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Abstract. We show that, up to the flow of the soliton vector field, there exists a unique complete

steady gradient Kähler-Ricci soliton in every Kähler class of an equivariant crepant resolution of a

Calabi-Yau cone converging at a polynomial rate to Cao’s steady gradient Kähler-Ricci soliton on

the cone.
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1. Introduction

1.1. Overview. A Ricci soliton is a triple (M, g, X), where M is a Riemannian manifold endowed

with a complete Riemannian metric g and a complete vector field X such that

Ric(g) +
λ

2
g =

1

2
LXg (1.1)

for some λ ∈ {−1, 0, 1}. If X = ∇gf for some smooth real-valued function f on M , then we say

that (M, g, X) is gradient. In this case, the soliton equation (1.1) becomes

Ric(g) +
λ

2
g = Hess(f).

If g is complete and Kähler with Kähler form ω, then we say that (M, g, X) is a Kähler-Ricci

soliton if the vector field X is complete and real holomorphic and the pair (g, X) satisfies the

equation

Ric(g) + λg =
1

2
LXg (1.2)

for λ as above. If g is a Kähler-Ricci soliton and if X = ∇gf for some smooth real-valued function

f on M , then we say that (M, g, X) is gradient. In this case, the soliton equation (1.2) may be

rewritten as

ρω + λω = i∂∂̄f,

where ρω is the Ricci form of ω.

For Ricci and Kähler-Ricci solitons (M, g, X), the vector field X is called the soliton vector field.

Its completeness is guaranteed by the completeness of g [Zha09]. If the soliton is gradient, then the

smooth real-valued function f satisfying X = ∇gf is called the soliton potential. It is unique up to

addition of a constant. Finally, Ricci and Kähler-Ricci solitons are called steady if λ = 0, expanding

if λ = 1, and shrinking if λ = −1 in (1.1) and (1.2) respectively.

The study of Ricci solitons and their classification is important in the context of Riemannian

geometry. For example, they provide a natural generalisation of Einstein manifolds and on certain

Fano manifolds, shrinking Kähler-Ricci solitons are known to exist where there are obstructions to

the existence of a Kähler-Einstein metric [WZ04]. Also, to each soliton, one may associate a self-

similar solution of the Ricci flow [CK04, Lemma 2.4] which are candidates for singularity models of

the flow. The difference in normalisations between (1.1) and (1.2) reflects the difference between the

constants preceding the Ricci term in the Ricci flow and in the Kähler-Ricci flow respectively when

one takes this dynamic point of view.

In this article, we are concerned with the existence and uniqueness of complete steady gradient

Kähler-Ricci solitons on crepant resolutions of Calabi-Yau cones. Such solitons which are not Ricci-

flat are necessarily non-compact [Ive93]. Examples include Hamilton’s cigar soliton [Ham88] on C
which was generalised by Cao [Cao96] to Cn and KPn . Further generalisations were then obtained by

Dancer-Wang [DW11], Yang [Yan12], and more recently by Schäfer [Sch20]. All examples mentioned

thus far are highly symmetric and were constructed by solving an ODE. In [BM17], Biquard-Macbeth

implement a gluing method to construct examples of complete steady gradient Kähler-Ricci solitons

in small Kähler classes of an equivariant crepant resolution of Cn/Γ, where Γ is a finite subgroup of

SU(n) acting freely on Cn \ {0}. Our main result is the construction of a complete steady gradient

Kähler-Ricci soliton in every Kähler class of a crepant resolution of a Calabi-Yau cone, unique up

to the flow of the soliton vector field, converging at a polynomial rate to Cao’s steady gradient

Kähler-Ricci soliton on the cone.

1.2. Main result. Cao’s construction of a steady gradient Kähler-Ricci soliton on Cn [Cao96] allows

for an ansatz to construct a one-parameter family of incomplete steady gradient Kähler-Ricci solitons

ω̃a, a ≥ 0, on any Ricci-flat Kähler (or “Calabi-Yau”) cone (C0, g0). With this in mind, our main

result can be stated as follows.
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Theorem A (Existence and uniqueness for steadies). Let (C0, g0) be a Calabi-Yau cone of complex

dimension n ≥ 2 with complex structure J0, Calabi-Yau cone metric g0, radial function r, and trivial

canonical bundle. Let π : M → C0 be a crepant resolution of C0 with complex structure J such that

the real holomorphic torus action on C0 generated by J0r∂r extends to M so that the holomorphic

vector field 2r∂r on C0 lifts to a real holomorphic vector field X = π∗(2r∂r) on M . Set t := log(r2)

and define the Kähler form ω̂ := i
2∂∂̄

(
nt2

2

)
on C0.

Then in every Kähler class k of M , up to the flow of X, there exists a unique complete steady

gradient Kähler-Ricci soliton ω ∈ k with soliton vector field X and with LJXω = 0 such that for all

ε ∈ (0, 1), there exist constants C(i, j, ε) > 0 such that

|∇̂iL(j)
X (π∗ω − ω̂)|ĝ ≤ C(i, j, ε)t−ε−

i
2
−j for all i, j ∈ N0, (1.3)

where ĝ denotes the Kähler metric associated to ω̂ and ∇̂ is the corresponding Levi-Civita connection.

More precisely, for all ε ∈
(
0, 1

2

)
and for all a ≥ 0, there exist constants C(i, j, ε, a) > 0 such that

|∇̂iL(j)
X (π∗ω − ω̃a − ζ̂)|ĝ ≤ C(i, j, ε, a)t−2+ε− i

2
−j for all i, j ∈ N0, (1.4)

where ζ̂ is a real (1, 1)-form uniquely determined by k that is invariant under the flow of X and JX,

and ω̃a, a ≥ 0, denotes Cao’s family of incomplete steady gradient Kähler-Ricci solitons on C0. If

k is compactly supported or if n = 2, then for all a ≥ 0, there exists a smooth real-valued function

ϕ : M → R and constants C(i, j, a) > 0 such that

ω − ω̃a = i∂∂̄ϕ, where |∇̂iL(j)
X (t−n+1entϕ)|ĝ ≤ C(i, j, a)t−

i
2
−j for all i, j ∈ N0. (1.5)

A resolution for which the torus action on the cone extends to the resolution is called equivariant.

Such a resolution of a complex cone always exists (cf. [Kol07, Proposition 3.9.1]). However, for

Calabi-Yau cones, it may not necessarily be crepant. On the other hand, if a crepant resolution of

a Calabi-Yau cone is unique, then it is necessarily equivariant; apply the proof of [CDS19, Lemma

2.13] to see this. Moreover, the steady solitons of Theorem A display so-called “cigar-paraboloid”

asymptotics. Most notably, the volume of a ball of radius R in M grows at rate O(R
1
2

dimRM ) and

the curvature decays linearly. Finally, Cao’s steady gradient Kähler-Ricci soliton ω̃a on C0 also

converges to ω̂ at infinity. The precise asymptotics may be found in Proposition 3.2. Together with

(1.4), they yield the following more refined asymptotics:

|∇̂iL(j)
X (π∗ω − ω̂)|ĝ ≤

{
C(i, j)t−1− i

2
−j log(t) if j = 0,

C(i, j)t−1− i
2
−j if j ≥ 1.

1.3. The C0-estimate. The problem of constructing a Calabi-Yau metric on a complete Kähler

manifold (M, τ) of complex dimension n with trivial canonical bundle and Kähler form τ can be

reformulated in terms of solving the complex Monge-Ampère equation

τnψ = eF τn, (1.6)

where ψ is an unknown smooth real-valued function, F is a smooth real-valued function (the given

data), and τψ := τ + i∂∂̄ψ is positive-definite. In the compact case, Yau [Yau78] successfully

implemented the continuity method to obtain a solution of this equation. The same strategy has

also borne much fruit in the non-compact case; see for instance [Hei10, HHN15, Joy00, TY90, TY91].

A common feature shared by the proofs of the aforementioned results is the need to establish a

uniform C0-bound along the continuity path, where the data F in (1.6) has either compact support

or, when the underlying complex manifold M is non-compact, decays sufficiently fast at infinity.

This bound has been achieved by implementing a Nash-Moser iteration. It works as follows. One

first establishes an a priori L2-bound by considering the difference between the volume forms τn and
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τnψ in the following way:∫
M

(1− eF )ψ τn =

∫
M
ψ
(
τn − τnψ

)
=

n−1∑
i= 0

∫
M
i∂ψ ∧ ∂̄ψ ∧ τ i ∧ τn−1−i

ψ ≥
∫
M
i∂ψ ∧ ∂̄ψ ∧ τn−1. (1.7)

The first equality uses (1.6), the second is an integration by parts (which must be justified when M

is non-compact), and the inequality is obtained by dropping all of the terms in the sum apart from

the last which does not depend on the unknown Kähler form τψ. A Poincaré-type inequality (in

the compact case) or a Sobolev inequality (in the case of maximal volume growth for example) then

allows for uniform L2-control on ψ (or, if F is only decaying polynomially at infinity, Lp-control for

p sufficiently large). From this, the a priori C0-bound follows by applying (1.7) with ψ|ψ|p−2, p ≥ 2,

in place of ψ and letting p tend to +∞.

Analogously, the problem of constructing a steady gradient Kähler-Ricci soliton on M can be

reformulated in terms of solving the complex Monge-Ampère equation

τnψ = eF−
X
2
·ψτn, (1.8)

where τ, τψ, and F are as before, and X is a given real holomorphic vector field on M . In our

situation, the data F is polynomially decaying. As above, our approach to solve this PDE is to

implement the continuity method. As such, we also require a uniform C0-bound along the continuity

path. In contrast to (1.6) however, the added difficulty in this case arises from the fact that the

unknown function ψ appears on both sides of (1.8). Nevertheless, to obtain an initial energy estimate

we proceed as above, but rather than considering the difference between the volume forms τn and τnψ ,

we consider the difference between the weighted volume forms efτn and efψτnψ , where −τyJX = df

and similarly for fψ, the reason being that the framework of metric measure spaces is the correct one

to take to account for the existence of the vector field X that was missing from (1.6). Unsurprisingly

though, the approach taken in the Calabi-Yau case no longer suffices; not only does the first equality

of (1.7) fail if one replaces τn and τnψ with their respective weighted analogues, but we no longer have

a global Sobolev inequality that would be needed in order to implement a Nash-Moser iteration.

To overcome these difficulties, we first observe that it is enough to solve (1.8) with data F com-

pactly supported, the reason being that via an application of the implicit function theorem, we are

able to reduce to this case when F is polynomially decaying. Once we have reduced to the com-

pactly supported case, we apply the continuity method working in the space M∞X, exp(M) of smooth

real-valued functions that decay exponentially with derivatives at infinity. Then to obtain an initial

a priori energy bound along the continuity path of solutions, we introduce, in line with Tian-Zhu

[TZ00a] and their work on the uniqueness of shrinking gradient Kähler-Ricci solitons on compact

Kähler manifolds, the following functionals defined on M∞X, exp(M):

Iτ,X(ϕ) :=

∫
M
ϕ
(
efτn − efϕτnϕ

)
and Jτ,X(ϕ) :=

∫ 1

0

∫
M
ϕ̇s

(
efτn − efϕs τnϕs

)
∧ ds.

Here, (ϕt)0≤ t≤ 1 is a C1-path in M∞X, exp(M) from ϕ0 = 0 to ϕ1 = ϕ, τϕs := τ + i∂∂̄ϕs is positive-

definite, −τϕsyX = dfϕs , τϕ := τϕ1 , and fϕ := fϕ1 . The exponential decay guarantees that both of

these integrals converge; polynomial decay is not sufficient for this to be the case. The fact that Jτ,X
is independent of the choice of path and so does indeed define a functional is due to Zhu [Zhu00]

in the compact case; we modify his proof accordingly to prove this fact for our situation. We also

remark that Aubin [Aub84], Bando-Mabuchi [BM87] and Tian [Tia00, Chapter 6] have used these

functionals (with X = 0) to successfully study Kähler-Einstein Fano manifolds. By considering

separately the continuity path of solutions (ψt)0≤ t≤ 1 of (1.8) in M∞X, exp(M) and the linear path

(tψ1)0≤ t≤ 1, and making use of a suitable Poincaré inequality, we obtain an a priori weighted L2-

bound for (1.8). Our ability to use a Poincaré inequality is crucial for this part of the argument to

work and the existence of such an inequality follows from the existence of a steady gradient Ricci

soliton at infinity that we have thanks to Cao’s ansatz [Cao96] on the Calabi-Yau cone.
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The next step involves improving the initial a priori weighted energy estimate to an actual a

priori C0-estimate. Since the data F in (1.8) is assumed to be compactly supported, and since ψ in

(1.8) is a subsolution of the drift Laplacian, i.e., ∆hψ +X · ψ ≥ F , where ∆h is the Laplacian with

respect to the Kähler metric h associated to τ , we can assume without loss of generality that along

the continuity path of solutions (ψt)0≤ t≤ 1, supM ψt is contained within the (compact) support of

F for each t. A local Nash-Moser iteration in a tubular neighbourhood of the support of F , using

the already-established a priori weighted energy bound, then allows for a uniform upper bound for

supM ψt. As for obtaining a uniform lower bound for infM ψt, this is much more delicate. To achieve

such a bound, we adapt the proof of B locki [B l05], whose result comprises an alternative proof of

Yau’s a priori C0-estimate for solutions of (1.6) on a compact Kähler manifold with vanishing first

Chern class [Yau78], making use of the weighted energy estimate in the process. B locki’s proof

exploits the L∞-stability of the complex Monge-Ampère operator and has its roots in the pluri-

potential theory developed by Bedford and Taylor [BT76]. As B locki explains in [B l05], the estimate

that he utilises is simpler than the finer estimates of Ko lodziej [Kol98]. All that is required is the

maximum principle of Alexandrov [HL97, Chapter 2] for real Monge-Ampère equations.

As is evident from the above discussion, the fact that F is compactly supported plays a key role in

passing from global energy estimates to pointwise estimates. Assuming rapid decay of F at infinity

would not have been sufficient to reach the same conclusions.

1.4. Outline of paper. We begin in Section 2 by recalling the basics of Kähler and Calabi-Yau

cones, the relevant aspects of Sasakian geometry that we require, as well as the definition of an

equivariant resolution and a metric measure space. We also define and make some important notes

on steady gradient Ricci and Kähler-Ricci solitons and introduce the Cao ansatz for the construction

of a steady gradient Kähler-Ricci soliton on a Calabi-Yau cone. In Section 3, we analyse more

precisely the asymptotics of Cao’s steady gradient Kähler-Ricci soliton, cumulating in the statement

of Proposition 3.2. We follow this up in Section 4 with the construction of a background metric in

each Kähler class in Proposition 4.3 which we then use in Proposition 4.5 to reformulate the problem

of existence in terms of solving a scalar PDE, namely the complex Monge-Ampère equation (1.8).

Our background metric is asymptotic to Cao’s steady gradient Kähler-Ricci soliton on the cone and

hence serves as an approximate steady gradient Kähler-Ricci soliton.

From Section 5 onwards, the content takes on a more analytic flavour. In Section 5, we show

that the spectrum of the drift Laplacian of a Riemannian metric uniformly equivalent to a steady

gradient Ricci soliton at infinity and with comparable potentials for the soliton vector field has a

strictly positive lower bound. This observation, comprising Corollary 5.5, is essential in deriving the

a priori weighted energy estimate for (1.8) with compactly supported data. In Section 6, we study the

properties of the drift Laplacian of our background metric acting on exponentially weighted function

spaces. More precisely, in Section 6.2, we introduce exponentially weighted function spaces and in

Section 6.3 we show that the drift Laplacian of our background metric is an isomorphism between

such spaces. This latter result is the content of Theorem 6.7. Using it, we then prove Theorem 6.8

that serves as the openness part of the continuity method. The continuity method itself is outlined

at the beginning of Section 7 and is the approach that we take in order to solve (1.8) with the caveat

being however that the data of the PDE is compactly supported. As in [Sie13], the exponentially

weighted function spaces introduced in Section 6.2 cater specifically for the compactness of the

support of the data. The closedness part of the continuity method involves a priori estimates and

these make up the remainder of Section 7.

Our strategy for solving the complex Monge-Ampère equation (1.8) for polynomially decaying data

involves an application of the implicit function theorem to reduce to the (previously solved) case

of compactly supported data. To achieve this simplification, we work in the space of polynomially

decaying functions. These are introduced in Section 8.1. The invertibility of the drift Laplacian

of our background metric between such spaces is demonstrated in Section 8.2, namely in Theorem
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8.1. Via the implicit function theorem, this invertibility allows for local invertibility of the complex

Monge-Ampère operator at a polynomially decaying solution. This forms the statement of Theorem

8.4 in Section 8.3. We also show in Theorem 8.6 that the drift Laplacian is surjective onto the space

of polynomially decaying functions. This result, which forms the bulk of Section 8.4, is used in the

proof of the uniqueness part of Theorem A.

In Section 9, we complete the proof of Theorem A. The existence part is taken care of in Section

9.1 with the key step allowing us to reduce everything to compactly supported data the content of

Proposition 9.1. The proof of this proposition requires Theorem 8.4 regarding the local invertibility

of the complex Monge-Ampère operator. The uniqueness part of Theorem A is then proved in Section

9.2. Finally, Appendix A gathers together the various estimates with respect to ĝ, the asymptotic

model metric of Cao’s steady gradient Kähler-Ricci soliton on the cone, that we use throughout.
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2. Preliminaries

2.1. Cones.

2.1.1. Riemannian cones. For us, the definition of a Riemannian cone will take the following form.

Definition 2.1. Let (S, g) be a compact connected Riemannian manifold. The Riemannian cone

C0 with link S is defined to be R+ × S with metric g0 = dr2 ⊕ r2gS up to isometry. The radius

function r is then characterized intrinsically as the distance from the apex in the metric completion.

2.1.2. Kähler cones. Boyer-Galicki [BG08] is a comprehensive reference here.

Definition 2.2. A Kähler cone (C0, g0, J0) is a Riemannian cone (C0, g0) such that g0 is Kähler,

together with a choice of g0-parallel complex structure J0. This will in fact often be unique up to

sign. We then have a Kähler form ω0(X,Y ) = g0(J0X,Y ), and ω0 = i
2∂∂̄r

2 with respect to J0.

The vector field r∂r is real holomorphic and ξ := J0r∂r is real holomorphic and Killing [MSY08,

Appendix A]. This latter vector field is known as the Reeb vector field. The closure of its flow in the

isometry group of the link of the cone generates the holomorphic isometric action of a real torus on

the cone that fixes the apex.

Every Kähler cone is affine algebraic.

Theorem 2.3. For every Kähler cone (C0, g0, J0), the complex manifold (C0, J0) is isomorphic to

the smooth part of a normal algebraic variety V ⊂ CN with one singular point. In addition, V can

be taken to be invariant under a C∗-action (t, z1, . . . , zN ) 7→ (tw1z1, . . . , t
wN zN ) such that all of the

weights wi are positive integers.

This can be deduced from arguments written down by van Coevering in [vC11, Section 3.1].

We will frequently make use of the fact that every real-valued pluriharmonic function on a Kähler

cone that is invariant under the flow of the Reeb vector field is constant.

Lemma 2.4. Let (C0, g0, J0) be a Kähler cone with Reeb vector field ξ, let π : M → C0 be a

resolution of C0 with exceptional set E, and let K ⊂M be a compact subset of M containing E such

that M \K is connected.

(i) If u : C0\π(K)→ R is a smooth real-valued function defined on C0\π(K) that is pluriharmonic

(meaning that ∂∂̄u = 0) and invariant under the flow of ξ, then u is constant.
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(ii) If u : M → R is a smooth real-valued function defined on M that is pluriharmonic on M and

invariant under the flow of (dπ)−1(ξ) on M \K, then u is constant.

Proof. (i) Let r denote the radial function of g0. Then r∂r is real holomorphic, and since LJ0r∂ru =

Lξu = 0, we see that

∂̄(r∂ru) = ∂∂̄uy(r∂r − iξ) = 0,

that is, r∂ru is holomorphic. As a real-valued holomorphic function, r∂ru must be equal to a

constant, c0 say. Thus,

u = c0 log r + c1(x),

where c1(x) is a function that depends only on the link (S, gS) of the cone (C0, g0). Now, u

being pluriharmonic implies that ∆g0u = 0, i.e.,

(2n− 2)

r2
c0 +

1

r2
∆gSc1(x) = 0,

where n is the complex dimension of C0. Integrating this equation over S then shows that

c0 = 0 so that u is constant, as claimed.

(ii) By part (i), we know that u is constant on M \K. The result now follows from the maximum

principle.

�

2.1.3. Sasaki manifolds and basic cohomology. A closed Riemannian manifold (S, gS) of real dimen-

sion 2n − 1 is called Sasaki if and only if its Riemannian cone (C0, g0) is a Kähler cone [BG08],

in which case we identify (S, gS) with the level set {r = 1} of C0, r here denoting the radial func-

tion of g0. The restriction of the Reeb vector field to this level set induces a non-zero vector field

ξ ≡ J0r∂r|{r= 1} on S, where J0 denotes the complex structure on the Kähler cone associated to

S. Let η denote the gS-dual one-form of ξ on S. This is a contact form and may be written in

terms of r as η = dc log(r) with dc := i(∂̄ − ∂). Moreover, η induces a gS-orthogonal decomposition

TS = D ⊕ 〈ξ〉, where D is the kernel of η and 〈ξ〉 is the R-span of ξ in TS, and correspondingly a

decomposition of the metric gS as gS = η⊗ η+ gT with gT := gS |D. The metric gT on D is invariant

under the flow of ξ and hence induces a Kähler metric on the local leaf space of the Reeb foliation,

that is, the foliation of S induced by the flow of ξ. We call gT the transverse metric. Associated to gT

are the transverse Kähler form ωT and the transverse Ricci curvature Ric(gT ) defined on the local

leaf space in a natural way. The transverse Kähler form may be written as ωT = 1
2dη = 1

2dd
c log(r)

which yields the following expression for the Kähler form ω0 of the cone metric g0:

ω0 =
i

2
∂∂̄r2 = rdr ∧ η + r2ωT .

Differential forms on S that are invariant under the flow of ξ and for which the contraction with

ξ is zero are called basic, as seen in the following definition.

Definition 2.5. A p-form α on S is called basic if

ξyα = 0 and Lξα = 0.

We will denote the sheaf of sections of smooth basic p-forms and the sheaf of smooth basic functions

on M by ΛpB and C∞B respectively. By considering a local foliated chart on S, one can always find

a local basic orthonormal coframe {θi}2n−2
i= 1 of gT such that θi ◦ J0 = −θi+1. With respect to this

coframe, we may write

gT =
2n−2∑
i= 1

θ2
i .

If α is a basic form, then one can check that dα is also basic. The exterior derivative d therefore

restricts to a map dB : ΛpB −→ Λp+1
B and we obtain a complex of sheaves

0 −→ C∞B
dB−→ Λ1

B
dB−→ Λ2

B
dB−→ . . .
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Taking the cohomology of this complex, we get the basic de Rham cohomology groups H∗B(S) of the

Reeb foliation. Explicitly, they are given by

Hp
B(S) :=

ker(dB : ΛpB(S) −→ Λp+1
B (S))

Im(dB : Λp−1
B (S) −→ ΛpB(S))

.

We write [α]B for the cohomology class of a closed basic form α. It is a result of El-Kacimi Alaoui

et al. [EKASH85] that the basic de Rham cohomology groups are finite-dimensional.

Naturally associated to the transverse Kähler metric gT is the basic Hodge star operator ?̄ :

ΛrB(S) −→ Λ2n−r−2
B (S) defined in terms of the Hodge star operator ? of gS by

?̄α = ?(η ∧ α) = (−1)rξy ? α.

Notice that ?̄2 = (−1)r
2

Id on ΛrB(S). We also have a non-degenerate inner product 〈· , ·〉 on Λr(S)

defined by

〈· , ·〉 : Λr(S)× Λr(S) −→ R, 〈α, β〉 :=

∫
M
gS(α, β) dµgS =

∫
M
α ∧ ?β,

where dµgS denotes the volume form of gS . This inner product restricts on basic forms to the

expression

〈· , ·〉B : ΛrB(S)× ΛrB(S) −→ R, 〈α, β〉B :=

∫
M
g(α, β) dvolgS =

∫
M
α ∧ ?̄β ∧ η,

and defines a non-degenerate inner product on Λr
B(S). We define L2

B(S) to be the Hilbert space

completion of C∞B (S) with respect to 〈· , ·〉B. With respect to this inner product, it is straightforward

to check that the adjoint δB : ΛrB(S) −→ Λr−1
B of dB : Λr−1

B (S) −→ ΛrB(S) is given by δB = −?̄◦dB◦?̄.
We then define the basic Laplacian ∆B acting on Λ∗B(S) by

∆B := dBδB + δBdB.

This differential operator is self-adjoint with respect to 〈· , ·〉B and the kernel of its action on the

space of basic r-forms is defined to be the space of basic harmonic r-forms. In analogy with the

Hodge theorem on compact manifolds, there exists a transverse Hodge theorem [EKAH86] for Sasaki

manifolds, which in particular states that each basic cohomology class has a unique basic harmonic

representative.

Next, let pS : C0 ' R+ × S → {r = 1} ' S denote the natural projection. Then we say that a

complex-valued basic differential form α on S is of type (p, q) if and only if p∗Sα is a differential form

of type (p, q) on C0. The sheaf of sections of such forms on S we denote by Λp, qB . As in the complex

case, there is a splitting

ΛrB ⊗ C =
⊕

p+q= r

Λp, qB .

We define operators

∂B : Λp, qB −→ Λp+1, q
B and ∂̄B : Λp, qB −→ Λp, q+1

B

by ∂B = Πp+1, q ◦ dB and ∂̄B = Πp, q+1 ◦ dB respectively, where

Πr, s : Λr+sB ⊗ C −→ Λr, sB

denotes the projection map and where we consider the complex linear extension of dB, i.e.,

dB : ΛrB ⊗ C −→ Λr+1
B ⊗ C.

In analogy with the complex world, we have the following basic Dolbeault complex

0 −→ Λp, 0B

∂̄B−→ Λp, 1B

∂̄B−→ . . .
∂̄B−→ Λp, nB −→ 0,
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together with the basic Dolbeault cohomology groups

Hp, q
B (S) :=

ker(∂̄B : Λp, qB (S) −→ Λp, q+1
B (S))

Im(∂̄B : Λp, q−1
B (S) −→ Λp, qB (S))

.

These are finite-dimensional [EKA90], and so we define the basic Hodge numbers hp, qB (S) by

hp, qB (S) := dimHp, q
B (S).

For k ≤ n− 1, we say that a basic k-form α is primitive if it lies in the kernel of the adjoint Λ of

the map L : α 7→ α ∧ dη with respect to 〈· , ·〉B. This is equivalent to saying that α ∧ (dη)n−k = 0.

The notion of a primitive basic form works equally well for basic (p, q)-forms. Indeed, we extend Λ

complex linearly to

Λ∗B(S)⊗ C =
⊕
p≥ 0

⊕
r+ s= p

Λr, sB S

and define a basic (p, q)-form to be primitive if and only if it lies in the kernel of this linear extension.

Using the fact that the commutator [Λ, ∆B] vanishes [BG08, Lemma 7.2.7], we see that Λ maps

basic harmonic forms to basic harmonic forms. In particular, from the basic harmonic representation

theory of Hr
B(S), we find that the map Λ descends to a well-defined map on these spaces. We then

define the rth-basic primitive cohomology group Hr
B(S)p as the kernel of the induced map

Λ : Hr
B(S) −→ Hr−2

B (S), [β]B 7−→ [Λβ]B,

which may equivalently be realised as

Hr
B(S)p = {[α]B ∈ Hr

B(S) | [Ln−rα]B = 0} for r ≤ n− 1.

In a similar manner, Λ induces a map

Λ : Hp, q
B (S) −→ Hp−1, q−1

B (S), [β]B 7−→ [Λβ]B,

the kernel of which we define as the (p, q)th-basic primitive Dolbeault cohomology group Hp, q
B (S)p.

[BG08, Corollary 7.2.10] then asserts that

Hr
B(S)p ⊗ C =

⊕
p+q= r

Hp, q
B (S)p. (2.1)

Notice that, as a subset of Hr
B(S), each element of Hr

B(S)p admits a unique basic harmonic rep-

resentative. Since [Λ, ∆B] = 0, this representative is necessarily primitive at every point of S. By

the next proposition, it is therefore harmonic. This allows us to identify the de Rham cohomology

groups with the basic primitive cohomology groups of a Sasaki manifold in a natural way.

Proposition 2.6 ([BG08, Proposition 7.4.13]). Let (S, gS) be a compact Sasaki manifold of dimen-

sion 2n− 1 and let p be an integer satisfying 1 ≤ p ≤ n− 1. Then a p-form is harmonic if and only

if it is primitive and basic harmonic. Thus, for each r ≥ 0, the basic primitive cohomology group

Hr
B(S)p can be naturally identified with the de Rham cohomology group Hr(S, R).

2.1.4. Calabi-Yau cones. The particular type of Kähler cone that concerns us is the following.

Definition 2.7. We say that (C0, g0, J0, Ω0) is a Calabi-Yau cone if

(i) (C0, g0, J0) is a Ricci-flat Kähler cone of complex dimension n,

(ii) the canonical bundle KC0 of C0 with respect to J0 is trivial, and

(iii) Ω0 is a nowhere vanishing section of KC0 with ωn0 = in
2
Ω0 ∧ Ω̄0.

The link of a Calabi-Yau cone is a Sasaki-Einstein manifold, an example of a “positive” Sasaki

manifold. Such manifolds enjoy the following vanishing property.

Proposition 2.8 ([Got12, Lemma 5.3]). The basic (p, 0)-Hodge numbers of a positive Sasaki man-

ifold vanish for p > 0.
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2.1.5. Crepant resolutions. A Calabi-Yau cone may be desingularised by a crepant resolution (if one

exists).

Definition 2.9. Let C0 be a complex space with an isolated normal singularity o ∈ C0 and suppose

that the complex manifold C0 \ {o} has trivial canonical bundle. A crepant resolution of C0 is a

pair (M, π) comprising a smooth complex manifold M with trivial canonical bundle together with

a proper map π : M −→ C0 such that the restriction map

π|M\π−1({o}) : M \ π−1({o}) −→ C0 \ {o}

is a biholomorphism. We call the set E := π−1({o}) the exceptional set of the resolution.

We have the following vanishing result for such a resolution.

Lemma 2.10 ([Got12, Lemma 5.5]). Let C0 be an affine variety of complex dimension n ≥ 2 with

a normal isolated singularity o and with KC0\{o} trivial and let π : M → C0 be a crepant resolution

of C0. Then

H1(M, OM ) = 0. (2.2)

Furthermore, let M0 denote the complement M \E, where E is the exceptional set of the resolution.

If n ≥ 3, then it also holds true that

H1(M0, OM0) = 0. (2.3)

Proof. First observe from Takegoshi’s generalisation of the Grauert-Riemenschneider vanishing the-

orem [Tak85, Theorem I] that

Rqπ∗KM = 0 for q > 0.

Since KM is trivial, it follows that Rqπ∗OM = 0 for q > 0 as well.

As for the cohomology of the sheaves Rqπ∗OM , we know from Oka’s coherence theorem and

Grauert’s direct image theorem that for q ≥ 0 they are coherent analytic sheaves on C0. We also

know that C0, as a closed analytic subspace of the Stein manifold Cn, is itself an example of a Stein

space. As a result, Cartan’s Theorem B applies, from which we deduce that

Hp(C0, R
qπ∗OM ) = 0 for all p ≥ 1 and q ≥ 0.

Consider next the Leray spectral sequence [God73, Theorem 4.17.1, p.201]

Ep, q2 := Hp(C0, R
qπ∗OM )⇒ Hp+q(M, OM )

and form its exact sequence of terms of low degree [God73, Theorem 4.5.1, p.82]

0 −→ H1(C0, π∗OM ) −→ H1(M, OM ) −→ H0(C0, R
1π∗OM ) −→ H2(C0, π∗OM ) −→ H2(M, OM ).

Since R1π∗OM = 0 and H1(C0, π∗OM ) = 0, we see that H1(M, OM ) = 0. The vanishing (2.2) now

follows.

Finally, let H i
E(M, OM ) denote the cohomology groups with supports in E and coefficients in the

structure sheaf OM . Then we have a long exact sequence of cohomology with supports

· · · −→ H i
E(M, OM ) −→ H i(M, OM ) −→ H i(M0, OM |M0) −→ H i+1

E (M, OM ) −→ · · · (2.4)

In order to compute the cohomology groups H i
E(M, OM ), we utilise a version of Hartshorne’s formal

duality theorem [GKK10, Theorem A.1]. This requires the hypothesis in the lemma that C0 is

normal. As Rqπ∗OM = 0 for q > 0, the duality theorem asserts that

Hn−q
E (M, O∗M ⊗KM ) = 0 for q > 0,

where O∗M denotes the sheaf dual to OM . Triviality of KM then implies that this vanishing is

equivalent to the vanishing of H i
E(M, OM ) for i < n, and so from (2.4) we deduce that

H1(M, OM ) ∼= H1(M0, OM |M0) if n ≥ 3.
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From the first part of the lemma we already know that H1(M, OM ) = 0. Hence for n ≥ 3, we have

that

H1(M0, OM0) = H1(M0, OM |M0) = 0.

�

As a result of the vanishing (2.2), we have a ∂∂̄-lemma on M .

Lemma 2.11 (∂∂̄-lemma). Let C0 be an affine variety of complex dimension n ≥ 2 with a normal

isolated singularity o and with KC0\{o} trivial, let π : M → C0 be a crepant resolution of C0, and let

α be an exact real (1, 1)-form on M . Then there exists a smooth real-valued function u on M such

that α = i∂∂̄u.

Proof. As a real exact two-form, there exists a real one-form β on M such that α = dβ. Write

β = β1, 0 + β0, 1 for some β1, 0 ∈ Λ1, 0M and β0, 1 ∈ Λ0, 1M . Then, as α = dβ is real of type (1, 1),

β1, 0 and β0, 1 must satisfy

dβ = ∂̄β1, 0 + ∂β0, 1, ∂β1, 0 = 0, and ∂̄β0, 1 = 0.

Since C0 is a normal affine variety by Theorem 2.3 and since M has trivial canonical bundle, the

vanishing H0, 1(M) = H1(M, OM ) = 0 given by (2.2) together with the ∂̄-closedness of β0, 1 implies

that β0, 1 = ∂̄φ for some smooth complex-valued function φ on M . This yields a simplification of

the above expression for dβ, namely

dβ = ∂̄β1, 0 + ∂β0, 1 = ∂β0, 1 + ∂β0, 1 = ∂̄∂φ̄+ ∂∂̄φ = ∂∂̄(φ− φ̄) = i∂∂̄u,

where u := i(φ̄ − φ) is twice the imaginary part of φ. Thus, α = dβ = i∂∂̄u with u : M → R
real-valued and smooth, as required. �

Crepant resolutions of Calabi-Yau cones have finite fundamental group.

Lemma 2.12. Let π : M → C0 be a crepant resolution of a Calabi-Yau cone C0. Then π1(M) is

finite. In particular, H1(M, R) = 0.

Proof. By [Got12, vC10], M admits an asymptotically conical Calabi-Yau metric, in particular a

complete Ricci-flat Riemannian metric of Euclidean volume growth. Such a manifold has finite

fundamental group by [And90, Li10]. �

2.1.6. Equivariant resolutions. The real holomorphic torus action on a Kähler cone leads to the

notion of an equivariant resolution.

Definition 2.13. Let C0 be a Kähler cone with complex structure J0, let π : M → C0 be a resolution

of C0, and let G be a Lie subgroup of the automorphism group of (C0, J0) fixing the apex of C0. We

say that π : M → C0 is an equivariant resolution with respect to G if the action of G on C0 extends

to a holomorphic action on M in such a way that π(g · x) = g · π(x) for all x ∈M and g ∈ G.

Such a resolution of a Kähler cone always exists; see [Kol07, Proposition 3.9.1]. If a Calabi-Yau

cone admits a unique crepant resolution, then the crepant resolution is necessarily equivariant with

respect to the real holomorphic torus action on the cone induced by the Reeb vector field. This

follows from the proof of [CDS19, Lemma 2.13].

2.2. Steady Ricci solitons.

2.2.1. Definition and properties. The specific metrics that we are interested in are the following.

Definition 2.14. A steady Ricci soliton is a triple (M, g, X), where M is a Riemannian manifold

with a complete Riemannian metric g and a complete vector field X satisfying the equation

Ric(g) =
1

2
LXg. (2.5)
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If moreover X = ∇gf for some smooth real-valued function f on M , then we say that the steady

Ricci soliton (M, g, X) is gradient. In this case, (2.5) reduces to

Ric(g) = Hessg(f),

where Hessg denotes the Hessian with respect to g.

A steady Kähler-Ricci soliton is a triple (M, g, X), where M is a Kähler manifold, X is a complete

real holomorphic vector field on M , and g is a complete Kähler metric on M whose Kähler form ω

satisfies

ρω =
1

2
LXω, (2.6)

with ρω denoting the Ricci form of ω. If moreover X = ∇gf for some smooth real-valued function

f on M , then we say that the steady Kähler-Ricci soliton (M, g, X) is gradient. In this case, the

defining equation of the soliton (2.6) may be rewritten as

ρω = i∂∂̄f.

For steady Ricci and Kähler-Ricci solitons (M, g, X), the vector field X is called the soliton vector

field. When such solitons are gradient, the smooth real-valued function f on M satisfying X = ∇gf
is called the soliton potential.

Two steady Kähler-Ricci solitons with the same soliton vector field that differ by i∂∂̄ of a function

satisfy the following.

Lemma 2.15. Let ω1 and ω2 be two steady Kähler-Ricci solitons with the same soliton vector field

X on a complex manifold M such that ω2 = ω1 + i∂∂̄u for some smooth real-valued function u. Then

i∂∂̄

(
log

(
(ω1 + i∂∂̄u)n

ωn1

)
+
X

2
· u
)

= 0.

Proof. With ρωi denoting the Ricci form of ωi, we have that

0 = ρω2 −
1

2
LXω2

= ρω2 − ρω1 + ρω1 −
1

2
LXω2

= −i∂∂̄ log

(
ωn2
ωn1

)
+ ρω1 −

1

2
LXω2

= −i∂∂̄ log

(
(ω1 + i∂∂̄u)n

ωn1

)
+ ρω1 −

1

2
LX(ω1 + i∂∂̄u)

= −i∂∂̄
(

log

(
(ω1 + i∂∂̄u)n

ωn1

)
+
X

2
· u
)

+ ρω1 −
1

2
LXω1︸ ︷︷ ︸

= 0

= −i∂∂̄
(

log

(
(ω1 + i∂∂̄u)n

ωn1

)
+
X

2
· u
)
.

�

The next lemma collects together some well-known Ricci soliton identities concerning steady

gradient Kähler-Ricci solitons that we require.

Lemma 2.16 (Ricci soliton identities). Let (M, g, X) be a connected steady gradient Kähler-Ricci

soliton with soliton vector field X = ∇gf for a smooth real-valued function f : M → R. Then the

trace and first order soliton identities are:

∆ωf =
Rg

2
,

∇g Rg +2 Ric(g)(X) = 0,

|∇gf |2g + Rg = c(g),
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where Rg denotes the scalar curvature of g and |∇gf |2g := gij∂if∂jf . Here, c(g) is a positive constant

and represents the “charge” of the soliton at infinity.

Proof. These are proved as in [CDS19, Proof of Lemma 2.23]. �

Finally, to each complete steady gradient Kähler-Ricci soliton, one can associate an eternal solu-

tion of the Kähler-Ricci flow that evolves via diffeomorphism. Indeed, if (M, g, X) is a complete

steady gradient Kähler-Ricci soliton with Kähler form ω and soliton potential f , set

ω(s) := ϕ∗sω, s ∈ (−∞, ∞),

where ϕs is the family of diffeomorphisms generated by the vector field −X
2 with ϕ0 = Id, i.e.,

∂ϕs
∂s

(x) = −∇
gf(ϕs(x))

2
, ϕ0 = Id .

Then ∂sω(s) = −ρω(s) for s ∈ (−∞, ∞) with ω(0) = ω, where ρω(s) denotes the Ricci form of ω(s).

By pulling back the steady gradient Kähler-Ricci soliton g by the family of diffeomorphisms

generated by the vector field −X rather than −X
2 , one obtains an eternal solution of the Ricci

flow, i.e., a one-parameter family of Riemannian metrics g(s), s ∈ (−∞, ∞), with g(0) = g and

∂sg(s) = −2 Ric(g(s)).

2.2.2. Steady Ricci solitons as metric measure spaces. A metric measure space is a Riemannian

manifold endowed with a weighted volume form.

Definition 2.17. A metric measure space is a triple (M, g, efdµg), where (M, g) is a complete

Riemannian manifold with Riemannian metric g, dµg is the volume form associated to g, and

f : M → R is a real-valued C1-function called the potential.

On such a space, we define the drift Laplacian ∆f by

∆fu := ∆u+ g(∇gf, ∇gu)

on smooth real-valued functions u ∈ C∞(M). There is a natural L2-inner product 〈· , ·〉L2(efdµg)

on the space L2(efdµg) of square-integrable smooth real-valued functions on M with respect to the

measure efdµg defined by

〈u, v〉L2(efdµg) :=

∫
M
uv efdµg, u, v ∈ L2(efdµg).

The operator ∆f is symmetric with respect to 〈· , ·〉L2(efdµg). Indeed, simply observe that∫
M

(∆fu)v efdµg = −
∫
M
g(∇gu, ∇gv) efdµg =

∫
M
u(∆fv) efdµg, u, v ∈ C∞0 (M).

A steady gradient Ricci soliton (M, g, X) with X = ∇gf for f : M → R smooth naturally defines

a metric measure space (M, g, efdµg).

2.2.3. Cao’s steady gradient Kähler-Ricci soliton on a Calabi-Yau cone. Given a Calabi-Yau cone

of complex dimension n, the Calabi-Yau cone metric induces a one-parameter family of incomplete

steady gradient Kähler-Ricci solitons on the underlying complex space of the cone. This is seen

by implementing Cao’s ansatz [Cao96] which itself involves solving an ODE. This we now explain.

These solitons provide the model for the complete steady gradient Kähler-Ricci solitons that we

construct.

Proposition 2.18. Let (C0, g0, J0, Ω0) be a Calabi-Yau cone with radial function r and set r2 = et.

Then for all a ≥ 0, there exists a steady gradient Kähler-Ricci soliton g̃a on C0 with soliton vector

field 2r∂r = 4∂t whose Kähler form is given by ω̃a = i
2∂∂̄Φa(t) for a smooth real-valued function

Φa(t) on C0 characterised by the fact that 0 ≤ a = limt→−∞Φ′a(t) and whose soliton potential is

given by ϕa(t) := Φ′a(t).
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Proof. Recall that dc = i(∂̄ − ∂) so that ddc = 2i∂∂̄ and that η = dc log(r) defines a contact form

on the link of the cone C0 with ωT = 1
2dd

c log(r) the corresponding transverse Kähler metric. We

assume an ansatz metric of the form ω̃ = i
2∂∂̄Φ(t) for Φ : C0 → R a (yet to be determined) smooth

real-valued function on C0 depending only on t. We compute:

ω̃ =
i

2
∂∂̄Φ(t) =

1

4
ddcΦ(t) = Φ′(t)

1

4
ddct+ Φ′′(t)

dt

2
∧ d

ct

2

= ϕ(t)ωT + ϕ′(t)
dt

2
∧ η,

(2.7)

where ϕ(t) := Φ′(t). Thus, in order for ω̃ to define a Kähler metric, we require that both ϕ, ϕ′ > 0.

With ω̃ written as above, it is easy to see that

ω̃n = nϕn−1ϕ′
dt

2
∧ η ∧ (ωT )n−1.

As for the Kähler form ω0 of g0, we have that

ωn0 = (rdr ∧ η + r2ωT )n = nr2n−2(ωT )n−1 ∧ rdr ∧ η = nent
dt

2
∧ η ∧ (ωT )n−1.

These last two expressions allow us to write the Ricci form ρω̃ of ω̃ as

ρω̃ = −i∂∂̄ log

(
ω̃n

in2Ω0 ∧ Ω̄0

)
= −i∂∂̄ log

(
ω̃n

ωn0

)
= −i∂∂̄ log

(
ϕn−1ϕ′e−nt

)
, (2.8)

where we have made use of the Calabi-Yau condition on the cone in the second equality.

Next, let X = 2r∂r = 4∂t. Then the pair (ω̃, X) defines a steady Kähler-Ricci soliton with soliton

vector field X if and only if

ρω̃ =
1

2
LX ω̃,

that is, if

−i∂∂̄ log
(
ϕn−1ϕ′e−nt

)
= i∂∂̄ϕ.

Therefore it suffices that

ϕn−1ϕ′eϕ = Cent

for some constant C > 0. By a translation in t (which corresponds to a scaling in r), we may assume

that C = 1. Thus, we consider the ODE

ϕn−1ϕ′eϕ = ent. (2.9)

First separating variables in ϕ and t yields

ϕn−1eϕdϕ = entdt.

Next, after integrating both sides, we find that

F (ϕ)eϕ =
ent

n
+ C (2.10)

for another constant C, where

F (s) :=

n−1∑
k=0

(−1)n−k−1 (n− 1)!

k!
sk. (2.11)

One can verify that

(F (s)es)′ = sn−1es.

Consequently, F (s)es is strictly increasing for s > 0, hence (2.10) implicity defines ϕ so long as

C ≥ F (0)e0. Notice that for s > 0,

(F (s)es − sn−1es)′ = (F (s)es)′ − sn−1es︸ ︷︷ ︸
= 0

−(n− 1)sn−2es < 0
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so that

F (s)es − sn−1es < F (0)e0 = F (0) for all s > 0.

As a result, we find that for all s > s0 ≥ 0,

0 <

∫ s

s0

(F (x)ex)′ dx = F (s)es − F (s0)es0 ≤ F (s)es − F (0)e0 < sn−1es,

which leads to the inequality

0 < F (s)es − F (s0)es0 < sn−1es for all s > s0 ≥ 0. (2.12)

Finally, taking the limit in (2.10) as t→ −∞, we arrive at the fact that

F

(
lim

t→−∞
ϕ(t)

)
elimt→−∞ ϕ(t) = C.

Specify

0 ≤ a := lim
t→−∞

ϕ(t)

and accordingly add a subscript a to ϕ. Set C := F (a)ea. Then ϕa is defined implicitly by the

equation

F (ϕa(t))e
ϕa(t) =

ent

n
+ F (a)ea. (2.13)

Since F (s)es is strictly increasing for s > 0, its inverse on (0, ∞) is also strictly increasing, and

so we deduce from (2.13) that ϕa(t) is strictly increasing. Consequently, ϕ′a(t) > 0 and ϕa(t) >

limt→−∞ ϕa(t) = a ≥ 0 for all t. Using this latter inequality, we see from (2.12) that

ϕn−1
a eϕa > F (ϕa)e

ϕa − F (a)ea =
ent

n
,

hence (2.9) implies that

0 < ϕ′a(t) < n. (2.14)

It follows that both ϕa and ϕ′a are strictly positive. We therefore conclude that for a ≥ 0, Φa(t) :=∫
ϕa(t) dt defines the Kähler potential of a steady Kähler-Ricci soliton on C0 with soliton vector

field X = 2∂r = 4∂t. To see that ω̃a is gradient with ϕa(t) serving as a soliton potential, just note

that ρω̃a = i∂∂̄ϕa(t) which follows by combining (2.8) and (2.9), and ω̃ayX = −dϕa which is clear

from (2.7). �

Remark 2.19. For clarity, we henceforth drop the subscript a from ω̃a, ϕa(t), and Φa(t) in state-

ments where, for each particular choice of a ≥ 0, the statement holds true with ω̃ replaced by ω̃a,

etc.

3. Asymptotics of Cao’s steady gradient Kähler-Ricci soliton

Let (C0, g0) be a Calabi-Yau cone of complex dimension n with radial function r. Then, as we

have just seen, there exists a steady gradient Kähler-Ricci soliton ω̃ on C0 of the form ω̃ = i
2∂∂̄Φ(t),

where r2 = et. In this section, we study in depth the asymptotics of ω̃. We begin first with an

analysis of the asymptotics of ϕ(t) := Φ′(t).

Proposition 3.1. As t→ +∞, we have

ϕ(t) = nt− (n− 1) log t− n log n+
(n− 1)2

n

log t

t
+

(
(n− 1)

n
+ (n− 1) log n

)
1

t
+O

(
(log t)2

t2

)
,

ϕ′(t) = n− (n− 1)

t
+O

(
(log t)2

t2

)
, ϕ′′(t) = O

(
(log t)2

t2

)
, ϕ(3)(t) = O

(
(log t)2

t2

)
.

The asymptotics stated here on the second and third derivative of ϕ(t) are not optimal, but

nevertheless suffice for our purposes.
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Proof of Proposition 3.1. Recalling from (2.14) that ϕ is strictly increasing, we derive from (2.13)

that for all t� 0,

ϕ− nt = − log(F (ϕ))− log(n) + log(1 +O(e−nt))

= − log(ϕn−1(1 +O(ϕ−1)))− log(n) + log(1 +O(e−nt))

= −(n− 1) log(ϕ)− log(n) +O(ϕ−1) +O(e−nt)

= −(n− 1) log(nt)− (n− 1) log
( ϕ
nt

)
− log(n) +O(ϕ−1) +O(e−nt),

= −(n− 1) log(t)− n log(n) +O(ϕ−1) +O(e−nt)− (n− 1) log
( ϕ
nt

)
,

(3.1)

where we have used (2.11) in the second equality. Again, since ϕ(t) is increasing, we see from

the third line above that ϕ(t) − nt < 0 for t sufficiently large. Thus, as ϕ(t) > a for all t where

0 ≤ a := limt→−∞ ϕ(t), we have that

0 ≤ a

nt
<
ϕ(t)

nt
< 1. (3.2)

Moreover, from (3.1), we see that for t sufficiently large,

(n− 1)

nt
log
( ϕ
nt

)
+
ϕ

nt
− 1 = −(n− 1)

n

log(t)

t
− log(n)

t
+O(t−1ϕ−1) +O(t−1e−nt) ≥ −C

(
log(t)

t

)
for some C > 0. Observing that log(x) ≤ x for x > 0 then yields the lower bound

−C
(

log(t)

t

)
≤ (n− 1)

nt
log
( ϕ
nt

)
+
ϕ

nt
− 1 ≤ (n− 1)

nt

( ϕ
nt

)
+
ϕ

nt
− 1 =

ϕ

nt

(
1 +

(n− 1)

nt

)
− 1

so that
ϕ

nt
≥ 1− C

(
log(t)

t

)
(3.3)

for t sufficiently large. Combining (3.2) and (3.3), we arrive at the fact that

−C
(

log(t)

t

)
≤ ϕ

nt
− 1 < 0

for t sufficiently large, i.e.,
ϕ

nt
= 1 +O

(
log(t)

t

)
. (3.4)

This in turn implies that ϕ−1 = O(t−1). Using this and plugging (3.4) back into (3.1), we then find

that

ϕ = nt− (n− 1) log(t)− n log(n) +O

(
log(t)

t

)
. (3.5)

In particular, we deduce that

ϕ−1 =
1

nt
+O

(
log(t)

t2

)
. (3.6)

One can develop further the asymptotic expansion of ϕ by plugging (3.5) into the last line of

(3.1). This results in the expansion

ϕ = nt− (n− 1) log t− n log n− (n− 1) log

(
1− (n− 1)

n

log t

t
− log n

t
+O

(
log t

t2

))
+O(t−1)

= nt− (n− 1) log t− n log n+
(n− 1)2

n

log t

t
+O(t−1).

Unfortunately this does not suffice to obtain a sharp first order term in the expansion of ϕ′(t). We

need to analyse the expansion of O(ϕ−1) more carefully. To this end, recall the definition of F (ϕ)

from (2.11). We have that

F (s) = sn−1 − (n− 1)sn−2 +O(sn−3),
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so that

F (ϕ) = ϕn−1 − (n− 1)ϕn−2 +O(ϕn−3) = ϕn−1(1− (n− 1)ϕ−1 +O(ϕ−2)).

Plugging this into the first line of (3.1) then leads to the expansion

ϕ− nt = − log(F (ϕ))− log(n) + log(1 +O(e−nt))

= −(n− 1) logϕ− log(n) + (n− 1)ϕ−1 +O(ϕ−2) +O(e−nt)

= −(n− 1) log
( ϕ
nt

)
− (n− 1) log(nt)− log(n) + (n− 1)ϕ−1 +O(ϕ−2) +O(e−nt)

= −(n− 1) log
( ϕ
nt

)
− (n− 1) log t− n log n+ (n− 1)ϕ−1 +O(ϕ−2) +O(e−nt)

= −(n− 1) log t− n log(n)− (n− 1) log

(
1− (n− 1)

n

log(t)

t
− log(n)

t
+O

(
log t

t2

))
+

+ (n− 1)ϕ−1 +O(ϕ−2) +O(e−nt)

= −(n− 1) log t− n log(n) +
(n− 1)2

n

log t

t
+

(n− 1) log(n)

t
+O

(
(log t)2

t2

)
+

+ (n− 1)ϕ−1 +O(ϕ−2) +O(e−nt)

= −(n− 1) log t− n log n+
(n− 1)2

n

log t

t
+

(
(n− 1)

n
+ (n− 1) log n

)
1

t
+O

(
(log t)2

t2

)
,

where we have used (3.5) in the fifth equality and (3.6) in the final equality. This yields the desired

expansion of ϕ.

As for ϕ′(t), making use of the above expansion of ϕ, we see from (2.9) that

logϕ′ = nt− ϕ− (n− 1) logϕ

= (n− 1) log(t) + n log(n)− (n− 1)2

n

log t

t
−
(

(n− 1)

n
+ (n− 1) log n

)
1

t
− (n− 1) log (ϕ)

+O

(
(log t)2

t2

)
= (n− 1) log(t) + n log(n)− (n− 1)2

n

log t

t
−
(

(n− 1)

n
+ (n− 1) log n

)
1

t
− (n− 1) log

( ϕ
nt

)
− (n− 1) log(nt) +O

(
(log t)2

t2

)
= (n− 1) log(t) + n log(n)− (n− 1)2

n

log t

t
−
(

(n− 1)

n
+ (n− 1) log n

)
1

t

− (n− 1) log

(
1− (n− 1)

n

log(t)

t
− log(n)

t
+O

(
log t

t2

))
− (n− 1) log(nt) +O

(
(log t)2

t2

)
= log(n)− (n− 1)2

n

log t

t
−
(

(n− 1)

n
+ (n− 1) log n

)
1

t

− (n− 1) log

(
1− (n− 1)

n

log(t)

t
− log(n)

t
+O

(
log t

t2

))
+O

(
(log t)2

t2

)
= log(n)− (n− 1)2

n

log t

t
−
(

(n− 1)

n
+ (n− 1) log n

)
1

t
+

(n− 1)2

n

log(t)

t
+

(n− 1) log(n)

t

+O

(
(log t)2

t2

)
= log n− (n− 1)

n

1

t
+O

(
(log t)2

t2

)
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so that

ϕ′(t) = n− (n− 1)

t
+O

(
(log t)2

t2

)
,

as claimed.

For ϕ′′(t), we deduce from (2.9) and our previous expansions of ϕ(t) and ϕ′(t) that

ϕ′′(t) = ϕ′(t)

(
n− ϕ′(t)− (n− 1)

ϕ(t)
ϕ′(t)

)
= O

(
(log t)2

t2

)
as desired.

Finally, for ϕ(3)(t), we have that

ϕ(3) = ϕ′′
(
n− ϕ′ − (n− 1)

ϕ
ϕ′
)
− ϕ′

(
ϕ′′ + (n− 1)

(
ϕ′′

ϕ
−
(
ϕ′

ϕ

)2
))

= O

(
(log t)2

t2

)
.

�

The previous proposition allows us to derive the following precise asymptotics of Cao’s steady

gradient Kähler-Ricci soliton.

Proposition 3.2. Let (C0, g0) be a Calabi-Yau cone of complex dimension n ≥ 2 with complex

structure J0, radial function r, and transverse metric gT , and set η = dc log(r) and r2 = et. Let g̃

denote Cao’s steady gradient Kähler-Ricci soliton on C0 and set ĝ := n
(

1
4dt

2 + η2 + tgT
)
. Then

|∇̂i(g̃ − ĝ)|ĝ = O
(
t−1− i

2 log(t)
)

for all i ≥ 0, (3.7)

and

|∇̂iL(j)
X (g̃ − ĝ)|ĝ = O(t−1− i

2
−j) for all i ≥ 0 and j ≥ 1. (3.8)

In particular, for all ε ∈ (0, 1), there exist constants C(i, j, ε) > 0 such that

|∇̂iL(j)
X (g̃ − ĝ)|ĝ ≤ C(i, j, ε)t−ε−

i
2
−j for all i, j ≥ 0.

Proof. We prove this proposition through several claims. We begin with the following initial estimate.

Claim 3.3. |g̃ − ĝ|ĝ = O(t−1 log(t)).

Proof. We see from (2.7) that g̃ = ϕ(t)gT + ϕ′(t)(1
4dt

2 + η2). Thus, we can write

g̃ − ĝ = (ϕ(t)− nt)gT + (ϕ′(t)− n)

(
1

4
dt2 + η2

)
. (3.9)

In light of Proposition 3.1, we then have that

|g̃ − ĝ|ĝ ≤ |ϕ− nt||gT |ĝ + |ϕ′ − n|
∣∣∣∣14dt2 + η2

∣∣∣∣
ĝ

≤ C
(
t−1 log(t) + t−1

)
≤ Ct−1 log(t),

as claimed. �

We next estimate the norm of the curvature tensor Rm(g̃) of g̃.

Claim 3.4. |Rm(g̃)|g̃ = O(t−1).
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Proof. As above, we can write g̃ = ϕ(t)gT + ϕ′(t)
(
dt2

4 + η2
)

. Let θ1, . . . , θ2n−2 be a local basic

orthonormal coframe for gT with θi ◦ J0 = −θi+1 for i odd, and let (ωij)1≤ i, j≤ 2n−2 be the matrix

of connection one-forms of gT . Then (ωij) solves the Cartan structure equations{
dθi =

∑2n−2
j= 1 ωji ∧ θj

ωij + ωji = 0.

The one-forms

θ̃i :=
√
ϕ(t)θi, θ̃2n−1 :=

√
ϕ′(t)

2
dt, θ̃2n := η

√
ϕ′(t),

where 1 ≤ i ≤ 2n − 2, serve as a local orthonormal coframe of g̃. We first compute the matrix of

connection one-forms (ω̃ij)1≤ i, j≤ 2n of g̃ with respect to this coframe. We have that

dθ̃i =

2n−2∑
j= 1

ωji ∧ θ̃j +

√
ϕ′(t)

ϕ(t)
θ̃2n−1 ∧ θ̃i, 1 ≤ i ≤ 2n− 2,

dθ̃2n−1 = 0, dθ̃2n =

√
ϕ′(t)

ϕ(t)

2n−2∑
i=1
i odd

(θ̃i ∧ θ̃i+1 − θ̃i+1 ∧ θ̃i) +
ϕ′′(t)

(ϕ′(t))
3
2

θ̃2n−1 ∧ θ̃2n.

The matrix (ω̃ij) is then given by

ω̃ji =

{
ωji + δj, i+1

ϕ′(t)
ϕ(t) η, 1 ≤ i ≤ 2n− 2 odd, 1 ≤ j ≤ 2n− 2,

ωji − δj, i−1
ϕ′(t)
ϕ(t) η, 1 ≤ i ≤ 2n− 2 even, 1 ≤ j ≤ 2n− 2,

ω̃2n−1, i = −

√
ϕ′(t)

ϕ(t)
θi, 1 ≤ i ≤ 2n− 2,

ω̃2n−1, 2n = −ϕ
′′(t)

ϕ′(t)
η,

ω̃2n, i =


√

ϕ′(t)
ϕ(t) θi+1, 1 ≤ i ≤ 2n− 2 odd,

−
√

ϕ′(t)
ϕ(t) θi−1, 1 ≤ i ≤ 2n− 2 even.

Next, from Proposition 3.1 we derive that

ϕ′(t)

ϕ(t)
= O(t−1),

(
ϕ′(t)

ϕ(t)

)′
= O(t−2),

ϕ′′(t)

ϕ′(t)
= O(t−

3
2 ),

(
ϕ′′(t)

ϕ′(t)

)′
= O(t−

3
2 ).

Thus, with respect to the metric ĝ, we have the asymptotics

ω̃ji = O(t−
1
2 ), dω̃ji = O(t−1), 1 ≤ i, j ≤ 2n− 2,

ω̃2n−1, i = O(t−1), dω̃2n−1, i = O(t−
3
2 ), 1 ≤ i ≤ 2n− 2,

ω̃2n−1, 2n = O(t−
3
2 ), dω̃2n−1, 2n = O(t−

3
2 ),

ω̃2n, i = O(t−1), dω̃2n, i = O(t−
3
2 ), 1 ≤ i ≤ 2n− 2.

From the Cartan structure equations, it is clear that |Rm(g̃)|ĝ = O(t−1). Since ĝ and g̃ are equivalent

at infinity as a consequence of Claim 3.3, the assertion follows. �

Next employing Shi’s derivative estimates, we estimate the norm of the derivatives of Rm(g̃) with

respect to g̃ and its Levi-Civita connection ∇̃.

Claim 3.5. |∇̃k Rm(g̃)|g̃ = O(t−1− k
2 ) for all k ≥ 0.
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Proof. Claim 3.4 asserts the existence of a positive constant C such that |Rm(g̃)|g̃ ≤ Ct−1. Set

λ := 1
2

(
1 +

√
1 + 4

C

)
> 1. We will prove the following statement.

(?) For all m ∈ N, |∇̃k Rm(g̃)|g̃ ≤
Ck

(λm)1+ k
2

on {λm ≤ t ≤ λm+1} for all k ≥ 0.

Here Ck is a positive constant independent of m.

To this end, we know that |Rm(g̃)|g̃ ≤ C
λm on the region {λm ≤ t ≤ λm+2}. Let (g̃(s))s∈R denote

the Ricci flow associated to g̃ with g̃(0) = g̃. Then by Shi’s derivative estimates [Shi89] (see [Zha11,

Theorem 5.3.2] for the precise statement that we use), there exist constants C̃k such that

|(∇g̃(s))k Rm(g̃(s))|g̃(s) ≤
CC̃k

λms
k
2

on {λm ≤ t ≤ λm+2} for all s ∈
(

0,
λm

C

]
and for all k ≥ 0.

In particular, for s0 = λm

C , we find that

|(∇g̃(s0))k Rm(g̃(s0))|g̃(s0) ≤
C1+ k

2 C̃k

(λm)1+ k
2

on {λm ≤ t ≤ λm+2} for all k ≥ 0.

But since g̃(s) is obtained from g̃ by flowing along the vector field −X = −4∂t for time s, this last

statement is equivalent to

|∇̃k Rm(g̃)|g̃ ≤
C1+ k

2 C̃k

(λm)1+ k
2

on
{
λm − 4λm

C
≤ t ≤ λm+2 − 4λm

C︸ ︷︷ ︸
=λm+1

}
for all k ≥ 0,

so that in particular,

|∇̃k Rm(g̃)|g̃ ≤
C1+ k

2 C̃k

(λm)1+ k
2

on
{
λm ≤ t ≤ λm+1

}
for all k ≥ 0.

This establishes (?) with Ck := C1+ k
2 C̃k.

Now for any x ∈ M with t(x) ≥ λ, there exists N ∈ N such that λN ≤ t(x) ≤ λN+1. Then since

(?) holds true, we see that

|∇̃k Rm(g̃)|g̃(x) ≤ Ck

(λN )1+ k
2

≤ λ1+ k
2Ck

(t(x))1+ k
2

for all k ≥ 0,

as desired. �

We also have the following estimates on the Lie derivatives of Rm(g̃) along the soliton vector field

X.

Claim 3.6. |L(k)
X (Rm(g̃))|g̃ = O(t−1−k) for all k ≥ 0.

Proof. In order to show that |L(k)
X (Rm(g̃))|g̃ = O(t−1−k) for all k ≥ 0, recall that the curvature

operator Rm(g̃(s)) satisfies the following evolution equation along the Ricci flow (g̃(s))s∈R, g̃(0) = g̃,

associated to g̃:

∂s Rm(g̃(s)) = ∆g̃(s) Rm(g̃(s)) + Rm(g̃(s)) ∗ Rm(g̃(s)). (3.10)

Since g̃(s) is obtained from g̃ by flowing along the vector field −X, we know that LX Rm(g̃) =

−∂s Rm(g̃(s))|s= 0. Using Claim 3.5 together with (3.10), this yields the expected result for k = 1,

namely |LX Rm(g̃)|g̃ = O(t−2).

Next, note the following commutation formula for any tensor T on M :(
[∂s,∆g̃(s)]T

)∣∣
s= 0

=
2∑

i= 0

∇̃2−i Ric(g̃) ∗ ∇̃iT. (3.11)
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This formula can be derived from [CLN06, Lemma 2.27] using the definition of the rough Laplacian.

In particular, by (3.11), if k = 2, then

L(2)
X (Rm(g̃)) = LX(−∆g̃ Rm(g̃)) + LX(Rm(g̃) ∗ Rm(g̃))

= ∂s(−∆g̃(s) Rm(g̃(s)))|s= 0 + LX(Rm(g̃) ∗ Rm(g̃))

= −∆g̃(LX(Rm(g̃))) +
2∑

i= 0

∇̃2−i Rm(g̃) ∗ ∇̃i Rm(g̃) + Rm(g̃) ∗ Rm(g̃) ∗ Rm(g̃)

= ∆2
g̃ Rm(g̃) + ∆g̃(Rm(g̃) ∗ Rm(g̃)) +

2∑
i= 0

∇̃2−i Rm(g̃) ∗ ∇̃i Rm(g̃)

+ Rm(g̃) ∗ Rm(g̃) ∗ Rm(g̃)

= ∆2
g̃ Rm(g̃) +

2∑
i= 0

∇̃2−i Rm(g̃) ∗ ∇̃i Rm(g̃) + Rm(g̃) ∗ Rm(g̃) ∗ Rm(g̃).

This implies that |L(2)
X Rm(g̃)|g̃ = O(t−3). The cases k ≥ 3 can be proved similarly by induction. �

Using this, we can now estimate all of the derivatives of ϕ.

Claim 3.7.

ϕ(t) = O(t),(
ϕ′(t)− n

)(k)
= O(t−1−k) for all k ≥ 0,

ϕ(k)(t) = O(t−k) for all k ≥ 2.

Proof. The first estimate follows immediately from Proposition 3.1.

As for the other estimates, we read from the third soliton identity (Lemma 2.16) that for Cao’s

steady gradient Kähler-Ricci soliton g̃,

|X|2g̃ + Rg̃ = c(g̃)

for some positive constant c(g̃). Since Rg̃ = O(t−1) as a consequence of Claim 3.4 and since X = 4∂t
so that |X|2g̃ = 4n+ O(t−1 log(t)) by Claim 3.3, we deduce that c(g̃) = 4n. Also observe from (2.7)

that |X|2g̃ = 4ϕ′(t). Thus, we may write

4ϕ′(t) = 4n− Rg̃ . (3.12)

As a result, we see from Claim 3.6 that for all k ≥ 0,

|(ϕ′(t)− n)(k)| ≤ C|L(k)
X (ϕ′(t)− n)| ≤ C|L(k)

X Rg̃ | ≤ Ct−1−k

and that for all k ≥ 2,

|ϕ(k)(t)| ≤ C|L(k−1)
X Rg̃ | ≤ Ct−k.

This yields the second and third estimates of the claim respectively. �

We next estimate the covariant derivatives of ϕ(q)(t) for all q ≥ 1.

Claim 3.8.

|∇̂ϕ(q)(t)|ĝ = O
(
t−q−1

)
for all q ≥ 1,

|∇̂lϕ(q)(t)|ĝ = O
(
t−q−1− l

2

)
for all l ≥ 2 and q ≥ 1.

Proof. Recall from Proposition A.1 that with the orthonormal coframe

θ̂i :=
√
ntθi for i = 1, . . . , 2n− 2, θ̂2n−1 :=

√
n

2
dt, and θ̂2n := η

√
n
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of ĝ, we have the estimates

|∇̂kθ̂i|ĝ = O
(
t−

k
2

)
for 1 ≤ i ≤ 2n− 2 and for all k ≥ 0,

|∇̂kθ̂2n−1|ĝ = O
(
t−1− (k−1)

2

)
for all k ≥ 1,

|∇̂kθ̂2n|ĝ = O
(
t−1− (k−1)

2

)
for all k ≥ 1.

Using these facts together with Claim 3.7, we deduce that for all q ≥ 1,

|∇̂ϕ(q)(t)|ĝ ≤ C|(ϕ′(t)− n)(q)||θ̂2n−1|ĝ ≤ Ct−1−q,

which yields the first estimate of the claim. For all q ≥ 1 and l ≥ 2, we then derive that

|∇̂lϕ(q)(t)|ĝ ≤ C
l∑

i= 1

(
|ϕ(i+q)(t)|

∑
sp≥ 0∑l−i

p=0(p+1)sp = l∑l−i
p=0 psp = l−i

∏
0≤ p≤ l−i

|∇pθ̂2n−1|
sp
ĝ

)

≤ C
l∑

i= 1

(
t−(i+q)

∑
sp≥ 0∑l−i

p=0(p+1)sp = l∑l−i
p=0 psp = l−i

∏
0≤ p≤ l−i

|∇pθ̂2n−1|
sp
ĝ

)

≤ C
l∑

i= 1

(
t−i−q

∑
0≤ p≤ l−i
sp≥ 0∑l−i

p=0(p+1)sp = l∑l−i
p=0 psp = l−i

t
∑l−i
p=1

(
−1− (p−1)

2

)
sp︸ ︷︷ ︸

=O

(
t
− 1

2

∑l−i
p=1

sp
t
− 1

2

∑l−i
p=1

psp
)
)

≤ C
l∑

i= 1

(
t−i−q

∑
0≤ p≤ l−i
sp≥ 0∑l−i

p=0(p+1)sp = l∑l−i
p=0 psp = l−i

t−
(i−s0)

2 t−
(l−i)

2

)

≤ Ct−
l
2
−q

l∑
i= 1

(
t−i

∑
0≤ p≤ l−i
sp≥ 0∑l−i

p=0(p+1)sp = l∑l−i
p=0 psp = l−i

t
s0
2

)

≤ Ct−
l
2
−q

(
t−lt

l
2 +

l−1∑
i= 1

t
s0
2
−i︸ ︷︷ ︸

=O

(
t
(i−1)

2 −i
)
)

≤ Ct−
l
2
−q

(
t−

l
2 +

l−1∑
i= 1

t−
i
2
− 1

2

)
≤ Ct−

l
2
−q(t−

l
2 + t−1)

≤ Ct−q−
l
2
−1,

which is the second estimate of the claim. �

As for ϕ(t) and its covariant derivatives, we have:
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Claim 3.9.

|ϕ(t)− nt| = O (log(t)) ,

|∇̂(ϕ(t)− nt)|ĝ = O
(
t−1
)
,

|∇̂l(ϕ(t)− nt)|ĝ = O
(
t−1− l

2

)
for all l ≥ 2.

Proof. The first estimate follows immediately from Proposition 3.1. As for the remaining estimates,

we compute using Claim 3.7 that

|∇̂(ϕ(t)− nt)|ĝ ≤ C|ϕ′(t)− n||θ̂2n−1|ĝ ≤ Ct−1,

|∇̂2(ϕ(t)− nt)|ĝ ≤ C
(
|ϕ′′(t)|+ |ϕ′(t)− n||∇̂θ̂2n−1|ĝ

)
≤ Ct−2,

|∇̂3(ϕ(t)− nt)|ĝ ≤ C
(
|ϕ(3)(t)|+ |ϕ′′(t)||∇̂θ̂2n−1|ĝ + |ϕ′(t)− n||∇̂2θ̂2n−1|ĝ

)
≤ Ct−

5
2 ,

and from Claims 3.7 and 3.8 that for all l ≥ 4,

|∇̂l(ϕ(t)− nt)|ĝ ≤ C|∇̂l−1((ϕ′(t)− n)θ̂2n−1)|ĝ

≤ C
l−1∑
k= 0

|∇̂k(ϕ′(t)− n)|ĝ|∇̂l−1−kθ̂2n−1|ĝ

≤ C

(
|ϕ′(t)− n||∇̂l−1θ̂2n−1|ĝ + |∇̂(ϕ′(t)− n)|ĝ|∇̂l−2θ̂2n−1|ĝ + |∇̂l−1(ϕ′(t)− n)|ĝ

+
l−2∑
k= 2

|∇̂k(ϕ′(t)− n)|ĝ|∇̂l−1−kθ̂2n−1|ĝ

)

≤ C

(
t−1t−1− (l−2)

2 + t−2t−1− (l−3)
2 + t−2− (l−1)

2 +
l−2∑
k= 2

t−2− k
2 t−1− (l−2−k)

2

)

≤ C

(
t−1− l

2 + t−
3
2
− l

2 + t−2− l
2

)
≤ Ct−1− l

2 .

The claim now follows. �

We have already seen in Claim 3.3 that (3.7) holds true for k = 0. We now show that it in fact

holds true for all k ≥ 1.

Claim 3.10.

|∇̂k(g̃ − ĝ)|ĝ = O
(
t−1− k

2 log(t)
)

for all k ≥ 1.

Proof. Recall the estimates on the local orthonormal coframe {θ̂1, . . . , θ̂2n−2} of ntgT from Proposi-

tion A.1. From there, we also read that

|∇̂k(t−1)|ĝ = O
(
t−1−k

)
for k = 0, 1, 2,

|∇̂k(t−1)|ĝ = O
(
t−2− k

2

)
for all k ≥ 2.
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Using these estimates, we derive that∣∣∣∇̂lgT ∣∣∣
ĝ
≤ C

2n−2∑
i= 1

∣∣∣∇̂l(t−1θ̂i ⊗ θ̂i)
∣∣∣
ĝ

≤ C
∑

p+q+r= l
1≤ i≤ 2n−2

|∇̂p(t−1)|ĝ |∇̂q θ̂i||ĝ|∇̂rθ̂i|ĝ︸ ︷︷ ︸
=O

(
t−

(q+r)
2

)

≤ C
l∑

k= 0

∑
p= l−k

t−
k
2 |∇̂p(t−1)|ĝ

≤ C
l∑

k= 0

t−
k
2 |∇̂l−k(t−1)|ĝ

≤ Ct−
l
2

l∑
k= 0

t
k
2 |∇̂k(t−1)|ĝ

≤ Ct−
l
2

(
t−1 + t−

3
2 +

l∑
k= 2

t
k
2 |∇̂k(t−1)|ĝ︸ ︷︷ ︸

=O(t−2)

)

≤ Ct−1− l
2 .

Similarly, one can verify that ∣∣∣∣14dt2 + η2

∣∣∣∣
ĝ

= O (1)

and that ∣∣∣∣∇̂l (1

4
dt2 + η2

)∣∣∣∣
ĝ

= O
(
t−1− (l−1)

2

)
for all l ≥ 1.

Recalling (3.9), the above estimates then imply that

|∇̂(g̃ − ĝ)|ĝ ≤ C

(∣∣∣∇̂(ϕ(t)− nt)
∣∣∣
ĝ
|gT |ĝ + |ϕ(t)− nt||∇̂gT |ĝ + |∇̂(ϕ′(t)− n)|ĝ

∣∣∣∣14dt2 + η2

∣∣∣∣
ĝ

+ |ϕ′(t)− n|
∣∣∣∣∇̂(1

4
dt2 + η2

)∣∣∣∣
ĝ

)
≤ C

(
t−

3
2 log(t) + t−2

)
≤ Ct−

3
2 log(t) = Ct−1− 1

2 log(t),
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|∇̂2(g̃ − ĝ)|ĝ

≤
2∑

m= 0

∣∣∣∇̂m(ϕ(t)− nt)
∣∣∣
ĝ

∣∣∣∇̂2−mgT
∣∣∣
ĝ︸ ︷︷ ︸

=O

(
t−1− (2−m)

2

)
+

2∑
m= 0

∣∣∣∇̂m(ϕ′(t)− n)
∣∣∣ ∣∣∣∣∇̂2−m

(
1

4
dt2 + η2

)∣∣∣∣
ĝ

≤ C

(
|ϕ(t)− nt|t−2 + |∇̂(ϕ(t)− nt)|ĝt−

3
2 + |∇̂2(ϕ(t)− nt)|ĝt−1 + |ϕ′(t)− n|

∣∣∣∣∇̂2

(
1

4
dt2 + η2

)∣∣∣∣
ĝ

+ |∇̂(ϕ′(t)− n)|
∣∣∣∣∇̂(1

4
dt2 + η2

)∣∣∣∣
ĝ

+ |∇̂2(ϕ′(t)− n)|ĝ
∣∣∣∣14dt2 + η2

∣∣∣∣
ĝ

)
≤ C

(
t−2 log(t) + t−

5
2 + t−3

)
≤ Ct−2 log(t) = Ct−1− 2

2 log(t),

and that for k ≥ 3,

|∇̂k(g̃ − ĝ)|ĝ

≤
k∑

m= 0

∣∣∣∇̂m(ϕ(t)− nt)
∣∣∣
ĝ

∣∣∣∇̂k−mgT ∣∣∣
ĝ︸ ︷︷ ︸

=O

(
t−1− (k−m)

2

)
+

k∑
m= 0

∣∣∣∇̂m(ϕ′(t)− n)
∣∣∣ ∣∣∣∣∇̂k−m(1

4
dt2 + η2

)∣∣∣∣
ĝ

≤ C

(
|ϕ(t)− nt|t−1− k

2 + |∇̂(ϕ(t)− nt)|ĝt−1− (k−1)
2 +

k∑
m= 2

t−1− (k−m)
2 |∇̂m(ϕ(t)− nt)|ĝ︸ ︷︷ ︸

=O
(
t−1−m2

)
+ |ϕ′(t)− n|

∣∣∣∣∇̂k (1

4
dt2 + η2

)∣∣∣∣
ĝ

+
∣∣∣∇̂(ϕ′(t)− n)

∣∣∣
ĝ

∣∣∣∣∇̂k−1

(
1

4
dt2 + η2

)∣∣∣∣
ĝ

+
∣∣∣∇̂k(ϕ′(t)− n)

∣∣∣
ĝ

+

k−1∑
m= 2

∣∣∣∇̂m(ϕ′(t)− n)
∣∣∣
ĝ︸ ︷︷ ︸

=O
(
t−2−m2

)
∣∣∣∣∇̂k−m(1

4
dt2 + η2

)∣∣∣∣
ĝ︸ ︷︷ ︸

=O

(
t−1− (k−m−1)

2

)

)

≤ C

(
t−1− k

2 log(t) + t−1− (k−1)
2 t−1 + t−2− k

2 + t−1t−1− (k−1)
2 + t−2t−1− (k−2)

2 + t−2− k
2 + t−

5
2
− k

2

)
≤ C

(
t−1− k

2 log(t) + t−
3
2
− k

2 + t−2− k
2 + t−

5
2
− k

2

)
≤ Ct−1− k

2 log(t).

�

Finally, we show that (3.8) holds true, the last step in the proof of the proposition.

Claim 3.11.

|∇̂iL(j)
X (g̃ − ĝ)|ĝ = O

(
t−1− i

2
−j
)

for all i ≥ 0 and j ≥ 1.

Proof. Since

L(j)
X (g̃ − ĝ) =

(
L(j)
X (ϕ′ − n)

)
·
(

1

4
dt2 + η

)
+
(
L(j)
X (ϕ− nt)

)
· gT

=
(
L(j)
X (ϕ′ − n)

)
·
(

1

4
dt2 + η

)
+ 4

(
L(j−1)
X (ϕ′ − n)

)
· gT ,
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we deduce from Claim 3.7 that

|L(j)
X (g̃ − ĝ)|ĝ = O

(
t−1−j) for all j ≥ 1.

Next, for all j ≥ 1, we see that

|∇̂L(j)
X (g̃ − ĝ)|ĝ ≤ C

(
1∑

k= 0

|∇̂kϕ(j+1)|ĝ
∣∣∣∣∇̂1−k

(
1

4
dt2 + η

)∣∣∣∣
ĝ

+

1∑
k= 0

∣∣∣∇̂kL(j−1)
X (ϕ′ − n)

∣∣∣
ĝ
|∇̂1−kgT |ĝ︸ ︷︷ ︸

=O

(
t−1− (1−k)

2

)
)

≤ C

(∣∣∣ϕ(j+1)
∣∣∣ ∣∣∣∣∇̂(1

4
dt2 + η

)∣∣∣∣
ĝ

+ |∇̂ϕ(j+1)|ĝ + t−
3
2

∣∣∣(ϕ′ − n)(j−1)
∣∣∣+ t−1

∣∣∣∇̂ϕ(j)
∣∣∣
ĝ

)
≤ C

(
t−

3
2
−j + t−2−j

)
≤ Ct−

3
2
−j = Ct−1− 1

2
−j .

For j ≥ 1, we also find that

|∇̂2L(j)
X (g̃ − ĝ)|ĝ ≤ C

(
2∑

k= 0

|∇̂kϕ(j+1)|ĝ
∣∣∣∣∇̂2−k

(
1

4
dt2 + η

)∣∣∣∣
ĝ

+
2∑

k= 0

∣∣∣∇̂kL(j−1)
X (ϕ′ − n)

∣∣∣
ĝ
|∇̂2−kgT |ĝ︸ ︷︷ ︸

=O(t−1− (2−k)
2 )

)

≤ C

(∣∣∣ϕ(j+1)
∣∣∣ ∣∣∣∣∇̂2

(
1

4
dt2 + η

)∣∣∣∣
ĝ

+ |∇̂ϕ(j+1)|ĝ
∣∣∣∣∇̂(1

4
dt2 + η

)∣∣∣∣
ĝ

+ |∇̂2ϕ(j+1)|ĝ

+ t−2|(ϕ′ − n)(j−1)|+ t−
3
2

∣∣∣∇̂ϕ(j)
∣∣∣
ĝ

+ t−1
∣∣∣∇̂2ϕ(j)

∣∣∣
ĝ

)
≤ C

(
t−2−j + t−

5
2
−j + t−3−j

)
≤ Ct−2−j = Ct−1− 2

2
−j .

Finally, for all i ≥ 3 and j ≥ 1, we have that

|∇̂iL(j)
X (g̃ − ĝ)|ĝ ≤ C

(
i∑

k= 0

|∇̂kϕ(j+1)|ĝ
∣∣∣∣∇̂i−k (1

4
dt2 + η

)∣∣∣∣
ĝ

+
i∑

k= 0

∣∣∣∇̂kL(j−1)
X (ϕ′ − n)

∣∣∣
ĝ
|∇̂i−kgT |ĝ︸ ︷︷ ︸

=O

(
t−1− (i−k)

2

)
)

≤ C

(∣∣∣ϕ(j+1)
∣∣∣ ∣∣∣∣∇̂i(1

4
dt2 + η

)∣∣∣∣
ĝ︸ ︷︷ ︸

=O

(
t−

3
2−

i
2−j

)
+ |∇̂ϕ(j+1)|

∣∣∣∣∇̂i−1

(
1

4
dt2 + η

)∣∣∣∣
ĝ︸ ︷︷ ︸

=O

(
t−2− i2−j

)
+ |∇̂iϕ(j+1)|︸ ︷︷ ︸

=O

(
t−2− i2−j

)

+
i−1∑
k= 2

|∇̂kϕ(j+1)|ĝ︸ ︷︷ ︸
=O

(
t−j−

k
2−2

)
∣∣∣∣∇̂i−k (1

4
dt2 + η

)∣∣∣∣
ĝ︸ ︷︷ ︸

=O

(
t−1− (i−k−1)

2

)
+t−1− i

2

i∑
k= 0

t
k
2

∣∣∣∇̂kL(j−1)
X (ϕ′ − n)

∣∣∣
ĝ

)

≤ C

(
t−

3
2
− i

2
−j + t−1− i

2

(
|(ϕ′ − n)(j−1)|︸ ︷︷ ︸

=O(t−j)

+ t
1
2

∣∣∣∇̂ϕ(j)
∣∣∣
ĝ︸ ︷︷ ︸

=O
(
t−

1
2−j

)
+

i∑
k= 2

t
k
2

∣∣∣∇̂kϕ(j)
∣∣∣
ĝ︸ ︷︷ ︸

=O(t−1−j)

))

≤ Ct−1− i
2
−j .

�

�
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The following lower bound on the scalar curvature of Cao’s steady gradient Kähler-Ricci soliton

along the end of the cone will prove useful for later.

Lemma 3.12. Rg̃ ≥ c
t along the end of C0 for some constant c > 0.

Proof. From (3.12), we read that

Rg̃ = 4n− 4ϕ′(t).

The asymptotics of ϕ′(t) as dictated by Proposition 3.1 then imply that

Rg̃ = 4n− 4ϕ′(t)

= 4n− 4

(
n− (n− 1)

t
+O

(
(log t)2

t2

))
=

4

t

(
n− 1 +O

(
(log t)2

t

))
≥ 4(n− 1− ε)

t

for any ε ∈ (0, 1) for t sufficiently large. �

4. Constructing a background metric and the equation set-up

4.1. Construction of an approximate soliton. In this section, we consider a Calabi-Yau cone

(C0, g0) of complex dimension n ≥ 2 with complex structure J0 and radius function r and an

equivariant crepant resolution π : M → C0 of C0 with exceptional set E so that M has trivial

canonical bundle and the real holomorphic torus action induced by the flow of the holomorphic

vector field J0r∂r on C0 extends to M . We set r2 =: et and write X for the lift of the holomorphic

vector field 2r∂r = 4∂t on C0 to M . We have a transverse Kähler form ωT = 1
2dd

c log(r) on C0 as

well as a contact form η = dc log(r) on the link (S, gS) of C0 which we identify with the level set

{r = 1}. We also have a natural projection pS : C0 ' R+ × S → {r = 1} ' S. Let J denote the

complex structure on M and let Φ(t) denote the Kähler potential of Cao’s steady gradient Kähler-

Ricci soliton ω̃ on C0 (as in Proposition 2.18), the asymptotic model of which is the Kähler form ω̂

on C0 defined by

ω̂ :=
i

2
∂∂̄

(
nt2

2

)
= n

(
dt

2
∧ η + tωT

)
with associated Kähler metric ĝ. Throughout this section, we identify the complement of the vertex

o of C0 with M \ E via π. In this way, we treat r, t, and Φ(t) not only as smooth functions on

C0 \ {o}, but also as smooth functions on M \ E.

We begin with the following preliminary lemma.

Lemma 4.1 ([Got12, Lemma 5.6]). Let κ be an arbitrary Kähler form on M with Kähler class

[κ] ∈ H2(M, R). Assume that n = dimCC0 ≥ 3. Then for every T > 1, there exists a smooth real

(1, 1)-form κ̃T on M depending on T with the following properties.

(i) [κ̃T ] = [κ] ∈ H2(M, R).

(ii) κ̃T = κ on E∪{x ∈M : t(x) < T} and the restriction of κ̃T to the subset {x ∈M : t(x) > 2T}
is given by the pullback of a closed, primitive basic (1, 1)-form ζ on S that is independent of

T and determined uniquely by the cohomology class [κ|C0 ] ∈ H2(C0, R). In other words,

κ̃T |{x∈M | t(x)> 2T} = p∗S(ζ) for every T > 1.

Proof. By Proposition 2.6, we know that the vector spaces H2(S, R) and H2
B(S)p coincide. Further-

more, since S is a Sasaki-Einstein manifold which is necessarily a positive Sasaki manifold, we have

the vanishing h2, 0
B (S) = h0, 2

B (S) = 0 from Proposition 2.8. Together with (2.1), these two statements

imply that H2(S, C) = H2
B(S)p ⊗ C = H1, 1

B (S)p, and so we have an isomorphism

H2(C0, C) ∼= H2(S, C) = H1, 1
B (S)p
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given by the pullback p∗S : H2(S, C) −→ H2(C0, C). Since κ|C0 defines a cohomology class in

H2(C0, R), we can therefore assert that

κ|C0 = p∗S(ζ) + dθ

for some real one-form θ on C0 and for some real primitive basic (1, 1)-form ζ on S that is basic

harmonic and determined uniquely by [κ|C0 ]. Now, n = dimCM ≥ 3 so that H1(C0, OC0) = 0 by

Lemma 2.10, and dθ is a real (1, 1)-form. Therefore by arguing as in the proof of Lemma 2.11 with

C0 and dθ in place of M and α respectively, we deduce that dθ = i∂∂̄φ for some smooth real-valued

function φ : C0 → R.

Next fix T > 1 and choose a smooth cut-off function ρT : M −→ R satisfying |ρT (x)| ≤ 1 for all

x ∈M and

ρT (x) =

{
0 if x ∈ E ∪ {y ∈M | t(y) < T},
1 if x ∈ {y ∈M | t(y) > 2T}.

We define κ̃T by

κ̃T = κ− i∂∂̄(ρT .φ).

Then this is a closed real (1, 1)-form on M lying in the same cohomology class as κ that interpolates

between κ on the set E ∪ {x ∈ M | t(x) < T} and p∗S(ζ) on the set {x ∈ M | t(x) > 2T}, i.e., it

satisfies properties (i) and (ii) of the lemma, as desired. �

The next ingredient we need for the construction of our background metric is the following lemma,

akin to [CH13, Lemma 2.15].

Lemma 4.2. For all α > 1
2 , there exists a smooth plurisubharmonic function hα on M which is

strictly plurisubharmonic and equal to 1
2(Φ(t))α outside a compact subset Kα of M containing E.

Proof. Let ψ : R+ → R+ be smooth with ψ′, ψ′′ ≥ 0 and

ψ(s) =

{
T + 2 if s < T + 1,

s if s > T + 3,

for some T > 1 to be specified later. Then hα(t) := 1
2ψ ◦ (Φ(t))α : M → R+ satisfies

i∂∂̄hα =

{
0 on E ∪ {x |Φ(t(x)) ≤ (T + 1)

1
α },

ψ′′ i2∂(Φ(t))α ∧ ∂̄(Φ(t))α + ψ′ i2∂∂̄(Φ(t))α on {x |Φ(t(x)) > T
1
α }.

Since Φ(t), as an antiderivative of ϕ(t), tends to +∞ as t → +∞ by Proposition 3.1 so is proper,

we see that E ∪ {x |Φ(t(x)) ≤ λ} is compact for every λ� 0 and that on {x |Φ(t(x)) > T
1
α },

i

2
∂∂̄(Φ(t))α = αΦ(t)α−2

((
(α− 1)ϕ(t)2 + ϕ′(t)Φ(t)

)︸ ︷︷ ︸
∼ (α− 1

2
)n2t2

dt

2
∧ η + ϕ(t)Φ(t)︸ ︷︷ ︸

> 0

ωT
)
> 0

so long as α > 1
2 and T � 1, again by virtue of Proposition 3.1. Moreover, notice that i∂u∧ ∂̄u ≥ 0

for any smooth real-valued function u. Together, these observations imply that hα has the desired

properties. �

We can now construct our background metric on M via a construction reminiscent of that in the

asymptotically conical Calabi-Yau case [CH13, Got12, vC10].

Proposition 4.3 (Construction of a background metric). Let κ be an arbitrary Kähler form on M

and let ω̃ denote the Kähler form of Cao’s steady gradient Kähler-Ricci soliton on C0. Then there

exists a Kähler form σ on M with the following properties.

(i) [σ] = [κ] ∈ H2(M, R).

(ii) LJXσ = 0.
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(iii) There exists a compact subset K ⊂ M containing the exceptional set E of π : M → C0 such

that on M \K,

π∗σ =

{
ω̃ if n = 2 or [κ] is compactly supported,

ω̃ + p∗S(ζ) if n ≥ 3,

where ζ is as in Lemma 4.1.

Proof. Fix α ∈
(

1
2 , 1

)
once and for all. Throughout the proof we assume that T > 1 is chosen

sufficiently large so that ω̃ > 0 as well as hα = 1
2(Φ(t))α and h1 = 1

2Φ(t) on {t ≥ T}, and that both

of these latter functions are strictly plurisubharmonic on this region.

We first deal with the case n = dimCC0 ≥ 3. Let ζ be the basic (1, 1)-form on the link S of

C0 associated to the class [κ] given by Lemma 4.1. Since |p∗S(ζ)|ĝ = O(t−1) (cf. Proposition A.1)

and since ĝ and g̃ are equivalent at infinity as a consequence of Proposition 3.2, by choosing T

larger if necessary, we can assume that |p∗S(ζ)|g̃ < 1 on {t > T}. Then on this region, we have that

ω̃ + p∗S(ζ) > 0. For this choice of T , let κ̃T ∈ [κ] be as in Lemma 4.1. Then κ̃T is equal to κ on

E ∪ {x ∈ M | t(x) < T} and p∗S(ζ) on {x ∈ M | t(x) > 2T}. We fix a cut-off function χ : M → R
with

χ(x) =

{
0 if x ∈ E ∪ {y ∈M | t(y) < T},
1 if t(x) > 2T ,

and define χλ(x) := χ(x/λ) in the obvious way for λ > 2. We then construct a Kähler metric σ̂ in

[κ] by

σ̂ := κ̃T + Ci∂∂̄((1− χλ)hα) + i∂∂̄h1,

where C > 0 and λ > 2 are both to be determined. First observe that σ̂ = κ + Ci∂∂̄hα + i∂∂̄h1 ≥
κ > 0 on E ∪ {t < T} because hα and h1 are plurisubharmonic; σ̂ = ω̃ + p∗S(ζ) + Ci∂∂̄hα > 0 on

{2T < t < λT} because |ζ|g̃ < 1 on this region by choice of T ; σ̂ = ω̃ + p∗S(ζ) > 0 on {t > 2λT}
since |p∗S(ζ)|g̃ < 1 on this region, again by choice of T ; σ̂ > 0 on {T ≤ t ≤ 2T} by compactness if

C is made large enough; and finally, σ̂ > 0 on {λT ≤ t ≤ 2λT} if λ � 1 depending on all previous

choices because from the equivalence of ĝ and g̃, we have that

|i∂∂̄((1− χλ)hα)|g̃ = O
(
λ2α−2

)
= o(1)

by choice of α. In conclusion, σ̂ is a genuine Kähler form on M with

σ̂ = ω̃ + p∗S(ζ)

at infinity.

Next assume that [κ] is compactly supported and that n ≥ 2. Then the vanishing (2.3) may no

longer hold true and so we proceed as in [vC10]. Let {Ei} be the prime divisors in the exceptional

set E of the resolution π : M → C0. Since H2n−2(M) is generated by the fundamental classes of the

Ei, [κ] is Poincaré dual to
∑

i aiEi for some ai ∈ R. Thus, there exists a compactly supported closed

(1, 1)-form β Poincaré dual to
∑

i aiEi with [β] = [κ]. Let α be a smooth one-form with dα = κ−β.

Then by Lemma 2.11, there exists a smooth real-valued function φ on M such that dα = i∂∂̄φ. By

choosing T larger if necessary, we can assume that supp(β), the support of β, is contained within

{t < T}. Choose a smooth cut-off function ρT : M −→ R satisfying |ρT (x)| ≤ 1 for all x ∈M and

ρT (x) =

{
0 if x ∈ E ∪ {y ∈M | t(y) < T}
1 if x ∈ {y ∈M | t(y) > 2T}.

Then we define σ̂ in this case by

σ̂ := β + i∂∂̄((1− ρT ) · φ) + Ci∂∂̄((1− χλ)hα) + i∂∂̄h1,

where C > 0 and λ > 2 are yet to be determined. Observe that σ̂ = κ+Ci∂∂̄hα+ i∂∂̄h1 ≥ κ > 0 on

E∪{t < T} because hα and h1 are plurisubharmonic; σ̂ = ω̃+Ci∂∂̄hα > 0 on {2T < t < λT} because

supp(β) ⊂ {t < T} by choice of T ; σ̂ = ω̃ > 0 on {t > 2λT} again because supp(β) ⊂ {t < T}; σ̂ > 0
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on {T ≤ t ≤ 2T} by compactness if C is made large enough; and finally, σ̂ > 0 on {λT ≤ t ≤ 2λT}
if λ� 1 depending on all previous choices because from the equivalence of ĝ and g̃, we have that

|i∂∂̄((1− χλ)hα)|g̃ = O
(
λ2α−2

)
= o(1).

In conclusion, σ̂ is a genuine Kähler form on M with

σ̂ = ω̃

at infinity.

We now average σ̂ as given over the action of the real torus T k on M induced by the flow of the

holomorphic vector field J0r∂r on C0 by setting

σ :=
1

|T k|

∫
Tk
ψ∗g σ̂ dµ(g),

where ψg : M → M is the automorphism of M induced by g ∈ T k and dµ is the Haar measure on

T k. Since there is a path in T k connecting g to the identity, we have that ψ∗g [σ] = [ψ∗gσ] = [σ], from

which it follows that [σ] = [ω̂] = [κ]. Moreover, it is clear that LJXσ = 0. Finally, since the action

of T k preserves r and hence t, we have that ψ∗g ω̃ = ω̃ and for n ≥ 3, ψ∗gp
∗
S(ζ) = p∗S(ζ) for every

g ∈ T k. Thus, σ has the desired properties at infinity.

If n = 2, then we have a long exact sequence of cohomology

H1(S, R)→ H2
c (M, R)→ H2(M, R)→ H2(S, R)→ H3

c (M, R), (4.1)

where recall that S is the link of the cone C0. In this dimension, C0 = C2/Γ for Γ ⊂ SU(2) a

finite subgroup acting freely on C2 \ {0} so that S = S3 or some finite quotient thereof [Ham82].

In particular, H1(S, R) = H2(S, R) = 0 and so we deduce from (4.1) that H2
c (M, R) = H2(M, R).

Hence for n = 2, every Kähler class is compactly supported, a case that has already been dealt with

in two dimensions. This completes the proof of the proposition. �

The metric σ of Proposition 4.3 enjoys the following asymptotics measured with respect to ĝ and

its Levi-Civita connection ∇̂.

Lemma 4.4. Let σ be the Kähler form from Proposition 4.3. Then

|∇̂iL(j)
X (π∗σ − ω̃) |ĝ = O

(
t−1− i

2
−j
)

for all i, j ≥ 0. (4.2)

Proof. If n = 2 or [σ] is compactly supported, then this is clear. Otherwise for n ≥ 3, we have by

construction that π∗σ − ω̃ = p∗S(ζ) for ζ a basic two-form on the link of the cone. As a pullback,

it is clear that LX(p∗S(ζ)) = 0, and it is easy to see that LX(i∂∂̄t) = 0. Consequently, (4.2)

holds true for all i ≥ 0 and j ≥ 1. If i ≥ 0 and j = 0, then observe from Proposition A.1 that

|∇̂k(i∂∂̄t)|ĝ = O
(
t−1− k

2

)
for all k ≥ 0 with respect to the metric ĝ, and that |∇̂kβ|ĝ = O

(
t−1− k

2

)
for all k ≥ 0 for any basic two-form β on C0, a fact that itself may be proved by induction as

demonstrated in Proposition A.1 for basic one-forms. These asymptotics imply that

|∇̂i (π∗σ − ω̃) |ĝ = |∇̂i(p∗S(ζ))|ĝ = O
(
t−1− i

2

)
for all i ≥ 0,

from which the lemma follows. �

4.2. Set-up of the complex Monge-Ampère equation. We next set up the complex Monge-

Ampère equation on the crepant resolution π : M → C0 that we will solve in order to construct our

steady gradient Kähler-Ricci solitons.

Proposition 4.5. Let σ be the Kähler form of Proposition 4.3 with Ricci form ρσ, let X be the lift

of the holomorphic vector field 2r∂r = 4∂t on C0 to M via π, and let J denote the complex structure

on M . Furthermore, let ψ ∈ C∞(M) be such that σψ := σ+ i∂∂̄ψ > 0 and LJXψ = 0, and consider
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the equations

log

(
(σ + i∂∂̄ψ)n

σn

)
+
X

2
· ψ = F, (4.3)

where F ∈ C∞(M) and LJXF = 0, and

ρσψ =
1

2
LXσψ, (4.4)

where ρσψ denotes the Ricci form of σψ. Then:

(i) If ψ satisfies (4.3) and i∂∂̄F = ρσ − 1
2LXσ, then σψ satisfies (4.4).

(ii) Conversely, if σψ satisfies (4.4), then ψ satisfies (4.3) for a function F with i∂∂̄F = ρσ− 1
2LXσ

that outside a compact subset of M is given by

F =

{
0 if n = 2 or if [σ] is compactly supported,

− log
(

(ω̃+p∗S(ζ))n

ω̃n

)
otherwise.

Proof. (i) If ψ satisfies (4.3) with F as prescribed, then by taking i∂∂̄ of this equation, we see

that σψ satisfies (4.4).

(ii) As for the converse, suppose that σψ satisfies (4.4). Then

0 = ρσψ −
1

2
LXσψ

= ρσψ − ρσ + ρσ −
1

2
LXσψ

= −i∂∂̄ log

(
(σ + i∂∂̄ψ)n

σn

)
+ ρσ −

1

2
LXσψ

= −i∂∂̄ log

(
(σ + i∂∂̄ψ)n

σn

)
− 1

2
i∂∂̄ (X · ψ) + (ρσ −

1

2
LXσ),

so that

i∂∂̄

(
log

(
(σ + i∂∂̄ψ)n

σn

)
+
X

2
· ψ
)

= ρσ −
1

2
LXσ.

Now, since LJXσ = 0, JX is Killing, and so by [CD20, Lemma A.6], the gσ-dual one-form

ηX := gσ(X, ·) of X is closed, gσ denoting the Kähler metric associated to σ. The fact that

H1(M, R) = 0 by Lemma 2.12 then implies that there is a smooth real-valued function θX
on M such that ηX = dθX , or equivalently, such that X = ∇gσθX , where ∇gσ denotes the

Levi-Civita connection of gσ. It follows that σyX = dθX ◦ J , which allows us to write

LXσ = d(σyX) = i∂∂̄θX .

Since [X, JX] = 0 and LJXσ = 0, we know that LJXLXσ = LXLJXσ+L[JX,X]σ = 0. Hence,

by averaging over the real torus action on M induced by that on C0, we may assume that

LJXθX = 0. Furthermore, as KM is trivial, we may write

ρσ = i∂∂̄v

for some smooth real-valued function v ∈ C∞(M). Averaging this equation over the real torus

action on M , we may then also assume that

ρσ = i∂∂̄ṽ

for some ṽ ∈ C∞(M) satisfying LJX ṽ = 0. Here we have used the fact that JX is real

holomorphic and LJXσ = 0 so that LJXρσ = 0. In summary, we can now write

ρσ −
1

2
LXσ = i∂∂̄ṽ − i∂∂̄θX

= i∂∂̄F,
(4.5)

where F := ṽ − θX ∈ C∞(M). In particular, notice that LJXF = 0.
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With ω̃ as usual denoting Cao’s steady gradient Kähler-Ricci soliton on C0 and ρω̃ its Ricci

form, next observe that at infinity we have that

ρσ −
1

2
LXσ = ρσ − ρω̃ + ρω̃ −

1

2
LX(ω̃ + p∗S(ζ))

= −i∂∂̄ log

(
σn

ω̃n

)
+ ρω̃ −

1

2
LX ω̃︸ ︷︷ ︸

= 0

− 1

2
LX(p∗S(ζ))︸ ︷︷ ︸

= 0

= i∂∂̄G(ω̃),

(4.6)

where

G = G(ω̃) = − log

(
σn

ω̃n

)
=

{
0 if n = 2 or if [σ] is compactly supported,

− log
(

(ω̃+p∗S(ζ))n

ω̃n

)
otherwise.

Notice that LJXG = 0. On subtracting (4.6) from (4.5), we see that at infinity

i∂∂̄(F −G) = 0.

Since LJX(F −G) = 0, it then follows from Lemma 2.4(i) that F −G = C on the complement

of a compact subset of M for some constant C. Therefore, by subtracting a constant from F

in (4.5) if necessary, we may assume that

i∂∂̄

(
log

(
(σ + i∂∂̄ψ)n

σn

)
+
X

2
· ψ − F

)
= 0,

where

F =

{
0 if n = 2 or if [σ] is compactly supported,

− log
(

(ω̃+p∗S(ζ))n

ω̃n

)
= o(1) otherwise.

,

the asymptotics in the latter case a result of Proposition A.1 and the fact that g̃ and ĝ are

equivalent at infinity by Proposition 3.2. Lemma 2.4(ii) now asserts that

log

(
(σ + i∂∂̄ψ)n

σn

)
+
X

2
· ψ = F.

Recalling (4.5) and the fact that LJXF = 0, this completes the proof of part (ii) of the

proposition.

�

5. Poincaré inequality for steady gradient Ricci solitons

In this section, we establish a lower bound on the spectrum of the drift Laplacian of a non-trivial

steady gradient Ricci soliton; cf. Section 2.2.2. This allows for a Poincaré inequality that we will

use in Proposition 7.7 to establish an a priori weighted L2-estimate along the continuity path of

solutions to (4.3), the first step in the derivation of an a priori C0-estimate.

We begin with a preliminary result that gives a lower bound on the spectrum of the drift Laplacian

on a Riemannian manifold as soon as a positive eigenfunction exists. We in fact provide sufficient

conditions ensuring the existence of a Hardy inequality. The precise statement is as follows.

Lemma 5.1. Let (M, g, eρdµg) be a metric measure space endowed with the volume form dµg of g

and a C1 potential function ρ on M such that
∫
M eρdµg = +∞. Assume that there exists a positive

C2-function φ0 on M such that ∆ρφ0 ≤ −λ0φ0 outside a compact subset K ⊂ M for λ0 a positive

constant. Then there exists a positive constant λ1 ≤ λ0 such that the following global Poincaré

inequality holds true:

λ1

∫
M
φ2 eρdµg ≤

∫
M
|∇gφ|2g eρdµg for any smooth compactly supported function φ on M .
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Equivalently, inf σ(−∆ρ) ≥ λ1 > 0, where σ(−∆ρ) denotes the L2(eρdµg)-spectrum of the operator

−∆ρ.

The statement and proof of this lemma are straightforward adaptations of [Car97].

Proof of Lemma 5.1. We first prove that

inf σess(∆ρ) ≥ λ0 > 0, (5.1)

where σess(−∆ρ) denotes the essential L2(eρdµg)-spectrum of the operator −∆ρ.

To this end, let ψ be a smooth function on M with compact support contained in M \K and let

φ0 be as in the statement of the lemma. Then writing eρdµg =: dµρ, we have that∫
M
|∇g(φ0ψ)|2g dµρ = −

∫
M

∆ρ(φ0ψ)(φ0ψ) dµρ

= −
∫
M

(∆ρφ0)(φ0ψ
2) dµρ − 2

∫
M
g(∇gφ0,∇gψ)φ0ψ dµρ −

∫
M

(∆ρψ)(ψφ2
0) dµρ

= −
∫
M

(∆ρφ0)(φ0ψ
2) dµρ −

1

2

∫
M
g(∇g(ψ2),∇g(φ2

0)) dµρ

+

∫
M
g(∇gψ,∇g(ψφ2

0)) dµρ

= −
∫
M

(∆ρφ0)(φ0ψ
2) dµρ +

∫
M
|∇gψ|2gφ2

0 dµρ

≥ −
∫
M

(∆ρφ0)(φ0ψ
2) dµρ

≥ λ0

∫
M

(φ0ψ)2 dµρ.

Since φ0 is positive, the previous estimate implies that

inf

{
‖∇gφ‖2L2(dµρ)

‖φ‖2
L2(dµρ)

∣∣∣∣∣ φ ∈ L2(dµρ) \ {0} and supp(φ) ⊂M \K

}
≥ λ0.

A straightforward adaptation of [Agm82, Chapter 2] then yields the expected lower bound (5.1) on

σess(∆ρ).

Now, the operator −∆ρ, being non-negative, has spectrum σ(−∆ρ) ⊂ [0,+∞). As a result of

(5.1), proving inf σ(−∆ρ) > 0 is therefore equivalent to showing that inf σdis(−∆ρ) > 0, where

σdis(−∆ρ) denotes the discrete L2(eρdµg)-spectrum of −∆ρ. Suppose, for sake of a contradiction,

that inf σdis(−∆ρ) = 0. Then there exists a non-zero function φ ∈ L2(dµρ) such that ∆ρφ = 0.

By a straightforward adaptation of Yau’s Liouville theorem [Li12, Lemma 7.1], one arrives at a

contradiction with the fact that
∫
M dµρ = +∞. �

From this, we obtain a lower bound on the spectrum of the drift Laplacian of a Riemannian metric

equal to a steady gradient Ricci soliton at infinity.

Proposition 5.2. Let (M, g̃) be a one-ended complete Riemannian manifold with infinite volume

and with limx→+∞Rg̃ = 0 endowed with a smooth proper positive function f̃ : M → R such that

limx→+∞ |∇g̃f̃ |2g̃ = c(g̃) > 0 for some positive constant c(g̃). Assume that there exists a com-

pact subset K ⊂ M and a vector field X on M \ K such that Ric(g̃) = 1
2L∇g̃ f̃ g̃ on M \ K, i.e.,

(M \K, g̃, X = ∇g̃f̃) is a steady gradient Ricci soliton. Then

inf σ
(
−∆f̃−α log f̃

)
> 0

for any α ∈ R.

Recall that the constant c(g̃) can be interpreted as the “charge” at infinity of the (incomplete)

steady gradient Ricci soliton (M \K, g̃, X); cf. Lemma 2.16.
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Remark 5.3. The assumptions made in Proposition 5.2 on the scalar curvature Rg̃ and |∇g̃f̃ |2g̃ are

not optimal. One would arrive at the same conclusion by assuming that lim infx→+∞Rg̃ ≥ 0 and

limx→+∞

(
Rg̃ +|∇g̃f̃ |2g̃

)
= c(g̃) > 0.

Proof of Proposition 5.2. Applying Lemma 5.1 to ρ := f̃ − α log f̃ , it suffices to find a positive

smooth function φ0 with the property that ∆f̃−α log f̃φ0 ≤ −λ0φ0 on M \ K for some λ0 > 0 and

some compact subset K ⊂ M . To this end, first observe from the trace version of the Bianchi

identity that

2 divg̃ Ric(g̃) = ∇g̃ Rg̃ .

On the other hand, since the steady Ricci soliton equation holds on M \K, we have that

2 divg̃ Ric(g̃) = divg̃ L∇g̃ f̃ (g̃)

=
∇g̃ trg̃ L∇g̃ f̃ (g̃)

2
+ ∆g̃∇g̃f̃ + Ric(g̃)(∇g̃f̃)

= ∇g̃∆g̃f̃ + ∆g̃∇g̃f̃ + Ric(g̃)(∇g̃f̃)

= 2∇g̃∆g̃f̃ + 2 Ric(g̃)(∇g̃f̃)

= 2∇g̃ Rg̃ +2 Ric(g̃)(∇g̃f̃)

= 2∇g̃ Rg̃ +(L∇g̃ f̃ g̃)(∇g̃f̃)

= ∇g̃(2 Rg̃ +|∇g̃f̃ |2g̃).

Here we have used the soliton identity Rg̃ = ∆g̃f̃ in the fifth line obtained by tracing the steady Ricci

soliton equation, together with the Bochner formula in the third line. It follows that ∇g̃
(

Rg̃ +|∇g̃f̃ |2g̃
)

=

0 on M \K so that by connectedness of this set, Rg̃ +|∇g̃f̃ |2g̃ is constant on M \K. By assumption,

we then find that

Rg̃ +|∇g̃f̃ |2g̃ = lim
x→+∞

(
Rg̃ +|∇g̃f̃ |2g̃

)
= c(g̃) > 0 on M \K. (5.2)

We define the function φ0 := e−βf̃ for β ∈ (0, 1). Then, making use of (5.2), we see that φ0 is a

positive smooth function satisfying

∆f̃−α log f̃φ0 = −β
(

∆g̃f̃ +

(
1− β − α

f̃

)
|∇g̃f̃ |2g̃

)
e−βf̃

= −β
((

β +
α

f̃

)
Rg̃ +

(
1− β − α

f̃

)
c(g̃)

)
φ0.

Since Rg̃ tends to 0 at infinity, we deduce that

∆f̃−α log f̃φ0 ≤ −
β(1− β)c(g̃)

2
φ0

outside a compact subset of M . An application of Lemma 5.1 to φ0 := e−
f̃
2 and λ0 := c(g̃)

8 > 0 now

yields the result. �

Remark 5.4. For a complete steady gradient Ricci soliton (M, g̃, X = ∇g̃f̃), one can show that

inf σ(−∆f̃ ) ≥ c(g̃)
4 in the notation of Proposition 5.2; see [MW11] for a proof. The proof of this

proposition can also be refined to show that actually inf σess

(
−∆f̃−α log f̃

)
≥ c(g̃)

4 for any α ∈ R.

We do not require this fact here.

From Proposition 5.2, we obtain the following corollary that will prove useful in establishing an a

priori weighted energy estimate for the complex Monge-Ampère equation (4.3).

Corollary 5.5. Let (M, g̃, f̃) be as in Proposition 5.2 and let h be a complete Riemannian metric on

M uniformly equivalent to g̃ such that X = ∇hf for some smooth proper positive function f : M → R
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with |f − f̃ | = O(1). Then the bottom of the L2(f−αefdµh)-spectrum of the operator −∆f−α log f

corresponding to h is positive.

The requirement for the difference between the potentials f and f̃ of X to be bounded is so that

the respective weighted volume forms are uniformly comparable.

Proof of Corollary 5.5. Let dµg̃ and dµh denote the volume forms of g̃ and h respectively. Then by

assumption, there exists a positive constant C such that C−1g̃ ≤ h ≤ Cg̃ and such that

C−1f̃−αef̃ ≤ f−αef
(
dµh
dµg̃

)
≤ Cf̃−αef̃ on M.

In particular, we have that

inf

{
‖∇hφ‖2

L2(f−αefdµh)

‖φ‖2
L2(f−αefdµh)

∣∣∣∣∣φ ∈ L2(f−αefdµh) \ {0}

}

≥ C−3 inf

 ‖∇
g̃φ‖2

L2(f̃−αef̃dµg̃)

‖φ‖2
L2(f̃−αef̃dµg̃)

∣∣∣∣∣∣ φ ∈ L2(f̃−αef̃dµg̃) \ {0}

 .

The result now follows from Proposition 5.2. �

6. Invertibility of the drift Laplacian: exponential case

In this section, we introduce the exponentially weighted function spaces in which we shall work in

order to solve the complex Monge-Ampère equation (4.3) with compactly supported data. We also

analyse various properties of the drift Laplacian acting on such spaces. We begin by recalling the

set-up.

6.1. Main setting. Let (C0, g0, J0, Ω0) be a Calabi-Yau cone of complex dimension n ≥ 2 with

radial function r. Set r2 =: et and let π : M → C0 be an equivariant crepant resolution of C0

with respect to the real holomorphic torus action on C0 generated by J0r∂r so that the holomorphic

vector field 2r∂r = 4∂t on C0 lifts to a real holomorphic vector field X = π∗(2r∂r) on M . Denote

by E the exceptional set of the resolution π : M → C0 and let J denote the complex structure on

M . Throughout, using π, we identify M and C0 on the complement of compact subsets of each

containing E and the apex of the cone respectively.

We define a Kähler form ω̂ on C0 by

ω̂ :=
i

2
∂∂̄

(
nt2

2

)
= n

(
dt

2
∧ η + tωT

)
,

where ωT is the transverse Kähler form on (C0, g0). Then the Kähler metric ĝ associated to ω̂ takes

the form

ĝ = n

(
1

4
dt2 + η2 + tgT

)
,

where gT is the transverse Kähler metric associated to ωT and η = dc log(r) is a contact form on

the link of the cone. Recall that

ωT =
1

2
dη =

1

2
ddc log(r) =

1

4
ddct =

i

2
∂∂̄t

and observe that −ω̂yJX = d(nt). We extend nt to a smooth real-valued function f̂ : M → R on

M with f̂ ≥ 1. Then by definition, −ω̂yJX = df̂ along the end of C0. We also have the following

expression for the Riemannian Laplacian with respect to ĝ acting on u ∈ C2
loc({t > 0}):

∆ĝu = 2∆ω̂u =
4

n

∂2u

∂t2
+

4(n− 1)

nt

∂u

∂t
+
ξ(ξu)

n
+

1

nt
∆Bu, (6.1)

where ∆B denotes the basic Laplacian on the link of (C0, g0).
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Thanks to the Ricci-flatness of g0, we have, via the Cao ansatz, a steady gradient Kähler-Ricci

soliton ω̃ on C0 with soliton potential ϕ(t) and with LJX ω̃ = 0 that satisfies

|∇̂iL(j)
X (ω̃ − ω̂) |ĝ = O

(
t−ε−

i
2
−j
)

for all ε ∈ (0, 1) and i, j ≥ 0,

where ∇̂ denotes the Levi-Civita connection of ĝ. These asymptotics are contained in the statement

of Proposition 3.2. Let τ be any Kähler form on M with LJXτ = 0 such that for some ε ∈ (0, 1),

|∇̂iL(j)
X (π∗τ − ω̂) |ĝ = O

(
t−ε−

i
2
−j
)

for all i, j ≥ 0. (6.2)

We denote by h the Kähler metric associated to τ and by ∇h its Levi-Civita connection. Moreover,

for any smooth real-valued function φ ∈ C∞(M) such that τ + i∂∂̄φ > 0, we write τφ := τ + i∂∂̄φ

and denote by hφ the Kähler metric associated to τφ. Since ĝ and h are asymptotic with derivatives,

one can verify that measuring the asymptotics of a tensor using either metric is equivalent – that is

to say, along the end of M , there exist constants Ci, j > 0 such that for every tensor T on M ,

C−1
i, j |∇̂

iL(j)
X T |ĝ ≤ |(∇h)iL(j)

X T |h ≤ Ci, j |∇̂iL
(j)
X T |ĝ for all i, j ≥ 0.

In what follows, we shall use this fact without further reference.

We first note that X is gradient with respect to h.

Lemma 6.1. There exists a smooth proper real-valued function f : M → R bounded from below such

that X = ∇hf .

Proof. It suffices to show that −τyJX = df for a smooth real-valued function f : M → R with

the desired properties. To this end, observe that JX is Killing for h and holomorphic so that

0 = LJXτ = d(τyJX). A smooth function f : M → R with −τyJX = df therefore exists by Lemma

2.12. To see that f is proper and bounded from below, just note that since ĝ and h are asymptotic

along the end of C0 and |X|2ĝ = 4n, |X|2h is asymptotic to 4n so that f(x)→ +∞ as x→ +∞. �

Remark 6.2. The function f from Lemma 6.1 is defined up to a constant. We henceforth fix this

constant so that f ≥ 1 on M .

As the next lemma shows, both f and f̂ are comparable.

Lemma 6.3. There exists a positive constant C such that C−1f̂ ≤ f ≤ Cf̂ on M . In particular,

f ∼ nt.

Proof. Let x ∈M \ E and let γx(t) denote the integral curve of X with γx(0) = x. Then

(f(γx(s))− f̂(γx(s)))− (f(x)− f̂(x)) =

∫ s

0

d

du
(f(γx(u))− f̂(γx(u))) du

=

∫ s

0
(X · (f − f̂))(γx(u)) du

=

∫ s

0
(|X|2h − |X|2ĝ)(γx(u)) du.

Now, the fact that d
du t(γx(u)) = dt(X) = 4 implies that t(γx(u)) = 4u+ t(x), hence it follows from

(6.2) that

|(f(γx(s))− f̂(γx(s)))− (f(x)− f̂(x))| ≤ C
∫ s

0
t(γx(u))−ε du

≤ C
∫ s

0
(4u+ t(x))−ε du

≤ C
(
(4s+ t(x))1−ε − t(x)1−ε)

≤ C(t(γx(s))1−ε − t(x)1−ε),
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and correspondingly, that for all x, y, lying on the same flow-line of X along the end of C0,

|(f(y)− f̂(y))− (f(x)− f̂(x))| ≤ C|t(y)1−ε − t(x)1−ε| ≤ C|f̂(y)1−ε − f̂(x)1−ε|.

From this, the result is clear. �

As a consequence of Lemma 6.3, it makes no difference whether one measures polynomial rates of

growth and decay using f̂ or f . However, in contrast to f̂ , f is a globally defined potential for X on

M . The need for such a function becomes apparent in the proof of Lemma 7.3, hence we work with

f rather than f̂ . Note that Lemma 6.3 does not imply that ef̂ is comparable to ef ; in fact, this is

not true, and so there is a difference in using f̂ and f when measuring exponential rates of growth

and decay. These are the rates that we will primarily be dealing with in this section and the next.

For this reason, we assume in these sections that in addition to the above,

|f − ϕ(t)| = O(1),Additional assumption: (6.3)

so that the exponential weights ef̃ and ef are comparable. Notice that this condition does not follow

automatically from (6.2). We will use this assumption in this section specifically in Theorem 6.7

in the deriviation of the estimates for the drift Laplacian acting between exponentially weighted

function spaces, where we must appeal to Corollary 5.5.

We next state a crucial lemma that will enable us to build good barrier functions at infinity,

thereby allowing us to obtain suitable a priori estimates. This lemma, which mirrors Lemma 2.16,

can be proved using the estimates from Proposition A.1.

Lemma 6.4. In the above situation, the following asymptotics hold true:

|(∇h)k(f − t)|h = O
(
f−ε−

(k−1)
2

)
for all k ≥ 1,∣∣∣∇̂iL(j)

X (LXτ)
∣∣∣
ĝ

= O
(
f−1− i

2
−j
)

for all i, j ≥ 0,∣∣∣∣∇̂iL(j)
X

(
ρτ −

1

2
LXτ

)∣∣∣∣
ĝ

= O(f−1−ε− i
2
−j) for all i, j ≥ 0,∣∣∣∇̂iL(j)

X

(
|∇hf |2h + Rh−4n

)∣∣∣
ĝ

= O
(
f−ε−

i
2
−j
)

for all i, j ≥ 0,∣∣∣∇̂iL(j)
X (∆hf +X · f − 4n)

∣∣∣
ĝ

= O
(
f−ε−

i
2
−j
)

for all i, j ≥ 0.

Here, ρτ and Rh denote the Ricci form of τ and scalar curvature of h respectively, and ε ∈ (0, 1) is

as in (6.2).

Remark 6.5. In the terminology of Section 8.1, these last four estimates can equivalently be written

as

LXτ ∈ C∞X, 1(M), ρτ −
1

2
LXτ ∈ C∞X, 1+ε(M),

|∇hf |2h + Rh−4n ∈ C∞X, ε(M), and ∆hf +X · f − 4n ∈ C∞X, ε(M),

respectively.

Proof of Lemma 6.4. We prove only the second and third estimate. The others can be proved in a

similar manner. Regarding the second estimate, using (6.2), Lemma 6.3, and Proposition A.1, and
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with ε ∈ (0, 1) as in (6.2), we have the bounds∣∣∣∇̂iL(j)
X (LXτ)

∣∣∣
ĝ
≤
∣∣∣∇̂iL(j)

X (LX ω̂)
∣∣∣
ĝ

+
∣∣∣∇̂iL(j)

X (LX(τ − ω̂))
∣∣∣
ĝ

≤
∣∣∣∇̂iL(j)

X (LX ω̂)
∣∣∣
ĝ

+ C(i, j, ε)f−ε−1− i
2
−j

≤ C
∣∣∣∇̂iL(j)

X ωT
∣∣∣
ĝ

+ C(i, j, ε)f−ε−1− i
2
−j

≤ Cf−1− i
2
−j ,

as stated.

As for the third estimate, this encodes the obstruction for τ to be a steady gradient Kähler-Ricci

soliton. The existence of such a soliton on C0 is crucial in order for this bound to hold true. Without

this, the decay rate would be linear rather than faster than linear with only the latter being sufficient

for us to solve the complex Monge-Ampère equation (4.3). Regarding this bound, simply observe

that for all i, j ≥ 0,

∇̂iL(j)
X

(
ρτ −

1

2
LXτ

)
= ∇̂iL(j)

X

(
ρτ − ρω̃ +

1

2
LX(τ − ω̃)

)
= ∇̂iL(j)

X

(
−i∂∂̄

(
log

(
τn

ω̃n

))
+

1

2
LX(τ − ω̃)

)
= O

(
f−1−ε− i

2
−j
)

outside a compact subset of M , where we have used Proposition 3.2 together with (6.2) in the final

line and the fact that ω̃ is a steady gradient Kähler-Ricci soliton on C0 in the first line. �

Using Lemma 6.4, we derive the following properties of the drift Laplacian acting on exponential

weights.

Lemma 6.6. In the above situation, let f : M → R be a smooth proper real-valued function satisfying

X = ∇hf chosen such that f ≥ 1 on M (which exists by Lemma 6.1). Then for any δ > 0, the

function e−δf is both a sub- and super-solution of the following equation:(
∆τ +

X

2
·
)
e−δf = −δ(1− δ)4n

2
e−δf +O(f−1)e−δf .

Moreover, the Laplacian of f with respect to τ is asymptotically positive and satisfies

∆τf ≥
c

f
outside a compact subset of M

for some constant c > 0. In particular,(
∆τ +

X

2
·
)
e−f ≤ − c

f
e−f outside a compact subset of M (6.4)

for another constant c > 0.

Proof. We begin with the following computation:(
∆τ +

X

2
·
)
e−δf =

(
−δ
(

∆τ +
X

2
·
)
f + δ2 |X|2h

2

)
e−δf

= −δ
(

(1− δ)
|X|2h

2
+ ∆τf

)
e−δf .

In particular, notice that for δ ∈ (0, 1),(
∆τ +

X

2
·
)
e−δf = −δ

(
(1− δ)4n

2
+O(f−1) + ∆τf

)
e−δf

= −δ(1− δ)4n

2
e−δf +O(f−1)e−δf
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by Lemma 6.4. If δ = 1, then we have that(
∆τ +

X

2
·
)
e−f = −∆τf · e−f .

Finally, using equations (6.1) and (6.2) together with Lemma 6.3, we find that

∆τf = ∆ω̂f + (∆τ −∆ω̂)f

= ∆ω̂(f − f̂) + ∆ω̂f̂︸︷︷︸
=

4(n−1)
t

+(∆τ −∆ω̂)f

=
4(n− 1)

t
+ ∆ω̂(f − f̂) + (∆τ −∆ω̂)f

=
4(n− 1)

t
+ ω̂ ∗ i∂∂̄(f − f̂) + (τ − ω̂) ∗ i∂∂̄f

=
4(n− 1)

t
+

1

2
ω̂ ∗ LX(τ − ω̂)︸ ︷︷ ︸

=O(t−1−ε)

+
1

2
(τ − ω̂) ∗ LXτ

=
4(n− 1)

t
+O(t−1−ε) +

1

2
(τ − ω̂) ∗ LX(τ − ω̂)︸ ︷︷ ︸

=O(t−1−2ε)

+
1

2
(τ − ω̂) ∗ LX ω̂︸ ︷︷ ︸

=O(t−1−ε)

≥ c

t
≥ c

f

outside a compact subset of M . �

6.2. Function spaces. We make the following definitions.

• The drift Laplacian (with respect to X) is defined as

∆τ,XT := ∆τT +∇hXT,

where T is a tensor on M , ∇h is the complex linear extension of the Levi-Civita connection of h,

and ∆τ denotes the Laplacian associated to h. In normal coordinates, ∆τ takes the form

∆τ :=
1

2

(
∇hi∇hı̄ +∇hı̄∇hi

)
.

Recall that the Laplacian acting on functions is given by

∆τu = hi̄∂i∂̄u = trτ

(
i

2
∂∂̄u

)
for u ∈ C∞(M) a smooth real-valued function on M . Here, the trace operator trτ on (1, 1)-forms

is defined by

trτ (α) :=
nτn−1 ∧ α

τn
= hi̄αi̄,

where α = i
2αjk̄dz

j ∧ dzk̄ is a (1, 1)-form on M .

For clarity, we will omit the reference to the background Kähler metric h or to the associated Kähler

form τ when there is no possibility of confusion.

• For β ∈ R and k a non-negative integer, define C2k
X (M) to be the space of JX-invariant continuous

functions u on M with 2k continuous derivatives such that

‖u‖C2k
X

:=
∑

i+2j≤ 2k

sup
M

∣∣∣f i
2

+j(∇h)i
(
L(j)
X u
)∣∣∣
h
<∞,

where

L(j)
X u := X · ... ·X·︸ ︷︷ ︸

j-times

u.



40 Ronan J. Conlon and Alix Deruelle

Set C∞X (M) :=
⋂
k≥ 0C

2k
X (M).

• Let δ(h) denote the injectivity radius of h, write dh(x, y) for the distance with respect to h between

two points x, y ∈ M , and let φXt denote the flow of X for time t. A tensor T on M is said to be

in C0, 2α(M), α ∈
(
0, 1

2

)
, if

[T ]C0, 2α := sup
x 6= y ∈M

dh(x,y)<δ(h)

[
min(f(x), f(y))α

|T (x)− Px, yT (y)|h
dh(x, y)2α

]

+ sup
x∈M
t 6= s≥ 1

[
min(t, s)α

|(φXt )∗T (x)− (P̂φXs (x), φXt (x)((φ
X
s )∗T (x)))|h

|t− s|α

]
< +∞,

where Px, y denotes parallel transport along the unique geodesic joining x and y, and P̂φXs (x), φXt (x)

denotes parallel transport along the unique flow-line of X joining φXs (x) and φXt (x).

• For k a non-negative integer and α ∈
(
0, 1

2

)
, define the Hölder space C2k, 2α

X (M) to be the set of

u ∈ C2k
X (M) for which the norm

‖u‖
C2k, 2α
X

:= ‖u‖C2k
X

+
∑

i+2j= 2k

[(
∇h
)i (
L(j)
X u
)]

C0, 2α

is finite.

Similarly, define the Hölder space C2k, 2α
X, exp(M) with exponential weight ef to be the set of u ∈

C2k
loc(M) for which the norm

‖u‖
C2k, 2α
X, exp

:=
∥∥∥ef · u∥∥∥

C2k, 2α
X

is finite. It is straightforward to check that the space C2k, 2α
X, exp(M) is a Banach space. We set

C∞X, exp(M) :=
⋂
k≥ 0C

2k
X, exp(M).

• Finally, we define the spaces

M2k+2, 2α
X, exp (M) :=

{
ψ ∈ C2

loc(M) | τψ := τ + i∂∂̄ψ > 0
}
∩ C2k+2, 2α

X, exp (M)

and

M∞X, exp(M) :=
{
ψ ∈ C∞loc(M) | τψ > 0 and ψ ∈ C∞X, exp(M)

}
. (6.5)

We remark that in [BM17], the choice of function spaces differs from ours for the case of com-

pactly supported data in that they work with much larger function spaces where the functions have

exponential decay e−δf , δ ∈ (0, 1). Their function spaces do have an advantage over ours; mixed

polynomial and exponential weights do not appear in their analysis of the isomorphism properties

of the drift Laplacian as is the case for us in Theorem 6.7.

6.3. Preliminaries and Fredholm properties of the linearised operator. We proceed with

the same set-up as in Section 6.2.

Define the following map as in [Sie13]:

MAτ : ψ ∈
{
ϕ ∈ C2

loc(M) | τϕ := τ + i∂∂̄ϕ > 0
}
7→ log

(
τnψ
τn

)
+
X

2
· ψ ∈ R.

For any ψ ∈ C2
loc(M), let hψ (respectively hsψ) denote the Kähler metric associated to the Kähler

form τψ (resp. τsψ for any s ∈ [0, 1]). Brute force computations show that

MAτ (0) = 0,

DψMAτ (u) = ∆τψu+
X

2
· u, u ∈ C2

loc(M),

d2

ds2
(MAτ (sψ)) =

d

ds
(∆τsψψ) = −|∂∂̄ψ|2hsψ for s ∈ [0, 1],
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MAτ (ψ) = MAτ (0) +
d

ds

∣∣∣∣
s= 0

MAτ (sψ) +

∫ 1

0

∫ u

0

d2

ds2
(MAτ (sψ)) ds du

= ∆τψ +
X

2
· ψ −

∫ 1

0

∫ u

0
|∂∂̄ψ|2hsψ ds du.

(6.6)

We state the first property of the drift Laplacian that we require, namely that it is an isomorphism

between exponentially weighted function spaces.

Theorem 6.7. Let α ∈
(
0, 1

2

)
and k ∈ N. Then

∆τ +
X

2
· : C2k+2, 2α

X, exp (M)→ f−1 · C2k, 2α
X, exp(M)

is an isomorphism of Banach spaces.

Proof. We first prove surjectivity. Let F ∈ f−1 · C2k, 2α
X, exp(M). Then for R > 0 sufficiently large

such that the level sets {f = R} are smooth closed hypersurfaces of M (recall that f is proper

and bounded from below by Lemma 6.1), let uR : {f ≤ R} → R be the solution of the following

Dirichlet problem: ∆τuR +
X

2
· uR = F on {f < R},

uR = 0 on {f = R}.
(6.7)

Applying Corollary 5.5 (with α = 0) to the measure efτn and the function uR, we see that

λ1

∫
{f ≤R}

|uR|2 efτn ≤
∫
{f ≤R}

|∇huR|2h efτn

= 2

∫
{f ≤R}

(
−∆τuR −

X

2
· uR

)
uR e

fτn

= 2

∫
{f ≤R}

(−F )uR e
fτn

(6.8)

for some constant λ1 > 0 independent of R. Using Hölder’s inequality on the right-hand side of

(6.8), we obtain the following a priori energy estimate:∫
{f ≤R}

|uR|2 efτn ≤ c(n, τ)

∫
M
|F |2 efτn, (6.9)

the right-hand side of which is finite because F = O(f−1e−f ) implies that F ∈ L2(efτn).

Next, let x ∈ {f < R} be such that Bh(x, r) b {f < R}. We perform a local Nash-Moser

iteration on (6.7) in Bh(x, r). More precisely, since (M2n, h) is a Riemannian manifold with Ricci

curvature bounded from below, the results of [SC92] give the following local Sobolev inequality:(
1

volh(Bh(x, r))

∫
Bh(x, r)

|ϕ|
2n
n−1 τn

)n−1
n

≤

(
C(r0)r2

volh(Bh(x, r))

∫
Bh(x, r)

|∇hϕ|2h τn
)

for any ϕ ∈ H1
0 (Bh(x, r)) and for all x ∈M and 0 < r < r0, where r0 is some fixed positive radius.

Now, as |X|h is bounded, the oscillation of f is bounded on Bh(x, r) by a constant depending only

on r0, and so we have the following local weighted Sobolev inequality:(
1

volf (Bh(x, r))

∫
Bh(x, r)

|ϕ|
2n
n−1 efτn

)n−1
n

≤

(
C(r0, τ, n)r2

volf (Bh(x, r))

∫
Bh(x, r)

|∇hϕ|2h efτn
)

(6.10)

for any ϕ ∈ H1
0 (Bh(x, r)) and for all x ∈M and 0 < r < r0, where volf (Bh(x, r)) :=

∫
Bh(x, r) e

fτn.

A Nash-Moser iteration proceeds in several steps. First, one multiplies (6.7) across by

η2
s, s′uR|uR|2(p−1) with p ≥ 1, where ηs, s′ , with 0 < s + s′ < r and s, s′ > 0, is a Lipschitz cut-

off function with compact support in Bh(x, s + s′) equal to 1 on Bh(x, s) and with |∇hηs, s′ |h ≤ 1
s′

almost everywhere. One then integrates by parts and uses the Sobolev inequality of (6.10) to obtain
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a so-called “reversed Hölder inequality” which, after iteration, leads to the bound

sup
Bh(x, r

2
)
|uR| ≤C

(
‖uR‖L2(Bh(x, r), ef τn) + ‖F‖L∞(Bh(x, r))

)
≤C

(
‖F‖L2(ef τn) + ‖F‖C0

)
≤C‖f · F‖C0

X, exp

(6.11)

for r ≤ r0, where C = C(r0, τ, n). Here we have made use of (6.9) in the second line. This estimate

yields an a priori C0-estimate on any fixed subdomain of {f < R}.
As for the weighted a priori estimate, observe from [(6.4), Lemma 6.6] that(

∆τ +
X

2
·
)
e−f ≤ − c

f
e−f (6.12)

outside a fixed compact subset K ⊂ M with smooth boundary independent of uR. Choose R > 0

sufficiently large so that K ⊂ {f < R}. Then on combining (6.7) and (6.12), we see that for any

positive constant A, (
∆τ +

X

2
·
)(

uR −Ae−f
)
≥ c ·A

f
e−f − ‖fefF‖C0

e−f

f
(6.13)

on {f < R} \ K. In particular, choosing A so that A > c−1‖fefF‖C0 , the maximum principle

applied to (6.13) shows that

sup
{f <R}\K

(uR −Ae−f ) = max

{
−Ae−R, max

∂K
(uR −Ae−f )

}
,

since uR vanishes along the boundary component {f = R}. Now, by (6.11),

max
∂K

(uR −Ae−f ) ≤ C −Ae−max∂K f

for some uniform constant C. As a consequence, one can choose A large enough such that

max
∂K

(
uR −Ae−f

)
≤ 0.

This establishes the expected a priori weighted upper bound. Applying the same line of reasoning

to −uR, we obtain a similar a priori lower bound for uR. Thus, we arrive at the following linear a

priori estimate: ∥∥∥ef · uR∥∥∥
C0({f ≤R})

≤ c(n, τ)
∥∥∥fef · F∥∥∥

C0
(6.14)

for any R sufficiently large.

To achieve a priori local estimates on higher derivatives of uR, we invoke standard elliptic Schauder

estimates on each ball Bh(x, δ) with 2δ = injh(M) > 0 compactly contained in {f < R}. This

results in the bound

sup
Bh(x, δ)b{f <R}

ef(x)‖uR‖C2k+2, 2α
loc (Bh(x, δ))

≤ C
(
n, k, α, τ, ‖f · F‖

C2k, 2α
X, exp

)
,

which, via the Arzelà-Ascoli theorem, gives rise to a subsequence still denoted by (uR)R≥R0 that

converges to a function u ∈ C2k+2, 2α
loc (M) in the C2k+2, 2α′

loc -topology for any α′ ∈ (0, α) satisfying

∆τu+
X

2
· u = F on M,

sup
x∈M

ef(x)‖u‖
C2k+2, 2α

loc (Bh(x, δ))
≤ C

(
n, k, α, τ, ‖f · F‖

C2k, 2α
X, exp

)
.

Before proving a priori weighted estimates on higher derivatives of the solution u, we need to

verify that the operator ∆τ + X
2 · remains surjective when restricted to the set of JX-invariant

functions. This essentially follows from the maximum principle. Indeed, let F ∈ f−1 · C2k, 2α
X, exp(M),
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let ϕ ∈ C2k+2, 2α
X, exp (M) be a solution to (

∆τ +
X

2
·
)
ϕ = F, (6.15)

and let (φJXt )t denote the flow generated by JX. Then, since F , X, and JX are all JX-invariant,

the function ϕt := (φJXt )∗ϕ also satisfies (6.15). The function ϕ − ϕt therefore lies in the kernel of

∆τ + X
2 ·. But ϕ−ϕt also tends to 0 at infinity. Hence, we deduce from the maximum principle that

ϕt = ϕ for every t ∈ R. In other words, ϕ is JX-invariant, as claimed.

In order to obtain a priori weighted estimates on higher derivatives of u, we need to re-interpret

the elliptic equation ∆hu+X ·u = 2F as a parabolic one. First, we conjugate the operator ∆h +X·
with the exponential weight e−f to obtain

(ef ◦ (∆h +X·) ◦ e−f )(ũ) = ∆hũ−X · ũ−∆hf · ũ,

where ũ := ef · u. Thus, the function ũ is a solution of the equation

∆hũ−X · ũ−∆hf · ũ = 2efF =: F̃ ∈ f−1 · C2k, 2α
X (M). (6.16)

Next, let (φXt )t∈R be the flow generated by the vector field X, a complete flow since X is complete.

Then as in [Bre13], let (rm)m be a sequence of radii tending to +∞ and define hm(s) := r−1
m (φXsrm)∗h,

ũm := (φXsrm)∗u, and F̃m := rm(φXsrm)∗F̃ . Then the sequence of functions (ũm(s))s∈R satisfies

∂sũm −∆hm(s)ũm + ∆hm(s)fm · ũm = −F̃m on M,

fm(s) := (φXsrm)∗f.
(6.17)

By Lemma 6.4, the vector field r
1
2
mX converges smoothly to the constant vector field 4∂t on R+ and

the operator ∆hm(s) acting on JX-invariant functions is asymptotic to the operator 4
n
∂2

∂t2
+ 1
n(1+4s)∆B

as rm tends to +∞ for s ∈ [−δ(n), 0], with δ(n) positive and small enough such that

φXsrm ({rm −
√
rm ≤ f ≤ rm +

√
rm}) ⊂

{
rm
2
≤ f ≤ 3

2
rm

}
, s ∈ [−δ(n), 0].

Moreover, by Lemma 6.4, ∆hm(s)fm and the derivatives thereof are uniformly bounded on
{
rm
2 ≤ f ≤

3
2rm

}
.

To conclude, we apply interior parabolic Schauder estimates for transversally elliptic operators to

(6.17) which leads to the estimate

‖ũm‖C2k+2, 2α(Ωm(0)) ≤ c(n, τ)
(
‖F̃m‖C2k, 2α(Ωm(δ(n)) + ‖ũm‖C0(Ωm(δ(n)))

)
, (6.18)

where Ωm(s) := [−s, 0]×
{
rm −

√
rm ≤ f ≤ rm +

√
rm
}

. Such parabolic Schauder estimates can be

derived along the same lines as elliptic Schauder estimates as in [EKA90, Section 3.5.6]. Tracking the

scaling properties of the various Schauder norms involved in (6.18), we reach the desired conclusion.

Indeed, we find that∥∥∥ef · u∥∥∥
C2k+2, 2α(Ωm(0))

≤ c(n, τ)rm

∥∥∥ef · F∥∥∥
C2k, 2α(Ω̃m(δ(n)))

+ c(n, τ)
∥∥∥ef · u∥∥∥

C0(Ω̃m(δ(n)))

≤ c(n, τ)‖f · F‖
C2k, 2α
X, exp

,

where Ω̃m(δ(n)) := ∪s∈[−δ(n), 0]φ
X
srm

({
rm −

√
rm ≤ f ≤ rm +

√
rm
})

. Here we have made use of

the C0-estimate (6.14) on u (once we allow R → +∞) in the last line. This proves that u ∈
C2k+2, 2α
X, exp (M). �

6.4. Small perturbations of steady gradient Kähler-Ricci solitons: exponential case. In

this section we show, using the implicit function theorem, that the invertibility of the drift Laplacian

given by Theorem 6.7 allows for small perturbations in exponentially weighted function spaces of

solutions to the complex Monge-Ampère equation that we wish to solve. This forms the openness

part of the continuity method as will be explained later in Section 7. We have:
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Theorem 6.8. Let F0 ∈ f−1 · C∞X, exp(M) and let ψ0 ∈ M∞X, exp(M) be a solution of the complex

Monge-Ampère equation

log

(
τnψ0

τn

)
+
X

2
· ψ0 = F0.

Then for all α ∈
(
0, 1

2

)
, there exists a neighbourhood UF0 ⊂ f−1 · C2, 2α

X, exp(M) of F such that for all

F ∈ UF0, there exists a unique function ψ ∈M4, 2α
X, exp(M) such that

log

(
τnψ
τn

)
+
X

2
· ψ = F.

Remark 6.9. This theorem does not assume any finite regularity on the data (ψ0, F0) in the corre-

sponding function spaces. This essentially comes from Theorem 6.7 where the closeness of τ to ω̂ in

derivatives, and hence of τ to Cao’s steady gradient Kähler-Ricci soliton in derivatives, is assumed.

Proof of Theorem 6.8. In order to apply the implicit function theorem for Banach spaces, we must

reformulate the statement of Theorem 6.8 in terms of the map MAτ introduced formally at the

beginning of Section 6.3. To this end, consider the mapping

M̃Aτψ0 : (ϕ,G) ∈M4, 2α
X, exp(M)× f−1 · C2, 2α

X, exp(M)

7→ log

(
τnψ0+ϕ

τn

)
+
X

2
· (ψ0 + ϕ)−G− F0 ∈ f−1 · C2, 2α

X, exp(M), α ∈
(

0,
1

2

)
.

Notice that the function spaces can be defined either by using the metric h or hsψ0 for any s ∈ [0, 1].

To see that M̃Aτψ0 is well-defined, apply the Taylor expansion (6.6) to the background metric τψ0

to obtain

M̃Aτψ0 (ϕ,G) = log

(
τnψ0+ϕ

τnψ0

)
+
X

2
· ϕ−G

= ∆τψ0
ϕ+

X

2
· ϕ−G−

∫ 1

0

∫ u

0
|∂∂̄ϕ|2hs(ψ0+ϕ) ds du.

(6.19)

Then note that by a computation similar to that undertaken in (6.16), the first three terms of the

last line of (6.19) lie in f−1 · C2, 2α
X, exp(M).

Now, if S and T are tensors in C2k, 2α
loc (M) that decay as fast as e−f together with their derivatives,

then observe that S ∗T shares the same local regularity and decays as fast as e−2f , where ∗ denotes

any linear combination of contractions of tensors with respect to the metric h. Notice that

|∂∂̄ϕ|2hs(ψ0+ϕ) = h−1
s(ψ0+ϕ) ∗ (∇h) 2ϕ ∗ (∇h) 2ϕ

and that h−1
s(ψ0+ϕ)−h

−1 ∈ C2, 2α
loc (M) decays as fast as e−f . Thus, applying the above reasoning twice

to S = T = (∇h) 2ϕ and to the inverse h−1
s(ψ0+ϕ), one finds that |∂∂̄ϕ|2hs(ψ0+ϕ) ∈ f

−1 · C2, 2α
X, exp(M) for

each s ∈ [0, 1] and that∥∥∥∥∫ 1

0

∫ u

0
|∂∂̄ϕ|2hs(ψ0+ϕ) ds du

∥∥∥∥
f−1·C2, 2α

X, exp

≤ C
(
α, g, ‖ψ0‖C4, 2α

X, exp

)
‖ϕ‖

C4, 2α
X, exp

as long as ‖ϕ‖
C4, 2α
X, exp

≤ 1. Finally, the JX-invariance of the right-hand side of (6.19) is clear.

By definition, M̃Aτψ0 (ϕ, F − F0) = 0 if and only if ψ0 + ϕ is a solution to (1.8) with data F . By

(6.6),

D0M̃Aτψ0 (ψ) = ∆τψ0
ψ +

X

2
· ψ for ψ ∈ C4, 2α

X, exp(M).

Hence, by Theorem 6.7 applied to the background metric τψ0 in place of τ , D0M̃Aτψ0 is an isomor-

phism of Banach spaces. The result now follows by applying the implicit function theorem to the

map M̃Aτψ0 in a neighbourhood of (0, 0) ∈M4, 2α
X, exp(M)× f−1 · C2, 2α

X, exp(M). �
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7. A priori estimates

In this section, (C0, g0, J0, Ω0) will denote a Calabi-Yau cone of complex dimension n ≥ 2 with

radial function r. We set r2 =: et and let π : M → C0 be an equivariant crepant resolution of C0

with respect to the real holomorphic torus action on C0 generated by J0r∂r so that the holomorphic

vector field 2r∂r = 4∂t on C0 lifts to a real holomorphic vector field X = π∗(2r∂r) on M . J will

denote the complex structure on M and τ will again be any Kähler form on M with LJXτ = 0

satisfying for some ε ∈ (0, 1) the asymptotic bounds

|∇̂iL(j)
X (π∗τ − ω̂) |ĝ = O

(
t−ε−

i
2
−j
)

for all i, j ≥ 0, (7.1)

where ω̂ denotes the Kähler form i
2∂∂̄

(
nt2

2

)
on C0, ĝ denotes the corresponding Kähler metric,

and ∇̂ denotes the associated Levi-Civita connection. The metric h will denote the Kähler metric

associated to τ and for any smooth real-valued function φ ∈ C∞(M) such that τ + i∂∂̄φ > 0, we

write τφ := τ + i∂∂̄φ and let hφ denote the corresponding Kähler metric and ∇hφ the Levi-Civita

connection associated to hφ. By Lemma 6.1, there exists a smooth proper real-valued function

f : M → R that is bounded from below with X = ∇hf , which is chosen so that f ≥ 1 on M . We

also have the incomplete steady gradient Käher-Ricci soliton ω̃ on C0 given to us by the Cao ansatz

with soliton potential ϕ(t). As we are working with exponentially weighted function spaces in this

section, we assume in addition that (6.3) holds true, i.e., |f − ϕ(t)| = O(1). This will allow us to

appeal to Corollary 5.5 and in doing so, establish an a priori weighted energy estimate in Section

7.1, the precursor to the C0-estimate.

Our goal in this section is to solve the complex Monge-Ampère equation

log

(
(τ + i∂∂̄ψ)n

τn

)
+
X

2
· ψ = F, τ + i∂∂̄ψ > 0, F ∈ C∞0 (M), (7.2)

on M in the space of functions that decay exponentially at infinity. More precisely, we seek a solution

ψ of (7.2) that lies in M∞X, exp(M), the space of admissible Kähler potentials defined in (6.5) by

M∞X, exp(M) =
{
ψ ∈ C∞loc(M) | τψ > 0 and ψ ∈ C∞X, exp(M)

}
.

The main result we prove here is:

Theorem 7.1. Let F be a compactly supported smooth JX-invariant function on M . Then there

exists a solution ψ ∈M∞X, exp(M) to (7.2).

Our approach to solve (7.2) is to implement the continuity method. We consider the following

one-parameter family of complex Monge-Ampère equations:

log

(
(τ + i∂∂̄ψt)

n

τn

)
+
X

2
· ψt = t · F, F ∈ C∞0 (M), t ∈ [0, 1], ψt ∈M∞X, exp(M). (7.3)

When t = 0, there is the trivial solution to (7.3), namely ψ0 ≡ 0. When t = 1, (7.3) corresponds

to (7.2), that is, the equation that we wish to solve. Via the a priori estimates to follow, we will

show that the set t ∈ [0, 1] for which (7.3) has a solution is closed. As we have just seen, this set is

non-empty. Openness of this set follows from the isomorphism properties of the drift Laplacian given

by Theorem 6.8. Connectedness of [0, 1] then implies that (7.3) has a solution for t = 1, resulting

in the desired solution of (7.2).

7.1. A priori C0-estimate. We begin with the a priori estimate on the C0-norm of (ψt)0≤ t≤ 1

which is uniform in t ∈ [0, 1]. For the sake of clarity, we omit the dependence on the parameter t

while estimating various norms of the solutions (ψt)0≤ t≤ 1. We begin with two crucial observations.

Our first is:

Lemma 7.2 (Localising the supremum and infimum of a solution). Let ψ ∈ M∞X, exp(M) be a

solution to (7.2). Then
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(i) either ψ attains a maximum (respectively a minimum) at a point contained in the support

supp(F ) of F and supM ψ = maxsupp(F ) ψ ≥ 0 (resp. infM ψ = minsupp(F ) ψ ≤ 0),

(ii) or supM ψ ≤ 0 (resp. infM ψ ≥ 0).

Proof. We prove the assertions of Lemma 7.2 that concern the supremum of a solution ψ only. The

statements on the infimum of ψ can be proved in a similar manner.

Observe that ψ is a subsolution of the following differential inequality:

∆τψ +
X

2
· ψ ≥ F. (7.4)

If ψ attains a maximum at a point in supp(F ), then supM ψ = maxsupp(F ) ψ and since ψ tends

to 0 at infinity, we deduce that maxM ψ ≥ 0. If ψ attains a maximum in M \ supp(F ), then

the strong maximum principle of Hopf [GT01, Theorem 3.5] applied to (7.4) implies that ψ is

constant outside of supp(F ). In this particular case, as ψ tends to 0 at infinity, we have that

supM ψ = maxM\supp(F ) ψ = 0.

Now, if ψ does not attain a maximum at a point in M , then there is a sequence of radii (Rk)k≥ 0

tending to +∞ such that ψ(x) ≤ sup∂Bh(p,Rk) ψ for all x ∈ Bh(p, Rk) and for all k ≥ 0, where

Bh(p, Rk) denotes the geodesic ball with respect to h of radius Rk > 0 centered at a point p ∈ M .

By letting Rk → +∞ together with the fact that ψ tends to 0 at infinity, one reaches the desired

conclusion. �

Next we have:

Lemma 7.3 (A first rough lower bound on X ·ψ). Let ψ ∈M∞X, exp(M) be a solution to (7.2). Then

inf
M

(
f +

X

2
· ψ
)

= min
{X = 0}

(
f +

X

2
· ψ
)

= min
M

f ≥ 1.

In particular, X
2 · ψ ≥ −f on M .

Proof. A crucial observation is that the gradient of the function f + X
2 ·ψ with respect to the Kähler

metric hψ induced by τψ is X, i.e.,

X = ∇hψ
(
f +

X

2
· ψ
)
. (7.5)

To see this, note that (7.5) is equivalent to the statement that τψyJX = −d
(
f + X

2 · ψ
)
. Then with

X1, 0 = 1
2(X− iJX) and keeping in mind the fact that LJXψ = 0, this latter statement follows from

the imaginary part of the sequence of equalities:

1

2
τψyX −

i

2
τψyJX = τψyX

1, 0

= τyX1, 0 + (i∂∂̄ψ)yX1, 0

=
1

2
(τyX − iτyJX) + i∂̄(X1, 0 · ψ)

=
1

2
τyX +

i

2
df +

i

2
∂̄(X · ψ)

=
1

2
τyX +

i

2
df +

i

4
(d(X · ψ) + id(X · ψ) ◦ J)

=
1

2

(
τyX − 1

2
d(X · ψ) ◦ J

)
+
i

2
d

(
f +

X

2
· ψ
)
.

(7.6)

Now, since ψ together with its derivatives decay exponentially to 0 at infinity, we see that X ·ψ =

2
(
X
2 · ψ

)
decays to 0 at infinity as the norm of X is bounded. Thus, f + X

2 · ψ is a proper function

bounded from below. In particular, it attains a minimum at a point pmin ∈M , a point at which X

vanishes by virtue of (7.5). From this last remark, the result follows. �
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7.1.1. Aubin-Tian-Zhu’s functionals. We now introduce two functionals that have been defined and

used by Aubin [Aub84], Bando and Mabuchi [BM87], and Tian [Tia00, Chapter 6] in the study

of Fano manifolds, and by Tian and Zhu [TZ00b] in the study of shrinking gradient Kähler-Ricci

solitons on compact Kähler manifolds.

Definition 7.4. Let (ϕt)0≤ t≤ 1 be a C1-path inM∞X, exp(M) from ϕ0 = 0 to ϕ1 = ϕ. We define the

following two generalised weighted energies:

Iτ,X(ϕ) :=

∫
M
ϕ
(
efτn − ef+X

2
·ϕτnϕ

)
,

Jτ,X(ϕ) :=

∫ 1

0

∫
M
ϕ̇s

(
efτn − ef+X

2
·ϕsτnϕs

)
∧ ds.

At first sight, these two functionals resemble relative weighted mean values of a potential ϕ in

M∞X, exp(M) or of a path (ϕt)0≤ t≤ 1 in M∞X, exp(M) respectively. When X ≡ 0 and (M, τ) is a

compact Kähler manifold, an integration by parts together with some algebraic manipulations (see

Aubin’s seminal paper [Aub84] or Tian’s book [Tia00, Chapter 6]) show that

Iτ, 0(ϕ) =
n−1∑
k= 0

∫
M
i∂ϕ ∧ ∂̄ϕ ∧ τk ∧ τn−1−k

ϕ ,

Jτ, 0(ϕ) =

n−1∑
k= 0

k + 1

n+ 1

∫
M
i∂ϕ ∧ ∂̄ϕ ∧ τk ∧ τn−1−k

ϕ .

(7.7)

This justifies the description of Iτ, 0(ϕ) and Jτ, 0(ϕ) as modified energies. Moreover, it demonstrates

that on a compact Kähler manifold Jτ, 0 is a true functional, that is to say, it does not depend on

the choice of path.

Such formulae (7.7) for Iτ,X and Jτ,X for a non-vanishing vector field X and a non-compact Kähler

manifold (M, τ) do not seem to be readily available for a good reason; the exponential function is

not algebraic. However, our aim here is to prove that the essential properties shared by both Iτ, 0
and Jτ, 0 hold true for a non-vanishing vector field X in a non-compact setting. We follow closely

Tian and Zhu’s work [TZ00b], beginning with:

Theorem 7.5. Iτ,X(ϕ) and Jτ,X(ϕ) are well-defined for ϕ ∈M∞X, exp(M). Moreover, Jτ,X does not

depend on the choice of path (ϕt)0≤ t≤ 1 in M∞X, exp(M) from ϕ0 = 0 to ϕ1 = ϕ, hence defines a

functional on M∞X, exp(M). Finally, the first variation of the difference (Iτ,X − Jτ,X) is given by

d

dt
(Iτ,X − Jτ,X) (ϕt) = −

∫
M
ϕt

(
∆τϕt

ϕ̇t +
X

2
· ϕ̇t
)
efϕt τnϕt , (7.8)

where fϕt := f + X
2 · ϕt satisfies X = ∇τϕtfϕt and where (ϕt)0≤ t≤ 1 is any C1-path in M∞X, exp(M)

from ϕ0 = 0 to ϕ1 = ϕ.

Proof. We begin by showing that Iτ,X(ϕ) is well-defined. By linearising the weighted measure efϕτnϕ
at ϕ = 0, one sees that

efϕτnϕ = efτn + ef
((

X

2
· ϕ
)
τn + ni∂∂̄ϕ ∧ τn−1

)
+

∫ 1

0
(1− s) ∂

2

∂s2
(efsϕτnsϕ) ∧ ds

= efτn + ef
((

X

2
· ϕ
)
τn + ni∂∂̄ϕ ∧ τn−1

)
+ efQ(X · ϕ, i∂∂̄ϕ),

where Q is a 2n-form satisfying∣∣Q(X · ϕ, i∂∂̄ϕ)
∣∣ ≤ ce |X·ϕ|2

(
|X · ϕ|2h + |i∂∂̄ϕ|2h

)
τn

pointwise on M . Since ϕ ∈M∞X, exp(M), we know that ϕ and its derivatives decay exponentially with

respect to f . Moreover, since X is bounded, X · ϕ also decays exponentially, and by construction,



48 Ronan J. Conlon and Alix Deruelle

we know that the volume of the level sets of f have polynomial growth, that is to say,∫
{f =R}

τnyX = O
(
Rn−1

)
as R→ +∞.

Using the co-area formula, these observations together imply that∫
{f ≥λ}

|ϕ|
∣∣∣efτn − efϕτnϕ ∣∣∣ ≤ c ∫ +∞

λ
e−ssn−1ds < +∞,

where λ is a positive constant large enough so that {X = 0} ⊂
{
f ≤ λ

2

}
. This shows that Iτ,X

is well-defined. The assertion that Jτ,X(ϕ) is well-defined for any path (ϕt)0≤ t≤ 1 in M∞X, exp(M)

from ϕ0 = 0 to ϕ1 = ϕ is proved in a similar manner.

Before proving that Jτ,X is path-independent and hence defines a functional, we establish the

first variation of Iτ,X − Jτ,X . To this end, let (ϕt)0≤ t≤ 1 be a C1-path in M∞X, exp(M) with ϕ0 = 0

and ϕ1 = ϕ. Then differentiating with respect to the parameter t under the integral sign in the

definition of Iτ,X(ϕt), we find that

d

dt
Iτ,X(ϕt) =

∫
M
ϕ̇t

(
efτn − efϕt τnϕt

)
−
∫
M
ϕt · efϕt

((
X

2
· ϕ̇t
)
τnϕt + ni∂∂̄ϕ̇t ∧ τn−1

ϕt

)
, (7.9)

where the dominated convergence theorem justifies passing the derivative under the integral.

Regarding the first variation of Jτ,X , for each fixed t ∈ [0, 1], define the path ϕ̃ts := ϕst in

M∞X, exp(M) for s ∈ [0, 1]. Then (ϕ̃ts)0≤ s≤ 1 is a C1-path from ϕ̃t0 = 0 to ϕ̃t1 = ϕt and

Jτ,X(ϕt) =

∫ 1

0

∫
M

(
∂ϕ̃ts
∂s

)(
efτn − ef+X

2
·ϕ̃tsτnϕ̃ts

)
∧ ds

=

∫ 1

0

∫
M
tϕ̇st

(
efτn − ef+X

2
·ϕstτnϕst

)
∧ ds

=

∫ t

0

∫
M
ϕ̇u

(
efτn − ef+X

2
·ϕuτnϕu

)
∧ du,

(7.10)

where the change of variables u := st was performed in the third line. One can check that the

integrand (with respect to du) in (7.10) is a real-valued continuous function. As such,

d

dt
Jτ,X(ϕt) =

∫
M
ϕ̇t

(
efτn − ef+X

2
·ϕtτnϕt

)
. (7.11)

Taking the difference of (7.9) and (7.11) then yields (7.8).

What remains to be shown is that Jτ,X(ϕ) does not depend on the chosen path (ϕt)0≤ t≤ 1 in

M∞X, exp(M) from 0 to ϕ. We follow Bando and Mabuchi’s seminal paper [BM87] together with

[Zhu00, Lemma 3.1] to prove this. By concatenating paths, it suffices to show that if (ϕt)0≤ t≤ 1 is

a C1-path in M∞X, exp(M) from ϕ0 = 0 to ϕ1 = ϕ ≡ 0, then Jτ,X(ϕ) = 0. To prove this, we need

to enlarge the space of parameters [0, 1] to a square [0, 1] × [0, 1] in the following way. Define the

following two-parameter path:

ϕt, δ := (1− δ) · ϕt for (t, δ) ∈ [0, 1]× [0, 1].

This path has the following properties:

• ϕt, δ ∈M∞X, exp(M) for all (t, δ) ∈ [0, 1]× [0, 1],

• ϕt, 0 = ϕt for all t ∈ [0, 1],

• ϕt, 1 = 0 for all t ∈ [0, 1],

• ϕ0, δ = 0 for all δ ∈ [0, 1],

• ϕ1, δ = 0 for all δ ∈ [0, 1].

Next, define the 2n-forms (Ωt, δ)(t, δ)∈ [0, 1]×[0, 1] by

Ωt, δ := efτn − efϕt, δ τnϕt, δ for all (t, δ) ∈ [0, 1]× [0, 1].
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Then by definition

Ωt, 1 = Ω0, δ = Ω1, δ = 0Λ2nM for all t, δ ∈ [0, 1],

and we can rewrite Jτ,X(ϕ) as

Jτ,X(ϕ) =

∫ 1

0

∫
M

(
∂

∂t
(ϕt, 0) Ωt, 0

)
∧ dt.

An important observation is the following.

Claim 7.6. Jτ,X(ϕ) can be computed as

Jτ,X(ϕ) =

∫ 1

0

∫ 1

0

∫
M
dt, δϕt, δ ∧ dt, δΩt, δ, (7.12)

where dt, δ is the exterior derivative with respect to the parameters t and δ.

Proof. We first compute the integrand of (7.12) pointwise:

dt, δϕt, δ ∧ dt, δΩt, δ =

((
∂ϕt, δ
∂t

)
dt+

(
∂ϕt, δ
∂δ

)
dδ

)
∧
((

∂Ωt, δ

∂t

)
∧ dt+

(
∂Ωt, δ

∂δ

)
∧ dδ

)
=

(
∂ϕt, δ
∂t
·
∂Ωt, δ

∂δ
−
∂ϕt, δ
∂δ

·
∂Ωt, δ

∂t

)
∧ dt ∧ dδ.

Next, integration by parts, first with respect to δ and then with respect to t, yields∫ 1

0

(∫ 1

0

∂ϕt, δ
∂t
·
∂Ωt, δ

∂δ
∧ dδ

)
∧ dt =

∫ 1

0

[
∂ϕt, δ
∂t
· Ωt, δ

] ∣∣∣∣δ=1

δ=0

∧ dt−
∫ 1

0

(∫ 1

0

∂2ϕt, δ
∂δ∂t

Ωt, δ ∧ dδ
)
∧ dt

= −
∫ 1

0

∂ϕt, 0
∂t
· Ωt, 0 ∧ dt−

∫ 1

0

(∫ 1

0

∂2ϕt, δ
∂δ∂t

Ωt, δ ∧ dδ
)
∧ dt,∫ 1

0

(∫ 1

0

∂ϕt, δ
∂δ

·
∂Ωt, δ

∂t
∧ dt

)
∧ dδ =

∫ 1

0

[
∂ϕt, δ
∂δ

· Ωt, δ

] ∣∣∣∣t=1

t=0

∧ dδ −
∫ 1

0

(∫ 1

0

∂2ϕt, δ
∂t∂δ

Ωt, δ ∧ dt
)
∧ dδ

= −
∫ 1

0

(∫ 1

0

∂2ϕt, δ
∂t∂δ

Ωt, δ ∧ dt
)
∧ dδ.

The claim now follows from the fact that
∂2ϕt, δ
∂δ∂t =

∂2ϕt, δ
∂t∂δ = −ϕ̇t by definition of the path ϕt, δ. �

Now, from the definition of the 2n-forms Ωt, δ, we have that

−dt, δΩt, δ = dt, δ

(
efϕt, δ τnϕt, δ

)
=

((
X

2
· dt, δϕt, δ

)
∧ τnϕt, δ + ni∂∂̄ (dt, δϕt, δ) ∧ τn−1

ϕt, δ

)
efϕt, δ

=

[(
X

2
·
(
∂ϕt, δ
∂t

))
dt+

(
X

2
·
(
∂ϕt, δ
∂δ

))
dδ

]
∧ efϕt, δ τnϕt, δ

+ n

[
i∂∂̄

(
∂ϕt, δ
∂t

)
∧ dt+ i∂∂̄

(
∂ϕt, δ
∂δ

)
∧ dδ

]
∧ efϕt, δ τn−1

ϕt, δ
.

This allows us to express the integrand of the right-hand side of (7.12) as:

dt, δϕt, δ ∧ dt, δΩt, δ =

[
∂ϕt, δ
∂δ

(
X

2
·
(
∂ϕt, δ
∂t

))
−
∂ϕt, δ
∂t

(
X

2
·
(
∂ϕt, δ
∂δ

))]
efϕt, δ τnϕt, δ ∧ dt ∧ dδ

+ n

[
∂ϕt, δ
∂δ

i∂∂̄

(
∂ϕt, δ
∂t

)
−
∂ϕt, δ
∂t

i∂∂̄

(
∂ϕt, δ
∂δ

)]
∧ efϕt, δ τn−1

ϕt, δ
∧ dt ∧ dδ.
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Integration by parts with respect to the weighted measure efϕt, δ τnϕt, δ for some fixed parameters

t, δ ∈ [0, 1] then gives us

n

∫
M

[
∂ϕt, δ
∂δ

i∂∂̄

(
∂ϕt, δ
∂t

)
−
∂ϕt, δ
∂t

i∂∂̄

(
∂ϕt, δ
∂δ

)]
∧ efϕt, δ τn−1

ϕt, δ

= −n
∫
M

[
i∂̄

(
∂ϕt, δ
∂t

)
∧ ∂

(
∂ϕt, δ
∂δ

)
+ i∂

(
∂ϕt, δ
∂δ

)
∧ ∂̄

(
∂ϕt, δ
∂t

)]
∧ efϕt, δ τn−1

ϕt, δ

+ n

∫
M

[
∂ϕt, δ
∂t
· i∂fϕt, δ ∧ ∂̄

(
∂ϕt, δ
∂δ

)
−
∂ϕt, δ
∂δ

· i∂fϕt, δ ∧ ∂̄
(
∂ϕt, δ
∂t

)]
∧ efϕt, δ τn−1

ϕt, δ

= n

∫
M

[
∂ϕt, δ
∂t
· i∂fϕt, δ ∧ ∂̄

(
∂ϕt, δ
∂δ

)
−
∂ϕt, δ
∂δ

· i∂fϕt, δ ∧ ∂̄
(
∂ϕt, δ
∂t

)]
∧ efϕt, δ τn−1

ϕt, δ

=

∫
M

[
∂ϕt, δ
∂t

X

2
·
(
∂ϕt, δ
∂δ

)
−
∂ϕt, δ
∂δ

X

2
·
(
∂ϕt, δ
∂t

)]
efϕt, δ τnϕt, δ .

Here, the exponential decay of the functions ϕt, δ justifies the use of Stokes’ theorem in the first

equality, and in the last line we have applied the identity

n i∂fϕt, δ ∧ ∂̄u ∧ τ
n−1
ϕt, δ

= [(∇hϕt, δ )0, 1fϕt, δ · u] τnϕt, δ =

(
X

2
· u
)
τnϕt, δ for JX-invariant u ∈ C∞(M)

to
∂ϕt, δ
∂δ and

∂ϕt, δ
∂t , both of which are JX-invariant by virtue of the fact that ϕt is for all t ∈ [0, 1]. �

We next show how Theorem 7.5 can be applied to obtain a priori energy estimates along a path

of solutions to (7.3) in M∞X, exp(M). Here we make use of the assumption that |f −ϕ(t)| is bounded

in applying Corollary 5.5.

Proposition 7.7 (A priori energy estimates). Let (ψt)0≤ t≤ 1 be a path of solutions in M∞X, exp(M)

to (7.3). Then there exists a positive constant C = C
(
n, τ, ‖f · F‖C0

X, exp

)
such that

sup
0≤ t≤ 1

∫
M
|ψt|2

ef

f2
τn ≤ C.

Proof. As a consequence of Theorem 7.5, we can use any C1-path (ϕt)0≤ t≤ 1 in M∞X, exp(M) from

ϕ0 = 0 to ϕ1 = ϕ ∈M∞X, exp(M) to compute Jτ,X(ϕ). As in [TZ00b], we choose two different paths to

compute Jτ,X(ψ), the first being the linear path defined by ϕt := tψ, t ∈ [0, 1], for ψ ∈M∞X, exp(M)

a solution to (7.2). For this path, Theorem 7.5 asserts that

(Iτ,X − Jτ,X) (ψ) = −
∫ 1

0

∫
M
tψ

(
∆τtψψ +

X

2
· ψ
)
ef+tX

2
·ψτntψ ∧ dt.
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Integration by parts with respect to the weighted volume form ef+tX
2
·ψτntψ then leads to

(Iτ,X − Jτ,X) (ψ) = n

∫ 1

0

∫
M
t i∂ψ ∧ ∂̄ψ ∧

(
ef+tX

2
·ψτn−1

tψ

)
∧ dt

= n

∫ 1

0

∫
M
t i∂ψ ∧ ∂̄ψ ∧

(
ef+tX

2
·ψ ((1− t)τ + tτψ)n−1

)
∧ dt

= n
n−1∑
k= 0

(
n− 1

k

)(∫ 1

0
tk+1(1− t)n−1−k

∫
M
i∂ψ ∧ ∂̄ψ ∧

(
ef+tX

2
·ψτn−1−k ∧ τkψ

))
∧ dt

≥ n
∫ 1

0
t(1− t)n−1

∫
M
i∂ψ ∧ ∂̄ψ ∧

(
ef+tX

2
·ψτn−1

)
∧ dt

≥ n
∫ 1

0
t(1− t)n−1

∫
M
i∂ψ ∧ ∂̄ψ ∧

(
e(1−t)fτn−1

)
∧ dt

= n

∫
M

(∫ 1

0
t(1− t)n−1e(1−t)fdt

)
i∂ψ ∧ ∂̄ψ ∧ τn−1,

(7.13)

where we have used Lemma 7.3 to bound the weight ef+tX
2
·ψ from below in the penultimate line.

From this, the following claim will allow us to obtain a lower bound.

Claim 7.8. There exists a positive constant cn such that∫ 1

0
t(1− t)n−1e(1−t)fdt ≥ cn

ef

f2
.

Proof. Via the change of variables s = 1− t, notice that for k ≥ 1,∫ 1

0
t(1− t)k−1e(1−t)fdt =

∫ 1

0
(1− s)sk−1esfds

=

∫ 1

0
sk−1esfds−

∫ 1

0
skesfds

= ck−1(f)− ck(f),

where ck(f) :=
∫ 1

0 s
kesf ds for k ∈ N. An induction argument using the relations

c0(f) =
ef − 1

f
, ck(f) =

ef

f
− k

f
ck−1(f), k ≥ 1,

derived using integration by parts then shows that for all k ≥ 0, ck(f) is equivalent to f−1ef as f

tends to +∞.

Next, a computation shows that for all k ≥ 2,

ck−1(f)− ck(f) =
ef

f
− (k − 1)

f
ck−2(f)−

(
ef

f
− k

f
ck−1(f)

)
=
k

f
ck−1(f)− (k − 1)

f
ck−2(f)

=
ck−2(f)

f
− k

f
(ck−2(f)− ck−1(f)).

Another induction argument on k (the case k = 1 can be handled easily) further yields the fact that

for all k ≥ 2, ck−1(f)− ck(f) is equivalent to f−2ef as f tends to +∞. This in turn implies Claim

7.8. �

Applying Claim 7.8 to (7.13) results in the lower bound

(Iτ,X − Jτ,X)(ψ) ≥ c
∫
M

ef

f2
i∂ψ ∧ ∂̄ψ ∧ τn−1 (7.14)
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for some positive constant cn. We also require an upper bound on (Iτ,X − Jτ,X)(ψ) to complete the

proof of the proposition. To achieve such a bound, we use the continuity path of solutions ϕt := ψt,

t ∈ [0, 1], to (7.3) to compute (Iτ,X − Jτ,X)(ψ). First observe that the first variations (ψ̇t)0≤ t≤ 1

satisfy the following PDE obtained from (7.3) by differentiating with respect to the parameter t:

∆τψt
ψ̇t +

X

2
· ψ̇t = F, 0 ≤ t ≤ 1.

Combined with Theorem 7.5, this leads to the estimate:

(Iτ,X − Jτ,X)(ψ) = −
∫ 1

0

∫
M
ψt · F efψt τnψt ∧ dt

= −
∫ 1

0

∫
M
ψt · F ef+tF τn ∧ dt

≤ Ce‖F‖C0

∫ 1

0

∫
supp(F )

|F ||ψt| efτn ∧ dt

≤ Ce‖F‖C0‖F‖L2(f2ef τn)

∫ 1

0
‖ψt‖L2(f−2ef τn) dt

=: C
(
n, ‖f · F‖C0

X, exp

)∫ 1

0
‖ψt‖L2(f−2ef τn) dt,

(7.15)

where we have used (7.3) in the third line and the Cauchy-Schwarz inequality in the penultimate

line. Comparing (7.14) with (7.15), we deduce that

‖∇hψ‖2L2(f−2ef τn) ≤ C
∫ 1

0
‖ψt‖L2(f−2ef τn) dt, (7.16)

where C = C
(
n, ‖f · F‖C0

X, exp

)
is a positive constant that depends only on n and F that may vary

from line to line. Now, an application of Corollary 5.5 to (M, τ, f) and (M \K, ω̃, ϕ(t)) for K ⊂M
compact, keeping in mind the fact that the difference between f and the soliton potential ϕ(t) of ω̃

is bounded on M \K by assumption, shows that

λ(τ)‖ψ‖2L2(f−2ef τn) ≤ ‖∇
hψ‖2L2(f−2ef τn)

for some positive constant λ(τ) independent of the parameter t ∈ [0, 1]. Concatenating this inequal-

ity with (7.16), we therefore see that

‖ψ‖2L2(f−2ef τn) ≤ C
∫ 1

0
‖ψt‖L2(f−2ef τn) dt,

where C = C
(
n, τ, ‖f · F‖C0

X, exp

)
. This last inequality applies to any truncated path of the one-

parameter family of solutions (ψt)0≤ t≤ 1. Thus,

‖ψt‖2L2(f−2ef τn) ≤ C
∫ 1

0
‖ψst‖L2(f−2ef τn) ds

=
C

t

∫ t

0
‖ψs‖L2(f−2ef τn) ds.

(7.17)

This is a Grönwall-type differential inequality and can be integrated as follows. Let

H(t) :=

∫ t

0
‖ψs‖L2(f−2ef τn) ds

and observe that (7.17) may be rewritten as

H ′(t) ≤ C√
t

√
H(t), t ∈ (0, 1].
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Integrating then implies that H(t) ≤ C
(
n, τ, ‖f · F‖C0

X, exp

)
· t for all t ∈ [0, 1] which, after applying

(7.17) once more, yields to the desired upper bound. �

7.1.2. A priori estimate on supM ψ. Let ψt be a solution to (7.3) for some fixed parameter t ∈ [0, 1].

We next obtain an upper bound for supM ψt uniform in t. To obtain such a bound, it suffices by

Lemma 7.2 to only bound maxsupp(F ) ψt from above. We do this by implementing a local Nash-Moser

iteration as in the proof of Theorem 6.7 using the fact that ψt is a super-solution of the linearised

complex Monge-Ampère equation of which the drift Laplacian with respect to the known metric τ

forms a part.

Proposition 7.9 (A priori upper bound on supM ψ). Let (ψt)0≤ t≤ 1 be a path of solutions in

M∞X, exp(M) to (7.3). Then there exists a positive constant C = C
(
n, τ, ‖f · F‖C0

X, exp

)
such that

sup
0≤ t≤ 1

sup
supp(F )

ψt ≤ C.

Proof. Let t ∈ [0, 1] and set ψ := ψt to simplify notation. Let ψ+ := max{ψ, 0}. This is a non-

negative Lipschitz function. The strategy of proof is standard and follows along the lines of the proof

of Theorem 6.7; we use a Nash-Moser iteration to obtain an a priori upper bound on supsupp(F ) ψ+

in terms of the (weighted) energy of ψ+ on a tubular neighbourhood of supp(F ). The result then

follows by invoking Proposition 7.7.

To this end, notice that since log(1 + x) ≤ x for all x > −1 and since ψ is a solution to (7.3), ψ

satisfies the differential inequality

∆τψ +
X

2
· ψ ≥ −|F | on M . (7.18)

As in the proof of Theorem 6.7, let x ∈ {f < R} be such that Bh(x, r) b {f < R} and multiply

(7.18) across by η2
s, s′uR|uR|2(p−1) with p ≥ 1, where ηs, s′ , with 0 < s + s′ < r and s, s′ > 0, is a

Lipschitz cut-off function with compact support in Bh(x, s + s′) equal to 1 on Bh(x, s) and with

|∇hηs, s′ |h ≤ 1
s′ almost everywhere. Next, integrate by parts and use the Sobolev inequality (6.10)

to obtain a reversed Hölder inequality which after iteration leads to the bound

sup
Bh(x, r

2
)
ψ+ ≤ C(n, τ, r)

(
‖ψ+‖2L2(Bh(x, r), ef τn) + ‖F‖2C0

) 1
2

≤ C(n, τ, r)

(∫
Tr(supp(F ))

ψ2
+ f
−2efτn + ‖F‖2C0

) 1
2

≤ C
(
n, τ, r, ‖f · F‖C0

X, exp

)
,

where Tr(supp(F )) := {x ∈M | dh(x, supp(F )) ≤ r}. Here, we have made use of Proposition 7.7 in

the last line. �

7.1.3. A priori estimate on infM ψ. Obtaining a lower bound on ψt is more difficult. The function

ψt is a sub-solution of the linearised equation, however with respect to the drift Laplacian of the

unknown metric, and so an alternative approach is required. We use the weighted L2-bound given by

Proposition 7.7 together with an adaption of B locki’s method [B l05] to achieve the desired estimate.

The fact that the data F in (7.3) is compactly supported is crucial for the proof to work.

Proposition 7.10 (A priori lower bound on infM ψ). Let (ψt)0≤ t≤ 1 be a path of solutions in

M∞X, exp(M) to (7.3). Then there exists a positive constant C = C
(
n, τ, supp(F ), ‖f · F‖C0

X, exp

)
such that

inf
0≤ t≤ 1

inf
supp(F )

ψt ≥ −C.

Proof. Fix t ∈ [0, 1] and set ψ := ψt to lighten notation. By Lemma 7.2, we can assume that

ψ attains a minimum at a point x0 ∈ supp(F ). Following [B l05], one can find a local coordinate
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chart U with x0 ∈ U together with a smooth strictly plurisubharmonic function G defined on U

with i∂∂̄G = τ . After adding a pluriharmonic function to G if necessary, one can then find two

positive numbers a and r depending only on the local geometry of (M, τ) around x0 such that

G < 0 on Bh(x0, 2r), G attains its minimum at x0 on Bh(x0, 2r), and G ≥ G(x0)+a on the annulus

Bh(x0, 2r) \Bh(x0, r).

Consider the non-positive function u defined on Bh(x0, 2r) by

u :=

{
ψ +G if supM ψ ≤ 0,

ψ − supsupp(F ) ψ +G otherwise.

We are now in a position to apply [B l05, Proposition 3] which asserts that

‖u‖L∞(Bh(x0, 2r)) ≤ a+
(
cn · (2r) · a−1

)2n ‖u‖L1(Bh(x0, 2r)) ·
∥∥∥∥τnψτn

∥∥∥∥
L∞(Bh(x0, 2r))

. (7.19)

In the case that supM ψ = maxsupp(F ) ψ ≥ 0, we obtain, after rearranging (7.19), the following

sequence of inequalities:

− inf
M
ψ ≤ sup

M
ψ − inf

M
ψ = sup

supp(F )
ψ − ψ(x0)

= G(x0)− u(x0)

≤ ‖u‖L∞(Bh(x0, 2r))

≤ C(τ, a, r, n)‖u‖L1(Bh(x0, 2r)) ·
∥∥∥∥τnψτn

∥∥∥∥
L∞(Bh(x0, 2r))

+ a

= C(τ, a, r, n)‖u‖L1(Bh(x0, 2r)) ·
∥∥∥e−X2 ·ψ+F

∥∥∥
L∞(Bh(x0, 2r))

+ a

≤ C(τ, a, r, n)‖u‖L1(Bh(x0, 2r)) ·
∥∥∥ef+F

∥∥∥
L∞(Bh(x0, 2r))

+ a

≤ C(τ, a, r, n, F )‖u‖L1(Bh(x0, 2r)) + a

≤ C(τ, a, r, n, F )

(
‖ψ‖L1(Bh(x0, 2r)) + sup

supp(F )
ψ + 1

)
≤ C(τ, a, r, n, F )

(
‖ψ‖L2(Bh(x0, 2r)) + 1

)
≤ C(τ, a, r, n, F )

(
‖ψ‖L2(f−2ef τn) + 1

)
≤ C(τ, a, r, n, F ),

where c(τ, a, r, n) denotes a positive constant that may vary from line to line. Here we have used

Lemma 7.3 in the sixth line to bound
∣∣∣ τnψτn ∣∣∣ uniformly from above since Bh(x0, 2r) is contained in

the tubular neighbourhood T2r(supp(F )) of supp(F ) of radius 2r, we use Proposition 7.9 to bound

supsupp(F ) ψ uniformly together and Hölder’s inequality in the antepenultimate line, and finally, we

use Proposition 7.7 in the last line to bound ‖ψ‖L2(f−2ef τn) uniformly from above. This concludes

the proof of Proposition 7.10 in the case that supM ψ = maxsupp(F ) ψ ≥ 0. The case supM ψ ≤ 0

proceeds similarly. �

7.2. A priori estimates on higher derivatives. We next derive a priori local bounds on higher

derivatives of solutions to the complex Monge-Ampère equation (7.2), beginning with the radial

derivative.
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7.2.1. A priori estimate on the radial derivative.

Proposition 7.11 (A priori estimate on X ·ψ). Let (ψt)0≤ t≤ 1 be a path of solutions inM∞X, exp(M)

to (7.3). Then there exists a positive constant C = C
(
n, τ, supp(F ), ‖f · F‖C0

X, exp

)
such that

sup
0≤ t≤ 1

sup
M
|X · ψt| ≤ C.

Remark 7.12. The JX-invariance of ψ is crucial for the proof of this proposition to go through.

Proof of Proposition 7.11. Our proof is based on that of Siepmann in the case of an expanding

gradient Kähler-Ricci soliton; see [Sie13, Lemma 5.4.14]. We adapt his proof here to our particular

setting.

The proof comprises two parts. The first gives rise to an upper bound for X · ψ, whereas the

latter part yields a lower bound for X · ψ. Before proceeding with the first part though, we make

the following claim.

Claim 7.13. Let X1, 0 = 1
2(X − iJX). Then

X1, 0 ·
(
X1, 0 · ψ

)
= 2i∂∂̄ψ

(
Re
(
X1, 0

)
, J Re

(
X1, 0

))
≥ −2

∣∣Re
(
X1, 0

)∣∣2
h
.

Proof. Since ψ is invariant under the flow of JX, we know that

JX · (X · ψ) = 0.

In particular, we have that X1, 0 ·
(
X1, 0 · ψ

)
= Re

(
X1, 0

)
·
(
Re
(
X1, 0

)
· ψ
)

= X1, 0 ·
(
X1, 0 · ψ

)
. A

straightforward computation then shows that

X1, 0 ·
(
X1, 0 · ψ

)
= ∂∂̄ψ

(
X1, 0, X1, 0

)
= 2i∂∂̄ψ

(
Re
(
X1, 0

)
, J Re

(
X1, 0

))
.

The result now follows from the fact that τψ > 0 so that

i∂∂̄ψ
(
Re
(
X1, 0

)
, J Re

(
X1, 0

))
= τψ

(
Re
(
X1, 0

)
, J Re

(
X1, 0

))
−
∣∣Re

(
X1, 0

)∣∣2
h

≥ −
∣∣Re

(
X1, 0

)∣∣2
h
.

�

To achieve an upper bound for X ·ψ, we introduce the flow (φXt )t∈R generated by the vector field
X
2 . This flow is complete as X is complete. Define ψx(t) := ψ(φXt (x)) for (x, t) ∈M × R. Then for

any cut-off function η : R+ → [0, 1] such that η(0) = 1, η′(0) = 0, we have that∫ +∞

0
η′′(t)ψx(t) dt = −

∫ +∞

0
η′(t)ψ′x(t) dt

= ψ′x(0) +

∫ +∞

0
η(t)ψ′′x(t) dt.

Hence it follows from the boundedness of the soliton vector field X with respect to the norm induced

by τ and Claim 7.13 that

X

2
· ψ(x) = ψ′x(0) ≤ −

∫
supp(η)

X

2
·
(
X

2
· ψ
)

(φXt (x)) dt+ sup
t∈ supp(η′′)

|ψx(t)|
∫

supp(η′′)
|η′′(t)| dt

≤ 1

2

∫
supp(η)

|X|2h(φXt (x)) dt+ sup
t∈ supp(η′′)

|ψx(t)|
∫

supp(η′′)
|η′′(t)| dt

≤ cn
∫

supp(η)
dt+ sup

t∈ supp(η′′)
|ψx(t)|

∫
supp(η′′)

|η′′(t)| dt.

Choose η such that for some ε > 0 to be chosen later, η ≡ 1 on [0, ε2 ], supp(η) ⊂ [0, ε], and such that

|η′′| ≤ c/ε2 for some uniform positive constant c. Then for all ε > 0,

X

2
· ψ(x) ≤ cnε+ c‖ψ‖C0ε−1. (7.20)
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Minimising the right-hand side of (7.20) seen as a function of ε > 0, one obtains the inequality

X

2
· ψ(x) ≤ cn‖ψ‖

1
2

C0 ,

reminiscent of an interpolation inequality with the lower bound given by Claim 7.13 on the second

derivatives of ψ in the direction of X succinctly contained within the constant cn. The upper bound

now follows from Propositions 7.9 and 7.10. The lower bound can be proven analogously by working

on an interval [−ε, 0] and choosing ε > 0 in a manner similar to above. �

7.2.2. C2 a priori estimate. The C2-estimate is next.

Proposition 7.14 (A priori C2-estimate). Let (ψt)0≤ t≤ 1 be a path of solutions in M∞X, exp(M)

to (7.3). Then there exists a positive constant C = C
(
n, τ, supp(F ), ‖f · F‖C2

X, exp

)
such that the

following C2 a priori estimate holds true:

sup
0≤ t≤ 1

‖i∂∂̄ψt‖C0(M) ≤ C.

Proof. We follow closely [CD20, Proposition 6.6] where the approach taken is based on standard

computations performed in Yau’s seminal paper [Yau78, pp.347–351]; see [Sie13, Lemma 5.4.16] for

a modification of these computations to the setting of expanding gradient Kähler-Ricci solitons.

Only the presence of the vector field X has to be taken into account, therefore we only outline the

main steps.

For the sake of clarity, we suppress the dependence of the function ψt on the parameter t ∈ [0, 1].

According to (7.3), ψ satisfies

log

(
τnψ
τn

)
= F − X

2
· ψ =: F (ψ).

As in [Yau78], we compute the Laplacian of F (ψ) with respect to τ in local holomorphic coordinates

around a point x ∈M such that at x, the Riemannian metrics h and hψ associated to τ and τψ take

the form hi̄(x) = δi̄ and (hψ)i̄(x) = (1 + ψīı(x))δi̄ respectively. After a lengthy computation, one

arrives at the fact that

∆τ (F (ψ)) = ∆τψ(trh(hψ))−
ψi̄kψı̄jk̄

(1 + ψīı)(1 + ψkk̄)
+ Rm(h)īıkk̄

(
1− 1

1 + ψīı
− ψīı

1 + ψkk̄

)
. (7.21)

Now, a standard computation shows that

−
∑
i, k

Rm(h)īıkk̄

(
1− 1

1 + ψīı
− ψīı

1 + ψkk̄

)
≥ inf

M
Rm(h)

(
trh(h−1

ψ ) trh(hψ)− C(n)
)
,

where Rm(h) is the complex linear extension of the curvature operator of the metric h and where

infM Rm(h) := inf i 6=k Rm(h)īıkk̄.

Next we study the term ∆τ

(
X
2 · ψ

)
. Let X1, 0 = 1

2(X − iJX). Then since X is real holomorphic

and both τ and ψ are JX-invariant, we find that

∆τ

(
X

2
· ψ
)

= ∆τ

(
X1, 0 · ψ

)
= ∇hi (X1, 0)kψı̄k +X1, 0 ·∆τψ

= ∇h(X1, 0) ∗ ∂∂̄ψ +
X

2
·∆τψ

≤ C trh(hψ) + C(n)‖∇hX‖C0(M) +
X

2
· trh(hψ),
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where we have used the fact that 0 < hψ ≤ (n + ∆τψ)h together with the boundedness of ∇hX
given by Lemma 6.4. To summarise, we have the following first crucial estimate:

∆τψ trh(hψ) +
X

2
· trh(hψ) ≥

ψi̄kψı̄jk̄
(1 + ψīı)(1 + ψkk̄)

+ ∆τF − C trh(hψ)

(
1 + inf

M
Rm(h) trh(h−1

ψ )

)
− C(n, τ).

(7.22)

Now, if u := e−αψ trh(hψ), where α ∈ R will be specified later, then, as in the proof of [Sie13,

Lemma 5.4.16], one estimates the Laplacian of u with respect to τψ in the following way:

∆τψu ≥ e
−αψ

(
∆τF (ψ)− inf

M
Rm(h) trh(h−1

ψ ) trh(hψ)− C(n)− α∆τψψ trh(hψ)

)
.

Here, one has to take advantage of the non-negative term involving the third derivatives of ψ on the

right-hand side of (7.22) to absorb the term hψ(∇hψψ,∇hψ∆τψ). Thus, for some positive constant

C independent of ψ, it follows that

∆τψu+
X

2
· u ≥ e−αψ

(
∆τF − inf

M
Rm(h) trh(h−1

ψ ) trh(hψ)

)
− C(n, τ)e−αψ − α

(
X

2
· ψ
)
u− C(n, τ)u− α(n− trh(h−1

ψ ))u

≥ −C
(
n, τ, ‖ψ‖C0(M), ‖F‖C2(M)

)
− C

(
n, τ, ‖X · ψ‖C0(M)

)
u

+ trh(h−1
ψ )u

≥ −C − Cu+ trh(h−1
ψ )u,

where we set α := max{1 + infM Rm(h), 1} and C = C
(
n, τ, supp(F ), ‖f · F‖C2

X, exp

)
, and we have

used Propositions 7.9, 7.10, and 7.11 in the last line. Another estimate using the geometric inequality∑
i

1

1 + ψīı
≥
(∑

i(1 + ψīı)

Πi(1 + ψīı)

) 1
n−1

,

or equivalently,

trh(h−1
ψ ) ≥

(
trh(hψ)

deth(hψ)

) 1
n−1

,

then shows that u satisfies the following differential inequality:

∆τψu+
X

2
· u ≥ −C(1 + u) + Cu

n
n−1

for some positive constant C = C
(
n, τ, supp(F ), ‖f · F‖C2

X, exp

)
. Since u is non-negative and con-

verges to n at infinity as ψ ∈M∞X, exp(M), an application of the maximum principle to an exhausting

sequence of domains of M finally yields the desired upper bound on n+ ∆τψ. �

A useful consequence of Proposition 7.14 is that the Kähler metrics induced by τ and τψ are

uniformly equivalent.

Corollary 7.15. Let (ψt)0≤ t≤ 1 be a path of solutions in M∞X, exp(M) to (7.3) and for t ∈ [0, 1], let

hψt be the Kähler metric induced by τψt . Then the tensors h−1hψt and h−1
ψt
h satisfy the following

uniform estimate:

sup
0≤ t≤ 1

‖h−1hψt‖C0 + sup
0≤ t≤ 1

‖h−1
ψt
h‖C0 ≤ C

for some positive constant C = C
(
n, τ, supp(F ), ‖f · F‖C2

X, exp

)
. In particular, the metrics h and

(hψt)0≤ t≤ 1 are uniformly equivalent.
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Proof. By Proposition 7.14, we know that

sup
0≤ t≤ 1

‖h−1hψt‖C0 ≤ C
(
n, τ, supp(F ), ‖f · F‖C2

X, exp

)
.

Moreover, by Proposition 7.11, h−1hψt satisfies

det(h−1hψt) = eF−
X
2
·ψt ≥ e−C

for some uniform positive constant C = C(n, τ, F ). Furthermore, each eigenvalue of hψt is uniformly

bounded from below by a positive constant. Hence we conclude that

sup
0≤ t≤ 1

‖h−1
ψt
h‖C0 ≤ C

(
n, τ, supp(F ), ‖f · F‖C2

X, exp

)
.

�

7.2.3. C3 a priori estimate. We now present the C3-estimate.

Proposition 7.16 (A priori C3-estimate). Let (ψt)0≤ t≤ 1 be a path of solutions in M4, 2α
X, exp(M) to

(7.3) and let h be the Kähler metric induced by τ with Levi-Civita connection ∇h. Then

sup
0≤ t≤ 1

‖∇h∂∂̄ψt‖C0 ≤ C
(
n, τ, ‖f · F‖

C4, 2α
X, exp

)
.

Proof. We follow closely the proof given in [CD20, Proposition 6.9] which itself is based on [PSS07].

For the sake of clarity, we drop the dependence of the potential ψt and the data tF on the

parameter t ∈ [0, 1]. Set

S(hψ, h) := |∇hhψ|2hψ .
Then from the definition of S, we see that

S(hψ, h) =hi̄ψh
kl̄
ψ h

pq̄
ψ ∇

h
i hψkp∇

h
j hψlq

=|Ψ|2hψ ,

where

Ψk
ij(hψ, h) := Γ(hψ)kij − Γ(h)kij

= hkl̄ψ∇hi (hψ)jl̄.

Now, since ψ solves (7.3), (M, hψ, X) is an “approximate” steady gradient Kähler-Ricci soliton in

the following precise sense: if hψ(s) := (φXs )∗hψ and h(s) := (φXs )∗h, where (φXs )s∈R is the one-

parameter family of diffeomorphisms generated by −X
2 , then (hψ(s))s∈R is a solution of the following

perturbed Kähler-Ricci flow with initial condition hψ:

∂shψ(s) = −Ric(hψ(s)) + (φXs )∗
(
−LX

2
h+ Ric(h) +∇h∇̄hF

)
, s ∈ R,

hψ(0) = hψ.

In particular, ∂shψ = −Ric(hψ) + (φXτ )∗Λ, where Λ := −LX
2
h + Ric(h) + ∇h∇̄hF has uniformly

controlled C1-norm as h is asymptotic to ĝ with derivatives (cf. (7.1)) and F is compactly supported.

Define S(s) := S(hψ(s), h(s)) and correspondingly set Ψ(s) := Ψ(hψ(s), h(s)). We adapt [BEG13,

Proposition 3.2.8] to our setting. By a brute force computation, we have that

∆τψS = 2 Re
(
hi̄ψh

pq̄
ϕ hψkl̄

(
∆τψ , 1/2Ψk

ip

)
Ψl
jq

)
+ |∇hψΨ|2hψ + |∇hψΨ|2hψ

+ Ric(hψ)i̄hpq̄ψ hψkl̄Ψ
k
ipΨ

l
jq + hi̄ψ Ric(hψ)pq̄hψkl̄Ψ

k
ipΨ

l
jq − h

i̄
ψh

pq̄
ψ Ric(hψ)kl̄Ψ

k
ipΨ

l
jq,

where

∆τψ , 1/2 := hi̄ϕ∇
hϕ
i ∇

hϕ
̄ ,

T i̄ := hik̄ψ h
l̄
ψTkl̄,
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for Tkl̄ ∈ Λ1, 0M ⊗ Λ0, 1M . We also have that

∂uΨ(u)kip|u= 0 = ∂u|u= 0(Γ(hψ(u))− Γ(h(u)))kip

= ∇hψi (−Ric(hψ)kp + Λkp)−∇hi (−LX
2
hkp),

∂uh
i̄
ψ |u= 0 = Ric(hψ)i̄ − Λi̄.

Finally, using the second Bianchi identity, we compute that

∆hψ , 1/2Ψk
ip = hab̄ψ ∇

hψ
a Rm(h)kib̄p −∇

hψ
i Ric(hψ)kp,

which in turn implies that the following evolution equation is satisfied by Ψ:

∂uΨk
ip(u)|u= 0 = ∆hψ , 1/2Ψk

ip + T kip

for a tensor T of the form

T = h−1
ψ ∗ ∇

hψ Rm(h) +∇hψΛ +∇h(LX
2

(h))

= h−1
ψ ∗ ∇

h Rm(h) + h−1
ψ ∗ h

−1
ψ ∗ Rm(h) ∗Ψ + h−1

ψ ∗Ψ ∗ Λ +∇h(Λ + LX
2

(h)).

Notice the simplification here regarding the “bad” term −∇hψ Ric(hψ). Since this flow is evolving

only by diffeomorphism, we know that

S(s) = (φXs )∗S(hψ, h),

∂uS|u= 0 = −X
2
· S(hψ, h).

Hence Young’s inequality, together with the boundedness of ‖h−1
ψ h‖C0(M) and ‖hψh−1‖C0(M) ensured

by Corollary 7.15 and the boundedness of the covariant derivatives of the tensors Rm(h) and Λ, imply

that

∆hψS +
X

2
· S ≥ −C(S + 1)

for some positive uniform constant C.

We use as a barrier function the trace trτ (τψ) which, by (7.22) and the uniform equivalence of the

metrics h and hψ provided by Corollary 7.15, satisfies

∆τψ trτ (τψ) +
X

2
· trτ (τψ) ≥ C−1S − C,

where C is a uniform positive constant that may vary from line to line. By applying the maximum

principle to εS + trτ (τψ) for some sufficiently small ε > 0, one arrives at the desired a priori

estimate. �

We next establish Hölder regularity of h−1hψt and h−1
ψt
h, an improvement on Corollary 7.15.

Corollary 7.17. Let (ψt)0≤ t≤ 1 be a path of solutions in M4, 2α
X, exp(M) to (7.3) and for t ∈ [0, 1],

let hψt be the Kähler metric induced by τψt . Then for any α ∈
(
0, 1

2

)
, the tensors h−1hψt and h−1

ψt
h

satisfy the following uniform estimate:

sup
0≤ t≤ 1

(
‖h−1hψt‖C0, 2α

loc
+ ‖h−1

ψt
h‖

C0, 2α
loc

)
≤ C

(
n, α, τ, supp(F ), ‖f · F‖

C4, 2α
X, exp

)
.

Proof. As usual, we suppress the dependence of the solutions ψt on the parameter t ∈ [0, 1] to lighten

the notation. The same statement applies to the data tF .

By standard local interpolation inequalities applied to Propositions 7.14 and 7.16, we see that

‖h−1hψ‖C0, 2α
loc
≤ C

(
n, α, supp(F ), τ, ‖f · F‖

C4, 2α
X, exp

)
.

Combining the previous estimate with Corollary 7.15, it suffices to prove a uniform bound on the local

2α-Hölder norm of h−1
ψ h. We conclude with the following observation: if u is a positive function on

M in C2α
loc(M) uniformly bounded from below by a positive constant, then [u−1]2α ≤ [u]2α(infM u)−2.
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By invoking Corollary 7.15 once more, this last remark applied to h−1
ψ h implies that

‖h−1
ψ h‖

C0, 2α
loc
≤ C

(
n, α, supp(F ), τ, ‖f · F‖

C4, 2α
X, exp

)
as well. �

7.2.4. Local bootstrapping. We now improve the local regularity of our continuity path of solutions

to (7.3). This estimate will be used in deriving the subsequent weighted a priori estimates.

Proposition 7.18. Let (ψt)0≤ t≤ 1 be a path of solutions in M4, 2α
X, exp(M), α ∈

(
0, 1

2

)
, to (7.3). Then

for any α ∈
(
0, 1

2

)
,

sup
0≤ t≤ 1

‖ψt‖C3, 2α
loc
≤ C

(
n, α, τ, ‖f · F‖

C4, 2α
X, exp

)
.

Proof. Again suppressing the dependence of the solutions ψt and data tF on the parameter t ∈ [0, 1],

we see from the proof of the a priori C2-estimate (cf. Proposition 7.14 and (7.21)) that

∆τψ

(
∆τψ +

X

2
· ψ
)

=∆τF + h−1
ψ ∗ h

−1 ∗ Rm(h) + Rm(h) ∗ ∇∇̄ψ ∗ h−1
ψ

+ h−1 ∗ h−1 ∗ Rm(h) + h−1 ∗ h−1
ψ ∗ h

−1
ψ ∗ ∇̄∇∇̄ψ ∗ ∇∇̄∇ψ

+
(
∆τψ −∆τ

)(X · ψ
2

)
,

(7.23)

where ∗ denotes the ordinary contraction of two tensors. Notice that∣∣(∆τψ −∆τ

)
(X · ψ)

∣∣ =
∣∣∣h−1
ψ ∗ ∂∂̄ψ ∗ ∂∂̄(X · ψ)

∣∣∣
≤ ‖h−1

ψ h‖C0 · ‖i∂∂̄ψ‖C0 ·
(
‖∇hψ‖C0 + ‖i∂∂̄ψ‖C0 + ‖i∂∂̄∂ψ‖C0

)
.

(7.24)

Here we have used the boundedness of the derivatives of the vector field X given by Lemma 6.4 with

respect to the norm induced by τ .

By Propositions 7.14 and 7.16 together with (7.24), the C0-norm of the right-hand side of (7.23)

is uniformly bounded and, thanks to Corollary 7.17, so too are the coefficients of ∆τψ in the C0, 2α
loc -

sense. As a result, by applying the Morrey-Schauder C1, 2α-estimates, we see that for any x ∈ M
and for δ < injh(M),∥∥∥∥∆τψ +

X

2
· ψ
∥∥∥∥
C1, 2α(Bh(x, δ))

≤ C
(
n, α, τ, supp(F ), ‖f · F‖

C4, 2α
X, exp

)
.

Finally, applying standard interior Schauder estimates for elliptic equations once again with respect

to ∆τ leads to the bound

‖ψ‖C3, 2α(Bh(x, δ
2

)) ≤ C(n, α, τ)
(
‖∆τψ‖C1, 2α(Bh(x, δ)) + ‖ψ‖C1, 2α(Bh(x, δ))

)
≤ C

(
n, α, τ, supp(F ), ‖f · F‖

C4, 2α
X, exp

)
.

�

We next establish the following well-known local regularity result for solutions to (7.2).

Proposition 7.19. Let F ∈ Ck, αloc (M) for some k ≥ 1 and α ∈ (0, 1) and let ψ ∈ C3, α
loc (M) be a

solution to (7.2) with data F . Then ψ ∈ Ck+2,α
loc (M). Moreover, for all k ≥ 1, α ∈ (0, 1), and

x ∈M ,

‖ψ‖Ck+2,α(Bh(x, δ
2

)) ≤ C(n, k, α, τ )
(
‖F‖Ck, α(Bh(x, δ)) + ‖ψ‖C3, α(Bh(x, δ))

)
, δ < injh(M).

Proof. We prove this proposition by induction on k ≥ 1. The case k = 1 is true by assumption, so

let F ∈ Ck+1,α
loc (M) and let ψ ∈ C3, α

loc (M) be a solution of (7.2). Then by induction, ψ ∈ Ck+2,α
loc (M).

Let x ∈M and choose local holomorphic coordinates defined on Bh(x, δ) for some 0 < δ < injh(M).
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Then since ψ satisfies

F = log

(
τnψ
τn

)
+
X

2
· ψ,

we know that for j = 1, ..., 2n, the derivative ∂jψ satisfies

∆τψ (∂jψ) = ∂j

(
F − X

2
· ψ
)
∈ Ck, αloc (M).

As the coefficients of ∆τψ are in Ck, αloc (M), an application of the standard interior Schauder estimates

for elliptic equations now gives us the desired local regularity result, namely ∂jψ ∈ Ck+2,α
loc (M) for

all j = 1, ..., 2n, or equivalently, ψ ∈ Ck+3,α
loc (M) together with the expected estimate. �

7.3. Weighted a priori estimates. We next deal with the weighted a priori estimates on deriva-

tives of solutions to (7.2) along the continuity path, beginning first with the weighted C0-estimate.

7.3.1. Weighted C0 a priori estimate.

Proposition 7.20 (Weighted C0 a priori estimate). Let (ψt)0≤ t≤ 1 be a path of solutions inM2k+2, α
X, exp (M),

k ≥ 1, α ∈
(
0, 1

2

)
, to (7.3). Then there exists a positive constant C such that

sup
0≤ t≤ 1

sup
M

∣∣∣efψt∣∣∣ ≤ C (n, τ, ‖f · F‖C4, 2α
X, exp

)
, (7.25)

where C
(
n, τ, ‖f · F‖

C4, 2α
X, exp

)
is bounded by a constant C(n, τ,Λ) depending only on an upper bound

Λ of ‖f · F‖
C4, 2α
X, exp

.

Proof. We begin with an upper bound for efψ. First note that ψ satisfies the differential inequality

−‖fefF‖C0

e−f

f
≤ tF = log

(
τnψ
τn

)
+
X

2
· ψ ≤ ∆τψ +

X

2
· ψ.

Moreover, by (6.4) of Lemma 6.6, we see that(
∆τ +

X

2
·
)
e−f = −e−f∆τf ≤ −

c

f
e−f

outside some compact subset K ⊂ M independent of ψ for some c > 0. Thus, one obtains, for any

positive constant A, the lower bound(
∆τ +

X

2
·
)(

ψ −Ae−f
)
≥ c ·A

f
e−f − ‖fefF‖C0

e−f

f
(7.26)

on M \K. In particular, choosing A so that A > c−1‖fefF‖C0 , the maximum principle applied to

(7.26) shows that

sup
M\K

(ψ −Ae−f ) = max

{
0, max

∂K
(ψ −Ae−f )

}
,

as both ψ and e−f converge (exponentially) to 0 at infinity. Now, by Lemma 7.2 and Proposition

7.9, we know that

max
∂K

(ψ −Ae−f ) ≤ C −Ae−max∂K f

for some uniform constant C. Hence one can choose A large enough so that max∂K
(
ψ −Ae−f

)
≤ 0.

This establishes the expected a priori weighted upper bound.

As for the lower bound, we proceed in two steps, the first establishing a “rough” lower bound on

ψ in the following claim.

Claim 7.21. There exists δ = δ(F, τ, n) ∈ (0, 1) such that ψ ≥ −Ce−δf for some uniform positive

constant C.

Proof. Consider the function χB, δ := −Be−δf for some B > 0 and δ ∈ (0, 1) to be specified later.

Since |i∂∂̄f |h = O(f−1) and |X|h is bounded, there exists a uniform constant c1(τ, n) such that
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|i∂∂̄(Be−δf )|h < 1 on the set where Bδe−δf ≤ c1. By linearising around τ and once again using the

fact that |i∂∂̄f |h = O(f−1) and |X|h is bounded, one obtains the following estimate on this set:

log

(
τnχB, δ
τn

)
= −B∆τe

−δf −
∫ 1

0

∫ u

0
|i∂∂̄χB, δ|2hsχB, δ ds du

≥ −B∆τe
−δf − c

∣∣∣Bi∂∂̄e−δf ∣∣∣2
h

≥ −B∆τe
−δf − c2(τ, n)(Bδ)2e−2δf

for c2(τ, n) a sufficiently large positive constant. As a consequence, we find using Lemma 6.6 that

log

(
τnχB, δ
τn

)
+
X

2
· χB, δ ≥ −B

(
∆τ +

X

2
·
)
e−δf − c2(τ, n)(Bδ)2e−2δf

≥ Bδ(1− δ)4n

2
e−δf − c2(τ, n)(Bδ)2e−2δf −Bc3(τ, n)f−1e−δf

≥ Bnδ(1− δ)e−δf

on the set where

Bδe−δf ≤ c1 and c2Bδ
2e−δf + c3f

−1 ≤ δ(1− δ)n. (7.27)

It follows that on this set we have that

log

(
(τψ + i∂∂̄(χB, δ − ψ))n

τnψ

)
+
X

2
· (χB, δ − ψ) = log

(
τnχB, δ
τnψ

)
+
X

2
· (χB, δ − ψ)

= log

(
τnχB, δ
τn

)
− log

(
τnψ
τn

)
+
X

2
· (χB, δ − ψ)

≥ Bnδ(1− δ)e−δf − F.
≥ −F.

Thus, letting R(B, δ) > 0 be such that (7.27) holds true on {f ≥ R} and {f ≥ R} ⊂M \ supp(F ),

we find from the maximum principle that

max
{f ≥R}

(χB, δ − ψ) = max

{
0, max
{f =R}

(χB, δ − ψ)

}
.

Now, Lemma 7.2 and Proposition 7.10 imply that

max
{f =R}

(χB, δ − ψ) ≤ − inf
M
ψ −Be−δR ≤ c4(τ, n, F )−Be−δR ≤ 0

as soon as B ≥ c4(τ, n, F )eδR. Choose B > c4e
c3 and δ ∈ (0, 1) such that

Bδe−c3 ≤ c1, c2Bδ
2e−c3 + δ ≤ δ(1− δ)n, and

{
f ≥ c3

δ

}
⊂M \ supp(F ),

and set R := c3
δ . Then with these choices, we obtain the desired lower bound. This completes the

proof of the claim. �

The second step mimics the approach already taken to establish the upper bound on efψ. Namely,

we linearise the complex Monge-Ampère equation (7.2) using Claim 7.21 and view it as a linear PDE

with data decaying as fast as F . We then apply the minimum principle to ameliorate the decay of

ψ given by Claim 7.21 before iterating the whole argument, incrementally improving the decay of ψ

each time. To this end, recall the Taylor expansion of order two with integral remainder that was
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established in (6.6):

log

(
τnψ
τn

)
+
X

2
· ψ = 0 +

d

ds

∣∣∣∣
s= 0

(
log

(
τnsψ
τn

)
+
X

2
· sψ

)
+

∫ 1

0

∫ u

0

d2

ds2

(
log

(
τnsψ
τn

)
+
X

2
· sψ

)
ds du

= ∆τψ +
X

2
· ψ −

∫ 1

0

∫ u

0
|∂∂̄ψ|2hsψ ds du.

As a solution of (7.2), ψ must satisfy

∆τψ +
X

2
· ψ = F +

∫ 1

0

∫ u

0
|∂∂̄ψ|2hsψ ds du. (7.28)

We consider the right-hand side of (7.28) as the data, that is to say, we view (7.28) as a linear

equation in ψ. Then by Claim 7.21 and the first part of the proof of Proposition 7.20, we know that

|ψ| ≤ c(n, τ, F )e−δ0f (7.29)

for some δ := δ0(n, τ, F ) ∈ (0, 1). Let x ∈ M and choose holomorphic coordinates centered at x in

a ball Bh(x, δ) for some δ < injh(M). Then the reminder form of Taylor’s theorem shows that in

these coordinates,

F = log

(
τnψ
τn

)
+
X

2
· ψ

=

(∫ 1

0
hi̄sψ ds

)
∂i∂̄ψ +

X

2
· ψ

=: ai̄∂i∂̄ψ +
X

2
· ψ.

Now, by Corollary 7.17, ‖ai̄‖C0, 2α(Bh(x, δ)) is uniformly bounded from above and ai̄ ≥ Λ−1δi̄ on

Bh(x, δ) for some uniform constant Λ > 0. The standard interior Schauder estimates for elliptic

equations therefore apply and tell us that

‖ψ‖C2, 2α(Bh(x, δ
2

)) ≤ C
(
‖ψ‖C0(Bh(x, δ)) + ‖F‖C0, 2α(Bh(x, δ))

)
for some uniform positive constant C = C

(
n, α, τ, supp(F ), ‖f · F‖

C4, 2α
X, exp

)
. Using (7.29), this leads

to the estimate

‖ψ‖C2, 2α(Bh(x, δ
2

)) ≤ C
(
n, k, τ, supp(F ), ‖f · F‖

C4, 2α
X, exp

)
e−δ0f(x), x ∈M,

from which we deduce that |i∂∂̄ψ|h ≤ c(n, τ, F )e−δ0f . In light of (7.28), it subsequently follows that∣∣∣∣∆τψ +
X

2
· ψ
∣∣∣∣ ≤ c(n, τ, F )e−2δ0f + F.

If 2δ0 < 1, then observe from Lemma 6.6 that the function e−2δ0f is a good barrier function in

the sense that (
∆τ +

X

2
·
)
e−2δ0f ≤ −2δ0(1− 2δ0)

4n

2
e−2δ0f

outside a compact subset of M . In particular, the function ψ+Ce−2δ0f for C a positive constant to

be determined satisfies (
∆τ +

X

2
·
)(

ψ + Ce−2δ0f
)
< 0

outside a compact set (which itself does not depend on the solution). By applying the minimum

principle to the function ψ+Ce−2δ0f and arguing as for the supremum bound in the first part of the

proof, one obtains the lower bound ψ ≥ −C(n, τ, F )e−2δ0f for some positive constant C = C(n, τ, F )

sufficiently large. Notice that 2δ0 > δ0 so that the a priori decay of ψ has improved. Iterating this
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argument a finite number of times, we end up with the estimate∣∣∣∣∆τψ +
X

2
· ψ
∣∣∣∣ ≤ c(n, τ, F )

e−f

f
.

Here, we treat F in (7.28) as data decaying like f−1e−f . To conclude the proof of the proposition,

we argue as for the supremum bound in the first part of this proof. �

7.3.2. C4-weighted estimate. We next obtain the weighted C4 a priori estimate.

Proposition 7.22 (Weighted C4 a priori estimate). Let (ψt)0≤ t≤ 1 be a path of solutions inM4, 2α
X, exp(M),

α ∈
(
0, 1

2

)
to (7.3) with F ∈ f−1 · C4, 2α

X, exp(M). Then

sup
0≤ t≤ 1

‖ψt‖C4, 2α
X, exp

≤ C
(
n, α, τ, supp(F ), ‖f · F‖

C4, 2α
X, exp

)
.

Proof. Let x ∈ M and choose holomorphic coordinates centred at x in a ball Bh(x, δ) for some

δ < injh(M). Then we have that

F = log

(
τnψ
τn

)
+
X

2
· ψ

=

(∫ 1

0
hi̄sψ ds

)
∂i∂̄ψ +

X

2
· ψ

=: ai̄∂i∂̄ψ +
X

2
· ψ.

Now, by Propositions 7.18 and 7.19, ‖ai̄‖C2, 2α(Bh(x, δ)) is uniformly bounded from above and ai̄ ≥
Λ−1δi̄ on Bh(x, δ) for some uniform constant Λ > 0. In particular, standard interior Schauder

estimates for elliptic equations imply that

‖ψ‖C4, 2α(Bh(x, δ
2

)) ≤ C
(
‖ψ‖C0(Bh(x, δ)) + ‖F‖C2, 2α(Bh(x, δ))

)
for some uniform positive constant C = C

(
n, α, τ, supp(F ), ‖f · F‖

C4, 2α
X, exp

)
. From the bound [(7.25),

Proposition 7.20], it then follows that

‖ψ‖C4, 2α(Bh(x, δ
2

)) ≤ C
(
n, k, τ, supp(F ), ‖f · F‖

C4, 2α
X, exp

)
e−f(x), x ∈M. (7.30)

Rewriting (7.3) as in (7.28), observe that the right-hand side of (7.28) now lies in f−1 · C2, 2α
X, exp(M)

by (7.30) and that the following uniform estimate holds true:∥∥∥∥f · ∫ 1

0

∫ u

0
|∂∂̄ψ|2hsψ ds du

∥∥∥∥
C2, 2α
X, exp

≤ C
(
n, α, τ, supp(F ), ‖f · F‖

C4, 2α
X, exp

)
.

One now obtains the desired result by applying Theorem 6.7 with k = 1 and α ∈
(
0, 1

2

)
. �

7.3.3. Bootstrapping at infinity. We now bootstrap to obtain higher regularity on ψ.

Proposition 7.23 (Weighted a priori estimates on higher derivatives). Let (ψt)0≤ t≤ 1 be a path

of solutions in M2k+2, α
X, exp (M), k ≥ 1, α ∈

(
0, 1

2

)
, to (7.3) with F ∈ f−1 · C∞X, exp(M). Then ψ ∈

C∞X, exp(M). Moreover, one has the following estimate:

‖ψ‖
C2k+2, 2α
X, exp

≤ C
(
n, k, α, τ, supp(F ), ‖f · F‖

C
max{2k, 4}, 2α
X, exp

)
.

The proof of this proposition is identical to that of Proposition 7.22 and is therefore omitted.
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7.4. Proof of Theorem 7.1. We finally prove Theorem 7.1. Recall the statement:

Theorem 7.1. Let F be a smooth compactly supported JX-invariant function on M . Then there

exists a solution ψ ∈M∞X, exp(M) to

log

(
(τ + i∂∂̄ψ)n

τn

)
+
X

2
· ψ = F, τ + i∂∂̄ψ > 0, F ∈ C∞0 (M).

Proof. Given F ∈ f−1C∞X, exp(M), define Ft := tF ∈ f−1C∞X, exp(M) for t ∈ [0, 1], fix α ∈
(
0, 1

2

)
, and

set

S :=
{
t ∈ [0, 1] | there exists ψt ∈ C∞X, exp(M) satisfying (7.3) with data Ft ∈ f−1C∞X, exp(M)

}
.

Note that S 6= ∅ since 0 ∈ S (take ψ0 = 0).

We first claim that S is open. Indeed, this follows from Theorem 6.8; if t0 ∈ S, then by Theorem

6.8, there exists ε0 > 0 such that for all t ∈ (t0− ε0, t0 + ε0), there exists a solution ϕt ∈M4, 2α
X, exp(M)

to (7.3) with data tF ∈ f−1C2, 2α
X, exp(M). Since the data tF lies in f−1C∞X, exp(M), Proposition 7.23

ensures that for each t in this interval, ϕt ∈M∞X, exp(M). It follows that (t0−ε0, t0 +ε0)∩ [0, 1] ⊆ S.

We next claim that S is closed. To see this, take a sequence (tk)k≥ 0 in S converging to some

t∞ ∈ S. Then for Fk := tkF , k ≥ 0, the corresponding solutions ψtk =: ψk, k ≥ 0, of (7.3) satisfy

(τ + i∂∂̄ψk)
n = eFk−

X
2
·ψkτn, k ≥ 0. (7.31)

It is straightforward to check that the sequence (Fk)k≥ 0 is uniformly bounded in f−1C4, 2α
X, exp(M). As

a consequence, the sequence (ψk)k≥ 0 is uniformly bounded in C4, 2α
X, exp(M) by Proposition 7.22. The

Arzelà-Ascoli theorem therefore allows us to pull out a subsequence of (ψk)k≥ 0 that converges to

some ψ∞ ∈ C4, 2β
loc (M), β ∈ (0, α). As (ψk)k≥ 0 is uniformly bounded in C4, 2α

X, exp(M), ψ∞ will also lie

in C4, 2α
X, exp(M). We need to show that (τ + i∂∂̄ψ∞)(x) > 0 at every point x ∈M . For this, it suffices

to show that (τ + i∂∂̄ψ∞)n(x) > 0 for every x ∈ M . This is seen to hold true by letting k tend

to +∞ (up to a subsequence) in (7.31). The fact that ψ∞ ∈ M∞X, exp(M) follows from Proposition

7.23.

Finally, as an open and closed non-empty subset of [0, 1], connectedness of [0, 1] implies that

S = [0, 1]. This completes the proof of the theorem. �

8. Invertibility of the drift Laplacian: polynomial case

In this section, we introduce function spaces which, rather than being modeled on exponential

weights, are modeled on polynomial weights. We then carry out the corresponding analysis for these

spaces as was implemented in Section 6 for function spaces with exponential weights. Our set-up

is the same as that outlined at the beginning of Section 6.1. The definitions from Section 6.2 carry

forward as well. However, note that as we are now working with polynomial weights, the weight f

is comparable to f̂ by Lemma 6.3, hence we do not need to assume that (6.3) holds true in this

section. We begin with the definition of the relevant function spaces.

8.1. Function spaces. We make the following definitions.

• For β ∈ R and k a non-negative integer, define C2k
X, β(M) to be the space of JX-invariant continuous

functions u on M with 2k continuous derivatives such that

‖u‖C2k
X, β

:=
∑

i+2j≤2k

sup
M

∣∣∣f i
2

+j+β(∇h)i
(
L(j)
X u
)∣∣∣
h
<∞.

Define C∞X,β(M) to be the intersection of the spaces C2k
X, β(M) over all k ∈ N0.
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• Let δ(h) denote the injectivity radius of h, write dh(x, y) for the distance with respect to h between

two points x, y ∈ M , and let φXt denote the flow of X for time t. A tensor T on M is said to be

in C0, 2α(M), α ∈
(
0, 1

2

)
, if

[T ]
C0, 2α
γ

:= sup
x 6= y ∈M

dh(x,y)<δ(h)

[
min(f(x), f(y))γ+α |T (x)− Px, yT (y)|h

dh(x, y)2α

]

+ sup
x∈M
t 6= s≥ 1

[
min(t, s)γ+α

|(φXt )∗T (x)− (P̂φXs (x), φXt (x)((φ
X
s )∗T (x)))|h

|t− s|α

]
< +∞,

where Px, y denotes parallel transport along the unique geodesic joining x and y, and P̂φXs (x), φXt (x)

denotes parallel transport along the unique flow-line of X joining φXs (x) and φXt (x).

• For β ∈ R, k a non-negative integer, and α ∈
(
0, 1

2

)
, define the Hölder space C2k, 2α

X, β (M) with

polynomial weight fβ to be the set of u ∈ C2k
X, β(M) for which the norm

‖u‖
C2k, 2α
X, β

:= ‖u‖C2k
X, β

+
∑

i+2j= 2k

[(
∇h
)i (
L(j)
X u
)]

C0, 2α
β

is finite. It is straightforward to check that the space C2k, 2α
X, β (M) is a Banach space. The Hölder

space C2k, 2α
X, β (M) with β = 0 coincides with C2k, 2α

X (M) endowed with the norm introduced in

Section 6.2 as ‖ · ‖
C2k, 2α
X

. The intersection
⋂
k≥ 0C

2k
X, β(M) we denote by C∞X,β(M).

• Finally, we define the spaces

M2k+2, 2α
X, β (M) :=

{
ϕ ∈ C2

loc(M) | τ + i∂∂̄ϕ > 0
}⋂

C2k+2, 2α
X, β (M),

and akin toM∞X,exp(M) defined in (6.5), one considers the following convex set of Kähler potentials:

M∞X,β(M) =
⋂
k≥ 0

M2k+2, 2α
X, β (M).

8.2. Preliminaries and Fredholm properties of the linearised operator. As demonstrated

for exponentially weighted function spaces in Theorem 6.7, we show that the drift Laplacian is also

an isomorphism between polynomially weighted function spaces.

Theorem 8.1. Let α ∈
(
0, 1

2

)
, k ∈ N, and β > 0. Then the drift Laplacian

∆τ +
X

2
· : C2k+2, 2α

X, β (M)→ C2k, 2α
X, β+1(M)

is an isomorphism of Banach spaces.

Proof. Let β > 0. We compute the following conjugate operator associated to 2∆τ +X· = ∆h +X·:[
fβ+1 ◦ (∆h +X·) ◦ f−β

]
U = f · (∆h +X·)U − 2βX · U + fβ+1 · (∆h +X·) f−β · U

= f · (∆h +X·)U − 2βX · U − β
(
∆hf +X · f − (β + 1)f−1X · f

)
= f ·

(
∆hU +X · U − 4nβ

f
· U
)

− 2βX · U + β

(
4n−∆hf −X · f +

(β + 1)

f
X · f

)
U

=: f ·
(

∆hU +X · U − 4nβ

f
· U
)

+K(U)

for any function U ∈ C2
loc(M). We analyse each term in this expression separately. Our first claim

asserts that the perturbed drift Laplacian is an isomorphism of Banach spaces.
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Claim 8.2. For α ∈
(
0, 1

2

)
and β > 0, the operator

∆τ +
X

2
· −4nβ

f
: C2k+2, 2α

X (M)→ C2k, 2α
X, 1 (M)

is an isomorphism of Banach spaces.

Proof. This operator is well-defined and continuous by definition of the relevant function spaces.

Let F ∈ C2k, 2α
X, 1 (M). Then for R > 0 sufficiently large such that the level sets {f = R} are smooth

closed hypersurfaces, let uR : {f ≤ R} → R be the solution of the following Dirichlet problem:∆τUR +
X

2
· UR −

4nβ

f
· UR = F on {f < R},

UR = 0 on {f = R}.

For A ∈ R, observe that

∆τUR +
X

2
· UR =

4nβ

f
·
(
UR −

A

4nβ

)
+ F +

A

f
,

which, upon setting A := ‖f · F‖C0 , is bounded below by 4nβ
f ·

(
UR − A

4nβ

)
. Thus, the maximum

principle applied to UR shows that

max
{f ≤R}

(
UR − (4nβ)−1‖f · F‖C0

)
≤ 0.

The previous argument applied to −UR further yields the fact that

min
{f ≤R}

UR ≥ −(4nβ)−1‖f · F‖C0 .

Together, these two bounds imply that max{f ≤R} |UR| ≤ (4nβ)−1‖f · F‖C0 .

Next, standard elliptic Schauder estimates on each ball Bh(x, δ) with 2δ = injh(M) > 0 compactly

contained in {f < R} give the following a priori local estimates on higher derivatives of UR:

sup
Bh(x, δ)b{f <R}

‖UR‖C2k+2, 2α
loc (Bh(x, δ))

≤ C(n, k, α, τ )‖F‖
C2k, 2α
X, 1

.

As a consequence, we may appeal to the Arzelà-Ascoli theorem to pass to a subsequence still denoted

by (UR)R≥R0 converging to a function U ∈ C2k+2, 2α
loc (M) in the C2k+2, 2α′

loc -topology for any α′ ∈ (0, α)

satisfying

∆τU +
X

2
· U − 4nβ

f
· U = F on M, (8.1)

and

sup
x∈M

‖U‖
C2k+2, 2α

loc (Bh(x, δ))
≤ C(n, k, α, τ )‖F‖

C2k, 2α
X, 1

.

We claim that this solution U of (8.1) is unique among all bounded solutions in C2
loc(M). Indeed,

by subtracting U from another solution U ′ with the same data F , it suffices to show that the kernel

of the operator defined by the left-hand side of (8.1) restricted to C2
loc(M)-bounded functions is

zero-dimensional. To this end, let V ∈ C2
loc(M) ∩ C0(M) be such that

∆τV +
X

2
· V − 4nβ

f
· V = 0 on M.

Then for ε > 0, the function V − ε log f satisfies

∆τ (V − ε log f) +
X

2
· (V − ε log f) ≥ 4nβ

f
· (V − ε log f) +

4nεβ

f
log f − ε

f

(
∆τf +

X

2
· f
)
.

Since f is proper and bounded from below by 1 (cf. Lemma 6.1), and since V is bounded, the

function V − ε log f attains a maximum at some point x0 ∈M . Applying the maximum principle to
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V − ε log f at this point yields the upper bound

4nβ (V (x0)− ε log f(x0)) ≤ ε
(

∆τf +
X

2
· f − 4nβ log f(x0)

)
≤ ε

(
∆τf +

X

2
· f
)
≤ c(n, τ)ε.

To conclude, observe that for all x ∈ M and every ε > 0, V (x) − ε log f(x) ≤ c(n, τ)ε. Letting ε

tend to 0, one sees that V ≤ 0. Arguing with −V in place of V shows that V ≥ 0, and so V = 0

and the operator ∆τ + X
2 · −

4nβ
f · is injective. The fact that U belongs to C2k+2, 2α

X (M) follows along

the same lines as for the exponential case, specifically from (6.16) onwards in the proof of Theorem

6.7. This completes the proof of Claim 8.2. �

Our second claim asserts that the operator K is compact.

Claim 8.3. The operator

U ∈ C2k+2, 2α
X (M)→ K(U) := −2X · U + β

(
4n−∆hf −X · f +

(β + 1)

f
X · f

)
U ∈ C2k, 2α

X (M)

is a compact operator between Banach spaces.

Proof. From the very definition of the operator K, it is straightforward to check that K(U) is JX-

invariant if U is. Let (Ui)i be a sequence of functions in C2k+2, 2α
X (M) that is bounded (by 1 say).

Then by the Arzelà-Ascoli theorem, there exists a subsequence still denoted by (Ui)i that converges

in the C2k+2, 2α′

loc (M)-topology for any α′ ∈ (0, α) to a function U ∈ C2k+2, 2α
X (M). In particular,

(K(Ui))i converges in the C2k+1, 2α′

loc (M)-topology for any α′ ∈ (0, α) to K(U) ∈ C2k, 2α
X (M). We will

show that (K(Ui))i converges to K(U) in the C2k, 2α
X (M)-topology. We explain the proof in the case

k = 0 only. The proof for the cases k ≥ 1 is similar.

Fix a cut-off function χ : M → R with 0 ≤ χ ≤ 1 and

χ(x) =

{
1 if x ∈ E ∪ {y ∈M | t(y) ≤ 1},
0 if t(x) > 2,

define χR(x) := χ(x/R) in the obvious way for R > 0, and write Ui = (1− χR)Ui + χRUi. Then for

ε ∈ (0, 1) as in (6.2) and ε′ > 0, let R > 0 be large enough such that for all indices i ≥ 0,∣∣∣∣β(4n−∆hf −X · f +
(β + 1)

f
X · f

)∣∣∣∣ · |(1− χR)(Ui − U)| ≤ (‖U‖C0 + ‖Ui‖C0)
c(n, τ)

Rε
≤ ε′

2
,

2|X · ((1− χR)(U − Ui))| ≤ c(n, τ)
‖X · (U − Ui)‖C0

1

R
+ 2|X · χR| (‖U‖C0 + ‖Ui‖C0) ≤ c(n, τ)

R
≤ ε′

2
.

Here we have used Lemma 6.4. Similar estimates also hold true for the corresponding α-semi-norms

by increasing R if necessary. For such an R > 0, observe that limi→+∞ ‖χR(U − Ui)‖C0, 2α
X

=

limi→+∞ ‖χR(U − Ui)‖C0, 2α
loc

= 0. This concludes the case k = 0. �

Claims 8.2 and 8.3 show that the operator

∆τ +
X

2
· : C2k+2, 2α

X, β (M)→ C2k, 2α
X, β+1(M)

is Fredholm of index 0. Since this operator is also injective by the maximum principle, the isomor-

phism property follows. �

8.3. Small perturbations of steady gradient Kähler-Ricci solitons: polynomial case. In

this section we show, using the implicit function theorem, that the invertibility of the drift Laplacian

allows for small perturbations in polynomially weighted function spaces of solutions to the complex

Monge-Ampère equation that concerns us. The precise statement that we prove is the following.
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Theorem 8.4. Let F0 ∈ C∞X,β+1(M) for some β > 0 and let ψ0 ∈ M∞X,β(M) be a solution of the

complex Monge-Ampère equation

log

(
τnψ0

τn

)
+
X

2
· ψ0 = F0.

Then for α ∈
(
0, 1

2

)
, there exists a neighbourhood UF0 ⊂ C

2, 2α
X, β+1(M) of F0 such that for all F ∈ UF0,

there exists a unique function ψ ∈M4, 2α
X, β (M) such that

log

(
τnψ
τn

)
+
X

2
· ψ = F. (8.2)

Remark 8.5. Theorem 8.4 does not assume any finite regularity on the data (ψ0, F0) in the relevant

function spaces; see Remark 6.9.

Proof of Theorem 8.4. In order to apply the implicit function theorem for Banach spaces, we must

reformulate the statement of Theorem 8.4 in terms of the map MAτ introduced formally at the

beginning of Section 6.3. To this end, consider the mapping

M̃Aτψ0 : (ϕ,G) ∈M4, 2α
X, β (M)× C2, 2α

X, β+1(M)

7→ log

(
τnψ0+ϕ

τn

)
+
X

2
· (ψ0 + ϕ)−G− F0 ∈ C2, 2α

X, β+1(M), α ∈
(

0,
1

2

)
.

Notice that the function spaces can be defined either by using the metric h or hsψ0 for any s ∈ [0, 1].

To see that M̃Aτψ0 is well-defined, apply the Taylor expansion (6.6) to the background metric τψ0

to obtain

M̃Aτψ0 (ϕ,G) = log

(
τnψ0+ϕ

τnψ0

)
+
X

2
· ϕ−G

= ∆τψ0
ϕ+

X

2
· ϕ−G−

∫ 1

0

∫ u

0
|∂∂̄ϕ|2hs(ψ0+ϕ) ds du.

(8.3)

Then by the very definition of C4, 2α
X, β (M), the first three terms of the last line of (8.3) lie in

C2, 2α
X, β+1(M).

Now, if S and T are tensors in C2k, 2α
X, γ1

(M) and C2k, 2α
X,γ2

(M) respectively, with γi > 0, i = 1, 2, then

observe that S ∗ T lies in C2k, 2α
X, γ1+γ2

(M), where ∗ denotes any linear combination of contractions of

tensors with respect to the metric h. Moreover,

‖S ∗ T‖
C2k, 2α
X, γ1+γ2

≤ C(k, α)‖S‖
C2k, 2α
X, γ1

· ‖T‖
C2k, 2α
X, γ2

. (8.4)

Notice that

|∂∂̄ϕ|2hs(ψ0+ϕ) = h−1
s(ψ0+ϕ) ∗ (∇h) 2ϕ ∗ (∇h) 2ϕ

and that

h−1
s(ψ0+ϕ) − h

−1 ∈ C2, 2α
X, β+1(M).

Thus, applying (8.4) twice to S = T = (∇h)2ϕ and to the inverse h−1
s(ψ0+ϕ) with weights γ1 = γ2 =

β + 1 and k = 1, one finds that |∂∂̄ϕ|2hs(ψ0+ϕ) ∈ C
2, 2α
X, 2β+2(M) ⊂ C2, 2α

X, β+1(M) for each s ∈ [0, 1] and

that ∥∥∥∥∫ 1

0

∫ u

0
|∂∂̄ϕ|2hs(ψ0+ϕ) ds du

∥∥∥∥
C2, 2α
X, β+1

≤ C
(
k, α, h, ‖ψ0‖C2, 2α

X, β

)
‖ϕ‖

C4, 2α
X, β

,

so long as ‖ϕ‖
C4, 2α
X, β
≤ 1. Finally, the JX-invariance of the right-hand side of (8.3) is clear.

By definition, M̃Aτψ0 (ϕ, F − F0) = 0 if and only if ψ0 + ϕ is a solution of (8.2) with data F . By

(6.6), we have that

D1
(0, 0)M̃Aτψ0 (ψ) := D(0, 0)M̃Aτψ0 ((ψ, 0)) = ∆τϕ0

ψ +
X

2
· ψ for ψ ∈ C4, 2α

X, β (M).
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Hence, after applying Theorem 8.1 to the background metric τψ0 in place of τ , we conclude that

D1
(0, 0)M̃Aτψ0 is an isomorphism of Banach spaces. The result now follows by applying the implicit

function theorem to the map M̃Aτψ0 in a neighbourhood of (0, 0) ∈M4, 2α
X, β (M)× C2, 2α

X, β+1(M). �

8.4. Surjectivity of the drift Laplacian. We next show that the drift Laplacian of τ is surjective

on the space of functions that decay polynomially. This result is required in order to prove uniqueness

in each Kähler class of the steady gradient Kähler-Ricci solitons that we construct.

Theorem 8.6. There exists a finite set F ⊂
(
0, 1

2

)
such that for all β ∈ (0, 1)\F , the drift Laplacian

∆τ +
X

2
· : C∞X,β−1(M)→ C∞X,β(M),

is surjective.

Proof. Let Q ∈ C∞X,β(M) be fixed once and for all. In order to find a JX-invariant solution u to

∆hu+X ·u = Q that grows at most like f1−β , we first solve the corresponding equation with respect

to ĝ outside of a compact subset of M which we henceforth identify with the end of C0 via π. To this

end, we invoke the spectral decomposition of the basic Laplacian ∆B acting on L2
B(S), the space of

basic L2-integrable functions defined on the link S of the cone C0, which exists by virtue of [PR96,

Proposition 3.1]. Let (φBi )i≥ 0 denote a complete orthonormal basis of smooth eigenfunctions of ∆B

in L2
B(S) and let (λBi )i≥ 0 denote the corresponding eigenvalues with λBi ≥ λBj for i ≥ j. Then we

have that −∆Bφ
B
i = λBi φ

B
i for each i ≥ 0, λB0 = 0, λBi → +∞ as i → +∞, and φB0 = 1, this last

equality following from the fact that on Sasaki manifolds, the basic Laplacian coincides with the

Laplacian acting on basic functions [PR96]. Moreover, as the cone is Ricci-flat, we can assert from

[LR02] that λB1 ≥ 2n
(

1 + 1
2n−3

)
.

We seek a JX-invariant solution of the equation

∆ĝũ+X · ũ = Q

of the form ũ(t, ·) :=
∑

i≥ 0 ui(t) · φBi on the end {t ≥ 1} of C0 say. When a solution of this form

exists, it is clear that it is JX-invariant. Thanks to (6.1), one can decompose this PDE into an

infinite system of second order linear ODEs on {t ≥ 1}, namely

4∂2
t ui +

(
4n+

4(n− 1)

t

)
∂tui −

λBi
t
ui = n ·Qi, ui(t) = O

(
t1−β

)
,

Qi(t) :=

∫
S
Q(t, ·)φBi dµgS , i ≥ 0

with gS the metric on S and dµgS the associated volume form. As one shall see, in order to solve

this system, it suffices to solve the following infinite system of first order linear ODEs which have

the added advantage of being more explicit in terms of the data Q:

4n∂tui −
λBi
t
ui = n ·Qi, ui(t) = O

(
t1−β

)
,

Qi(t) :=

∫
S
Q(t, ·)φBi dµgS , i ≥ 0.

(8.5)

The solution of this latter system depends on the sign of 1 − β − λBi
4n and indeed, is given by

ui(t) :=
1

4
t
λBi
4n

∫ t

1
Qi(s) · s−

λBi
4n ds if 1− β − λBi

4n
> 0,

ui(t) := −1

4
t
λBi
4n

∫ +∞

t
Qi(s) · s−

λBi
4n ds if 1− β − λBi

4n
< 0.

(8.6)

When 1− β − λBi
4n > 0, the solutions ui(t) are defined up to a solution of the homogeneous equation

corresponding to (8.5). By our lower bound on λB1 , we know that 1−β− λBi
4n < 1

2 . Hence, the critical
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case 1− β − λBi
4n = 0 can be avoided by only considering positive β lying outside some finite subset

F of
(
0, 1

2

)
, namely those β ∈

(
0, 1

2

)
with β = 1− λBi

4n for some λBi of which there are only finitely

many as λBi → +∞ as i→ +∞.

Working with β ∈ (0, 1)\F , we next investigate the common properties of the functions ui, i ≥ 0,

beginning with the following estimate.

Claim 8.7. For all j, k ≥ 0, there exists a positive constant Cj, k such that

|∂jt ui| ≤ Cj, k(λBi )−kt1−β−j for all j ≥ 0 and t ≥ 1. (8.7)

Proof. By induction on j ≥ 0, it is straightforward to check that |∂jt ui| ≤ Cjt
1−β−j for all j ≥ 0

using (8.5) and the fact that L(j)
X Q = O(t−β−j) for all j ≥ 0 by assumption. Let us show that (8.7)

holds true for j = 0. For this, it suffices to prove this estimate for all indices i with 1− β − λBi
4n < 0.

To this end, using (8.5) and the fact that ∆
(k)
B φBi = (−λBi )kφBi for all k ≥ 0, we derive the following

estimate on the Fourier coefficients of Q:

|Qi(t)| =
∣∣∣∣(−λBi )−k

∫
S

∆(k)
gS
Q(t, ·)φBi dµgS

∣∣∣∣
≤ (λBi )−k‖∆(k)

gS
Q(t, ·)‖C0(S)‖φBi ‖L2

B(S) volgS (S)

≤ Ck(λBi )−kt−β ,

(8.8)

where we have used the fact that ‖φBi ‖L2(S) = 1 and ∆
(k)
tgS
Q(t, ·) = t−k∆

(k)
gS Q(t, ·) = O(t−k−β) for

all k ≥ 0. Plugging (8.8) into (8.6) now yields the desired conclusion for j = 0.

One can similarly show that |∂jtQi(t)| ≤ Cj, k(λ
B
i )−kt−β−j for all j ≥ 1 and k ≥ 0. The higher

order estimates (8.7) for j ≥ 1 can be proved by induction by repeatedly using the ODE (8.5)

satisfied by ui. �

Claim 8.7 together with a version of Weyl’s law for the spectrum of ∆B on L2
B(S) [PR96, Propos-

tion 3.4] asserting that λBi ≥ Ci
2

2n−1 for some positive constant C independent of i, imply that the

function ũ =
∑

i≥ 0 ui ·φBi is a genuine JX-invariant smooth function defined on the complement of

a compact subset K of M and lying in C∞X,β−1(M \K). Moreover, by construction, each ui, i ≥ 0,

satisfies the following second order linear ODE:

∆ĝui +X · ui =
4

n
∂2
t ui +

(
4 +

4(n− 1)

nt

)
∂tui −

λBi
nt
ui

=
4

n
∂2
t ui +

4(n− 1)

nt
∂tui + 4∂tui −

λBi
nt
ui

=
1

n
∂t

(
λBi
nt
ui +Qi

)
+

(n− 1)

nt

(
λBi
nt
ui +Qi

)
+Qi

=: Qi +Ri,

where the remainder term Ri lies in C∞X, 1+β(M). Consequently, after writing R :=
∑

i≥ 0Ri · φBi ,

we see that R ∈ C∞X, 1+β(M \K) and that ũ satisfies the PDE:

∆hũ+X · ũ = Q+ (∆h −∆ĝ) ũ+R︸ ︷︷ ︸
∈ C∞

X,min{1+β, β+ε}(M \K)

on M \K.
(8.9)

Here we have used (6.2), i.e., ĝ − h ∈ C∞X, ε(M) for some given ε ∈ (0, 1).

Now, after localizing ũ with the help of a JX-invariant smooth function equal to 1 outside a

sufficiently large compact subset of M , we end up with a function defined on M which we still

denote by ũ satisfying an equation of the same type as (8.9). More precisely, ũ satisfies

∆hũ+X · ũ = Q+ R̃
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for some R̃ ∈ C∞X,min{1+β, β+ε}(M).

If β+ε > 1, then Theorem 8.1 asserts that ∆hṽ+X·ṽ = −R̃ for some function ṽ ∈ C2k+2, 2α
X,min{β, β+ε−1}(M).

Since R̃ ∈ C∞X,min{1+β, β+ε}(M), injectivity of the drift Laplacian between C2k+2, 2α
X, β (M) and C2k, 2α

X, β+1(M)

for β > 0 implies that ṽ ∈ C2k+2, 2α
X,min{β, β+ε−1}(M) for every k ≥ 0, and so ṽ ∈ C∞X,min{β, β+ε−1}(M).

The function ũ+ ṽ therefore lies in C∞X,β−1(M) and solves the equation ∆hu+X · u = Q.

In the case that β + ε ≤ 1, shrink ε > 0 if necessary so that β + kε /∈ F ∪ {1} for all k ∈ N.

Then by applying the first part of this proof with data R̃ ∈ C∞X,min{1+β, β+ε}(M) in place of Q, one

can find a function ũ1 ∈ C∞β+ε−1(M) with ∆h(ũ − ũ1) + X · (ũ − ũ1) − Q ∈ C∞X,min{1+β, β+2ε}(M).

Iterating this argument a finite number of times reduces to the case β + ε > 1 which can then be

solved by invoking Theorem 8.1 as before. �

Remark 8.8. If τ in Theorem 8.6 is a complete steady gradient Kähler-Ricci soliton on M , then the

kernel of the drift Laplacian restricted to C∞X,β(M) for any β > −1 comprises only constants. This

is a direct consequence of [HZZ11, Corollary 1.4], where one only needs to assume that the function

lying in the kernel of the drift Laplacian grows sublinearly, that is, as o(t).

9. Proof of Theorem A

Let (C0, g0, J0, Ω0) be a Calabi-Yau cone of complex dimension n ≥ 2 with link S, radial function

r, and transverse Kähler form ωT . Set r2 =: et and let π : M → C0 be a crepant resolution of C0

with exceptional set E which is equivariant with respect to the real torus action on C0 generated by

J0r∂r so that the holomorphic vector field 2r∂r = 4∂t on C0 lifts to a real holomorphic vector field

X = π∗(2r∂r) on M . Let J denote the complex structure on M and recall from Proposition 2.18

that we have Cao’s one-parameter family of steady gradient Kähler-Ricci solitons ω̃a, a ≥ 0, on C0

with respective soliton potentials ϕa(t), as well as the Kähler form ω̂ = i
2∂∂̄

(
nt2

2

)
.

In this section, we use the results acquired thus far to prove Theorem A. We begin with the

existence part before moving on to uniqueness. Throughout, we identify M \E with the complement

of the apex of C0 via π.

9.1. Existence. Fix a ≥ 0 and for a given Kähler class k on M , take the Kähler form σ in k

asymptotic to ω̃a with LJXσ = 0 given by Proposition 4.3. We now add a subscript a to σ to indicate

that this Kähler form is asymptotic at infinity to ω̃a. Combining Proposition 3.2 and Lemma 4.4,

one can see from the triangle inequality that σa satisfies (6.2). Therefore by Proposition 4.5, the

problem of constructing a steady gradient Kähler-Ricci soliton in k with the desired properties can be

reformulated in terms of solving a scalar PDE on M , namely the complex Monge-Ampère equation

(4.3) which we now recall:

log

(
(σa + i∂∂̄ψ)n

σna

)
+
X

2
· ψ = F, (9.1)

where ψ and F are smooth functions invariant under the flow of JX and outside a compact subset

of M ,

F =

{
0 if n = 2 or if k is compactly supported,

− log
(

(ω̃a+p∗S(ζ))n

ω̃na

)
otherwise,

(9.2)

for ζ a basic primitive (1, 1)-form on S determined uniquely by k with pS : C0 → {r = 1} ∼= S

denoting the projection. Recall from Section 2.1.3 that ζ ∧ (ωT )n−2 = 0 and notice that, by Lemma

2.12 and the JX-invariance of σa and ψ, any steady Kähler-Ricci soliton resulting from the solution

of (9.1) is necessarily gradient. Finally, observe that the smooth proper real-valued function fa on

M defined by −σayJX = dfa and chosen such that fa ≥ 1 (which is guaranteed to exist by Lemma

6.1) differs from the soliton potential ϕa(t) of ω̃a by a constant. Indeed, to see this last point, just

note that

i∂∂̄(fa − ϕa) =
1

2
LX(σa − ω̃a) =

1

2
LXp∗S(ζ) = 0
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and LJX(fa − ϕa) = 0 and appeal to Lemma 2.4(i).

9.1.1. Compactly supported Kähler classes or n = 2. When k is a compactly supported Kähler class

or n = 2, we read from (9.2) that the function F in (9.1) is compactly supported. Since |fa − ϕa| is

bounded along the end of M , Theorem 7.1 applies and provides us with a solution of (9.1). More

precisely, Theorem 7.1 asserts the existence of a function ψ ∈ M∞X, exp(M) with LJXψ = 0 such

that ωa := σa + i∂∂̄ψ defines a steady gradient Kähler-Ricci soliton in the Kähler class k of M .

In particular, JX will be Killing for ωa and from Proposition 4.3 we see that outside a compact

subset, ωa := ω̃a + i∂∂̄ψ. The asymptotics (1.5) then follow from the fact that ψ ∈M∞X, exp(M) and

the aforementioned fact that the function fa, the exponential of which being the weight used in the

definition of M∞X, exp(M) with respect to σa, differs from ϕa(t) by a constant. The independence of

ωa from the parameter a will be shown in Section 9.1.3.

9.1.2. Non-compactly supported Kähler classes. Supressing the subscript a for the moment, when k

is not compactly supported, we see that at infinity,

F = − log

(
(ω̃ + p∗S(ζ))n

ω̃n

)
= n

ω̃n−1 ∧ p∗S(ζ)

ω̃n
+

n∑
k= 2

(
n

k

)
ω̃n−k ∧ (p∗S(ζ))k

ω̃n︸ ︷︷ ︸
∈C∞X, 2(M)

.

Now, ζ being a basic primitive (1, 1)-form on S leads to the simplification

ω̃n−1 ∧ p∗S(ζ) = (n− 1)ϕn−2ϕ′(ωT )n−2 ∧ dt
2
∧ η ∧ p∗S(ζ)

= (n− 1)ϕn−2ϕ′
dt

2
∧ η ∧ (ωT )n−2 ∧ p∗S(ζ)︸ ︷︷ ︸

= 0

,

= 0.

Consequently, the right-hand side of (9.1) lies in C∞X, 2(M). We next show, via a modification of

the Kähler form σ, that solving (9.1) can be reduced to the case where the data F is compactly

supported. This will then allow us to appeal directly to Theorem 7.1 to assert the existence of an

exponentially decaying solution of this reduced equation, thereby resulting in a solution of (9.1).

The reduction of (9.1) to an equation with data F compactly supported we now present.

Proposition 9.1. Let σ be the Kähler form from Proposition 4.3. Then for all δ ∈
(
0, 1

2

)
, there

exists a constant T = T (δ) > 0 and a smooth JX-invariant function ϕT ∈ C∞X, 1−δ(M) such that

σ + i∂∂̄ϕT > 0 and

log

((
σ + i∂∂̄ϕT

)n
σn

)
+
X

2
· ϕT = χT · F,

where χT is a smooth JX-invariant cut-off function supported on {t ≥ T}.

Proof. For α ∈
(
0, 1

2

)
fixed, Theorem 8.4 asserts that for all δ ∈ (0, 1), there exists a neighbourhood

U0 ⊂ C2, 2α
X, 2−δ(M) of the constant function 0 such that for all data G ∈ U0, there exists a unique

solution ϕ ∈ C4, 2α
X, 1−δ(M) such that σ + i∂∂̄ϕ > 0 and such that

log

((
σ + i∂∂̄ϕ

)n
σn

)
+
X

2
· ϕ = G.

We fix a cut-off function χ : M → R with |χ| ≤ 1 and

χ(x) =

{
0 if x ∈ E ∪ {y ∈M | t(y) ≤ 1},
1 if t(x) > 2,
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and define χT (x) := χ(x/T ) in the obvious way for T > 0, a constant to be determined. Then for

any δ ∈ (0, 1),

sup
M
|t2−δχT · F | ≤ sup

t(x)≥T
t2−δ|F (x)| ≤ C sup

t(x)≥T
t2−δt−2 ≤ CT−δ,

sup
M
|t

5
2
−δ∇̃(χT · F )| ≤ C sup

t(x)≥T
t
5
2
−δ
(
|χ′| |F (x)|

T
+ |∇̃F |g̃

)

≤ C

(
sup

T ≤ t≤2T
t
5
2
−δ |F (x)|

T
+ sup
t(x)≥T

t
5
2
−δ|∇̃F |g̃

)

≤ C

(
sup

T ≤ t≤2T
t
1
2
−δ 1

T
+ sup
t(x)≥T

t−δ

)
≤ CT−δ.

Continuing in this manner, one sees that ‖χT · F‖C2, 2α
X, 2−δ

= O(T−δ) so that for T sufficiently large,

one can find a unique function ϕT ∈ C4, 2α
X, 1−δ(M) with σ + i∂∂̄ϕT > 0 such that

log

((
σ + i∂∂̄ϕT

)n
σn

)
+
X

2
· ϕT = χT · F. (9.3)

In order to complete the proof of the proposition, we bootstrap the regularity of ϕT at infinity in

the following way. Assume that ϕ ∈ C2k+2, 2α
X, β (M) is a solution to (9.3) for some k ≥ 0, β > 0, and

α ∈
(
0, 1

2

)
. Then observe that ϕ is a solution of the following linear equation in disguise:

∆σϕ+
X

2
· ϕ = χT · F −

∫ 1

0

∫ u

0
|∂∂̄ϕ|2gσsϕ ds du, (9.4)

where gσsϕ is the Kähler metric associated to the Kähler form σsϕ := σ + i∂∂̄(sϕ). Applying

Theorem 8.1 to (9.4), one sees that ϕ ∈ C2(k+1)+2, 2α
X, β (M) as soon as the right-hand side of (9.4) lies

in C2k+2, 2α
X, β+1 (M). Since ϕ ∈ C2k+2, 2α

X, β (M), we deduce that i∂∂̄ϕ ∈ C2k, 2α
X, β+1(M). Arguing as in the

proof of Theorem 8.4 using (8.4), one immediately sees that the integral term on the right-hand side

of (9.4) lies in C2k, 2α
X, 2β+2(M). Now, the local estimates provided by Proposition 7.19 imply that ϕ

is bounded together with all of its derivatives on M . Standard local interpolation inequalities then

show that the integral term on the right-hand side of (9.4) lies in C2k+2, 2α
X, 2β+1−α−ε(M) for all ε > 0

sufficiently small. In particular, with β = 1− δ, δ ∈ (0, 1
2), we obtain the desired result by choosing

0 < ε ≤ β − α = 1− δ − α after recalling that χT · F ∈ C∞X, 2−δ(M). �

Proposition 9.1 allows us to finally solve (9.1).

Theorem 9.2. For all δ ∈
(
0, 1

2

)
, there exists a smooth JX-invariant solution ψ to (9.1) that has

the following decomposition:

ψ = ψ1 + ψ2,

where ψi, i = 1, 2, are smooth JX-invariant functions with ψ1 ∈ C∞X, 1−δ(M) and ψ2 ∈ C∞X, exp(M).

Proof. Fix δ ∈
(
0, 1

2

)
. Then by Proposition 9.1, there exists a smooth function ψ1 ∈ C∞X, 1−δ(M)

such that σ + i∂∂̄ψ1 > 0, LJXψ1 = 0, and such that

log

((
σ + i∂∂̄ψ1

)n
σn

)
+
X

2
· ψ1 = χTF, (9.5)
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where χT is a smooth JX-invariant cut-off function supported on {t ≥ T}. Setting σψ := σ + i∂∂̄ψ

and using (9.5), we rewrite (9.1) as

log

(
σnψ
σn

)
+
X

2
· ψ = χT · F + (1− χT ) · F

= log

((
σ + i∂∂̄ψ1

)n
σn

)
+
X

2
· ψ1 + (1− χT ) · F,

which leads to the reduced equation

log

((
σψ1 + i∂∂̄ϕ

)n
σnψ1

)
+
X

2
· ϕ = (1− χT ) · F︸ ︷︷ ︸

compactly supported

, ϕ := ψ − ψ1, (9.6)

where σψ1 := σ + i∂∂̄ψ1. Now, since ψ1 ∈ C∞X, 1−δ(M), the asymptotics (7.1) hold true, and akin

to (7.6), we have that −σψ1yJX = d
(
fa + X

2 · ψ1

)
. After noting in addition that fa + X

2 · ψ1 =

ϕa(t) + O(1), we see that Theorem 7.1 applies with τ = σψ1 and data (1 − χT ) · F . This yields a

solution ψ2 ∈ C∞X, exp(M) of (9.6). With this, we conclude the proof of Theorem 9.2. �

Restoring now the subscript a to σ, let δ ∈
(
0, 1

2

)
and for this particular choice of δ, let ψδ

denote the solution of (9.1) given by Theorem 9.2 for σa. Write ωδ, a := σa + i∂∂̄ψδ. Then ωδ, a is a

steady gradient Kähler-Ricci soliton in k with soliton vector field X which, by virtue of Proposition

4.3(iii) and the fact that ψδ ∈ C∞X, 1−δ(M), satisfies (1.4) with ε = δ, and correspondingly (1.3) by

Proposition 3.2. Moreover, the JX-invariance of ψδ implies that LJXωδ, a = 0.

9.1.3. Independence of the parameters. All that remains to show is that ωδ, a ∈ k (respectively ωa ∈ k)

is independent of δ and a (resp. a). This will then allow us to set ω := ωδ, a (resp. ω := ωa), resulting

in the steady gradient Kähler-Ricci soliton ω of Theorem A with the desired properties. We prove

this for ωδ, a only. The proof for ωa is similar.

To this end, consider the Kähler forms ω1 := ωδ1, a1 and ω2 := ωδ2, a2 in the same Kähler class k

of M , where 0 ≤ a1 6= a2 and without loss of generality we assume that 0 < δ1 < δ2 <
1
2 . Then by

Lemma 2.11, there exists a smooth real-valued function u : M → R such that

ω2 − ω1 = i∂∂̄u. (9.7)

By averaging u over the real torus action on M induced by the torus action on C0 generated by

J0r∂r, we may assume that LJXu = 0. Now, we know from the asymptotics that

ω2 − ω1 = ω̃a2 − ω̃a1 + i∂∂̄φ = i∂∂̄(Φa2 − Φa1 + φ) (9.8)

for some φ ∈ C∞X, 1−δ1(M), where Φa(t) is the Kähler potential of ω̃a as in Proposition 2.18. On

subtracting (9.7) from (9.8), we see that at infinity

i∂∂̄(Φa2 − Φa1 + φ− u) = 0.

Set G := Φa2 − Φa1 + φ− u. Then G is a smooth real-valued pluriharmonic function on the end of

M with LJXG = 0 and so by Lemma 2.4(i) must be equal to a constant. Therefore by subtracting

a constant from u, we may assume that

u = Φa2 − Φa1 + φ (9.9)

outside a compact subset of M .

Returning now to (9.7), we deduce from Lemma 2.15 that

i∂∂̄

(
log

(
(ω1 + i∂∂̄u)n

ωn1

)
+
X

2
· u
)

= 0.
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Since LJX
(

log
(

(ω1+i∂∂̄ϕ)n

ωn1

)
+ X

2 · ϕ
)

= 0, it subsequently follows from Lemma 2.4(ii) that

log

(
(ω1 + i∂∂̄u)n

ωn1

)
+
X

2
· u = C (9.10)

for some constant C. Next recalling (9.9), we see that at infinity,

X · u = 4Φ′a2(t)− 4Φ′a1(t) +X · φ
= 4ϕa2(t)− 4ϕa1(t) +X · φ

= O

(
(log t)2

t2

)
+O(t−2+δ1)

= o(1),

where we have used Proposition 3.1 and the fact that φ ∈ C∞X, 1−δ1(M) in the penultimate line.

Moreover, we also find that at infinity,

i∂∂̄u = ω2 − ω1

= ω̃a2 − ω̃a1 + i∂∂̄ψδ2︸ ︷︷ ︸
=O(t−2+δ2)

− i∂∂̄ψδ1︸ ︷︷ ︸
=O(t−2+δ1)

= (ω̃a2 − ω̂)︸ ︷︷ ︸
=O(t−1 log(t))

+ (ω̂ − ω̃a1)︸ ︷︷ ︸
=O(t−1 log(t))

+O(t−2+δ1)

= O
(
t−1 log(t)

)
+O

(
t−2+δ1

)
= o(1),

where this time we have used Proposition 3.2 in the penultimate line. These last two observations

imply that C = 0 in (9.10) and so

log

(
(ω1 + i∂∂̄u)n

ωn1

)
+
X

2
· u = 0.

The strong maximum principle of Hopf applied to this equation (as it was for instance in [BM17,

p.13]) now implies that u is a constant. Hence ω1 = ω2, as required.

9.2. Uniqueness. In the setting of Theorem A, suppose that for some ε > 0, ν is a complete steady

gradient Kähler-Ricci soliton in the Kähler class k of M with LJXν = 0 satisfying∣∣∣∇̂i (L(j)
X (π∗ν − ω̂)

)∣∣∣
ĝ
≤ C(i, j)t−ε−

i
2
−j for all i, j ∈ N0.

With ω denoting the steady gradient Kähler-Ricci soliton in k from Theorem A, write ρν and ρω
for the Ricci form of ν and ω respectively. Throughout, we identify M and C0 at infinity using

the resolution map. We begin with the following auxiliary claim which essentially asserts that the

difference between ν and ω must be of order O(t−1).

Claim 9.3. There exists c ∈ R and a function φ ∈ C∞X, δ(M) for some δ > 0 such that

ν − ω − ci∂∂̄f = i∂∂̄φ.

Proof. By Lemma 2.11, there exists a smooth real-valued function ϕ on M such that

ν = ω + i∂∂̄ϕ

that necessarily satisfies∣∣∣∇̂k (L(j)
X (π∗(i∂∂̄ϕ))

)∣∣∣
ĝ
≤ Ckt−ε−

k
2
−j for all j, k ∈ N0.

Since LJXω = LJXν = 0, by averaging ϕ over the real torus action on M induced by the torus

action on C0 generated by J0r∂r, we can assume that LJXϕ = 0. Then from Lemma 2.15 we see
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that

0 = i∂∂̄

(
log

(
(ω + i∂∂̄ϕ)n

ωn

)
+
X

2
· ϕ
)
.

Now, LJX
(

log
(

(ω+i∂∂̄ϕ)n

ωn

)
+ X

2 · ϕ
)

= 0. Lemma 2.4(ii) therefore asserts that

log

(
(ω + i∂∂̄ϕ)n

ωn

)
+
X

2
· ϕ = 2nc

for some constant c ∈ R. In particular, we deduce that X ·ϕ = O(1) so that ϕ grows at most linearly.

Indeed, X · ϕ = 4nc + O(t−ε) and so writing γx(t) for the integral curve of X with γx(0) = x, we

find that

ϕ(γx(t)) = ϕ(x) + 4nct+O(t1−ε). (9.11)

By Lemma 2.16 and the asymptotics of ω, we know that

|X|2g + Rg = 4n,

where g is the Kähler metric associated to ω. In particular, we have that

d

dt
(f(γx(t))) = |X|2g(γx(t)) = 4n− Rg(γx(t))

so that

f(γx(t))− f(x) =

∫ t

0

d

ds
(f(γx(s))) ds

=

∫ t

0
(4n− Rg(γx(s))) ds

= 4nt−
∫ t

0
Rg(γx(s)) ds.

Solving for t and plugging into (9.11) then yields:

ϕ(γx(t))− cf(γx(t)) = ϕ(x)− cf(x) + c

∫ t

0
Rg(γx(s)) ds+O(t1−ε). (9.12)

Next consider the equation

∆ωφ0 +
X

2
· φ0 = log

(
(ω + i∂∂̄ϕ)n

ωn

)
−∆ωϕ. (9.13)

At infinity, the right-hand side of this PDE takes the form

log

(
(ω + i∂∂̄ϕ)n

ωn

)
−∆ωϕ = ∆ωϕ+

n∑
k= 2

(
n

k

)
ωn−k ∧ (i∂∂̄ϕ)k

ωn
−∆ωϕ

=

n∑
k= 2

(
n

k

)
ωn−k ∧ (i∂∂̄ϕ)k

ωn

=
(i∂∂̄ϕ)2 ∧Ψ

ωn
,

where Ψ denotes a bounded (n − 2, n − 2)-form together with its derivatives. In particular, since

i∂∂̄ϕ ∈ C∞X, δ0(M) for every δ0 ∈ (0, ε], we see that

log

(
(ω + i∂∂̄ϕ)n

ωn

)
−∆ωϕ ∈ C∞X, 2δ0(M)

for every δ0 ∈ (0, ε]. Consequently, Theorem 8.6 applies and tells us that there exists a function

φ0 ∈ C∞X,−1+2δ0
(M) solving (9.13) for every δ0 ∈ (0, min{ε, 1}) \ F for some F ⊂

(
0, 1

2

)
a fixed
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finite subset. It follows that

∆ω(ϕ+ φ0) +
X

2
· (ϕ+ φ0) = ∆ωϕ+

X

2
· ϕ+ log

(
(ω + i∂∂̄ϕ)n

ωn

)
−∆ωϕ

= log

(
(ω + i∂∂̄ϕ)n

ωn

)
+
X

2
· ϕ

= 2nc.

(9.14)

Since f satisfies ∆ωf + X
2 · f = 2n by Lemma 2.16, we deduce from (9.14) that(

∆ω +
X

2
·
)

(ϕ− cf + φ0) = 0.

Recalling now (9.12), we have that

(ϕ− cf + φ0) (γx(t)) = ϕ(x)− cf(x) + φ0(γx(t)) + c

∫ t

0
Rg(γx(s)) ds+O(t1−ε).

Since the fixed point set of X is compact so that the flow-lines of X flow into a compact set (see

[CDS19, Proposition 2.28]), and since Rg = O(t−1), we know that ϕ − cf + φ0 grows sublinearly.

As a sublinearly growing function lying in the kernel of ∆ω + X
2 , the Liouville theorem [HZZ11,

Corollary 1.4] asserts that ϕ − cf + φ0 must be equal to a constant. Thus, modifying φ0 by this

constant and setting φ1 := cf − φ0, we arrive at the fact that

ν = ω + i∂∂̄φ1,

where this time ∣∣∣∇̂k (L(j)
X (π∗(i∂∂̄φ1))

)∣∣∣
ĝ
≤ Ckt−δ1−

k
2
−j for all j, k ∈ N0

and cf −φ1 ∈ C∞X,−1+δ1
(M) for every δ1 := 2δ0 ∈ (0, min{2ε, 1}) \F . Iterating the above argument

with δ1 in place of ε, we can find a function φ2 with

ν = ω + i∂∂̄φ2,

where ∣∣∣∇̂k (L(j)
X (π∗(i∂∂̄φ2))

)∣∣∣
ĝ
≤ Ckt−δ2−

k
2
−j for all j, k ∈ N0

and cf −φ2 ∈ C∞X,−1+2δ2
(M) for every δ2 ∈ (0, min{2δ1, 1}) \F = (0, min{22ε, 1}) \F . Continuing

in this manner, we can find a function φl with

ν = ω + i∂∂̄φl,

where ∣∣∣∇̂k (L(j)
X (π∗(i∂∂̄φl))

)∣∣∣
ĝ
≤ Ckt−δl−

k
2
−j for all j, k ∈ N0

and where cf −φl ∈ C∞X,−1+2δl
(M) for every δl ∈ (0, min{2lε, 1})\F . Choosing l large enough such

that 2−l−1 < ε ≤ 2−l, we can then write

ν = ω + i∂∂̄φ

for a smooth function φ satisfying cf − φ ∈ C∞X,−1+2δl
(M) for every δl ∈

(
1
2 , 2lε

)
\ F . In particular,

cf − φ ∈ C∞X, δ(M) for some δ > 0, as desired. �

Next, let ψs denote the family of diffeomorphisms generated by the vector field X
2 with ψ0 = Id

i.e.,
∂ψs
∂s

(x) =
X(ψs(x))

2
, ψ0 = Id .

Then ω(s) := ψ∗sω, s ∈ R, defines a backward Kähler-Ricci flow on M with ω(0) = ω so that

∂sω(s) = ρω(s), where ρω(s) denotes the Ricci form of ω(s). Our next observation, contained in the

following claim, concerns the asymptotics of ω(s).
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Claim 9.4. For all s ∈ R,

ω(s)− ω ∈ C∞X, 1(M).

Proof. Let g and g(s) denote the Kähler metrics determined by ω and ω(s) respectively. It suffices

to prove that ∣∣(∇g)i(g(s)− g)
∣∣
g
≤ Ckt−1− i

2 for all i ≥ 0

and that ∣∣∣(∇g)j (L(k)
X (ω(s)− ω)

)∣∣∣
g
≤ Ckt−1− j

2
−k for all j ≥ 0 and k ≥ 1.

To this end, we proceed as in the proof of [CDS19, Theorem 3.8].

For any x ∈M , let γx(v) := ψv(x) denote the flow of X
2 with γx(0) = x. Then

|Rm(g(s))|g(s)(x) = |Rm(g)|g(γx(s))

which is bounded above by some positive constant K, and so by integrating the backward Ricci flow

equation, it follows that

e−Ksg(x) ≤ g(s)(x) ≤ eKsg(x) for all x ∈M. (9.15)

Thus, for any x ∈M \ E,

|g(s)− g|g(x) ≤
∫ s

0
|∂ug(u)|g(x) du ≤ C

∫ s

0
|Ric(g(u))|g(x) du ≤ C(s)

∫ s

0
|Ric(g(u))|g(u)(x) du

= C(s)

∫ s

0
|Ric(g)|g(γu(x)) du ≤ C(s)

∫ s

0
(t(γu(x)))−1 du,

where we have used (9.15). Now, since

∂

∂v
(t(γx(v))) = dt(X) = 4,

we have that t(γx(v)) = 4v + t(x). Hence if t(x) is larger than 8s say, so that t(γx(v)) > 0 for all

|v| ≤ s, then

|g(s)− g|g(x) ≤ C(s)

∫ s

0
(t(γu(x)))−1 du = C(s)

∫ s

0
(4v + t(x))−1 du

= C(s) ln

(
4s+ t(x)

t(x)

)
= C(s) ln

(
1 +

4s

t(x)

)
≤ Ct(x)−1.

As for the covariant derivative, we must work slightly harder. Recall that if T is a tensor on M ,

then ∇g(s)T = ∇gT + g(s)−1 ∗∇g(g(s)− g) ∗T since at the level of Christoffel symbols, one has that

Γ(g(s))kij = Γ(g)kij +
1

2
g(s)km

(
∇gi (g(s)− g)jm +∇gj (g(s)− g)im −∇gm(g(s)− g)ij

)
.
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In light of this, we have for all x ∈M \ E,

∂u
(
|∇g(g(u)− g)|2g

)
(x) ≤ C|∇g Ric(g(u))|g(x)|∇g(g(u)− g)|g(x)

≤ C
(
|∇g(u) Ric(g(u))|g(x) +

(∣∣∣(∇g −∇g(u)
)

Ric(g(u))
∣∣∣
g

(x)

))
|∇g(g(u)− g)|g(x)

≤ C
(
|∇g(u) Ric(g(u))|g(u)(x) +

(∣∣∣(∇g −∇g(u)
)

Ric(g(u))
∣∣∣
g

(x)

))
|∇g(g(u)− g)|g(x)

= C

(
|∇g Ric(g)|g(γx(u)) +

∣∣∣(∇g −∇g(u)
)

Ric(g(u))
∣∣∣
g

(x)

)
|∇g(g(u)− g)|g(x)

≤ C (|∇g Ric(g)|g(γx(u)) + |∇g(g(u)− g)|g(x)|Ric(g(u))|g(x)) |∇g(g(u)− g)|g(x)

≤ C
(
|∇g Ric(g)|g(γx(u)) + |∇g(g(u)− g)|g(x)|Ric(g(u))|g(u)(x)

)
|∇g(g(u)− g)|g(x)

≤ C (|∇g Ric(g)|g(γx(u)) + |∇g(g(u)− g)|g(x)|Ric(g)|g(γx(u))) |∇g(g(u)− g)|g(x)

≤ C (|∇g Ric(g)|g(γx(u)) + |∇g(g(u)− g)|g(x)) |∇g(g(u)− g)|g(x)

≤ C|∇g(g(u)− g)|2(x) + C|∇g Ric(g)|2g(γx(u)),

where throughout C denotes a positive constant depending on s that may vary from line to line and

where Young’s inequality has been used in the last line. This inequality may be rewritten as

∂u
(
e−Cu|∇g(g(u)− g)|2g

)
(x) ≤ Ce−Cu|∇g Ric(g)|2g(γx(u)),

which, upon integrating over [0, s], yields the fact that

e−Cs|∇g(g(s)− g)|2g(x)− |∇g(g(0)− g)|2g(x) ≤ C
∫ s

0
e−Cu|∇g Ric(g)|2g(γx(u)) du.

Since |∇g(g(0)− g)|2g(x) = 0, we deduce that

|∇g(g(s)− g)|2g(x) ≤ CeCs
∫ s

0
e−Cu|∇g Ric(g)|2g(γx(u)) du

≤ C(s)

∫ s

0
|∇g Ric(g)|2g(γx(u)) du

≤ C(s)

∫ s

0
(t(γx(u)))−3 du

≤ C(s)

∫ s

0
(4u+ t(x))−3 du

≤ C(s)

(
1

(4s+ t(x))2
− 1

t(x)2

)
≤ C(s)t(x)−3

so that

|∇g(g(s)− g)|g(x) ≤ Ct(x)−
3
2 .

The cases i ≥ 2 are proved by induction.

Next, concerning the Lie derivatives, we know that

LX(ω(s)− ω) = 2ρω(s) − 2ρω.

Since |(∇g)j(ω(s)− ω)|g = O(t−
j
2 ) for all j ≥ 0, we then find that

|(∇g)jLX(ω(s)− ω)|g = 2|(∇g)j(ρω(s) − ρω)|g = O
(
t−2− j

2

)
for all j ≥ 0.

The conclusion now follows from another induction argument using the fact that

ρω(s) − ρω = −i∂∂̄ log

(
ω(s)n

ωn

)
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so that

|(∇g)jL(k)
X (ω(s)− ω)|g ≤ C

∣∣∣∣(∇g) j+2X(k−1) · log

(
ω(s)n

ωn

)∣∣∣∣
g

for all j ≥ 0 and k ≥ 1.

�

Applying Claim 9.3 with ω(s) in place of ν, we see accordingly that there exists a constant cs
(depending on s) such that

ω(s)− ω − csi∂∂̄f = i∂∂̄φs (9.16)

for some φs ∈ C∞X, δs(M), where δs > 0. Next note:

Claim 9.5.

|ω(s)− ω − sρω|g = O
(
t−2
)
.

Proof. For any point x on the complement of the exceptional set of M , we have that

(ω(s)− ω − sρω)(x) =

∫ s

0
∂u(ω(u)− ω − uρω)(x) du

=

∫ s

0
(ρω(u) − ρω)(x) du

=

∫ s

0

∫ u

0

∂ρω(v)

∂v
(x) dv du

=

∫ s

0

∫ u

0

(
−1

2
∆ω(v)ρω(v) + Rm(ω(v)) ∗ ρω(v)

)
(x) dv du

=

∫ s

0

∫ s

v

(
−1

2
∆ω(v)ρω(v) + Rm(ω(v)) ∗ ρω(v)

)
(x) du dv

=

∫ s

0
(s− v)

(
−1

2
∆ω(v)ρω(v) + Rm(ω(v)) ∗ ρω(v)

)
(x) dv,

where ∆ω(v) denotes the usual rough Laplacian. Here, we have used the evolution equation satisfied

by the Ricci curvature ρω(s) along the (backward) Kähler-Ricci flow in the fourth line; see [BEG13,

Chapter 3, Section 3.2.6]. In particular, we obtain the bound

|ω(s)− ω − sρω|g(x) ≤
∫ s

0
|s− v|

∣∣∣∣−1

2
∆ω(v)ρω(v) + Rm(ω(v)) ∗ ρω(v)

∣∣∣∣
g

(x) dv

≤ C(s)

∫ s

0

∣∣∣∣−1

2
∆ω(v)ρω(v) + Rm(ω(v)) ∗ ρω(v)

∣∣∣∣
g

(x) dv

≤ C(s)

∫ s

0
eKv

∣∣∣∣−1

2
∆ω(v)ρω(v) + Rm(ω(v)) ∗ ρω(v)

∣∣∣∣
g(v)

(x) dv

≤ C(s)

∫ s

0

∣∣∣∣−1

2
∆ω(v)ρω(v) + Rm(ω(v)) ∗ ρω(v)

∣∣∣∣
g(v)

(x) dv

= C(s)

∫ s

0

∣∣∣∣−1

2
∆ωρω + Rm(ω) ∗ ρω

∣∣∣∣
g

(γv(x)) dv

≤ C(s)

∫ s

0
t(γv(x))−2 dv

≤ C(s)

∫ s

0
(4v + t(x))−2 dv

≤ Ct(x)−2,

as desired. �

Now on one hand, we see from (9.16) that

|s− cs||ρω|g = |s− cs||i∂∂̄f |g = |ω(s)− ω − sρω − i∂∂̄φs|g ≤ Ct−1−δs
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for some constant C > 0, whereas on the other hand, from Lemma 3.12 we see that

|ρω|g ≥ C|Rg | ≥ C| |Rg̃ |︸︷︷︸
≥Ct−1

− |Rg −Rg̃ |︸ ︷︷ ︸
≤Ct−2

| ≥ Ct−1

for another constant C > 0 and for t sufficiently large. We must therefore have cs = s, and so

ω(s) = ω + si∂∂̄f + i∂∂̄φs (9.17)

for some φs ∈ C∞X, δs(M) with δs > 0.

Finally, combining (9.17) with Claim 9.3, we conclude that

ν − ω(c) = i∂∂̄u,

where now u ∈ C∞
X, δ̂

(M) for some δ̂ > 0. After noting the JX-invariance of u, ν, and ω(c), Lemma

2.15 followed by an application of Lemma 2.4(ii) yields the equation

log

(
(ω(c) + i∂∂̄u)n

ω(c)n

)
+
X

2
· u = C

satisfied by u for some constant C. Since u ∈ C∞
X, δ̂

(M), C must be equal to zero. The strong

maximum principle of Hopf now implies that u is a constant so that ν = ω(c) for some c ∈ R, as

required.
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Appendix A. The model metric ĝ

Let (C0, g0) be a Calabi-Yau cone of complex dimension n ≥ 2 with link S, radial function r,

complex structure J0, transverse metric gT , and set η = dc log(r) and r2 = et. We define a Kähler

form ω̂ on C0 by

ω̂ :=
i

2
∂∂̄

(
nt2

2

)
.

One can check that the corresponding Kähler metric ĝ on C0 takes the form

ĝ := n

(
1

4
dt2 + η2 + tgT

)
.

We denote the Levi-Civita connection of ĝ by ∇̂. In this appendix, we analyse how the norm and

covariant derivatives measured with respect to ĝ of various tensors behave as t→ +∞.

Let θ1, . . . , θ2n−2 be a local basic orthonormal coframe of gT on S with θi ◦ J0 = −θi+1 for i odd

and let (ωij)1≤ i, j≤ 2n−2 denote the matrix of connection one-forms of gT . Then each ωij is a basic

one-form on S and (ωij) solves the Cartan structure equations{
dθi =

∑2n−2
j= 1 ωji ∧ θj

ωij + ωji = 0.

Next set

θ̂i :=
√
ntθi for i = 1, . . . , 2n− 2, θ̂2n−1 :=

√
n

2
dt, and θ̂2n := η

√
n.

The matrix of connection one-forms (ω̂ij)1≤ i, j≤ 2n of ĝ with respect to this coframe is given by

ω̂ji =

{
ωji + δj, i+1

1
t
√
n
θ̂2n, 1 ≤ i ≤ 2n− 2 odd, 1 ≤ j ≤ 2n− 2,

ωji − δj, i−1
1
t
√
n
θ̂2n, 1 ≤ i ≤ 2n− 2 even, 1 ≤ j ≤ 2n− 2,

ω̂2n−1, i = − 1

t
√
n
θ̂i, 1 ≤ i ≤ 2n− 2,

ω̂2n−1, 2n = 0,

ω̂2n, i =

{
1
t
√
n
θ̂i+1, 1 ≤ i ≤ 2n− 2 odd,

− 1
t
√
n
θ̂i−1, 1 ≤ i ≤ 2n− 2 even.

With i = 1, . . . , 2n− 2, we have the expressions

∇̂θ̂i =

2n∑
k= 1

ω̂ki ⊗ θ̂k =

2n−2∑
k= 1

(
ωki ± δk, i+1

1

t
√
n
θ̂2n

)
⊗ θ̂k −

1

t
√
n
θ̂i ⊗ θ̂2n−1 ±

1

t
√
n
θ̂i±1 ⊗ θ̂2n,

∇̂θ̂2n−1 =
2n∑
k= 1

ω̂k, 2n−1 ⊗ θ̂k =
2n−2∑
k= 1

1

t
√
n
θ̂k ⊗ θ̂k,

∇̂θ̂2n =

2n∑
k= 1

ω̂k, 2n ⊗ θ̂k =

2n−2∑
k= 1

± 1

t
√
n
θ̂k±1 ⊗ θ̂k,

(A.1)

where throughout it is understood that i± 1, k ± 1 ∈ {1, . . . , 2n− 2}.
Let ζ be any basic one-form on S. Then we may write

ζ =
2n−2∑
k= 1

fkθk
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for some basic functions fk on S as {θi}2n−2
i= 1 has been chosen to be a basic orthonormal coframe of

gT . It is then easy to see that

ζ =
2n−2∑
k= 1

fk√
nt
θ̂k

so that

|ζ|ĝ = O
(
t−

1
2

)
.

This in turn implies that

|∇̂θ̂i|ĝ = O
(
t−

1
2

)
for 1 ≤ i ≤ 2n− 2. (A.2)

Next, from (A.1) it is clear that

∇̂ζ =
2n−2∑
k= 1

(
1√
nt
dfk ⊗ θ̂k −

fk

2
√
nt

3
2

dt⊗ θ̂k +
fk√
nt
∇̂θ̂k

)

=
1√
nt

2n−2∑
k= 1

(
dfk ⊗ θ̂k −

fk√
nt
θ̂2n−1 ⊗ θ̂k + fk∇̂θ̂k

)
.

(A.3)

Since the exterior derivative of a basic function is basic, we know that

|dfj |ĝ = O
(
t−

1
2

)
.

Consequently, in light of (A.2), we must have that

|∇̂ζ|ĝ = O
(
t−1
)
.

By inspection it is also clear that

|∇̂θ̂2n−1|ĝ = O
(
t−1
)
,

|∇̂θ̂2n|ĝ = O
(
t−1
)
,

|∇̂k(t−1)|ĝ = O
(
t−1−k

)
for k = 0, 1, 2.

Collecting all of these estimates together, in summary we have that

|∇̂k(t−1)|ĝ = O
(
t−1−k

)
for k = 0, 1, 2,

|∇̂kζ|ĝ = O
(
t−

1
2
− k

2

)
for k = 0, 1,

|∇̂θ̂i|ĝ = O
(
t−

1
2

)
for 1 ≤ i ≤ 2n− 2,

|∇̂θ̂2n−1|ĝ = O
(
t−1
)
,

|∇̂θ̂2n|ĝ = O
(
t−1
)
.

(A.4)

We now derive the following estimates.

Proposition A.1. In the above situation, the following holds true:

|∇̂1+k(t−1)|ĝ = O
(
t−3− (k−1)

2

)
for all k ≥ 1,

|∇̂kζ|ĝ = O
(
t−

1
2
− k

2

)
for any basic one-form ζ on S,

|∇̂kθ̂i|ĝ = O
(
t−

k
2

)
for 1 ≤ i ≤ 2n− 2 and for all k ≥ 1,

|∇̂kθ̂2n−1|ĝ = O
(
t−1− (k−1)

2

)
for all k ≥ 1,

|∇̂kθ̂2n|ĝ = O
(
t−1− (k−1)

2

)
for all k ≥ 1.
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Proof. We will prove the proposition by induction, where our induction hypothesis P (m) is that for

every 1 ≤ k ≤ m,

|∇̂1+k(t−1)|ĝ = O
(
t−3− (k−1)

2

)
,

|∇̂kζ|ĝ = O
(
t−

1
2
− k

2

)
for any basic one-form ζ on S,

|∇̂kθ̂i|ĝ = O
(
t−

k
2

)
,

|∇̂kθ̂2n−1|ĝ = O
(
t−1− (k−1)

2

)
,

|∇̂kθ̂2n|ĝ = O
(
t−1− (k−1)

2

)
.

P (1) is true by virtue of (A.4). So assume that P (m) holds true for some m ≥ 1. Then beginning

with θ̂2n−1, we have that

|∇̂m+1θ̂2n−1|ĝ ≤ C
∑

i+j+k=m
1≤ l≤ 2n−2

|∇̂i(t−1)|ĝ |∇̂j θ̂l|ĝ|∇̂kθ̂l|ĝ︸ ︷︷ ︸
=O

(
t−

(j+k)
2

)

≤ C
m∑
i= 0

t−
(m−i)

2 |∇̂i(t−1)|ĝ

≤ Ct−
m
2

(
t−1 + t

1
2 t−2 +

m∑
i= 2

t
i
2 |∇̂i(t−1)|ĝ︸ ︷︷ ︸

=O

(
t−3− (i−2)

2

)
)

≤ Ct−
m
2

(
t−1 + t−

3
2 + t−2

)
≤ Ct−1−m

2 .

(A.5)

In a similar fashion, one can show that |∇̂m+1θ̂2n|ĝ ≤ Ct−1−m
2 .
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Next, we consider the covariant derivatives of t−1. We have just shown that

|∇̂m+1θ̂2n−1|ĝ ≤ Ct−1−m
2 . Using this together with P (m), we compute that

|∇̂m+2(t−1)|ĝ ≤ C|∇̂m+1((t−1)2θ̂2n−1)|ĝ

≤ C
∑

i+j+k=m+1

|∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ|∇̂kθ̂2n−1|ĝ

≤ C

( ∑
i+j=m+1

|∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ|θ̂2n−1|ĝ +
∑

i+j+k=m+1
k≥ 1

|∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ |∇̂kθ̂2n−1|ĝ︸ ︷︷ ︸
=O

(
t−1− (k−1)

2

)
)

≤ C

( ∑
i+j=m+1

|∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ +
∑

i+j+k=m+1
k≥ 1

t−1− (k−1)
2 |∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ

)

≤ C

( ∑
i+j=m+1

|∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ + t−1−m
2

∑
0≤ i+j≤m

t
i+j
2 |∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ

)

≤ C

( ∑
i+j=m+1

i≤ j

|∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ + t−1−m
2

∑
0≤ i+j≤m

i≤ j

t
i+j
2 |∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ

)

≤ C

(
t−1|∇̂m+1(t−1)|ĝ + |∇̂(t−1)|ĝ|∇̂m(t−1)|ĝ +

∑
i+j=m+1

2≤ i≤j

|∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ︸ ︷︷ ︸
=O

(
t−4− (m+1)

2

)

+ t−1−m
2

(
t−2 + t

1
2 |∇̂(t−1)|ĝt−1 + t|∇̂2(t−1)|ĝt−1 + t|∇̂(t−1)|2ĝ

+
∑

3≤ i+j≤m
i≤ j

t
i+j
2 |∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ

))

≤ C

(
t−

7
2
−m

2 + t−2|∇̂m(t−1)|ĝ︸ ︷︷ ︸
=O

(
t−4−m2

) +t−
9
2
−m

2 + t−1−m
2

(
t−2 + t−

5
2 + t−3

+
∑

3≤ i+j≤m
i≤ j

t
i+j
2 |∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ

))

≤ C

(
t−3−m

2 + t−1−m
2

( ∑
3≤ i+j≤m

i≤ j

t
i+j
2 |∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ

))

≤ C

(
t−3−m

2 + t−1−m
2

( ∑
3≤ j≤m

0≤ j

t
j
2 t−1|∇̂j(t−1)|ĝ

︸ ︷︷ ︸
=O(t−3)

+
∑

3≤ 1+j≤m
1≤ j

t
1+j
2 |∇̂(t−1)|ĝ|∇̂j(t−1)|ĝ

︸ ︷︷ ︸
=O

(
t−

7
2

)

+
∑

3≤ i+j≤m
2≤ i≤ j

t
i+j
2 |∇̂i(t−1)|ĝ|∇̂j(t−1)|ĝ

︸ ︷︷ ︸
=O(t−4)

))

≤ Ct−3−m
2 .
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As for θ̂i with 1 ≤ i ≤ 2n− 2, we find that

|∇̂m+1θ̂i|ĝ ≤ C

( ∑
p+q=m

1≤ k≤ 2n−2

|∇̂pωik|ĝ|∇̂q θ̂k|ĝ︸ ︷︷ ︸
=O

(
t−

1
2−

m
2

) +
∑

p+q+r=m
1≤ k≤ 2n−2

|∇̂p(t−1)|ĝ|∇̂q θ̂2n|ĝ|∇̂rθ̂k|ĝ

+
∑

p+q+r=m

|∇̂p(t−1)|ĝ|∇̂q θ̂2n−1|ĝ|∇̂rθ̂i|ĝ +
∑

p+q+r=m

|∇̂p(t−1)|ĝ|∇̂q θ̂2n|ĝ|∇̂rθ̂i±1|ĝ

)

≤ C

(
t−

1
2
−m

2 +
2n∑

l= 2n−1

( ∑
p+q+r=m

|∇̂p(t−1)|ĝt−
r
2 |∇̂q θ̂l|ĝ

))

≤ C

(
t−

1
2
−m

2 +
∑

p+r=m

|∇̂p(t−1)|ĝt−
r
2 +

2n∑
l= 2n−1

( ∑
p+q+r=m

q≥ 1

|∇̂p(t−1)|ĝt−
r
2 |∇̂q θ̂l|ĝ

))

≤ C

(
t−

1
2
−m

2 +

m∑
p= 0

|∇̂p(t−1)|ĝt−
(m−p)

2 +
∑

p+q+r=m
q≥ 1

|∇̂p(t−1)|ĝt−
r
2 t−1− (q−1)

2

)

≤ C

(
t−

1
2
−m

2 +

m∑
p= 0

|∇̂p(t−1)|ĝt−
(m−p)

2 + t−
1
2

∑
p+q+r=m

q≥ 1

t−
(q+r)

2 |∇̂p(t−1)|ĝ

)

≤ C

(
t−

1
2
−m

2 +
m∑
p= 0

|∇̂p(t−1)|ĝt−
(m−p)

2 + t−
1
2

m∑
k= 1

∑
p=m−k

t−
k
2 |∇̂p(t−1)|ĝ

)

≤ C

(
t−

1
2
−m

2 +
m∑
p= 0

|∇̂p(t−1)|ĝt−
(m−p)

2 + t−
1
2

m∑
k= 1

t−
k
2 |∇̂m−k(t−1)|ĝ

)

≤ C

(
t−

1
2
−m

2 +

m∑
p= 0

|∇̂p(t−1)|ĝt−
(m−p)

2 + t−
1
2

m−1∑
p= 0

t−
(m−p)

2 |∇̂p(t−1)|ĝ

)

≤ C

(
t−

1
2
−m

2 +
m∑
p= 0

|∇̂p(t−1)|ĝt−
(m−p)

2

︸ ︷︷ ︸
=O

(
t−1−m2

)
as in (A.5)

)

≤ Ct−
1
2
−m

2 = Ct−
(m+1)

2 .

Finally, we consider a basic one-form ζ =
∑2n−2

k= 1 fkθk on S, where {fk} are basic functions. First

note that by inspection it is clear that

|∇̂k(t−
1
2 )|ĝ = O

(
t−

1
2
−k
)

for 0 ≤ k ≤ 2,

and since

||2t−
1
2 ∇̂k(t−

1
2 )|ĝ − |∇̂k(t−1)|ĝ| = ||2t−

1
2 ∇̂k(t−

1
2 )|ĝ − |∇̂k(t−

1
2 t−

1
2 )|ĝ|

≤ |2t−
1
2 ∇̂k(t−

1
2 )− ∇̂k(t−

1
2 t−

1
2 )|ĝ

≤
∑

p+q= k
p, q≤ k−1

|∇̂p(t−
1
2 )|ĝ|∇̂q(t−

1
2 )|ĝ
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so that

t
1
2

(
−|∇̂k(t−1)|ĝ +

∑
p+q= k
p, q≤ k−1

|∇̂p(t−
1
2 )|ĝ|∇̂q(t−

1
2 )|ĝ

)
≤ 2|∇̂k(t−

1
2 )|ĝ

≤ t
1
2

(
|∇̂k(t−1)|ĝ +

∑
p+q= k
p, q≤ k−1

|∇̂p(t−
1
2 )|ĝ|∇̂q(t−

1
2 )|ĝ

)
,

an induction argument assuming P (m) shows that

|∇̂1+k(t−
1
2 )|ĝ = O

(
t−

5
2
− (k−1)

2

)
for all 1 ≤ k ≤ m.

Using this together with (A.3) and the fact that each dfk is basic and that |∇̂m+1θ̂i|ĝ ≤ Ct−
(m+1)

2

for 1 ≤ i ≤ 2n− 2, we derive the following estimate:

|∇̂m+1ζ|ĝ ≤ C

( ∑
p+q+r=m

1≤ k≤ 2n−2

|∇̂p(t−
1
2 )|ĝ |∇̂qdfk|ĝ|∇̂rθ̂k|ĝ︸ ︷︷ ︸

=O

(
t−

1
2−

(q+r)
2

)
+

∑
p+q+r+s+l=m

1≤ k≤ 2n−2

|∇̂p(t−
1
2 )|ĝ |∇̂qfk|ĝ|∇̂rθ̂k|ĝ︸ ︷︷ ︸

=O

(
t−

(q+r)
2

) |∇̂
s(t−1)|ĝ|∇̂lθ̂2n−1|ĝ

+
∑

p+q+r=m
1≤ k≤ 2n−2

|∇̂p(t−
1
2 )|ĝ |∇̂qfk|ĝ|∇̂r+1θ̂k|ĝ︸ ︷︷ ︸

=O

(
t−

(q+r+1)
2

)
)

≤ C

( ∑
p+q+r+s+l=m

t−
(q+r)

2 |∇̂p(t−
1
2 )|ĝ|∇̂s(t−1)|ĝ|∇̂lθ̂2n−1|ĝ

+ t−
1
2 t−

(m+1)
2 + |∇̂(t−

1
2 )|ĝt−

m
2 +

∑
p+q+r=m

p≥ 2

t−
(q+r+1)

2 |∇̂p(t−
1
2 )|ĝ︸ ︷︷ ︸

=O

(
t−

5
2−

(p−2)
2

)
)

≤ C

( ∑
p+q+r+s+l=m

t−
(q+r)

2 |∇̂p(t−
1
2 )|ĝ|∇̂s(t−1)|ĝ|∇̂lθ̂2n−1|ĝ + t−1−m

2 + t−
3
2
−m

2 + t−2−m
2

)

≤ C

(
t−1−m

2 +
∑

p+q+r+s+l=m

t−
(q+r)

2 |∇̂p(t−
1
2 )|ĝ|∇̂s(t−1)|ĝ|∇̂lθ̂2n−1|ĝ

)
.
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Now, the sum in this last expression can be estimated as follows:∑
p+q+r+s+l=m

t−
(q+r)

2 |∇̂p(t−
1
2 )|ĝ|∇̂s(t−1)|ĝ|∇̂lθ̂2n−1|ĝ

≤ C

( ∑
p+q+r+s=m

t−
(q+r)

2 |∇̂p(t−
1
2 )|ĝ|∇̂s(t−1)|ĝ +

∑
p+q+r+s+l=m

l≥ 1

t−
(q+r)

2 |∇̂p(t−
1
2 )|ĝ|∇̂s(t−1)|ĝ |∇̂lθ̂2n−1|ĝ︸ ︷︷ ︸

=O

(
t−1− (l−1)

2

)
)

≤ C

( ∑
p+q+r+s=m

t−
(q+r)

2 |∇̂p(t−
1
2 )|ĝ|∇̂s(t−1)|ĝ + t−

1
2

∑
p+q+r+s+l=m

l≥ 1

t−
(l+q+r)

2 |∇̂p(t−
1
2 )|ĝ|∇̂s(t−1)|ĝ

)

≤ C

(
m∑
k= 0

∑
p+s=m−k

t−
k
2 |∇̂p(t−

1
2 )|ĝ|∇̂s(t−1)|ĝ + t−

1
2

m∑
k= 1

∑
p+s=m−k

t−
k
2 |∇̂p(t−

1
2 )|ĝ|∇̂s(t−1)|ĝ

)

≤ C

(
m∑
k= 0

∑
p+s=m−k

t−
k
2 |∇̂p(t−

1
2 )|ĝ|∇̂s(t−1)|ĝ

)

≤ C

(
m∑
r= 0

∑
p+s= r

t−
(m−r)

2 |∇̂p(t−
1
2 )|ĝ|∇̂s(t−1)|ĝ

)

≤ Ct−
m
2

(
t−

1
2 t−1 + t

1
2 t−

5
2 + t−

7
2 t+

m∑
r= 3

∑
p+s= r

t
r
2 |∇̂p(t−

1
2 )|ĝ|∇̂s(t−1)|ĝ

)

≤ Ct−
m
2

(
t−

3
2 +

m∑
r= 3

∑
s= r

t
r
2 t−

1
2 |∇̂s(t−1)|ĝ︸ ︷︷ ︸

=O

(
t−

5
2+

(r−s)
2

) +
m∑
r= 3

∑
1+s= r

t
r
2 |∇̂(t−

1
2 )|ĝ|∇̂s(t−1)|ĝ︸ ︷︷ ︸

=O

(
t
− 7

2+
(r−s)

2

)

+

m∑
r= 3

∑
p+s= r
p≥ 2

t
r
2 |∇̂p(t−

1
2 )|ĝ|∇̂s(t−1)|ĝ

)

≤ Ct−
m
2

(
t−

3
2 + t−

5
2 + t−3 +

m∑
r= 3

∑
p= r
p≥ 2

t
r
2 |∇̂p(t−

1
2 )|ĝt−1︸ ︷︷ ︸

=O

(
t−

5
2+

(r−p)
2

) +

m∑
r= 3

∑
p+1 = r
p≥ 2

t
r
2 |∇̂p(t−

1
2 )|ĝ|∇̂(t−1)|ĝ︸ ︷︷ ︸

=O

(
t−

7
2+

(r−p)
2

)

+

m∑
r= 3

∑
p+s= r
p, s≥ 2

t
r
2 |∇̂p(t−

1
2 )|ĝ|∇̂s(t−1)|ĝ︸ ︷︷ ︸

=O

(
t−

7
2+

(r−p−s)
2

)
)

≤ Ct−
3
2
−m

2 .

Hence, in light of the above, we arrive at the fact that

|∇̂m+1ζ|ĝ ≤ Ct−1−m
2 = Ct−

1
2
− (m+1)

2 ,

as required. This completes the induction step. �
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[GKK10] D. Greb, S. Kebekus, and S. Kovács, Extension theorems for differential forms and Bogomolov-Sommese

vanishing on log canonical varieties, Compos. Math. 146 (2010), no. 1, 193–219. MR 2581247

(2011c:14054)
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