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ABSTRACT

Winter road safety procedures are crucial for maintaining
safe operating conditions and daily transportation activities with-
out impedance or risk to the population. Typically, road surface
salting mitigates ice build-up; however, road surface tempera-
ture (RST) forecasting with mathematical models performs poorly
where the geographic location and climate cannot be generalized
ordescribed models trained with data from sensors in unrepresen-
tative geographic locations. Additionally, modeling interactions
among meteorological, geographical, and physical road charac-
teristics can prove challenging. This study proposes using deep
neural networks to model the nonlinear interactions of the above
features, thereby creating a better model for forecasting RST by
up to twelve hours into the future.

Keywords: loT, deep learning, hyperparameter, recurrent
neural network, deep neural network

1. INTRODUCTION

According to the U.S. Federal Highway Administration (US-
DOT FHWA, 2017), snowfall and icing on road surfaces ac-
counted for 136,309 casualties and 1,836 deaths that year during
winter. Consequently, responders have proactively implemented
various road maintenance procedures to prevent road surface ic-
ing. In most cases, mathematical models have provided road sur-
face temperature (RST) predictions, which are generally incorrect
estimates of an RST variation model, mainly due to non-linear
interactions and relationships among complex geographical and
meteorological factors. This project’s first objective is to conduct
a performance comparison of two deep learning models for short
and medium-term multi-variable predictions. The input data are
time series of the global horizontal irradiance (GHI), ambient air
temperature, and barometric pressure, with the response data be-
ing RST. This investigation focuses on three models - Deep Neu-
ral Network (DNN), Convolutional Neural Network (CNN), and
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a specific type of Recurrent Neural Network (RNN): Long Short-
Term Memory (LSTM). Previous studies showed that deep neu-
ral networks, particularly LSTM models, performed well when
forecasting multivariate weather-dependent Wind Power Genera-
tion [1] and Solar Irradiance [2]. The contribution of this project
is to implement, evaluate and compare these three models for mul-
tivariate analysis and prediction, which is to capture the influence
of multiple variables on the target variable. The standard DNN
will benchmark the performance of the deep learning models.
The second objective is to implement an Internet of Things (IoT)
wireless sensor network (WSN) system. The WSN system will
be deployed outdoors for an extended time receiving, logging,
and transmitting climatological data and road surface tempera-
ture, which will train the deep learning algorithms. Therefore the
sensor node electronics and WSN system must be configured to
achieve continuous data collection with low power consumption.

1.1 Methodology

Data was collected every 10 seconds over the WSN network.
Typically a WSN network consists of the End Device/sensors,
Router, and Coordinator; however, this study only utilized two
wireless communication modules to create a network consisting
of the End Device and coordinator. The data were normalized
(“Fig. 1) to accommodate the sigmoid and hyperbolic tangent
activation function limits between zero and one. An added benefit
is faster model training and performance.

1.2 10T - Hardware Specification

Air Temperature, Humidity, Barom. Pres. Integrated
into a single board, the BME280, “Fig. 2”, is an environmental
sensor that includes a temperature sensor, a humidity sensor, and
a barometer. It features excellent accuracy, many functionalities,
and a tiny footprint, among other characteristics. The sensor has
a temperature inaccuracy of 0.5 °C and a relative humidity error
of 2%. When operating within the detection temperature range,
it exhibits notably steady performance. Furthermore, the offset
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FIGURE 1: DATA NORMALIZATION BETWEEN ZERO AND ONE.

temperature coefficient is 1.5 Pa - K -1 equivalent to 12.6 cm at
a 1 degree Celsius temperature shift.

FIGURE 2: BME280 ENVIRONMENTAL SENSOR MODULE.

Road Surface Temperature, “Fig. 3°. The MLX90614
is an infrared thermometer that measures temperature without
physical contact. The TO-39 container conveniently packages
the IR-sensitive thermopile detector chip and signal condition-
ing ASIC. The thermometer is factory calibrated and has two
different output methods: PWM and SMBus (i.e., TWI, 12C).
Regarding temperature resolution, the 10-bit PWM output has a
precision of 0.14°C, and the TWTI interface boasts a resolution of
0.02°C. Regarding temperature ranges, the MLLX90614 is factory
calibrated in a broad range: —40 to 85°C and —70 to 382.2°C for
ambient temperature and object temperature, respectively. The
temperature value measured is the average of all items inside the
sensor’s Field Of View. The MLX90614 has a standard accuracy
of 0.5°C at ambient temperatures, which is excellent.

Solar Irradiance Meter. Sun photovoltaic cells, “Fig. 47,
are a cost-effective and dependable method of determining solar
irradiance data. As it is a photoelectric device, exposing it to
sunlight generates a potential (voltage) across the material. Inter-
nally, the device is a single junction P-N Semiconductor that oper-
ates according to specific I-V curve rules. Solar photovoltaic cells
have four critical terms: open-circuit voltage (Voc), short-circuit
current (/g¢), maximum operating voltage (Vs p), and maximum

FIGURE 3: MLX90614 INFRARED THERMOMETER.

operating current (Ipsp). The value of the I5c¢ is proportional to
the intensity of sunlight. Therefore the solar Irradiance value is
inferred based on the current I/g¢ value in comparison with the
solar cell’s calibrated Is¢ value at 1000 W - m 2.

FIGURE 4: CALIBRATED SOLAR CELL.

Xbee Radio. “Fig. 5”. Wireless communication between
end-point devices in a WSN is accomplished through the usage
of the Xbee protocol. Xbee is a radio communication mod-
ule manufactured by Digi that is compatible with the ZigBee,
802.15.14, and other protocols. The Xbee works at a frequency
of 2.4 GHz and ranges between 10 and 30 meters.

Arduino Uno Board. Arduino, “Fig. 6”, is a microcontroller
system that is free and open-source, and it is based on a simple
input-output board. Arduinos are often used for prototyping and
constructing standalone interactive items [? ] and for developing
embedded software. Arduino was created to be simple to un-
derstand and use, versatile, and dependable, among other things.
They are commonly employed as portable devices in wireless
sensor networks [? ], which is a common application. There
are a variety of sensors and actuators that are compatible with
the Arduino platform. Typical actuators include popular sensors
such as temperature and light sensors (as noted above) and sound
sensors and speakers. Other basic actuators include LEDs and
digital and analog outputs.

1.3 Deep Learning - Models

Because the deep learning algorithms were built in Python
and used the TensorFlow backend, we created code scripts to
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FIGURE 6: ARDUINO UNO R3.

test and execute simplified versions of the deep learning models.
Additionally, we used Google’s Colab python notebook, which
gives an online Python environment and complimentary access
to a GPU for expedited Deep Learning model training. In this
work, we utilize three different types of models. The first model
is a Deep Neural Network (DNN), which serves as a benchmark
for the rest of the models. Secondly, a Convolutional Neural
Network (CNN) is used to compare with a third model, which
is a form of Recurrent Neural Network (RNN) known as a Long
Short-Term Memory (LSTM).

Dense Neural Network. Derived from artificial networks
(ANNSs), the DNN is a type of ANN built with multilayers ar-
chitecture ( “Fig. 8”) that can reconstruct raw data sets from
their original features to their learned features. This means that
instead of selecting features manually [? ], users can "learn" fea-
tures from neural networks (NNs), which will result in increased
accuracy and more generalization with the taught features.

Convolutional Neural Network. A CNN is an ANN de-
signed to analyze spatial data and is frequently used for image
and video processing. The neurons of the CNN are arranged like
that of multilayer perceptrons that have been regularized. Among
the layers that make up a CNN are an input layer, an output layer,
and a hidden layer that contains several convolutional layers and
pooling layers, fully connected layers, and normalizing layers.
With the removal of constraints and improved image processing
efficiency, we have a considerably more effective system that is
easier to train for image processing and natural language process-
ing. In our study, we utilize a one dimensional CNN model to
analyze the time-series data, “Fig. 9”.

FIGURE 7: ASSEMBLED WSN.
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FIGURE 8: ARCHITECTURE OF DNN IN THIS STUDY.

Long Short-Term Memory. “Fig. 10”. The accuracy and
universality of the RST forecast can be improved by using an
LSTM model, which is proposed in this paper. When used in
conjunction with backpropagation across time, the LSTM net-
work effectively eliminates the vanishing and expanding gradient
problems in machine learning. It features segments that make it
"smarter” than a typical neuron, and it has a memory for recent
sequences that other blocks may access.

1.4 Evaluation of Model Performance

The mean absolute error (MAE), a coefficient, is used in
this study to evaluate the forecasting results of the three models.
MAE calculates the average magnitude of errors in a group of
predictions without taking their direction into account. It is the
average of the absolute differences between prediction and actual
observation over the test sample, where all individual deviations
are given equal weight. The MAE value is between 0 and infin-
ity. A model with an MAE value near zero is more capable of
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FIGURE 9: ARCHITECTURE OF CNN IN THIS STUDY.

producing accurate projections. The equation below is used to
determine MAE.

1 < R
MAE = ;; lyi = 3 (1

where n is the number of samples, y; is the target output and $;
is the model output.

1.5 Hyper-parameter tuning

Optuna [? ] was used to tune the models. The results of the
hyperparameter tuning of the LSTM model are below. The hy-
perparameter data from the other models are in the supplemental
section and can be accessed upon reasonable request.

2. RESULTS AND DISCUSSION
2.1 Climatological Data

“Fig. 12” shows a plot of the captured data, from 11th to the
30th of May. Plots of the RST show some noise but overall have
a low signal-to-noise ratio.

“Fig. 13” shows the Pearson correlation coefficient between
the measured variables and target. RST shows strong correlation
between Irradiance and ambient air temperature. Relative humid-
ity appears to be negatively correlated with RST. The equation to
calculate the Pearson correlation coefficient is shown below.

o Si=D0i—Y)
VI -2 20 - 9)?
where x;, y; is the values of the x-variable and y-variable in the
sample, X, X is the mean of the values of the x-variable and y-
variable respectively.
The seasonal and trend data plots in “Fig. 14a” and “Fig. 14b”

is graphed by plotting the average values over the given time pe-
riod, twenty four hours and 3 months respectively. As shown

2
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FIGURE 10: ARCHITECTURE OF LSTM IN THIS STUDY.

(a) Batch size, learning rate, and number of units hyperparamter op-
timization.

Optimization History Plot

(b) Optimization history plot.

in “Fig. 13”, there is strong corrrelation between RST and Irra-
diance. The RST value seems to have slight time lag, which is
expected as RST general increases in temperature with increased
solar radiation exposure. With the exception of Ambient pressure
and relative air humidity, the trend of the data increases at varying
rates. Between the months of May and July as summer weather
becomes prevalent, ambient temperature and solar radiation flux
increases.

2.2 Model Performance.

“Fig. 14a” shows the RST forecast 12hrs into the future,
given the past twelve hours of data. There is a relatively equal
performance between All three models. In general, the models
struggle to predict the higher-frequency changes in RST tem-
perature, which is expected, considering that the models have
relatively simple architecture and parameters. Additionally, the
models’ output is “single shot” vector representations of the fore-
casted RST, producing less accuracy with longer forecasting win-
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FIGURE 12: PLOT OF CLIMATOLOGICAL AND RST DATA.

dows. The MAE values are shown in “Fig. 15d”, and are of the
normalized variables.

3. CONCLUSION

A deployed WSN network successfully collected meteoro-
logical and RST data. Data was collected for approximately 2.5
months and modeled using three ANN models. All three models
successfully forecasted within twelve-hour windows at less than
0.02 MAE (of normalized data between 0 and 1). The LSTM
model proved to be better at generalizing by scoring less than
0.012 MAE. One major limitation was the absence of a rain me-
ter since rain significantly affects the RST and directly contributes
to icing events.
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