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Abstract

Vertical Federated Learning (VFL) is a distributed learning paradigm that allows
multiple agents to jointly train a global model when each agent holds a different
subset of features for the same sample(s). VFL is known to be vulnerable to
backdoor attacks during training, and also vulnerable to test-time attacks. However,
unlike the standard horizontal federated learning, improving the robustness of VFL
remains challenging. To this end, we propose RVFR, a novel robust VFL training
and inference framework. The key to our approach is to ensure that with a low-rank
feature subspace, a small number of attacked samples, and other mild assumptions,
RVER recovers the underlying uncorrupted features with guarantees, thus sanitizes
the model against a vast range of backdoor attacks. Further, RVFR also defends
against inference-time adversarial feature attack. Our empirical studies further
corroborate the robustness of the proposed framework.

1 Introduction

Federated Learning (FL) [13, 16, 5] has achieved great progresses recently, where a central server
coordinates with multiple agents to collaboratively train a machine learning (ML) model and each
agent keeps its own training data due to privacy concerns. Two broad categories [24] of FL are
Horizontal FL (HFL) and Vertical FL (VFL). In HFL, every agent has a different training set; while
in VFL [14, 7, 15], different agents hold different parts of features for the same set of training data.

Given the distributed nature, FL raises new security concerns as the server has less control on
the training data. A variety of attacks have been conducted on HFL and VFL. There have been
considerable studies to robustify HFL, where each agent sends the model updates based on local data
to the server and server aggregates these updates. Robust aggregation protocols have been proposed
as defenses in HFL against malicious attacks [25, 11,4, 9, 17, 10, 8, 22]. However, it is challenging
to defend against malicious attacks in VFL, as there is no clear redundancy among the agents. In fact,
there are few studies on robustness exploration for VFL.

In this paper, we propose a robust VFL training and inference framework via features subspace
recovery (RVFR), which is able to defend against many types of attacks during both training and
inference. In particular, during training, we propose to train each agent’s feature extractor separately
based on feedback from the server (Quarantine training stage); the server then performs robust feature
subspace recovery given the embedded features provided by different agents (Robust feature subspace
recovery stage); and the server further purifies the features based on the assumption that the fraction
of malicious agents is relatively small (Feature purifying stage). Finally, the server trains its global
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model based on the purified features (Server training stage). An overview of the training process
is illustrated in Fig. 1. During the inference time, the server first purifies the embedded features
provided by the agents and then feeds it to the trained global model for prediction. Build upon our
framework, we aim to answer the following questions: Is it possible to train a clean model given
poisoned features? Are we able to make accurate predictions based on adversarially corrupted
features? If yes, how many malicious agents and poisoned instances can we tolerate?

1. Quarantine trainin 2. Robust feature subspace learning at the server
) ﬁtm ny i H 2 [hT, ... "]
N -/ h‘zj)--u-- ’.l”-\ L. X Mhm = h(.zl) H=L+E
M & \\ \S\ X W . .

M

sQELE

ent 2 Agonti AgentM

y
&
=

Agent 1

&

4. Train server’s network

-Server

[ e
=~
&

hUla

(LI NN R NN
+

h(ll)
hle')

ny

Learnt feature subspace

Figure 1: Overview of RVFR training procedure.

In the robust feature subspace learning stage, we propose a variant of the Robust AutoEncoder [26]
to recover the feature subspace. While the existing Robust AutoEncoder has no theoretical justifi-
cations, we provide theoretical support for the proposed one by showing that when the underlying
feature subspace is linear (and using linear activation functions), it can exactly recover the linear
feature subspace in the presence of corruption/poisoning. In the feature purifying stage (in both
training and inference), we propose a novel AutoEncoder-based robust decomposition method that
decomposes the potentially corrupted feature vector into two parts: one that lies on the learnt feature
subspace (can be non-linear); and the other contains a block-sparse structure. We theoretically show
that under certain conditions, the proposed method can recover the underlying feature vector exactly
despite corruption from malicious agents.

We take a first step towards providing certifiable robust VFL with following key contributions:

* We propose a novel robust training procedure to defend against backdoor attacks in VFL, and prove
that under mild assumptions it can exactly recover the underlying uncorrupted features. To the
best of our knowledge, this is the first defense for VFL against training attacks with theoretical
guarantees.

* We provide the first theoretical justification for the Robust AutoEncoder, which may be of indepen-
dent interest.

* We propose a robust VFL inference procedure to defend against adversarial attacks. To our
knowledge, this is the first defense for VFL against inference-time attacks with guarantees.

2 Related Work

In this section, we briefly review some prior works on backdoor attacks and defenses in FL.

Backdoor attack and defense in Horizontal Federated Learning. Many recent works have
demonstrated the vulnerability of Horizontal FL to backdoor attacks [3, 2, 19, 21]. For example,
[3, 2] show that training strong poisoned local models and submitting malicious model updates to the
central server can mislead the global model. While [21] exploits the distributed nature of HFL and
propose a distributed backdoor attack.

To defend against backdoor attacks in HFL, several robust federated protocols are proposed to
mitigate the attacks during training. For example, [18] shows that clipping the norm of model updates
and adding Gaussian noise can mitigate backdoor attacks that are based on the model replacement
paradigm. [1] incorporates an additional validation phase to each round of FL to detect backdoor.



However, none of these provides certifiable robustness guarantees. Though there are also many robust
aggregation methods for HFL [25, 11, 4, 9, 17, 10, 8, 22], the robustness guarantees provided are not
for backdoor attack (i.e., they can not guarantee the predicted label for a testing sample is not affected
by malicious agents). Recently, [6] propose Ensemble FL to defend against backdoor attacks with
certifiable robustness. However, the proposed majority voting strategy requires training hundreds of
FL models. Finally, a recent work [20] which exploits model clipping and smoothing in HFL is able
to provide certifiable robustness guarantee to backdoor attacks with limited magnitude.

Backdoor attack and defense in Vertical Federated Learning. Backdoor attack in VFL is challeng-
ing since in the typical setting [7] the agent does not have the label information, which means it does
not even know which instance belongs to the target class. The authors in [15] assumes the malicious
agent knows at least one training instance belongs to the target class of the backdoor attack. Under
this assumption, they use the gradient-replacement method to perform the backdoor attack, i.e., set
the intermediate gradients of the poisoned instances to be that of target class’s instance. They want
the malicious agent to map the features with backdoor trigger to the same space as that of the features
from target class. They empirically demonstrate the effectiveness of the proposed backdoor attack. In
the end, they also propose empirical ways to defend against such backdoor attack, e.g., by sparsifying
the intermediate gradient before sending to the agent or adding noise to it, all without guarantees.

3 Preliminaries

Vertical Federated Learning. We first describe the basic setup of a typical VFL framework [7, 15].
There are M agents and a server collaboratively training a ML model based on a set of n training
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a:z{j } are not shared with other agents and the server. Instead, each agent ¢ learns a local embedding
g; parameterized by 6, that maps the original feature vector ml{J } to an embedded feature vector

h;{j} = gi(m;{j}; 6;). The dimension of hl{j} is usually less than m;{j}. The server only has access to
the embedded features from the agents. The learning objective of VFL is to minimize the following:
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where g1} = fo (b3 RUN 2 g, (gl(m?};el),...,gM(wgg};eM)), and fo, is the global

model kept at and learnt by the server. £ is the loss function and -y is the regularizer that confines the
complexity of, or encodes the prior knowledge about the local model parameters.

Robust Subspace Recovery. Robust subspace recovery aims to robustly recover the underlying
subspace of the data despite that some data points are arbitrarily corrupted (i.e., outliers). Mathe-
matically, one observes a data matrix H, where each column corresponds to a data point. We can
decompose H as L + E, where L is the underlying uncorrupted data matrix, and the matrix E
models the outlier corruptions. Since the fraction of the outliers is usually small, most columns of E
are zero, i.e., E is column-sparse.

Assume the underlying uncorrupted data points lie on a low-dimensional linear subspace, one of the
notable Robust PCA work [23] showed that it is possible to recover the column-space of L exactly
by solving the following convex program:

%%IHLH*HHETHQJ st. H=L+E )

Later we will see that in our proposed RVFR framework, H = [h{} ... h{"}], where the j-th
column of H corresponds to the whole embedded features for the j-th instance. In the backdoor
attack, a few columns of H are poisoned. In general the low-dimensional manifold that the embedded
features L lie on is not linear, and we use Robust AutoEncoder instead of Robust PCA to capture this
non-linearity. We will show that Robust PCA can be viewed as a linearized version of the proposed
Robust AutoEncoder, and we will provide theoretical justification for it.

We first introduce some definitions which are needed to formally state the above Robust PCA result.



Definition 1. (Incoherence parameter [23]) A matrix L € R4*" with thin SVD L = UXV T, and
(1 — B)n of whose columns are non-zero, is said to be column-incoherent with parameter y if
T, |12 HT
N2 <
mlaXHV 61”2 = (1 . ﬁ)n7
where {e;} are the coordinate unit vectors, r is the rank of matrix L.

Remark 1. A small incoherence parameter implies the right singular vectors of L are not ‘spiky’.
As mentioned in [23], if the left hand side of Eq. 3 is as big as 1, it essentially means that one of the
directions of the column space which we wish to recover, is defined by only a single observation.
Given the regime of a constant fraction of arbitrarily chosen and arbitrarily corrupted points, such a
setting is highly undesirable.

3)

With these definitions, we introduce the results from [23]:

Theorem 1. (Exact subspace recovery [23]) Suppose we observe H = L* 4+ E*, where L* has
rank r and incoherence parameter u. Suppose further that E* is supported on at most Sn columns.

Any output of Eq. 2 recovers the column space of L* exactly, as long as the fraction of corrupted

columns, 3, satisfies % < &L where ¢; = 9/121. This can be achieved by setting the parameter \
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in Eq. 2 to be ﬁ (in fact it holds for any A in a certain range).

Inspired by the Robust PCA properties, we propose a Robust AutoEncoder, which can capture the
more general non-linear manifold. So far there is no theoretical guarantees for Robust AutoEncoders.
The proposed Robust AutoEncoder is slightly different from an existing one [26], and we theoretically
justify the proposed one by showing that when the underlying feature subspace is linear, after trans-
formation based on the proposed Robust AutoEncoder, it exactly recovers the linear feature subspace
as Robust PCA. Note that our established connection between the proposed Robust AutoEncoder and
Robust PCA is non-trivial, especially due to the proposed {3 1-norm regularizer on the latent layer.

Note that the exact recovery of the feature subspace is not enough for our goal of robust VFL, and
we need to recover the underlying L*. We further propose a robust decomposition technique to
recover L* exactly by utilizing our learnt feature subspace based on the assumption that the fraction
of malicious agents is small. More details can be found in Theorem 3.

4 Robust VFL via Feature Subspace Recovery (RVFR)

We first describe the threat models during VFL training and inference. Then we present both the
training and inference procedures of the proposed robust VFL framework.

4.1 Threat Model

There are M agents which hold different features of the same instances, and the label y is held by the
server. The attacker knows the feature information held by every agent and the label information on
the server, but it can only choose and control at most aM agents for a malicious attack.

¢ Training time threat model: There are some small « fraction of agents that are malicious and
perform backdoor attack during training, i.e., their goal is to achieve high accuracy on both the
original main task and the targeted backdoor task, where the targeted backdoor task is to assign an
attacker-chosen target label to input data with a specific pattern (i.e., trigger). Their trained feature
extractors behave normally on non-poisoned instances , so as to maintain the main task accuracy.
However, on the instances with backdoor trigger, their backdoor trained feature extractors map to a
poisoned embedded feature (e.g., the embedded feature space of the instances belonging to the
target class). In the training set, the fraction § of the instances with a backdoor trigger is small in
each malicious agent.

 Inference time threat model: At inference time, the goal of the oM/ malicious agents is to output
the adversarial embedded features h, 4, for the instances with backdoor trigger, such that the final
predicted label is close to the adversarial target label 3

Lnin U(foo ({Padv, Pbenign}), yA)> “)
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where Rpenign denotes the embedded features provided by the (1 — «) M benign agents, and hqq,
denotes the embedded features provided by the malicious agents.



4.2 Training Procedure of RVFR

The proposed training procedure has four stages: Quarantine training, Robust feature subspace
learning, Feature purifying, and Server training.

Stage 1 (Quarantined training): In VFL, the server trains the combined ML model, and each agent
also trains its local feature extractor. A strong adversary could interfere with the server training
and further propagate errors to benign agents. So we propose that the server connects to each agent
separately to train the corresponding feature extractor g; parameterized by 6;,¢ = 1,..., M. The
training can be based on gradient descent, and is a special case of [7, Algorithm 1] with only one
agent.

hz{]} L

In quarantine training, the agent ¢ sends gi(ﬂl;{j}; 6;) to the server. The server uses it to

train/update a temporary global model (whose input dimension equals that of hl{j }) on the server side

and also calculates a’?fj} and sends it back to the agent 7 for gradient updating of 6; at agent side.

After a number of such iterations between the server and the agent ¢, the quarantine training with agent
1 finishes and the server records the final embedded feature h;-{j Y for every instance w;-“ }, j=1,...n.

After the quarantine training with every agent, for each data point (instance) =17}, the server has
recorded {hi] }7 h%j }, e h}{\fj}} from all the M agents, concatenates them into a long column vector,

denoted as ht/}. Let H = [h{l}, e h{”}], where the j-th column of H corresponds to the
concatenated embeded features for the j-th instance.

Stage 2 (Robust feature subspace learning): We still need to protect the server’s model against
malicious agents. Fortunately, in our considered training time backdoor attack threat model, malicious
agents’ feature extractors behave normally on non-backdoored instances (to maintain the main
task accuracy). The fraction S of the backdoored training instances is small. This provides us
the redundancy across the instances for robustifying the server’s model. In this stage, the server
disconnects from all the agents, and uses H to train a Robust AutoEncoder by minimizing the
following objective:

Lrgigw |E4(L)|l21 + M| ET |21 st. H=L+E, L=Dy&L)) (5)

where L models the underlying true embeded features, and E models the outlier corruptions due to

the backdoor attack (each column of E corresponds to an instance). In Eq. 5, we only enforce E to
be column-sparse. Dy is the decoder parameterized by ¢, & is the encoder parameterized by ).

Note that Eq. 5 is equivalent to following:
min €o(L)llaa + A|(H = D)2 s:t. L = Dy(E4(L) ©)

In practice, we further relax the constraint L = Dy(&, (L)) and solve the following ‘noisy’ version
instead:
min, [€5(L) 20+ AIH = L) ll21 + BIL = Doy (L) @

To optimize this, one can alternate between updating L and updating paramters ¢ and i of the
AutoEncoder via gradient descent.

Stage 3 (Feature purifying based on the recovered feature subspace): Recovering the feature
subspace is not enough, as we want to recover the original feature to train the server. Fortunately, there
is another important prior information that we can and should use: the fraction « of the malicious
agents is small. For each training instance h{7}, we use the learned AutoEncoder to decompose
it as h17} = Dy (€, (119})) + eli}, where e!7} models the block-sparse corruptions (each block
corresponds to an agent). Ideally we want to solve the following:

M
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which is equivalent to:
M
min 2_; {[h =Dy (Ex(1)]: # 0} ©)



However, the above block-sparsity minimization objective is NP-hard to solve, we instead relax it to
the /5 ;-norm:
M

min} _[|[h — Py (Ep (D)2 (10)

Our theoretical analysis in next section shows that under the outlined conditions, solving the above
relaxed objective is still able to recover the underlying true embedded feature.

Stage 4 (Server training on purified feature): The server trains its own ML model (e.g., neural
network) parameterized by 6, based on the above purified features Dy (&, (1)) and the corresponding
labels.

4.3 Inference Procedure of RVFR

During inference, the server receives embedded features of a test instance from all the agents. It first
purifies the overall embedded features using Stage 3 of the training procedure. Then it feeds the
purified feature to its trained ML model for prediction.

5 Theoretical Analysis of RVFR

We first analyze the proposed Robust AutoEncoder, which is the backbone of the proposed defense
framework. Then, we prove that the proposed feature purifying method can recover the underlying
features exactly under mild conditions, which means that the server’s global model can be both
trained and tested on correct features, and thus is robust against diverse types of attacks.

The Robust AutoEncoder can be viewed as the generalization of Robust PCA, where the low-
dimensional linear subspace is extended to the more general low-dimensional manifold. So far,
there is still no guarantee for the exact recovery of the non-linear manifold in the presence of outlier
corruptions. However, in the following we will show that when the underlying feature subspace is
linear, the Robust AutoEncoder with linear activation functions can exactly recover that subspace in
the presence of corruptions.

Theorem 2. (Exact subspace recovery) Assume I*{"} € R? i = 1, ..., n lie on a low-dimension
subspace, i.e., rank(L*) = r < d. For the AutoEncoder, assume there are no non-linear activation
functions nor bias terms, while setting the dimension of the code layer of AutoEncoder to be
r = rank(L*) and restricting the weight matrices to be orthonormal. Then under the conditions
assumed in Theorem 1, the global optimal solution of Eq. 5 is equivalent to the solution of Eq. 2, and
the corresponding weight matrix of the Encoder is guaranteed to recover the underlying subspace of
L* exactly.

Remark 2. The conditions required in Theorem 2 provide some useful insights. First, the fraction 3
of poisoned instances needs to be small. Second, the dimension of the underlying feature subspace
also needs to be small. If the dimension of the feature subspace is too large, it is difficult to distinguish
corrupted features from the uncorrupted ones. On the other hand, low dimension implies that there is
enough redundancy among the features computed by the agents. This is preferred since redundancy
provides more robustness. Third, as discussed in Remark 1 regarding the incoherence condition,
preferring small incoherence parameter implies that we don’t want any dimension of the feature
subspace to be defined by very few data points. Otherwise it’s very risky if those data points are
poisoned, as it becomes impossible to recover that dimension of the feature subspace. In other words,
we need enough redundancy among the training instances to be robust to the adversarial corruptions.

Note that exact recovery of the subspace does not mean exact recovery of L. For the cor-
rupted/poisoned instances, usually it is impossible to restore them as the corruptions can be arbitrary.
Fortunately, once we have recovered the underlying feature subspace, it is possible to recover the
original features exactly by utilizing the fact that the fraction of malicious agents is small. This holds
for both training (i.e., used in feature purifying stage) and inference time. The following theorem
shows that we can recover the underlying embedded features exactly in both training and inference.

Theorem 3. (Exact feature recovery in training and inference) Let W, 4 be the weight matrix
of the last layer of the AutoEncoder. Assume there are no bias term nor non-linear activation
function in the last layer of the AutoEncoder. Assume the trained AutoEncoder captures the



underlying feature subspace (i.e., Dy(Ey (1)) = 1 for any uncorrupted feature vector ). If Vv €
Range(Wenq)\0, for any partition {S,S} of M agent-wise blocks with |[S| = g > M/2, it
holds that ), g [|vill2 > D,cg[|vill2, then for any h = I* + e* with Dy(Ey(1*)) = 1* and

Zij\il I{e; = 0} > g, Dy(Ey(1*)) is the unique solution of Eq. 10 and Eq. 9.

Note that in Theorem 3, all layers except the last layer of AutoEncoder can be non-linear.

In summary, Theorem 2 shows that under certain conditions (e.g., the fraction of poisoning instances
[ is small), we can recover the underlying feature subspace exactly. Further, Theorem 3 shows that
under certain conditions (i.e., the fraction of malicious agents « is small and the AutoEncoder we
have learnt captures the underlying feature subspace), we can recover the underlying embedded
features exactly during both training and inference. Then the server’s ML model is trained and tested
on the corrected features.

6 Empirical Studies

Our experiment setting is similar to the VFL backdoor attack work [15], except that we additionally
studied the 4-agents setting besides the original 2-agents setting. More specifically, on the NUS-
WIDE dataset, each sample has 634 image features and 1000 text features. When there are 2 agents,
one agent holds the image features while the other agent holds the text features. When there are 4
agents, Agent 1 holds first 225 dimension image features, Agent 2 holds the rest of the image features,
while Agent 3 and Agent 4 each holds 500 dimension text features. In both settings, the last agent is
malicious and performs the backdoor attacks. The backdoor attack goal is to change the predicted
label of the instance with a backdoor trigger to be a specific target class (i.e., ‘buildings’), where the
backdoor trigger is ‘the last text feature equals 1’. The detailed backdoor attack method is described
in [15, Algorithm 2]. During the inference, the malicious agent uses its backdoor feature extractor to
provide adversarial embedded features. The dimension of the output layer of the feature extraction
neural network at each agent is set to be 32 as in [15]. ReLU is used as the activation function for all
the neural networks except for the output layer.

Comparisons: We compare our proposed defense method with several state-of-the-art VFL defense
techniques, e.g., Gradient Sparsification method by sparsifying the intermediate gradients sent from
the server to agents, and Differential Privacy method by adding noise to such exchanged gradients
[15]. The original VFL framework without defense [15, Algorithm 1] is viewed as baseline. The main
task accuracy and backdoor accuracy during inference time for each method are reported in Table 1.
First, notice that for the baseline VFL method, when adding more benign agents, the backdoor
attack accuracy drops. The Gradient Sparsification and Differential Privacy methods do not have any
theoretical guarantee and do not defend against the backdoor attack very well. The proposed RVFR
is much more robust against backdoor attacks in both settings.

Table 1: Inference Time Main Task Accuracy & Backdoor Accuracy of Different VFL Methods

Setting Metrics Baseline Laplacian Noise Gradient Sparsification Proposed RVFR
4 Agents Main Task Acc  86.4% 85.3% 86.2% 83.5%
Backdoor Acc 49.3% 31.7% 12.7% 3.6%
2 Agents Main Task Acc  86.6% 82.4 % 84.4 % 86.2%
Backdoor Acc 99.3% 353 % 235 % 9.5 %

7 Conclusions

In this work, we proposed a novel robust feature subspace recovery based VFL framework to defend
against backdoor attacks during training, and adversarial feature attacks during inference, both with
theoretical guarantees. An important byproduct of our analysis is the first theoretical justification for
the Robust AutoEncoder, which may be of independent interest. Experiments on NUS-WIDE dataset
further verify the robustness of the proposed framework.
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