cost is O(Rnm + Rdn), where R, m, n, d indicate number of
reclustering rounds, number of clients per cluster, total number of clients and model size respectively.
Here O(Rmn) is associated with mediation of pairwise communication between clients in each
cluster and O(Rdn) is for receiving masked data vectors from each user. Although reclustering
increases communication costs, clustering helps reduce pairwise communications.

Client: Client communication cost is O(Rm + Rd). Here O(Rm) is associated with pairwise key
exchange within a cluster over all reclustering rounds and O(Rd) is for communicating its model to
server in every reclustering round.

Note that these are passive adversaries hence while can be curious, they honestly follow the protocol
for security. Compared to the two server approach suggested in He et al. [8], our approach can handle
attacks on the server, because if an adversary attacks the server(s) or can see communication channels,
model updates still remain private.

D Additional Experiments

We use a global learning rate = 1, local learning rate 1, = 0.01, local momentum 0.9, and
mini-batch size 64. We run each experiment for 200 global rounds with 2 local rounds each and
report top-1 accuracy on the testing set. For all the experiments, unless specified, we use R = 10
reclustering rounds.

For Zeno++, we randomly sample 5% of the training data across clients with the same number of
samples of each label to use as the server-side validation set as in Xie et al. [24]. We consider batch
size of 128, p = 0.0001, € = 0.2 as Zeno++ parameters.

In experiments on Shakespear, we use 7 = 1, n; = 1, local momentum 0.9, and mini-batch size 256.
We run each experiment for 100 global rounds with 2 local rounds each. For all the experiments,
unless specified, we use R = 10 reclustering rounds. Codes for the same would be made available
soon.

D.1 Impact of cluster size
D.1.1 Fall of Empires Attack

We now test the sensitivity of cluster size on Byzantine-tolerance to a stronger attack with colluding
adversaries, we utilize a modified version of Fall of Empires (FoE) [23]. In particular, each malicious
client sends a negatively scaled averaged model update across all malicious clients. We test scaling
these updates by 3 = —1,—10. Since Zeno++ can tolerate a greater fraction of clients being
Byzantine, we set ¢ = 6 while for trimmed mean and Krum, we set ¢ = 3. (Parameters for defenses
remain the same as in Section 6 unless specified.)

The results are plotted in Figure 5. A similar effect of cluster sizes as discussed in Section 6 can be
seen here. Further, Zeno++ ,as expected, is stable even at higher levels of corruption.

D.2 Effect of Reclustering with Non-IID data

Empirically, we test the effect of reclustering on a heterogeneous data distribution. In particular, we
divide CIFAR-10 among clients such that each one gets data from a few classes. In all experiments
we use cluster size of 3.
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Figure 5: Results of SHARE on CIFAR-10, with varying cluster size across various defenses under
FoE attack and ¢ malicious clients out of 60 total clients. Malicious clients send their average update
scaled by (3 as indicated in the subfigures. For trimmed mean (Trmean) we remove 2/3 of input
updates and use batch size of 128, p = 0.00001, e = 0.2 as Zeno++ parameters.

D.2.1 No Attack

To create heterogeneous data effect, we split CIFAR-10 data across 60 clients such that each client
gets only data consisting of 2 labels. As can be seen in Figure 6, robust defenses such as coordinate
wise median[16] and Krum[2] fail in this setting, while SHARE with these defenses performs better
as the number of reclustering rounds increases. Further, variance reduction is observed as we increase
reclustering rounds (R).

> >
= =
c e
3 VL A 3
2 - 2
0.2 A —4— R=5
0.1 —+— R=1
: —¥— no SHARE : —¥— no SHARE
0.0 — T T T T 0.0 — T T T T
0 50 100 150 200 ] 50 100 150 200
Number of Rounds Number of Rounds
(a) Median (b) Krum

Figure 6: Results of SHARE on non-IID CIFAR-10, where each client has data from 2 labels, across
various defenses without attack with 50 clients. We vary the number of reclustering rounds (). No
SHARE indicates the baseline defense without the SHARE framework.

D.2.2 Fall of Empires Attack

We consider a lower level of heterogeneity but with client corruption. In particular, each client gets
data consisting of 5 labels and ¢ = 3 malicious clients which collude to send their average model
update scaled by 8 = —10. The results are shown in Figure 7 for various number of reclustering
rounds (R).
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Figure 7: Results of SHARE on non-IID CIFAR-10, where each client has data from 5 labels, across
various defenses with FoE attack (5 = —10) and ¢ = 3 malicious clients out of 50 total. We vary the
number of reclustering rounds (R). No SHARE indicates the baseline defense without the SHARE
framework.

D.2.3 Label Flip Attack

We test the effect of SHARE on the label-flip attack with a heterogeneous data split of CIFAR-10.
Each client gets data from 5 labels. Malicious clients train on flipped labels, i.e. any label € {0, ..., 9}
is changed to 9—label. We test trimmed mean (filtering 2/3 of input updates) and Zeno++ with batch
size of 128, p = 0.00001, ¢ = 1 with SHARE and use ¢ = 5 without SHARE framework. These
parameters are tuned to achieve good performances within their respective frameworks. We consider
R = 10 reclustering rounds and ¢ = 12 malicious clients. Results as shown in Figure 8 demonstrate
the efficacy of SHARE.
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Figure 8: Results of SHARE on non-IID CIFAR-10, where each client has data from 5 labels,
across various defenses with label-flip attack, ¢ = 12 malicious clients out of 60 total, and R = 10
reclustering rounds. No SHARE indicates the baseline defense without the SHARE framework.

D.2.4 Fixed clustering vs reclustering

Figure 9 compares results between fixed clustering and SHARE. In the former, we fix the client
clusters before the learning process starts while the latter allows for random reclustering in every
round. CIFAR-10 data is split heterogeneously such that each client receives 5 class labels alone. We
use Fall of Empires attack with § = —10 scaling of the average gradients from the malicious clients.
Since Zeno++ can tolerate higher levels of corruption, we consider ¢ = 6 malicious clients, while for
trimmed mean, we consider ¢ = 3. We use R = 10 reclustering rounds and 60 clients in total with a
cluster size of 3. We test trimmed mean (filtering 2/3 of input updates) and Zeno++ with batch size
of 128, p = 0.00001, ¢ = 1 with SHARE and use € = 5 for fixed clustering case. These parameters
are tuned to achieve reasonable performances within their respective frameworks.
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Figure 9: Results of SHARE on non-IID CIFAR-10, where each client has data from 5 labels, across
various defenses with FoE attack (5 = —10) and ¢ malicious clients out of 60 total. Fixed clustering

indicates the baseline defense with fixed clusters of size 5.
E Random Reclustering

In the worst case, a benign client’s signal is lost if it is clustered with a malicious client across all
reclustering rounds. In particular, the probability that a benign client is effected in a global round is

n—ay\ R
(1 — (m)> . Hence this probability decreases as R (number of reclustering rounds increase).

18



	Introduction
	Related Work
	Problem Formulation
	Methodology
	System Components

	Theory
	Exactness
	Convergence Analysis
	Convergence Rates

	Privacy

	Experiments
	CIFAR-10
	Impact of cluster size
	Impact of reclustering

	Shakespeare
	Empirical Evaluation


	Discussion and Conclusion
	Notations
	Proofs
	Distance based robust aggregation
	Zeno++ as robust aggregation

	Security
	Communication efficiency
	Handling dropped users
	Privacy at Server
	Privacy from curious clients
	Communication costs

	Additional Experiments
	Impact of cluster size
	Fall of Empires Attack

	Effect of Reclustering with Non-IID data
	No Attack
	Fall of Empires Attack
	Label Flip Attack
	Fixed clustering vs reclustering


	Random Reclustering

